高三数学强化训练8

合集下载

理科数学培优强化训练8

理科数学培优强化训练8

主视图左视图2222012届上砂中学高三理科数学培优强化训练8一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,A B 是非空集合,命题甲:A B B = ,命题乙:A B ⊂≠,那么 ( ) A.甲是乙的充分不必要条件 B. 甲是乙的必要不充分条件C.甲是乙的充要条件D. 甲是乙的既不充分也不必要条件 2.复数21ii =- ( ) A . 1i - B. 1i -+ C. 1i + D. 1i --3.已知点(,)N x y 在由不等式组002x y x y x +≥⎧⎪-≥⎨⎪≤⎩确定的平面区域内,则(,)N x y 所在平面区域的面积是 ( )A .1B .2C .4D .84.等差数列{a n }中,已知35a =,2512a a +=,29n a =,则n 为 ( ) A. 13 B. 14 C. 15 D. 165. 函数21log 1xy x+=-的图像 ( ) A . 关于原点对称 B. 关于主线y x =-对称 C. 关于y 轴对称 D. 关于直线y x =对称6.若某空间几何体的三视图如图所示,则该几何体的体积是 ()A.B.7.已知平面,,αβγ,直线,m l ,点A ,有下面四个命题: A . 若l α⊂,m A α= 则l 与m 必为异面直线; B. 若,l l m α 则m α ;ONC. 若 , , ,l m l m αββα⊂⊂ 则 αβ ;D. 若 ,,,m l l m αγγαγβ⊥==⊥ ,则l α⊥.其中正确的命题是 ( )8.某种游戏中,黑、黄两个“电子狗”从棱和为1的正方体ABCD -A 1B 1C 1D 1的顶点A 出发沿棱向前爬行,每爬完一条棱称为“爬完一段”,黑“电子狗”爬行的路线是AA 1→A 1D 1→…,黄“电子狗”爬行的路线是AB →BB 1→…,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须异面直线(其中i 是正整数).设黑“电子狗”爬完2012段、黄“电子狗”爬完2011段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是 ( ) A. 0B. 1C. 2D. 3第 Ⅱ 卷二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题:第9、10、11、12、13题是必做题,每道试题考生都必须做答. 9. 0-=⎰.10.函数2()sin cos2f x x x =+,x R ∈的最小正周期为11.在直角ABC ∆中, 90=∠C ,30=∠A , 1=BC ,D 为斜边AB 的中点,则 ⋅= .12.若双曲线22219x y a -=(0)a >的一条渐近线方程为320x y -=,则以双曲线的顶点和焦点分别为焦点和顶点的椭圆的离心率为__________.13.将“杨辉三角”中的数从左到右、从上到下排 成一数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…, 右图所示程序框图用来输出此数列的前若干项并求其和,若输入m=4则相应最后的输出S 的值是__________.(二)选做题:第14、15题是选做题,考生只能从中选做一题.14.(坐标系与参数方程选做题)已知曲线1C 、2C 的极坐标方程分别为2cos()2πρθ=-+,cos()104πθ-+=,则曲线1C 上的点与曲线2C 上的点的最远距离为________.15.(几何证明选讲选做题)如图,点M 为O 的弦AB 上的一点,连接MO .MN OM ⊥,MN 交圆于N ,若2MA =,4MB =,则MN = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,S 是该三角形的面积,(1)若(2si n c o s ,s i n c o s )2Ba B B B=- ,(sin cos ,2sin )2Bb B B =+ ,//a b ,求角B 的度数;(2)若8a =,23B π=,S =b 的值.17(本小题满分12分)甲、乙两人各射击一次,击中目标的概率分别是32和43假设两人射击是否击中目标,相互 之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击3次,至少1次未击中...目标的概率; ⑵假设某人连续2次未击中...目标,则停止射击,问:乙恰好射击4次后,被中止射击的概率是多少?⑶设甲连续射击3次,用ξ表示甲击中目标时射击的次数,求ξ的数学期望E ξ.(结果可以用分数表示)18. (本小题满分14分)如图,四边形ABCD 中(图1),E 是BC 的中点,2DB =,1,DC =BC =,AB AD ==将(图1)沿直线BD 折起,使二面角A BD C --为060(如图2)(1)求证:AE ⊥平面BDC ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点B 到平面ACD 的距离.19(本小题满分14分)已知函数()241(12)ln(21)22x a f x a x x +=-+++ .(1)设1a =时,求函数()f x 极大值和极小值; (2)a R ∈时讨论函数()f x 的单调区间.20.(本小题满分l4分)如图,P 是抛物线C :212y x =上横坐标大于零的一点,直线l 过点P 并与抛物线C 在点P 处的切线垂直,直线l 与抛物线C 相交于另一点Q .(1)当点P 的横坐标为2时,求直线l 的方程;(2)若0OP OQ ⋅=,求过点,,P Q O 的圆的方程.21. (本小题满分l4分)已知数列{}n a 的前n 项和为n S ,正数数列{}n b 中 ,2e b =(e 为自然对数的底718.2≈)且*N n ∈∀总有12-n 是n S 与n a 的等差中项,1 1++n n n b b b 与是的等比中项.(1) 求证: *N n ∈∀有n n n a a 21<<+; (2) 求证:*N n ∈∀有13ln ln ln )1(2321-<+++<-n n n a b b b a .高三数学(理科)试题答案一.选择题:二、填空题:三、解答题:17.解:(1)记“甲连续射击3次,至少1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1- P (1A )=1-32()3=1927答:甲射击3次,至少1次未击中目标的概率为1927;……………………4分 (2) 记“乙恰好射击4次后,被中止射击”为事件A 2,由于各事件相互独立,故P (A 2)=41×41×43×41+41×41×43×43 =364, 答:乙恰好射击4次后,被中止射击的概率是364……………………8分(3)根据题意ξ服从二项分布,2323E ξ=⨯=……………………12分(3)方法二:03311(0)()327p C ξ==⋅= 123216(1)()()3327p C ξ==⋅⋅=22132112(2)()()3327p C ξ==⋅⋅=3303218(1)()()3327p C ξ==⋅⋅=161280123227272727E ξ=⨯+⨯+⨯+⨯=……………………12分 说明:(1),(2)两问没有文字说明分别扣1分,没有答,分别扣1分。

数学强化训练(2011。03.21。学生版)

数学强化训练(2011。03.21。学生版)

2011届高三强化训练文科数学(问卷)时量:120分钟 总分:150分 (2011.03.26)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设映射x x x f 2:2+-→是实数集M 到实数集P 的映射,若对于实数t P t ,∈在M 中不存在原象,则t 的取值范围是( )A [)+∞,1B ()+∞,1C ()1,∞-D (]1,∞- 2.在区间()1,0上任取两个数,则两个数之和小于56的概率为( )A2512 B 2518 C 2516 D25173.以141222=-xy的顶点为焦点,长半轴长为4的椭圆方程为( )A1526422=+yxB1121622=+yxC141622=+yxD116422=+yx4.若直线)0,0(022>>=+-b a by ax 被圆014222=+-++y x y x 截得的弦长为4,则ba 11+的最小值是 ( )A 4B 2C 21 D415.曲线()12ln -=x y 上的点到直线032=+-y x 的最短距离为( )A5 B 52 C 53D 0 6.等差数列{}{}n n b a , 的前n 项和分别是n n T S ,,若132+=n n T S nn ,则=nn b a ( )A32 B1312--n n C1312++n n D4312+-n n7.在ABC ∆中,2,2,3π=∠==A BC AB ,如果不等式ACtBCBA →→→≥-恒成立,则实数t 的取值范围是( )A [)∞+,1 B⎥⎦⎤⎢⎣⎡121, C [)∞+⋃⎥⎦⎤ ⎝⎛∞-,,121 D (][)∞+⋃∞-,,10 8.已知函数6(3)3(7)()(7)x a x x f x ax ---≤⎧=⎨>⎩ 数列{}n a 满足()(*)n a f n n N =∈ 且{}n a 是递增数列,则实数a 的取值范围( ) A (1,3)B (2,3)C 9(,3)4 D 9[,3)4二、填空题:本大题共7小题,每小题5分,共35分,把答案填在题中的横线上. 9.在9,7,5,3,1,0,2,4,6,8----这十个数中,任取两个作为虚数a b i +的实部和虚部(,,a b R ∈且a b ≠),则能组成模大于5的不同虚数的个数有 个; 10.函数x x x f cos 2)(+=在⎥⎦⎤⎢⎣⎡π2,0上的最大值为 ;11.甲、乙两人玩数字游戏,先由甲心中任想一个数字为a ,再由乙猜甲刚好想的数字, 把乙想的数字记为b ,且,{1,2,3,4,5,6}a b ∈,若||1a b -≤,则称“甲乙心有灵犀”,现任意找出两个人玩这个游戏,得出他们“心有灵犀”的概率为;12.已知直线2(0)y x a a =-+>与圆229x y +=交于A 、B 两点,且92O A O B ⋅= ,则实数a 的值等于;13.当实数x y 、满足约束条件0(20x y xk x y k ≥⎧⎪≤⎨⎪++≤⎩为常数)时,3Z x y =+有最大值12,则实数k 的值为 ;14.一个总体中的80个个体编号为,79,,3,2,1,0 并依次将其分为8个组,组号为7,,2,1,0 ,要用(错位)系统抽样的方法抽取一个容量为8的样本.即规定先在第0组随机抽取一个号码,记为i ,依次错位地得到后面各组的号码,即第k 组中抽取个位数为ki +(当10<+k i )或10-+k i (当10≥+k i )的号码.在6=i 时,所抽到的8个号码是 15.如图,有一圆柱形开口容器(底面密封),其轴截面ACBD 是边长为2的正方形,P 是BC 的中点,现有一只蚂蚁位于外壁A 处,内壁P 处有一粒米粒,则这只蚂蚁取得米粒需要经过的最短路程为 . 三、解答题:本大题共六小题,共计75分.解答时应写出文字说明、证明或演算步骤. 16.(本小题满分12分) 已知函数()()()πϕωϕω≤≤>+=0,0cos x x f 为奇函数,且图象上相邻的一个最高点和最低点之间的距离为24π+.⑴求()x f 的最小正周期T ; ⑵求()x f 的解析式;⑶若⎪⎭⎫ ⎝⎛<<--=⎪⎭⎫⎝⎛+03323αππαf ,求⎪⎭⎫ ⎝⎛-6sin πα.P A BC D某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为()x G (万元),其中固定成本为2万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入()x R (万元)满足:⎩⎨⎧>≤≤-+-=)5(2.10)50(8.02.44.0)(2x x x x x R假定该产品产销平衡,那么根据上述统计规律. (Ⅰ)要使工厂有赢利,产量x 应控制在什么范围? (Ⅱ)工厂生产多少台产品时,可使赢利最多? (Ⅲ)求赢利最多时每台产品的售价.18.(本小题满分12分)如图,四棱锥G —ABCD 中,ABCD 是正方形,且边长为2a ,面ABCD ⊥面ABG ,AG=BG . (1)画出四棱锥G —ABCD 的三视图; (2)在四棱锥G —ABCD 中,过点B 作平面AGC 的垂线,若垂足H 在CG 上, 求证:面AGD ⊥面BGC(3)在(2)的条件下,求三棱锥D —ACG 的体积及其外接球的表面积.已知数列3021,,,a a a ,其中1021,,,a a a 是首项为1,公差为1的等差数列;201110,,,a a a 是公差为d 的等差数列;302120,,,a a a 是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a 是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?20.(本小题满分13分)已知曲线C 上任一点P 到直线1x =与点(1,0)F -的距离相等.(1)求曲线C 的方程;(2)设直线y x b =+与曲线C 交于点,A B ,问在直线:2l y =上是否存在与b 无关的定点M ,使得A M B ∠被直线l 平分,若存在,求出点M 的坐标,若不存在,请说明理由.21.(本小题满分13分) 设函数ax x x x f +-=2331)(,b x x g +=2)(,当21+=x 时,)(x f 取得极值。

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。

【高中数学竞赛专题大全】 竞赛专题8 立体几何(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题8 立体几何(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题8 立体几何 (50题竞赛真题强化训练)一、填空题1.(2018·四川·高三竞赛)在三棱锥P ABC -中,三条棱PA PB PC 、、两两垂直,且122PA PB PC ===、、.若点Q 为三棱锥P ABC -的外接球球面上任意一点,则Q 到面ABC距离的最大值为______.【答案】32 【解析】 【详解】三棱锥P ABC -的外接球就是以PA PB PC 、、为长、宽、高的长方体的外接球,其直径为2 3.R ==又1cos 5BAC ∠=,从而sin BAC ∠=于是,ABC ∆的外接圆半径为2sin BC r BAC ==∠故球心O 到ABC =从而,点Q 到面ABC 距离的最大值是32+故答案为322.(2018·辽宁·高三竞赛)四面体ABCD 中,已知2AB =,1119,8,22AD BC CD ===,则异面直线AC 与BD 所成角的正弦值是_____. 【答案】1 【解析】 【详解】因为2222222219118210622BC AB CD AD ⎛⎫⎛⎫-=-=⨯=-=- ⎪ ⎪⎝⎭⎝⎭,故AC BD ⊥,因此异面直线AC 与BD 所成角的正弦值是1. 故答案为13.(2018·湖南·高三竞赛)四个半径都为1的球放在水平桌面上,且相邻的球都相切(球心的连线构成正方形).有一个正方体,其下底与桌面重合,上底的四个顶点都分别与四个球刚好接触,则该正方体的棱长为__________. 【答案】23a = 【解析】 【详解】设正方体的棱长为a ,上底为正方形ABCD ,中心为O ,则OA =.由对称性知,球心1O 在面ABCD 上的射影M 应在直线AC 或BD 上,且球1O 与邻球的切点P 在面ABCD 上的射影N 在过点O 且平行AB 的直线上.于是.OM OA AM ==+又11O M a =-,则AM =,从而整理得23840a a -+=,解得23a =,或2a =(舍去).故23a =. 故答案为23a =4.(2018·湖南·高三竞赛)在半径为R 的球内作内接圆柱,则内接圆柱全面积的最大值是_____.【答案】2(1R π 【解析】 【详解】设内接圆柱底面半径为sin R α,则高位2cos R α, 那么全面积为()22sin 2sin 2cos R R R παπαα+⨯ ()222sin sin2R παα=+()2122sin2R cos παα=-+()(22121R R παϕπ⎡⎤=-≤⎣⎦. 其中1tan 2ϕ=,等号成立的条件是22παϕ=+.故最大值为(21R π.故答案为(21R π5.(2018·湖南·高三竞赛)正方体1111ABCD A B C D -中,E 为AB 的中点,F 为1CC 的中点.异面直线EF 与1AC 所成角的余弦值是_____. 【答案】223【解析】 【详解】设正方体棱长为1,以DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,则 ()()1111,,0,0,1,,1,0,1,0,1,122E F A C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.故有()1111,,,1,1,122EF AC ⎛⎫=-=- ⎪⎝⎭.所以11·223·EF AC cos EF AC θ==. 故答案为2236.(2020·江苏·高三竞赛)在长方体1111ABCD A B C D -中,4AB =,122BC CC ==,M 是1BC 的中点,N 是1MC 的中点.若异面直线AN 与CM 所成的角为θ,距离为d ,则2020sin d θ=__________.【答案】1616 【解析】 【详解】因为1CM BC ⊥,故90θ=︒.过点M 作ME AN ⊥于点E ,则ME CM ⊥,故d ME =. 因为4AB =,3BN =,所以5AN =,则4sin 5d ME MN ANB ==∠=,从而可得2020sin1616dθ=.故答案为:1616.7.(2021·全国·高三竞赛)已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的有__________面数.【答案】7个【解析】【详解】计算可得正四面体的两个相邻的半平面的二面角的余弦值为13,正八面体的两个相邻的半平面(两个四棱锥共底面的边的两个半平面)的二面角的余弦值为13-,故所得多面体的有7个面,故答案为:7.8.(2018·全国·高三竞赛)在三棱锥P-ABC中,PA=PB=4,PC=3,∠APB=∠APC=60°,∠BPC=90°.则三棱锥P-ABC的体积为_______.【答案】42【解析】【详解】如图,过点A 作AH ⊥面PBC 于点H ,过H 作HD ⊥PB 于点D 、HE ⊥PC 于点E 由∠APB =∠APC =60°及PA =4,知 PD =PE =2.从而,PH 为∠BPC 的平分线,即 ∠DPH =45°则,222PH PD == 2222AH PA PH =-=故三棱锥P-ABC 的体积为 1423BPC AH S ∆⋅=9.(2018·全国·高三竞赛)已知长方体1111ABCD A B C D -的长、宽、高分别为1、2、3,P 为平面1A BD 内的一点,则AP 长的最小值为_________. 【答案】67【解析】 【详解】注意到,AP 长最小当且仅当1AP A BD ⊥面. 此时,由1111ABDA A BD A ABD A BDA A S V V AP S 三棱锥三棱锥∆--∆⋅=⇒=.由勾股定理得15A D 110A B =13BD =则11272cos sin BA D BA D ∠=∠=从而,172A BDS ∆=故min 67AP =. 10.(2021·全国·高三竞赛)已知三棱锥A BCD -的三个侧面及底面的面积分别为5、12、13、15,且侧面的斜高相等,则三棱锥的体积为___________. 【答案】56 【解析】 【分析】 【详解】设斜高为h ,则102426,,BC CD DB h h h===. 从而BCD △为直角三角形,故11024152BCDS h h==⋅⋅,得22h =. 设三棱锥的高为AH ,由斜高相等知H 为BCD △的内心. 由于内切圆半径22BCDS r BC CD BD==++,故高226AH h r =-=,体积为1615563⋅⋅=.故答案为:56.11.(2020·浙江·高三竞赛)如图所示,在单位正方体上有甲、乙两个动点,甲从P 点匀速朝P '移动;乙从Q 点匀速出发朝Q '移动,到达Q '后速度保持不变并折返.现甲、乙同时出发,当甲到达P '时,乙恰好在到达Q '后折返到Q ,则在此过程中,甲、乙两点的最近距离为__________.66【解析】 【详解】设甲、乙的速度分别为1v 、2v ,在此过程中,1232v v =,即1223v v =. 不妨设13v =、22v =,则总的时间为1.设在时间为0t 末,甲、乙之间的距离最短,即此时P 、Q 分别达到M 、N 点. 分两种情况讨论:路程前半程与路程后半程.(1)路程前半程:010,2t ⎡⎤∈⎢⎥⎣⎦,则02QN t =,03PM t =,0MH t =,02PH t =,220122QH t t =+-,进而有2220001223213333MN t t t ⎛⎫=-+=-+≥ ⎪⎝⎭,故63MN ≥(当且仅当013t =时取等号). (2)路程后半程:01,12t ⎡⎤∈⎢⎥⎣⎦,则()021QN t =-,03PM t =,0MH t =,02PH t =,220122QH t t =+-,进而有2220007661114511111111MN t t t ⎛⎫=-+=-+≥ ⎪⎝⎭,故6611MN ≥(当且仅当0711t =时取等号). 因为666311>,所以在此过程中,甲、乙两点的最近距离为6611.6612.(2021·全国·高三竞赛)在棱长为3的正方体1111ABCD A B C D -上,点P 为AB 中点,从点P 发出的光线经侧面11BCC B 内部(不含边界)一点Q 反射后投射到侧面11DCC D 内部(不含边界),则满足条件的点Q 所组成区域的面积为___________. 【答案】4【解析】 【详解】设点P 关于B 的对称点为1P ,以1P 为顶点,以11DCC D 为底面,作四棱锥111P DCC D -, 该四棱锥与侧面11BCC B 的截面即为满足条件的区域. 该梯形的面积为4. 故答案为:4.13.(2021·全国·高三竞赛)已知正三棱锥P ABC -高为2,底面边长为3,现在将三棱锥切去一部分,得到一个顶点为P ,底面在ABC 内的正四棱锥,则该四棱锥的体积最大为___________.【答案】8-【解析】 【详解】作图可知该四棱锥底边边长最大为3从而可得相应的体积为8-故答案为:8-14.(2021·全国·高三竞赛)正四面体ABCD 中,点G 为面ABC 的中心,点M 在线段DG 上,且tan AMB ∠=DM DG =___________. 【答案】78【解析】 【详解】解析;设,1AM BM x AB ===,由余弦定理得22x =,且3AG GB ==,则226GM AM AG =-=而6DG =66732486DM DG ==. 故答案为:78.15.(2021·全国·高三竞赛)A B C D 、、、是半径为1的球面上的4个点,若1AB CD ==,则四面体ABCD 体积的最大值是__. 3【解析】 【详解】设AB 与CD 间的距离为d ,夹角为θ.取AB 中点M 和CD 中点N ,则3d MN OM ON ≤≤+=故四面体体积13sin 6V AB CD d θ=⋅⋅⋅⋅≤AB CD ⊥且其中点连线过球心时等号成立.316.(2021·全国·高三竞赛)已知三棱锥S ABC -的底面ABC 为正三角形,点A 在侧面SBC 上的射影H 是SBC △的垂心,二面角H AB C --的大小为30,且2SA =,则此三棱锥的体积为_________.【答案】34【解析】 【分析】 【详解】由点A 在侧面SBC 上的射影H 是SBC △的垂心,知三棱锥S ABC -的三组对棱互相垂直,从而点S 在底面ABC 上的射影也是ABC 的垂心Q .又ABC 为正三角形,所以垂心Q 为ABC 的中心,则三棱锥S ABC -是正三棱锥. 延长BH 交SC 于点E ,则二面角E AB C --的大小为30.又SAC SBC ≌,得AE BE =,取AB 的中点D ,则易证EDC ∠为二面角E AB C --的平面角,EC ED ⊥(SC ⊥平面AHB ).设BC a =,则2212CD CE BC BE ==-,2344a a =,3a =,从而三棱锥S ABC -的体积为34.故答案为:34.17.(2021·全国·高三竞赛)如图,已知正方体1111ABCD A B C D -的棱长为2,P 为空间一点,且满足1111,A P AB APB ADB ⊥∠=∠,则1D P 的最小值为_______.316【解析】 【分析】 【详解】先不看条件11A P AB ⊥,只关注11APB ADB ∠=∠,即1APB ∠为定角.若Р点在平面11AB C D 上,则如图2所示,此时有11APB ADB ∠=∠可知,P 在以1AC 为 直径的圆弧1ADB 上.那么在任意一个过直线1AB 的平面上,P 点均为类似地一段圆弧. 故P 点的轨迹即圆弧1ADB 绕1AB 旋转形成的一个曲面Γ(苹果曲面). 再由11A P AB ⊥知,P 在过1A 且垂直于1AB 的垂面,即平面11A BCD 上. 故P 为平面11A BCD 截曲面Γ所得的曲线,即图3所示的圆O , 故易知1D P 的最小值为1OP OD -316 316.18.(2021·全国·高三竞赛)四面体ABCD 中,,,,1CD BC AB BC CD AC AB BC ⊥⊥===,平面BCD 与平面ABC 成45︒的二面角,则点B 到平面ACD 的距离为___________. 3【解析】 【分析】 【详解】2DC AC ==DE ⊥平面ABC ,垂足为E ,连结CE 、AE ,由三垂线逆定理,EC BC ⊥,所以45DCE ∠=︒, 故2111,36ABCD ABCCE DE V DE S ====⋅=. 又因ABCE 为正方形,1AE =,则2AD = 因此正三角形ACD 3 设B 到平面ACD 的距离为h ,由1136ACDh S⋅=,得33h .19.(2021·全国·高三竞赛)已知正三棱锥P ABC -,M 是侧棱PC 的中点,PB AM ⊥.若N 是AM 的中点,则异面直线BN 与PA 所成角的余弦值为________.【解析】 【分析】 【详解】易证PA 、PB 、PC 互相垂直.以P 为坐标原点,分别以PB 、PC 、PA 所在的直线为x 、y 、z 轴建立空间直角坐标系.设1PA PB PC ===,则111(0,0,1),(0,1,0),(1,0,0),0,,0,0,,242A C B M N ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以111,,,(0,0,1)42BN PA ⎛⎫=-= ⎪⎝⎭,故1||||1BNPA BN PA ⋅==⋅⨯20.(2021·全国·高三竞赛)正方体1111ABCD A B C D -中,P 是线段11A C 上一点,平面PAB 与底面ABCD 的夹角为α,平面PBC 与底面ABCD 的夹角为β,则tan()αβ+的最小值为________. 【答案】43-【解析】 【分析】 【详解】过P 作1PP ⊥平面ABCD ,垂足为1P ;过1P 作1PM AB ⊥,垂足为M ,作1P N BC ⊥,垂足为N .易知11,PMP PNP αβ=∠=∠,设正方体的棱长为1,11,PM x PN y ==, 则111,tan ,tan x y x yαβ+===, 2tan tan 4tan()1tan tan 1312x y x y xy x y αβαβαβ++++==≥=---+⎛⎫- ⎪⎝⎭,当且仅当x y =时等号成立,所以tan()αβ+的最小值为43-.故答案为:43-.21.(2021·全国·高三竞赛)在三棱锥P ABC -中,7,8,9AP BC BP CA CP AB ======,则这个三棱锥的体积为________. 【答案】1611【解析】 【分析】 【详解】可以把这个三棱锥嵌人到一个长宽高分别为33,43使其六条棱分别为长方体六个面的面对角线,于是三棱锥的体积恰为长方体的13,即14334316113⨯故答案为:161122.(2021·全国·高三竞赛)在三棱锥P ABC -中,6,8,10BC CA AB ===.若三侧面与顶面所成二面角均为45︒,则三棱锥P ABC -的体积为__________. 【答案】16 【解析】 【分析】作PO ⊥平面ABC ,垂足为O ,作,,OD BC OE CA OF AB ⊥⊥⊥,垂足分别为D E F 、、. 设OP h =,则45,cot 45PDO PEO PFO OD OE OF h h ∠=∠=∠=︒===︒=. 在ABC 中,有6810248ABCOD OE OF S++==,解得2h =.故112241633ABCV hS==⨯⨯=. 故答案为:16.23.(2021·全国·高三竞赛)已知正方形,ABCD E 是边AB 的中点.将DAE △和CBE △分别沿DE 和CE 折起,使得AE 与BE 重合.记A 与B 重合后的点为P ,则平面PCD 与平面ECD 所成的二面角的大小为__________. 【答案】30 【解析】 【分析】 【详解】PCD 中,PC PD CD ==,故60PCD ∠=︒.PCE中,cos PCE ∠=CDE △中,cos DCE ∠=设二面角P CD E --大小为θ.对三面角C PDE -应用三面角余弦定理,得:cos cos cos cos sin sin PCE PCD ECD PCD ECD θ∠-∠∠===∠∠即30θ=︒. 故答案为:30.24.(2021·全国·高三竞赛)在菱形ABCD中,60,A AB ∠=︒=ABD △折起到PBD △的位置,若三棱锥–P BCD,则二面角P BD C --的正弦值为__________.【解析】 【分析】由外接球的体积为776π,则该球的半径72R =,设球心O 在平面PBD 和平面BCD 上的射影分别为12O O 、,则12O O 、为正PBD △和正BCD △的中心,取BD 的中点E ,连结12O E O E 、,则12,O E BD O E BD ⊥⊥, 则12O EO ∠是二面角P BD C --的平面角,在2Rt OO C 中,273,123OC R O C AB ====,则232OO =, 又在直角2OO E 中,23162O E AB ==,则21260,120O EO O EO ∠=∠=︒︒,则二面角P BD C --的正弦值为32. 故答案为:32. 25.(2021·全国·高三竞赛)如图,棱长为1的正四面体S ABC -的底面在平面α上,现将正四面体绕棱BC 逆时针旋转,当直线SA 与平面α第一次成30角时,点A 到平面α的距离为_______.61- 【解析】 【分析】 【详解】取BC 的中点D ,折叠后A 在平面α内的射影为E ,则 30ADE SAD ∠=∠-︒,()sin sin 30ADE SAD ∠=∠-︒ 323sin cos30cos sin 30SAD SAD -=∠︒-∠︒=所以332361sin 264AE AD ADE --=⨯∠=⨯=.故答案为:614-. 26.(2019·江西·高三竞赛)P 是正四棱锥V -ABCD 的高VH 的中点若点P 到侧面的距离为3,到底面的距离为5,则该正四棱锥的体积为____________ . 【答案】750 【解析】 【详解】如图所示,PF ⊥面VBC ,5,10VP VH ==,2222534VF VP PF =-=-=.而PHMF 共圆,VP •VH =VF •VM ,所以252VM =,22152HM VM VH =-=, 则AB =15.所以正四棱锥的体积217503V VH AB =⋅⋅=.故答案为:750.27.(2019·吉林·高三竞赛)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E 、F 分别是AC 、BC 的中点,60EPF ︒∠=,则球O 的表面积为____________ . 【答案】6π 【解析】 【详解】由于P -ABC 为正三棱锥,故EP FP =,从而△EPF 为等边三角形,且边长EF =1.由此可知侧面P AC 的高PE =1,故棱长2PA =. 还原成棱长为2的正方体可知,P -ABC 的外接球的直径长恰为正方体的体对角线长6, 从而表面积为6π. 故答案为:6π.28.(2019·上海·高三竞赛)边长为2的正方形,经如图所示的方式裁剪后,可以围成一个正四棱锥,则此正四棱锥的体积最大值为________.165【解析】 【详解】设围成的正四棱锥为P ABCD -,PO 为四棱锥的高作OE ⊥BC ,垂足为E ,连结PE .令OE =x ,则p =1-x ,12PO x =-于是正四棱锥P -ABCD 的体积为21(2)123V x x =⋅-所以2416(12)9V x x =-44162(12)92x x ⎛⎫=⋅⋅⋅- ⎪⎝⎭512256222295x x x x x ⎛⎫++++- ⎪ ⎪ ⎪⎝⎭525695=⨯, 故165375V,当25x =165165 29.(2018·甘肃·高三竞赛)已知空间四点,,,A B C D 满足,,AB AC AB AD AC AD ⊥⊥⊥,且1,AB AC AD Q ===是三棱锥A BCD -的外接球上的一个动点,则点Q 到平面BCD 的最大距离是______.【解析】 【详解】将三棱锥A BCD -补全为正方体,则两者的外接球相同. 球心就是正方体的中心,记为O ,在正方体里,可求得点O 到平面BCD Q 到平面BCD 的最大距离是=30.(2018·天津·高三竞赛)半径分别为6、6、6、7的四个球两两外切.它们都内切于一个大球,则大球的半径是________ 【答案】14 【解析】 【详解】设四个球的球心分别为A 、B 、C 、D ,则AB=BC=CA=12,DA=DB=DC=13, 即A 、B 、C 、D 两两连结可构成正三棱锥.设待求的球心为X ,半径为r.,则由对称性可知DX ⊥平面ABC. 也就是说,X 在平面ABC 上的射影是正三角形ABC 的中心O.易知OA =11OD =.设OX=x ,则AX =由于球A 内切于球X ,所以AX=r-66r =- ①又DX=OD-OX=11-x ,且由球D 内切于球X 可知DX=r-7 于是 117x r -=- ② 从①②两式可解得4x =,14r = 即大球的半径为14. 故答案为1431.(2018·河南·高三竞赛)一个棱长为6的正四面体纸盒内放一个小正四面体,若小正四面体可以在纸盒内任意转动,则小正四面体棱长的最大值为______.【答案】2 【解析】 【详解】因为小正四面体可以在纸盒内任意转动,所以小正四面体的棱长最大时,为大正四面体内切球的内接正四面体.记大正四面体的外接球半径为R ,小正四面体的外接球(大正四面体的内切球)半径为r , 易知13r R =,故小正四面体棱长的最大值为1623⨯=. 32.(2018·河北·高三竞赛)1111ABCD A B C D -内部有一圆柱,此圆柱恰好以直线1AC 为轴,则该圆柱体积的最大值为_____. 【答案】2π 【解析】 【详解】由题意知只需考虑圆柱的底面与正方体的表面相切的情况.由图形的对称性可知,圆柱的上底面必与过A 点的三个面相切,且切点分别在1AB 、AC 、1AD 上.设线段1AB 上的切点为E ,圆柱上底面中心为1O ,半径1O E r =.由1111B AO E A C ∽得1AO =,则圆柱的高为1323AO -=-,()23V r π=-,由导数法或均值不等式得max 2V π=.33.(2018·河北·高二竞赛)若123A A A △的三边长分别为8、10、12,三条边的中点分别是B 、C 、D ,将三个中点两两连结得到三条中位线,此时所得图形是三棱锥A-BCD 的平面展开图,则此三棱锥的外接球的表面积是________. 【答案】772π【解析】 【详解】由已知,四面体A-BCD 的三组对棱的长分别是4、5、6.构造长方体使其面对角线长分别为4、5、6,设长方体的长、宽、高分别为x 、y 、z ,外接球半径为R ,则222222222456x y x z y z ⎧+=⎪+=⎨⎪+=⎩,得()22227722R x y z =++=,故2778R =,所以772S π=. 34.(2018·江西·高三竞赛)四棱锥P ABCD -的底面ABCD 是一个顶角为60︒的菱形,每个侧面与底面的夹角都是60︒,棱锥内有一点M 到底面及各侧面的距离皆为1,则棱锥的体积为______.【答案】83 【解析】 【详解】设菱形两对角线AC 、BD 的交点为H ,则PH 既是线段AC 的中垂线,又是BD 的中垂线,故是四棱锥的高,且点M 在PH 上,于是平面PBD 与底面ABCD 垂直,同理平面PAC 与与底面ABCD 垂直,平面PBD 将四棱锥分成两个等积的四面体.只需考虑四面体P ABD -.如图,设点M 在面PAD 上的投影为E ,平面MEH 过点P ,且交AD 于F ,因90MHF MEF ∠=︒=∠,则M 、E 、F 、H 四点共圆.由于ME ⊥面PAD ,得ME AD ⊥,由MH ⊥面ABD ,得MH AD ⊥, 所以AD ⊥面MEH ,故AD PF ⊥.FH 是PF 在面ABD 内的射影,则AD FH ⊥,即二面角的平面角60EFH ∠=︒,于是120EMH ∠=︒.据1ME MH ==,得3EH =MEF 与MHF 中,EF HF =. 因60EFH ∠=︒,所以EFH 是正三角形,即3FH EF EH === 在直角AFH 中,30HAF ∠=︒,则223AH FH == 故正ABD 的边长为4,于是43ABDS=.在直线PFH 中,tan603PH FH =︒=,1433P ABD ABDV PH S-=⋅=从而283P ABCD P ABD V V --==. 故答案为8335.(2018·福建·高三竞赛)如图,在三棱锥P ABC -中,PAC △、ABC 都是边长为6的等边三角形.若二面角P AC B --的大小为120︒,则三棱锥P ABC -的外接球的面积为______.【答案】84π 【解析】 【详解】如图,取AC 的中点D ,连结DP 、DB ,则由PAC 、ABC 都是边长为6的等边三角形,得PD AC ⊥,BD AC ⊥,PDB ∠为二面角P AC B --的平面角,120PDB ∠=︒.设O 为三棱锥P ABC -的外接球的球心,1O 、2O 分别为ABC 、PAC 的中心. 则1OO ⊥面ABC ,2OO ⊥面PAC ,且2113633O D O D ⎫===⎪⎪⎝⎭21OO OO =. 易知O 、2O 、D 、1O 四点共面,连结OD ,则160ODO ∠=︒,1133OO DO =. 所以三棱锥P ABC -的外接球半径()22221132321R OB OO O B ==++所以三棱锥P ABC -的外接球的面积为24π84πR =.36.(2018·全国·高三竞赛)在正方体1111ABCD A B C D -中,已知棱长为1,点E 在11A D 上,点F 在CD 上,112A E ED =,2DF FC =.则三棱锥1B FEC -的体积为__________. 【答案】527【解析】 【详解】如图,过点F 作111FF C D ⊥,联结11B F ,与1EC 交于点K.易知,111B F EC ⊥,1EC BFK ⊥面.因为BF 与1EC 异面垂直,且距离为1,BF=1EC 10, 所以,1113BFK B FEC V EC S ∆-=⋅三棱锥 2110153227=⨯=⎝⎭. 37.(2019·全国·高三竞赛)已知四面体ABCD 的四个面DBC DCA DAB ABC ∆∆∆∆、、、的面积分别为12、21、28、37,顶点D 到面ABC ∆的距离为h.则h=__________. 5042【解析】 【详解】注意到,222212212837++=. 因此,四面体ABCD 为直角四面体. 故332442565042ABC DA DB DC h S ∆⋅⋅⨯⨯===38.(2018·全国·高三竞赛)在四面体ABCD 中,已知3ADB BDC CDA π∠=∠=∠=,△ADB 、△BDC 、△CDA2、1.则此四面体体积为________.【解析】 【详解】设DA 、DB 、DC 分别为x 、y 、z.则333=21222xysinyzsin xzsin,,πππ==.三式相乘得xyz =设DC 与面ABD 所成角为a ,点C 到面ABD 的距离为h.则h=zsina.由图形的对称性知coscos ?cos cos sin 36a a a ππ=⇒⇒.故所求四面体体积为113·sin 332ABD xysinS h z a π∆⎛⎫⎪== ⎪ ⎪⎝⎭. 39.(2018·全国·高三竞赛)在金属丝制作的3×4×7的长方体框架中放置一个球,则该球的半径的最大值为________. 【答案】52【解析】 【详解】显然,球的直径不能超过3×45=,故该球半径的最大值为52.40.(2018·安徽·高三竞赛)在边长为1的长方体1111ABCD A B C D -内部有一小球,该小球与正方体的对角线段1AC 相切,则小球半径的最大值=___________.【解析】 【详解】当半径最大时,小球与正方体的三个面相切.不妨设小球与过点1D 的三个面相切.以1D 为原点,11DC 、11D A 、1D D 分别为x 、y 、z 轴正方向,建立空间直角坐标系.设A (0,1,1),1C (1,0,0),小球圆心P (r ,r ,r ),则P 到1AC 的距离112123AP AC r r AC ⨯=-=. 再由12r <,得465r -=. 故答案为465- 41.(2021·全国·高三竞赛)把半径为1的4个小球装入一个大球内,则此大球的半径的最小值为___________. 【答案】612+ 【解析】 【详解】4个小球在大球内两两相切,4个小球的球心连线构成1个正四面体,正四面体的中心与大球的球心重合,大球的半径等于正四面体的外接球半径加上小球的半径, 所以大球半径为336661121144342h a +=⨯⋅+=⨯+=+. (其中h 表示正四面体的高,a 表示正四面体的棱长.) 故答案为:612+. 42.(2019·浙江·高三竞赛)如图,在△ABC 中,∠ABC =120°,AB =BC =2.在AC 边上取一点D (不含A 、C ),将△ABD 沿线段BD 折起,得到△PBD .当平面PBD 垂直平面ABC 时,则P 到平面ABC 距离的最大值为____________.【答案】2 【解析】 【详解】在△ABC 中,因为AB =BC =2,∠ABC =120°,所以30BAD BCA ︒∠=∠=. 由余弦定理可得23AC =设AD =x ,则03,3x DC x <<=.在△ABD中,由余弦定理可得BD =在△PBD 中,PD =AD =x ,PB =BA =2,∠BPD =30°. 设P 到平面ABC 的距离为d ,则11sin 22PBDSBD d PD PB BPD =⨯=⋅∠,解得d由0x <<max 2d =. 故答案为:2.43.(2019·贵州·高三竞赛)若半径2R =的空心球内部装有四个半径为r 的实心球,则r 所能取得的最大值为____________cm . 【答案】2 【解析】 【详解】当半径为r 的四个实心球“最紧凑”时,即此四个球两两相切且内切于空心球时,r 取得最大值.此时,小球的四个球心连线构成棱长为2r 的正四面体,显然,此四面体外接球的球心即为实心球球心.在棱长为2r 的正四面体中,求得外接球半径.r +,2r +=r =2. 故答案为:2.44.(2019·四川·高三竞赛)已知正四棱锥Γ的高为3,侧面与底面所成角为3π,先在Γ内放入一个内切球O 1,然后依次放入球234,,,O O O ,使得后放入的各球均与前一个球及Γ的四个侧面均相切,则放入所有球的体积之和为_____ . 【答案】1813π 【解析】 【详解】设侧面与底面所成角为θ.记球Oi 的半径为ri ,体积为Vi ,i =1,2,3,…. 因为1cos 2θ=,故1113cos r h r r θ=+=,即1113r h ==. 定义12n n s r r r =+++,由于132(2)n n r h s n -=-,所以()132n n n r r r +-=,即113n n r r +=,所以113n n r -⎛⎫= ⎪⎝⎭.故333111441333i nnni i i i i V r ππ-===⎛⎫==⋅ ⎪⎝⎭∑∑∑,所以118lim 13ni n i V π→∞==∑. 故答案为:1813π. 45.(2019·山东·高三竞赛)空间有4个点A 、B 、C 、D ,满足AB BC CD ==.若∠ABC =∠BCD =∠CDA =36°,那么直线AC 与直线BD 所成角的大小是______ . 【答案】90°或36° 【解析】 【详解】如果△ABC 与△CDA 全等,那么AC ⊥BD ,此时直线AC 与直线BD 所成的角为90°; 如果△ABC 与△CDA 不全等,则易知A 、B 、C 、D 四点共面,且点D 在∠ACB 的内部, 由于△ABC ≌△DCB ,且他们均是等腰三角形, 故直线AC 与直线BD 所成的角是36°. 故答案为:90°或36°.46.(2019·重庆·高三竞赛)已知正四面体可容纳10个半径为1的小球则正四面体棱长的最小值为_______ .【答案】4+ 【解析】 【详解】当正四面体棱长最小时,设棱长为a ,此时,一、二、三层分别有1、3、6个小球,且相邻小球两两相切,注意到重心分四面体的高为1:3,所以正四面体的高3221h ==+,得4a =+故答案为:426+. 二、解答题47.(2019·甘肃·高三竞赛)已知三棱锥P -ABC 的平面展开图中,四边形ABCD 为边长等于22的正方形,△ABE 和△BCF 均为正三角形,在三棱锥P -ABC 中:(1)证明:平面P AC ⊥平面ABC ; (2)若点M 为棱P A 上一点且12PM MA =,求二面角P -BC -M 的余弦值. 【答案】(1)见解析(2)223【解析】 【详解】(1)如图①,设AC 的中点为O ,连结,BO PO .由题意,得22PA PB PC ===PO =2,2AO BO CO ===. 因为在△P AC 中,P A =PC ,O 为AC 的中点,所以PO ⊥AC.又因为在△POB 中,PO =2,OB =2,PB =22222PO OB PB +=,所以PO ⊥OB. 因为AC ∩OB =O ,AC ,OB ⊆平面ABC ,所以PO ⊥平面ABC. 又因为PO ⊆平面P AC ,所以平面P AC ⊥平面ABC .(2)由PO ⊥平面ABC ,OB ⊥AC ,所以,PO OB PO OC ⊥⊥.于是以OC 、OB 、OP 所在直线分别为x 轴、y 轴、z 轴建立如图②所示的空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0)O C B ,24(2,0,0),(0,0,2),,0,33A P M ⎛⎫-- ⎪⎝⎭,(2,2,0),(2,0,2)BC PC =-=-,84,0,33MC ⎛⎫=- ⎪⎝⎭.设平面MBC 的法向量为()111,,m x y z =,则由00m BC m MC ⎧⋅=⎪⎨⋅=⎪⎩得1111020x y x z -=⎧⎨-=⎩,令11x =,则111,2y z ==,即(1,1,2)m =. 设平面PBC 的法向量为()222,,n x y z =,由00n BC n PC ⎧⋅=⎪⎨⋅=⎪⎩得22220x y x z -=⎧⎨-=⎩,令x 2=1,则221,1y z ==,即(1,1,1)n =.422cos ,||||318m n n m m n ⋅〈〉===⋅. 由图可知,二面角P -BC -M 的余弦值为223. 48.(2018·广东·高三竞赛)如图①,已知矩形ABCD 满足AB=5,34AC =,沿平行于AD 的线段EF 向上翻折(点E 在线段AB 上运动,点F 在线段CD 上运动),得到如图②所示的三棱柱ABE DCF -.⑴若图②中△ABG 是直角三角形,这里G 是线段EF 上的点,试求线段EG 的长度x 的取值范围;⑵若⑴中EG 的长度为取值范围内的最大整数,且线段AB 的长度取得最小值,求二面角C EF D --的值;⑶在⑴与⑵的条件都满足的情况下,求三棱锥A-BFG 的体积.【答案】(1)[)0,2.5(2)8arccos 25AEB π∠=-(3【解析】 【详解】⑴由题设条件可知△AEG 、△BEG 均为直角三角形, 因此222AG AE x =+,222BG BE x =+.由余弦定理2222cos AB AE BE AE BE AEB =+-⋅∠.于是22222222cos x AE BE AB AE BE AE BE AEB ++==+-⋅∠.()222cos 55 2.5x AE BE AEB AE BE t t t t =-⋅∠<⋅=-=-+≤.所以,[)0,2.5x ∈.又对任意[)0,2.5k ∈, 2.5AE EB ==,22arccos 2.5k AEB π∠=-.则x k =,故x 的取值范围为[)0,2.5.⑵因为AE ⊥EF ,BE ⊥EF ,所以∠AEB 就是二面角C-EF-D 的平面角 又由⑴知EG 的长度x 为[)0,2.5的最大整数,因此x=2. 于是()22225421029AB t t t t =+-+=-+,t ∈(0,5). 因此t=2.5时,线段AB 的长度取得最小值. 由此得252cos 4AEB =-∠,8arccos 25AEB π∠=-.⑶由⑴、⑵知8arccos25AEB π∠=-,52AE EB ==,AG BG ==2EG =且3EF ===. 因为AE ⊥EF ,BE ⊥EF ,AE BE E ⋂=. 所以EF ⊥平面EAB ,故()13A BFG A BEF A BEG AEB AGB V V V S EF S EG ---∆∆=-=⋅-⋅ 22111sin 322AE AEB EF BG EG ⎡⎤⎛⎫=∠- ⎪⎢⎥⎝⎭⎣⎦1413264⎫=-⨯=⎪⎪⎭. 49.(2021·全国·高三竞赛)空间中的n 个点,其中任何三点不共线,把它们分成点数互不相同的m 组()3n m >≥,且,2m n m ,在任何三个不同的组中各取一点为顶点作三角形,要使这种三角形的总数最大,各组的点数应是多少 【答案】答案见解析 【解析】 【分析】 【详解】把这n 个点分成m 组,设当每组点数分别为12,,,m a a a ,这里120m a a a <<<<,顶点分别在三个组的三角形的总数为:1i j k i j k mS a a a ≤<<≤=∑①取得最大值.(1)先证明:12,1,2,,1i i a a i m +-=-.若不然,设有0i 使0013i i a a +-≥,不妨设01i =,我们将①式改写为()1212333mi j k i j k i j k mi j k mS a a a a a a a a a a =≤<≤≤<<≤=+++∑∑∑. ②令11221,1a a a a ''=+=-,则1212a a a a ''+=+,()1212211212131a a a a a a a a a a ''=+--≥+->,当用12a a ''、代替12、a a ,其余值保持不变时S 值变大,矛盾. (2)证明使12i i a a +-=的i 值不多于1个,若有0011i j m ≤<≤-,使0000112,2i i j j a a a a ++-=-=,则当用0000111,1i i j j a a a a ''++=+=-代替001,i j a a +而其余k a 不变时,000011i j i j a a a a ''++>, 但000011i j i j a a a a ''+++=+,类似②式可知S 也变大,这是不可能的.(3)证明:使12i i a a +-=的值恰有一个.若对所有11i m ≤≤-,均有11i i a a +-=,则m 组的点数分别为,1,,(1)s s s m ++-,于是有:(1)(1)((1))2m m s s s m ms n -+++++-=+=. ③ 由题设2m 及③式,得mn ∣,而题设m n ,故矛盾.(4)设第0i 个差0012i i a a +-=,而其余的差均为1,于是可令01,1,2,,j a s j j i =+-=;0,1,,j a s j j i m =+=+, 所以0011(1)()i m j j i s j s j n ==++-++=∑∑,得0(1)2m m ms i n ++-=. ④ 又011i m ≤≤-,由④式得222222 22n m m n m m s m m--+-+-≤≤. ⑤ 故符合题意的对应各组的点数由④、⑤两式确定正整数s 与0i .50.(2021·全国·高三竞赛)证明:如下构造的空间曲线Γ的任意五等分点组都不在同一球面上,曲线Γ的构造:作周长为l 的圆O ,在圆O 上取AmB 使15l AmB <的长度25l <,并以AB 为轴将AmB 旋转180︒得弧Am B ',在圆O 上取BnC ,使AmB 的长度BnC +的长度25l <,并以BC 为轴将BnC 旋转θ度()0180θ︒<<︒得弧Bn C ',这样,由弧Am B BnC CrA ''、、组成的曲线便是空间曲线.(如图所示)【答案】证明见解析【解析】【分析】【详解】设12345A A A A A 、、、、是曲线Γ的任一五等分点组.由曲线Γ的构造知,曲线Γ的长度为,l AmB 的长度1,5CrA >的长度35l >, 那么至少有一个分点不妨设为1A ,落在弧Am B '内(不包括端点),同时至少有三个分点,不妨设为234A A A 、、,落在CrA 内(不包括端点).又由曲线Γ的构造知Am B '与弧CrA 在同一平面内,从而1234A A A A 、、、四点在同一平面内.由平面几何知识知,234A A A 、、三点只能确定唯一的圆O ,而1A 不在圆O 上,所以1234A A A A 、、、四点不共圆.于是1234A A A A 、、、四点必不共球面,否则过1234A A A A 、、、的平面与1234A A A A 、、、所在的球的截面是圆,即1234A A A A 、、、四点共圆,矛盾.故12345A A A A A 、、、、不可能共球面,即曲线Γ的任意五等分点组都不在同一球面上.【高中数学竞赛专题大全】竞赛专题8 立体几何(50题竞赛真题强化训练)一、填空题1.(2018·四川·高三竞赛)在三棱锥P ABC -中,三条棱PA PB PC 、、两两垂直,且122PA PB PC ===、、.若点Q 为三棱锥P ABC -的外接球球面上任意一点,则Q 到面ABC 距离的最大值为______.2.(2018·辽宁·高三竞赛)四面体ABCD 中,已知2AB =,1119,8,22AD BC CD ===,则异面直线AC 与BD 所成角的正弦值是_____.3.(2018·湖南·高三竞赛)四个半径都为1的球放在水平桌面上,且相邻的球都相切(球心的连线构成正方形).有一个正方体,其下底与桌面重合,上底的四个顶点都分别与四个球刚好接触,则该正方体的棱长为__________.4.(2018·湖南·高三竞赛)在半径为R 的球内作内接圆柱,则内接圆柱全面积的最大值是_____.5.(2018·湖南·高三竞赛)正方体1111ABCD A B C D -中,E 为AB 的中点,F 为1CC 的中点.异面直线EF 与1AC 所成角的余弦值是_____.6.(2020·江苏·高三竞赛)在长方体1111ABCD A B C D -中,4AB =,122BC CC ==,M 是1BC 的中点,N 是1MC 的中点.若异面直线AN 与CM 所成的角为θ,距离为d ,则2020sin d θ=__________.7.(2021·全国·高三竞赛)已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的有__________面数.8.(2018·全国·高三竞赛)在三棱锥P-ABC 中,PA =PB =4,PC =3,∠APB =∠APC =60°,∠BPC =90°.则三棱锥P-ABC 的体积为_______.9.(2018·全国·高三竞赛)已知长方体1111ABCD A B C D -的长、宽、高分别为1、2、3,P 为平面1A BD 内的一点,则AP 长的最小值为_________.10.(2021·全国·高三竞赛)已知三棱锥A BCD -的三个侧面及底面的面积分别为5、12、13、15,且侧面的斜高相等,则三棱锥的体积为___________.11.(2020·浙江·高三竞赛)如图所示,在单位正方体上有甲、乙两个动点,甲从P 点匀速朝P '移动;乙从Q 点匀速出发朝Q '移动,到达Q '后速度保持不变并折返.现甲、乙同时出发,当甲到达P '时,乙恰好在到达Q '后折返到Q ,则在此过程中,甲、乙两点的最近距离为__________.12.(2021·全国·高三竞赛)在棱长为3的正方体1111ABCD A B C D -上,点P 为AB 中点,从点P 发出的光线经侧面11BCC B 内部(不含边界)一点Q 反射后投射到侧面11DCC D 内部(不含边界),则满足条件的点Q 所组成区域的面积为___________.13.(2021·全国·高三竞赛)已知正三棱锥P ABC -高为2,底面边长为3,现在将三棱锥切去一部分,得到一个顶点为P ,底面在ABC 内的正四棱锥,则该四棱锥的体积最大为___________.14.(2021·全国·高三竞赛)正四面体ABCD 中,点G 为面ABC 的中心,点M 在线段DG 上,且351tan AMB ∠=DM DG =___________. 15.(2021·全国·高三竞赛)A B C D 、、、是半径为1的球面上的4个点,若1AB CD ==,则四面体ABCD 体积的最大值是__.16.(2021·全国·高三竞赛)已知三棱锥S ABC -的底面ABC 为正三角形,点A 在侧面SBC 上的射影H 是SBC △的垂心,二面角H AB C --的大小为30,且2SA =,则此三棱锥的体积为_________.17.(2021·全国·高三竞赛)如图,已知正方体1111ABCD A B C D -的棱长为2,P 为空间一点,且满足1111,A P AB APB ADB ⊥∠=∠,则1D P 的最小值为_______.。

高考数学强化复习训练精选题及答案

高考数学强化复习训练精选题及答案

高三数学强化训练(1)1. 若集合M={y | y =x -3},P={y | y =33-x }, 则M∩P=A {y | y >1}B {y | y ≥1}C {y | y >0}D {y | y ≥0}2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:A .0a <B .0a >C .1a <-D .1a > 3. 设命题甲:0122>++ax ax 的解集是实数集R;命题乙:10<<a ,则命题甲是命题乙成立的A . 充分非必要条件 B.必要非充分条件C. 充要条件D. 既非充分又非必要条件4. 函数f(x)=⎩⎨⎧∈-∈,,,,M x x P x x 其中P ,M 为实数集R 的两个非空子集,又规定f(P)={y|y=f(x),x ∈P},f(M)={y|y=f(x),x ∈M}.给出下列四个判断:①若P∩M=∅,则f(P)∩f(M)=∅; ②若P∩M≠∅,则f(P)∩f(M) ≠∅;③若P ∪M=R ,则f(P)∪f(M)=R ; ④若P ∪M≠R ,则f(P) ∪f(M)≠R.其中正确判断有A 0个B 1个C 2个D 4个5. 已知全集U {}5,4,3,2,1=,A {}3,1=,B {}4,3,2=,那么=⋃)(B C A U ___. 6. 设二次函数)0()(2≠++=a c bx ax x f ,若)()(21x f x f =(其中21x x ≠),则)2(21x x f +等于 _____. 022>++bx ax 的解集为)31,21(-,求b a +的值8. 已知集合A {}0652=+-=x x x ,B {}01=+mx x ,且A B A =⋃,求实数m 的值组成的集合。

参考答案(一)CBBB. {}5,3,1, ab ac 442- 7. 由题意知方程022=++bx ax 的两根为31,2121=-=x x , 又⎪⎪⎩⎪⎪⎨⎧=-=+a x x a b x x 22121,即⎪⎪⎩⎪⎪⎨⎧=⨯--=+-aa b 231213121,解得⎩⎨⎧-=-=212b a , 14-=+∴b a 8.{}{}A B A B A x x x A ⊆∴=⋃==+-=,,3,20652 ① A B B m ⊆Φ==,,0时;② 0≠m 时,由mx mx 1,01-==+得。

高三数学: 应用题

高三数学: 应用题

高三数学强化训练应用题(一)函数模型【例1】甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.【例2】在数学探究活动中,某兴趣小组合作制作一个工艺品,设计了如图所示的一个窗户,其中矩形ABCD 的三边AB ,BC ,CD 由长为8厘米的材料弯折而成,BC 边的长为2t 厘米(04t <<);曲线AOD 是一段抛物线,在如图所示的平面直角坐标系中,其解析式为23x y =-,记窗户的高(点O 到BC 边的距离)为()f t .(1)求函数()f t 的解析式,并求要使得窗户的高最小,BC 边应设计成多少厘米?(2)要使得窗户的高与BC 长的比值达到最小,BC 边应设计成多少厘米?【例3】为减少人员聚集,某地上班族S 中的成员仅以自驾或公交方式上班.分析显示,当S 中有()%0100x x <<的成员自驾时,自驾群体的人均上班路上时间为:()30,0301800290,30100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩,(单位:分钟)而公交群体中的人均上班路上时间不受x 的影响,恒为40分钟,试根据上述分析结果回家下列问题:(1)当x 取何值时,自驾群体的人均上班路上时间等于公交群体的人均上班路上时间?(2)已知上班族S 的人均上班时间计算公式为:()()()%50100%g x f x x x =⋅+-,讨论()g x 的单调性,并说明实际意义.(注:人均上班路上时间,是指单日内该群体中成员从居住地到工作地的平均用时.)1、为践行“绿水青山就是金山银山”的发展理念,聊城市环保部门近年来利用水生植物(例如浮萍、蒲草、芦苇等),对国家级湿地公园—东昌湖进行进一步净化和绿化.为了保持水生植物面积和开阔水面面积的合理比例,对水生植物的生长进行了科学管控,并于2020年对东昌湖内某一水域浮萍的生长情况作了调查,测得该水域二月底浮萍覆盖面积为245m ,四月底浮萍覆盖面积为280m ,八月底浮萍覆盖面积为2115m .若浮萍覆盖面积y (单位:2m )与月份x (2020年1月底记1x =,2021年1月底记13x =)的关系有两个函数模型(0,1)=>>x y ka k a 与2log (0)y m x n m =+>可供选择.(1)你认为选择哪个模型更符合实际?并解释理由;(2)利用你选择的函数模型,试估算从2020年1月初起至少经过多少个月该水域的浮萍覆盖面积能达到2148m ?(可能用到的数据:2log 15 3.9≈1.37≈66.72≈)2、2011年六月康菲公司由于机器故障,引起严重的石油泄漏,造成了海洋的巨大污染,某沿海渔场也受到污染.为降低污染,渔场迅速切断与海水联系,并决定在渔场中投放一种可与石油发生化学反应的药剂.已知每投放a (14a ≤≤,且a R ∈)个单位的药剂,它在水中释放的浓度y (毫克/升)随着时间x (天)变化的函数关系式近似为()y a f x =⋅,其中()()()161,04815,4102x x f x x x ⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩,若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据实验,当水中药剂的浓度不低于4(毫克/升)时,它才能起到有效治污的作用.称为有效净化;当药剂在水中释放的浓度不低于6(毫克/升)且不高于18(毫克/升)时称为最佳净化.(1)若一次投放4个单位的药剂,则有效治污时间可达几天?(2)若第一次投放2个单位的药剂,6天后再投放a 个单位的药剂,要使接下来的4天中能够持续有效治污,试问a 的最小值(精确到0.1取近似值1.4).3、在研究某市交通情况时发现,道路密度是指该路段上一定时间内用过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量xq v =,x 为道路密度,q 车辆密度,(0,80]x ∈,且801100135(040,3(040)854080x x v k x x k ⎧-<<⎪=⎨⎪--+≤≤>⎩.(1)当交通流量95v>时,求道路密度x 的取值范围;(2)若道路密度80x =时,测得交通流量50v =,求出车辆密度q 的最大值.(二)三角模型【例4】某高档小区有一个池塘,其形状为直角ABC ,90C ∠=︒,2AB =百米,1BC =百米,现准备养一批观赏鱼供小区居民观赏.(1)若在ABC 内部取一点P ,建造APC 连廊供居民观赏,如图①,使得点P 是等腰三角形PBC 的顶点,且2π3CPB ∠=,求连廊AP PC +的长;(2)若分别在AB ,BC ,CA 上取点D ,E ,F ,建造DEF 连廊供居民观赏,如图②,使得DEF 为正三角形,求DEF 连廊长的最小值.r r rr l 【例5】如图,已知某市穿城公路MON 自西向东到达市中心O 后转向东北方向,34MON π∠=,现准备修建一条直线型高架公路AB ,在MO 上设一出入口A ,在ON 上设一出入口B ,且要求市中心O 到AB 所在的直线距离为10km.(1)求A ,B 两出入口间距离的最小值;(2)在公路MO 段上距离市中心O 点30km 处有一古建筑C (视为一点),现设立一个以C 为圆心,5km 为半径的圆形保护区,问如何在古建筑C 和市中心O 之间设计出入口A ,才能使高架公路及其延长线不经过保护区?【例6】某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,32-=r l (l 为圆柱的高,r 为球的半径,2l ≥).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为c 千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为y 千元.(1)写出y 关于r 的函数表达式,并求该函数的定义域;(2)求该储油罐的建造费用最小时的r 的值.1、重庆、武汉、南京并称为三大“火炉”城市,而重庆比武汉、南京更厉害,堪称三大“火炉”之首.某人在歌乐山修建了一座避暑山庄O (如图).为吸引游客,准备在门前两条夹角为6π(即AOB ∠)的小路之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知弓形花园的弦长3AB =且点A ,B 落在小路上,记弓形花园的顶点为M ,且6MAB MBA π∠=∠=,设OBA θ∠=.(1)将OA ,OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何规划花园(即OA ,OB 长度),才使得喷泉M 与山庄O 距离即值OM 最大?2、某城市为发展城市旅游经济,拟在景观河道的两侧,沿河岸直线1l 与2l 修建景观路(桥),如图所示,河道为东西方向,现要在矩形区域ABCD 内沿直线将1l 与2l 接通,已知60m AB =,80m BC =,河道两侧的景观道路修建费用为每米1万元,架设在河道上方的景观桥EF 部分的修建费用为每米2万元.(1)若景观桥长90m 时,求桥与河道所成角的大小;(2)如何设计景观桥EF 的位置,使矩形区域ABCD 内的总修建费用最低?最低总造价是多少?3、如图是一段半圆柱形水渠的直观图,其横断面是所示的半圆弧ACB ,其中C 为半圆弧中点,渠宽AB 为2米.(1)当渠中水深CD 为0.4米时(D 为水面中点),求水面的宽;(2)若把这条水渠改挖(不准填上)成横断面为等腰梯形的水渠,使渠的底面与水平地面平行,则改挖后的水渠底宽为多少米时(精确到0.01米),所挖的土最少?(三)数列模型【例7】某公司自2020年起,每年投入的设备升级资金为500万元,预计自2020年起(2020年为第1年),因为设备升级,第n年可新增的盈利()()5801,5100010.6,6n nn nan-⎧-≤⎪=⎨-≥⎪⎩(单位:万元),求:(1)第几年起,当年新增盈利超过当年设备升级资金;(2)第几年起,累计新增盈利总额超过累计设备升级资金总额.【例8】某卫材公司年初投资300万元,购置口罩生产设备,立即投入生产,预计第一年该生产设备的使用费用为36万元,以后每年增加6万元,该生产设备每年可给公司带来121万元的收入.假设第n年该设备产生的利润(利润=该年该设备给公司带来的收入-该年的使用费用)为n a.(1)写出n a的表达式;(2)在该设备运行若干整年后,该卫材公司需要升级产品生产线,决定处置该生产设备,现有以下两种处置方案:①当总利润(总利润=各年的收入之和-各年的使用费用-购置口罩生产设备的成本)最大时,以7万元变卖该生产设备;②当年平均总利润最大时,以72万元变卖该生产设备.请你为该公司选择一个合理的处置方案,并说明理由.1、诺贝尔奖每年发放一次,把奖金总金额平均分成6份,奖励在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类做出最有贡献人.每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息用于增加基金总额,以便保证奖金数逐年递增.资料显示:1998年诺贝尔奖发奖后的基金总额(即1999年的初始基金总额)已达19516万美元,基金平均年利率为 6.24%r =.(1)求1999年每项诺贝尔奖发放奖金为多少万美元(精确到0.01);(2)设n a 表示()1998n +年诺贝尔奖发奖后的基金总额,其中*n N ∈,求数列{}n a 的通项公式,并因此判断“2020年每项诺贝尔奖发放奖金将高达193.46万美元”的推测是否具有可信度.2、2019年9月1日,小刘从各个渠道融资30万元,在某大学投资一个咖啡店,2020年1月1日正式开业,已知开业第一年运营成本为6万元,由于工人工资不断增加及设备维修等,以后每年成本增加2万元,若每年的销售额为30万元,用数列{}n a 表示前n 年的纯收入.(注:纯收入=前n 年的总收入-前n 年的总支出-投资额)(1)试求年平均利润最大时的年份(年份取正整数)并求出最大值.(2)若前n 年的收入达到最大值时,小刘计划用前n 年总收入的13对咖啡店进行重新装修,请问:小刘最早从哪一年对咖啡店进行重新装修(年份取整数)?并求小刘计划装修的费用.。

2013届理科数学第一次强化训练教师版

2013届理科数学第一次强化训练教师版

湖南省衡阳县六中2013届高三第一次强化训练理科数学(问卷)时量:120分钟 总分:150分 命题制卷:高三数学备课组 时间: 2013年3月2日一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点A ()1,1-,点B ()y ,2,向量()2,1=a ,若//AB a,则实数y 的值为( ) A 5B 6C 7D 8【解题思路】AB →=(3,y -1),∵AB →∥a ,∴31=y -12,∴y =7.故选C2.已知等比数列123456{},40,20,n a a a a a a a ++=++=中则前9项之和等于( ) A 50 B 70 C 80 D 90【解题思路】 3321654)(q a a a a a a ++=++,∴213=q ,3654987)(q a a a a a a ++=++=10,即9s =70.故选B3.如图是函数sin()y x ωϕ=+的图象的一部分,A ,B 是图象上的一个最高点和一个最低点,O 为坐标原点,则OA OB ⋅的值为( )A 12π B2119π+C2119π-D 2113π-【解题思路】由图知T 4=5π12-π6=π4,∴T =π, ∴ω=2,∴y =sin (2x +φ),将点⎝⎛⎭⎫-π12,0的坐标代入得sin ⎝⎛⎭⎫-π6+φ=0, ∴φ=π6,∴A ⎝⎛⎭⎫π6,1,B ⎝⎛⎭⎫2π3,-1,∴OA →·OB →=π29-1,故选C4.某程序框图如图所示,该程序运行后, 输出的x 值为31,则a 等于( ) A 0 B 1 C 2 D 3【解题思路】故选D5.已知数列{}n a ,若点()()*,n n a n N ∈在经过点()8,4的定直线l 上,则数列{}n a 的前15项和15S =( ) A 12B 32C 60D 120【解题思路】可设定直线为4(8)y k x -=-,知4(8),(8)4n n a k n a k n -=-=-+得,则{}n a 是等差数列且84a =,所以11515815()15154602a a S a ⋅+==⋅=⨯=,故选C6.若x 2sin 、x sin 分别是θsin 与θcos 的等差中项和等比中项,则x 2cos 的值为( ) A1338+B1338-C1338±D124-【解题思路】依题意有θθcos sin 2sin 2+=x ,①2sin sin cos x θθ= ②。

河北省普通示范高中2014届高三考前强化模拟训练数学文8

河北省普通示范高中2014届高三考前强化模拟训练数学文8

河北省普通示范高中2014届高三考前强化模拟训练数学文8第Ⅰ卷(选择题 共60分)一. 选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集{}1,2,3,4,5U =,集合{}1,3,4A =,集合{}2,4B =,则()U C A B 为( )A .{}2,4,5B .{}1,3,4C .{}1,2,4D .{}2,3,4,52.下面四个条件中,使a >b 成立的充分而不必要的条件是( )A.a >b +1B.a >b -1C.2a >2b D 3a >3b 3.设复数且z 在复平面所对应的的点位于A.第一象限B.第二象限C.第三象限D. 第四象限4. 平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=( )A C 4 D12 5.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②在刻画回归模型的拟合效果时,相关指数2R 的值越大,说明拟合的效果越好;③设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71说明若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;④对分类变量X 与Y ,若它们的随机变量2K 的观测值k 越小,则判断“X 与Y 有关系”的把握程度越大.其中正确的说法是 ( )),(R b a bi a z ∈-=A.①④ B.②④ C.①③ D.②③6.)A B.C. D.单位7.如图是一几何体的三视图,正视图是一等腰直角三角形,且斜边长为2;侧视图一直角三角形;俯视图为一直角梯形,且,则此几何体的体积是()8.已知数列}{na,若点)(nan,)N(*∈n在经过点)48(,的定直线l上,则数列}{na的前15项和=15S()A.12B.32C.60 D .1209.设实数x、y满足约束条件1024x yx yx+≤⎧⎪-≤⎨⎪≥⎩,则23z x y=+的最小值为()A.26 B.24 C.16 D.1410. 椭圆1312622222=-=+byxyx与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则21cos PFF∠= ()A.43B.41C.31D.32 11.下图的程序框图中),(yxf是产生随机数的函数,它能随机产生区间),(yx内的任何一个数,如果输入N值为4000,输出的m值为1840,则利用随机模拟方法BD1==BCAB.A1.CA .2.17B .2.16C .0.46D .0.54 12设点P 在曲线1+=x ey 上,点Q 在曲线x y ln 1+-=上,则PQ 最小值为( )A. 2B. 22C. )2ln 1(2+ D )2ln 1(2-第Ⅱ卷本卷包括必考题和选考题两部分。

高中数学-概率专题强化训练(解析版)

高中数学-概率专题强化训练(解析版)

高中数学-概率专题强化训练学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.甲,乙两人下棋,甲不输的概率是0.8,两人下成平局的概率是0.5,则甲胜的概率是( ) A .0.2B .0.3C .0.5D .0.82.抛掷一枚质地均匀的骰子,记事件A =“出现的点数是1或2”,事件B =“出现的点数是2或3或4”,则事件“出现的点数是2”可以记为( ) A .A BB .A BC .A B ⊆D .A B =3.2020年起,山东省高考实行新方案.新高考规定:语文、数学、英语是必考科日,考生还需从思想政治、历史、地理、物理、化学、生物6个等级考试科目中选取3个作为选考科目.某考生已经确定物理作为自己的选考科目,然后只需从剩下的5个等级考试科目中再选择2个组成自己的选考方案,则该考生“选择思想政治、化学”和“选择生物、地理”为( ) A .相互独立事件 B .对立事件C .不是互斥事件D .互斥事件但不是对立事件4.同时投掷两颗质地均匀且大小相同的骰子,用(x ,y )表示结果,其中x 表示第一颗骰子出现的点数,y 表示第二颗骰子出现的点数,记A 为“所得点数之和小于5”,则事件A 包含的样本点个数是( ) A .3 B .4 C .5D .65.若某群体中的成员只用现金支付的概率为0.2,不用现金支付的概率为0.45,则既用现金支付也用非现金支付的概率为( ) A .0.35B .0.65C .0.25D .06.下列说法正确的是( )A .投掷一枚硬币1000次,一定有500次“正面朝上”B .若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定C .为了解我国中学生的视力情况,应采取全面调查的方式D .一组数据1、2、5、5、5、3、3的中位数和众数都是57.2013年华人数学家张益唐证明了孪生素数(素数即质数)猜想的一个弱化形式.素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷个素数p ,使得2p +是素数,素数对(),2p p +称为孪生素数.则从不超过15的素数中任取两个素数,这两个素数组成孪生素数对的概率为( ) A .115B .215 C .15D .4158.一袋中装有5个大小形状完全相同的小球,其中红球3个,白球2个,从中任取2个小球,若事件“2个小球全是红球”的概率为310,则概率为710的事件是( ) A .恰有一个红球 B .两个小球都是白球 C .至多有一个红球D .至少有一个红球9.已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .0.25B .0.2C .0.35D .0.410.甲、乙两人对同一个靶各射击一次,设事件A =“甲击中靶”,事件B =“乙击中靶”,事件E =“靶未被击中”,事件F =“靶被击中”,事件G =“恰一人击中靶”,对下列关系式(A 表示A 的对立事件,B 表示B 的对立事件):①E AB =,①F AB =,①F A B =+,①G A B =+,①G AB AB =+,①()()1P F P E =-,①()()()P F P A P B =+.其中正确的关系式的个数是( )A .3B .4C .5D .6二、多选题11.某人决定就近打车前往目的地前方开来三辆车,且车况分别为“好”“中”“差”他决定按如下两种方案打车.方案一:不乘第一辆车,若第二辆车好于第一辆车就乘此车,否则直接乘坐第三辆车:方案二:直接乘坐第一辆车.若三辆车开过来的先后次序等可能记方案一和方案二坐到车况为“好”的车的概率分别为1p ,2p ,则下列判断不正确的是( ) A .1212p p == B .1213p p ==C .112p =,213p =D .113p =,212p =12.甲、乙两人练习射击,命中目标的概率分别为p 和q ,甲、乙两人各射击一次,下列说法正确的是( ) A .目标未被命中的概率为1pq -B .目标恰好被命中一次的概率为p q +C .目标恰好被命中两次的概率为pqD .目标被命中的概率为1(1)(1)p q ---13.在25件同类产品中,有2件次品,从中任取3件产品,其中不是随机事件的是( ) A .3件都是正品 B .至少有1件次品 C .3件都是次品D .至少有1件正品14.下列说法错误的有( )A .随机事件A 发生的概率是频率的稳定值,频率是概率的近似值B .在同一次试验中,不同的基本事件不可能同时发生C .任意事件A 发生的概率()P A 满足()01P A <<D .若事件A 发生的概率趋近于0,则事件A 是不可能事件15.(多选)某工厂制造一种零件,甲机床的正品率是0.9,乙机床的正品率为0.8,分别从它们制造的产品中任意抽取一件,则( ) A .两件都是次品的概率为0.28 B .至多有一件正品的概率为0.72 C .恰有一件正品的概率为0.26 D .至少有一件正品的概率为0.98 三、填空题16.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从甲,乙,丙,丁4名医生志愿者中,随机选取2名医生赴湖北支援,则甲被选中的概率为_____.17.若分别以连续掷两枚骰子得到的点数m ,n 作为点M 的横坐标、纵坐标,则点M 落在圆229x y +=内的概率为______________.18.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为____.19.在一个不透明的袋中,装有6个红球和若干个绿球,若再往此袋中放入5个白球(袋中所有球除颜色外完全相同)摇匀后摸出一球,摸到红球的概率恰好为25,那么此袋中原有绿球________个.20.甲、乙两队进行篮球决赛,采取三场二胜制(当一队赢得二场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以2:1获胜的概率是_____.21.从3名男生和2名女生中随机选出2名志愿者,其中至少有1名男生的概率为______.22.甲、乙、丙三名奥运志愿者被随机分到A,B两个不同的岗位,且每个岗位至少1人,则甲、乙两人被分到同一岗位的概率为________.23.某班学生考试成绩统计如下:数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是_______.24.2021年7月9日,第18届中国(长春)国际汽车博览会正式启幕,某汽车企业以“与进取者同享”为主题,携旗下21款重磅车型震撼亮相,展示出该汽车企业的实力和对未来移动出行时代的前瞻性思考.某模特公司从甲、乙、丙、丁、戊5人中随机抽取3人作为该汽车企业A型车的车模,则甲、乙同时被抽到的概率为___________.25.下列四个命题:①样本方差反映的是所有样本数据与样本平均值的偏离程度;①基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B为互斥事件,但不是对立事件;①某校高三(1)班和高三(2)班的人数分别是m,n,若一模考试数学平均分分别是a,b,则这两个班的数学平均分为na mbm n;①如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行或相交.其中真命题的序号是__________.四、解答题26.袋子中有5个大小质地完全相同的球,其中2个红球、3个黄球,从中不放回地依次随机摸出2个球,求下列事件的概率:(1)A=“第一次摸到红球”;(2)B=“第二次摸到红球”;(3)AB=“两次都摸到红球”.27.下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气重度污染的概率; (2)求此人停留期间空气重度污染恰有1天的概率.28.为缓解城市垃圾带来的问题,许多城市实行了生活垃圾强制分类.为了加强学生对垃圾分类意义的认识以及养成良好的垃圾分类的习惯,某学校团委组织了垃圾分类知识竞赛活动.设置了四个箱子,分别标有“厨余垃圾”“有害垃圾”“可回收物”“其他垃圾”;另有写有垃圾名称的卡片若干张.每位参赛选手从所有写有垃圾名称的卡片中随机抽取20张,按照自己的判断,将每张卡片放入对应的箱子中.规定每正确投放一张卡片得5分,投放错误得0分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子得5分,放入其他箱子得0分.从所有参赛选手中随机抽取40人,将他们的得分分成以下5组:[]0,20,(]20,40,(]40,60,(]60,80,(]80,100,绘成如下频率分布直方图:(1)求得分的平均数(每组数据以中点值代表);(2)学校规定得分在80分以上的为“垃圾分类知识达人”.为促进社区的垃圾分类,学校决定从抽取的40人中的“知识达人”(其中含A ,B 两位同学)中选出两人利用节假日到社区进行垃圾分类知识宣讲,求A ,B 两人至少1人被选中的概率.29.某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各随机选购一种型号的电脑,有关报价信息如图.(1)写出所有选购方案;(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(直接写出结果即可)30.某数学兴趣小组有男生3名,记为1a ,2a ,3a ;有女生2名,记为1b ,2b .现从中任选2名学生去参加学校数学竞赛. (1)写出样本空间 所包含的样本点; (2)求参赛学生中恰好有1名男生的概率; (3)求参赛学生中至少有1名男生的概率.31.在一次猜灯谜活动中,共有20道灯谜,两名同学独立竞猜,甲同学猜对了15个,乙同学猜对了8个.假设猜对每道灯谜都是等可能的,设事件A 为“任选一灯谜,甲猜对”,事件B 为“任选一灯谜,乙猜对”.(1)任选一道灯谜,记事件C 为“恰有一个人猜对”,求事件C 发生的概率;(2)任选一道灯谜,记事件D 为“甲、乙至少有一个人猜对”,求事件D 发生的概率. 32.抛掷两颗骰子,求:(1)向上点数之和是4的倍数的概率; (2)向上点数之和大于5小于10的概率.33.为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如表(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级.(2)用简单随机抽样方法从这6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率.34.从长度为1,3,5,7,9的5条线段中任取3条,求这三条线段能构成一个三角形的概率.35.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率.(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.参考答案:1.B 【解析】 【分析】甲不输分为甲胜乙和甲乙下成平局两种情况,其中甲胜乙和甲乙下成平局是互斥事件,根据互斥事件的概率加法公式进行求解即可. 【详解】甲不输棋的设为事件A ,甲胜乙设为事件B ,甲乙下成平局设为事件C ,则事件A 是事件B 与事件C 的和,显然B 、C 互斥,所以()()()P A P B P C =+,而()0.8P A =,()0.5P C =,所以()()()0.3P B P A P C =-=,所以甲胜的概率是0.3故选:B 2.B 【解析】根据事件A 和事件B ,计算A B ,A B ,根据结果即可得到符合要求的答案. 【详解】由题意可得:{}1,2A =,{}3,4B =,{}1,2,3,4A B ∴=,{}2A B ⋂=.故选B. 【点睛】本题主要考查的是古典概型的基本事件,考查交事件和并事件,需要借助于集合的运算,集合与集合的关系来解决,是基础题. 3.D 【解析】 【分析】本题首先可以根据题意得出考生选择的两个考试科目的所有可能情况,然后令这些选择构成的集合为Q ,A =“思想政治、化学”,B =“地理、生物”,最后根据A B Q 且A 和B不能同时发生即可得出结果. 【详解】由题意得,考生选择的两个考试科目可能为“思想政治、化学”、“思想政治、历史”、“思想政治、地理”、“思想政治、生物”、“历史、地理”、“历史、化学”、“历史、生物”、“地理、化学”、“地理、生物”、“化学、生物”,设这些选择构成的集合为Q,令A=“思想政治、化学”,B=“地理、生物”,则A B Q,且A和B不能同时发生,故该考生“选择思想政治、化学”和“选择生物、地理”是互斥事件但不是对立事件,故选:D.【点睛】本题考查互斥事件以及对立事件的相关性质,主要考查互斥事件以及对立事件的判定,考查推理能力,体现了基础性,是简单题.4.D【解析】【分析】根据题意列出所有情况即可得出.【详解】解析:由题可得“所得点数之和小于5”包含{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)}共6个样本点.故选:D.5.A【解析】【分析】利用互斥事件的概率公式,计算结果.【详解】支付方式中包含3种方法:只用现金支付,不用现金支付,既用现金,也用非现金支付,这三种支付方法,并且是互斥事件,p=--=.所以既用现金,也用非现金支付的概率10.20.450.35故选:A6.B【解析】【分析】根据统计量,对各项分析判断即可得解.【详解】对于A ,因为每次抛掷硬币都是随机事件,所以不一定有500次“正面朝上”,故A 错误; 对于B ,因为方差越小越稳定,故B 正确;对于C ,为了解我国中学生的视力情况,应采取抽样调查的方式,故C 错误; 对于D ,数据1、2、5、5、5、3、3按从小到大排列后为1、2、3、3、5、5、5, 则其中位数为3,故D 错误, 故选:B. 7.C 【解析】 【分析】由题意得不超过15的素数有6个,满足题意的孪生素数对有3对,利用古典概型公式可得结果. 【详解】不超过15的素数有2,3,5,7,11,13,共6个,则从不超过15的素数中任取两个素数共有2615C =种根据素数对(),2p p +称为孪生素数,则由不超过15的素数组成的孪生素数对为(3,5),(5,7),(11,13), 共有3组, 能够组成孪生素数的概率为31155P == 故选:C 【点睛】本题考查古典概型概率公式,考查组合知识的应用,考查分析问题解决问题的能力,属于基础题. 8.C 【解析】根据题意可得概率为710的事件是“2个小球全是红球”的对立事件即可得出. 【详解】 因为7311010=-,所以概率为710的事件是“2个小球全是红球”的对立事件,应为:“一个红球一个白球”与“两个都是白球”的和事件,即为“至多有一个红球”.9.A 【解析】当三次投篮恰有两次命中时,就是三个数字xyz 中有两个数字在集合{}1,2,3,4,再逐个考察个数据,最后利用古典概型的概率公式计算可得. 【详解】解:由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393.共5组随机数,∴所求概率为510.25204==. 故选:A 【点睛】本题主要考查了随机事件概率的含义及其运算,以及用数值表示随机事件的意义,属于基础题. 10.B 【解析】 【分析】根据事件关系,靶为被击中即甲乙均未击中;靶被击中即至少一人击中,分为恰有一人击中或两人都击中,依次判定即可. 【详解】由题可得:①E AB =,正确;①事件F =“靶被击中”,AB 表示甲乙同时击中,F AB AB AB =++,所以①错误;①F A B =+,正确,①A B +表示靶被击中,所以①错误;①G AB AB =+,正确;①,E F 互为对立事件,()()1P F P E =-,正确;①()()()()P F P A P B P AB =+-,所以①不正确. 正确的是①①①①. 故选:B 【点睛】此题考查事件关系和概率关系的辨析,需要熟练掌握事件的关系及其运算,弄清事件特征及其概率特征准确辨析. 11.ABD【分析】用列表法列举基本事件,分别求概率,即可判断. 【详解】记“车况好、中、差”分别为A ,B ,C ,方案一包含的基本事件数为1n ,方案二包含的基本事件数为2n ,列表如下由表中所列事件数可知,13162p ==,22163p ==,所以选项C 正确.故选:ABD. 12.CD 【解析】 【分析】根据题意,结合概率的计算,逐项分析即可得解. 【详解】对A ,目标未被命中,则两次都不中,概率为(1)(1)1p q p q pq --=--+,故A 错误; 对B ,目标恰好被命中一次,则甲中乙不中,或乙中甲不中, 概率为(1)(1)2p q p q p q pq -+-=+-,故B 错误;对C ,目标恰好被命中两次,则两次都中,概率为pq ,故C 正确; 对D ,目标被命中,从反面考虑可得概率为1(1)(1)p q ---,故D 正确;13.CD 【解析】 【分析】根据题意25件产品中只有2件次品,所以不可能取出3件都是次品,且至少有1件正品,即可得解. 【详解】25件产品中只有2件次品,所以不可能取出3件都是次品, 则“3件都是次品”不是随机事件,是不可能事件,又25件产品中只有2件次品,从中任取3件产品,则“至少有1件正品”为必然事件, 而A ,B 是随机事件, 故选:CD 14.CD 【解析】 【分析】根据概率与频率的关系判断①正确,根据基本事件的特点判断①正确,根据必然事件,不可能事件,随机事件的概念判断①错误,根据小概率事件的概念判断①错误. 【详解】①随机事件A 发生的概率是频率的稳定值,频率是概率的近似值,①A 中说法正确; 基本事件的特点是任意两个基本事件是互斥的,①在同一次试验中,不同的基本事件不可能同时发生,①B 中说法正确;必然事件发生的概率为1,不可能事件发生的概率为0,随机事件发生的概率大于0且小于1.①任意事件A 发生的概率P (A )满足()01P A ≤≤.①C 中说法错误;若事件A 发生的概率趋近于0,则事件A 是小概率事件,但不是不可能事件,①D 中说法错误. 故选CD 【点睛】本题主要考查了概率的概念和有关性质,属于概念辨析题,对一些易混概念必须区分清. 15.CD【分析】根据独立事件和对立事件的概率公式计算概率后判断. 【详解】记事件A 为“从甲机床制造的产品中抽到一件正品”,事件B 为“从乙机床制造的产品中抽到一件正品”,事件C 为“抽取的两件产品中至多有一件正品”,事件D 为“抽取的两件产品中恰有一件正品”,事件E 为“抽取的两件产品中至少有一件正品”.由题意知A ,B 是相互独立事件,则()()()0.10.20.02P AB P A P B ==⨯=,故A 错误; ()()()()P C P AB P AB P AB =++()()()()()()0.90.20.10.80.10.20.28P A P B P A P B P A P B =++=⨯+⨯+⨯=,故B 错误;()()()()()()()0.90.20.10.80.26P D P AB P AB P A P B P A P B =+=+=⨯+⨯=,故C 正确; ()()110.020.98P E P AB =-=-=,故D 正确.故选:CD . 16.12【解析】 【分析】根据基本事件总数,与甲被选中包含的基本事件求解概率即可. 【详解】解:某医疗团队从甲,乙,丙,丁4名医生志愿者中,随机选取2名医生赴湖北支援, 基本事件有(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)共6个. 甲被选中包含的基本事件有(甲,乙),(甲,丙),(甲,丁)共3个, ①甲被选中的概率为p 3162==. 故答案为:12. 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题. 17.19【解析】求出以连续掷两枚骰子得到的点数m ,n 作为点M 的横坐标、纵坐标样本点的个数,列出在圆229x y +=内的样本点,即可求解. 【详解】分别以连续掷两枚骰子得到的点数m ,n 作为点M 的横坐标、纵坐标,样本点总数6636n =⨯=.点M 落在圆229x y +=内包含的样本点有()1,1,()1,2,()2,1,()2,2,共4个,故点M 落在圆229x y +=内的概率41369P ==. 故答案为:19.【点睛】本题考查古典概型的概率,常见类型事件样本点个数要多加归纳总结,属于基础题. 18.316【解析】 【分析】 【详解】试题分析:总的数对有4416⨯=,满足条件的数对(1,4),(4,1),(2,2)共有3个, 故概率为316P =考点:等可能事件的概率.点评:本题考查运用概率知识解决实际问题的能力,注意满足独立重复试验的条件,解题过程中判断概率的类型是难点也是重点,这种题目高考必考,应注意解题的格式 19.4 【解析】 【分析】设袋中原有x 个绿球,利用最终摸到红球的概率构建关系式,解得x 即可. 【详解】设此袋中原有绿球x 个,共有6+x 个,再往此袋中放入5个白球后,共11+x 个,其中红球6个,所以摇匀后摸出一球,摸到红球的概率为62 115x=+解得4x=,所以原有绿球4个,故答案为:4.【点睛】本题考查了古典概型的概率计算,属于基础题.20.0.3【解析】甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,利用独立事件的概率乘法公式和概率的加法公式能求出甲队以2:1获胜的概率.【详解】甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,则甲队以2:1获胜的概率是:0.60.50.60.40.50.60.3P=⨯⨯+⨯⨯=.故答案为:0.3.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.21.9 10【解析】【分析】首先设3名男生为A,B,C,2名女生为a,b,再用列举法列出全部基本事件,找到至少有1名男生的基本事件个数,即可得到答案.【详解】设3名男生为A,B,C,2名女生为a,b,从5名学生中选2名志愿者,共有:AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个基本事件.至少有1名男生共有9个基本事件,概率为9 10.故答案为:9 10【点睛】本题主要考查古典概型,列举法列出全部基本事件为解题的关键,属于简单题.22.1 3【解析】【分析】这是一个古典概型,利用列举法得到分配的基本事件总数,再找出甲、乙两人被分到同一岗位的基本事件数,代入公式求解.【详解】所有可能的分配方式如表:则样本空间共有6个样本点,令事件M为“甲、乙两人被分到同一岗位”,则事件M包含2个样本点,所以()2163p M==,故答案为:1 323.0.2【解析】【分析】设这个班有100人,根据题意可分析数学不及格有15人,语文不及格有5人,都不及格的有3人,因此可知一学生数学不及格,则他语文也不及格的为15人中有3人,计算概率即可.【详解】由题意设这个班有100人,则数学不及格有15人,语文不及格有5人,都不及格的有3人,则数学不及格的人里头有3人语文不及格,①已知一学生数学不及格,则他语文也不及格的概率为:30.215p==.故答案为:0.2.24.310##0.3【解析】【分析】列出从5人中随机抽取3人的所有的情况,由古典概型概率计算公式可得答案.【详解】从5人中随机抽取3人,所有的情况为(甲、乙、丙),(甲、乙、丁),(甲、乙、戊),(甲、丙、丁),(甲、丙、戊),(甲、丁、戊),(乙、丙、丁),(乙、丙、戊),(乙、丁、戊),(丙、丁、戊),共10种,其中满足甲、乙同时被抽到的情况有(甲、乙、丙),(甲、乙、丁),(甲、乙、戊),共3种,故答案为:3 10.25.①①.【解析】【分析】根据方差定义、互斥与对立概念、平均数计算方法以及线面位置关系确定命题真假.【详解】因为样本方差反映的是所有样本数据与样本平均值的偏离程度,所以①对因为基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B 不为互斥事件,所以①错;因为某校高三(1)班和高三(2)班的人数分别是,m n,若一模考试数学平均分分别是,a b,则这两个班的数学平均分为ma nbm n++,所以①错;因为如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行(同侧时)或相交(异侧时),所以①对. 因此真命题的序号是①①. 故答案为:①①.26.(1)25(2)25(3)110【解析】首先写出整个样本空间中的所有可能的结果,然后再分别列举出事件,,A B AB 所含的结果,再由概率公式计算概率. 【详解】解:将两个红球编号为1,2,三个黄球编号为3,4,5.第一次摸球时有5种等可能的结果,对应第一次摸球的每个可能结果,第二次摸球时都有4种等可能的结果,将两次摸球的结果配对,组成20种等可能的结果,用表表示.(1)第一次摸到红球的可能结果有8种(表中第1,2行),即()()()()()()()(){}1,2,1,3,1,4,1,5,2,1,2,3,2,4,2,5A =,所以()82205P A == (2)第二次摸到红球的可能结果也有8种(表中第1、2列),即()()()()()()()(){}2,1,3,1,4,1,5,1,1,2,3,2,4,2,5,2B =,所以()82205P B == (3)事件AB 包含2个可能结果,即()(){}1,2,2,1AB =,所以()212010P AB == 【点睛】本题考古典概型,属于基础题.解题关键是列举出样本空间中所有基本事件.27.(1)512 (2)512【解析】 【分析】(1)由图查出11月1日至11月12日中空气重度污染的天数,直接利用古典概型概率计算公式得到答案;(2)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案. 【详解】解:(1)某人随机选择11月1日至11月12日中的某一天到达该市,其到达日期的所有可能结果有1日,2日,3日,…,12日,共12种,其中此人到达当日空气重度污染的有1日,2日,3日,7日,12日,共5种,①此人到达当日空气重度污染的概率为512. (2)此人停留3天的所有可能结果有123(,,),234(,,),345(,,),456(,,),567(,,),678(,,),789(,,),8910(,,),91011(,,),101112(,,),111213(,,),121314(,,),共12种,其中恰有1天重度污染的有345(,,),567(,,),678(,,),789(,,),101112(,,)共5种, ①此人停留期间空气重度污染恰有1天的概率为512. 【点睛】本题考查了古典概型及其概率计算公式,训练了学生的读图能力,是基础题. 28.(1)56 (2)1328【解析】 【分析】(1)利用平均数公式即可求得结果;(2)列出所有基本事件,利用古典概型概率公式计算即可求得结果. (1)由频率分布直方图可求得各组的频率自左到右依次为:0.1,0.15,0.3,0.25,0.2, 所以得分的平均数100.1300.15500.3700.25900.256x =⨯+⨯+⨯+⨯+⨯=. (2)所抽取的40人中,得分在80分以上的有400.28⨯=人,。

高三二轮复习数学(理)专题八 思想方法强化课时训练 专题八第一讲综合验收评估

高三二轮复习数学(理)专题八 思想方法强化课时训练 专题八第一讲综合验收评估

一、选择题1.若复数z =x +3i1-i (x ∈R ,i 为虚数单位)是实数,则x 的值为A .-3B .3C .0D. 3解析 z =x +3i 1-i =(x +3i )(1+i )(1-i )(1+i )=12(x -3)+12(x +3)i ,∵z ∈R ,∴12(x +3)=0,得x =-3.答案 A2.设e 1,e 2是相互垂直的单位向量,并且向量a =3e 1+2e 2,b =x e 1+3e 2,如果a ⊥b ,那么实数x 等于A .-2B .2C .-92D.92解析 ∵a ⊥b ,∴a ·b =(3e 1+2e 2)·(x e 1+3e 2) =3x +6=0,∴x =-2. 答案 A3.(2011·揭阳模拟)对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于零,则x 的取值范围是A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2解析 由f (x )=x 2+(a -4)x +4-2a >0得a (x -2)+x 2-4x +4>0, 令g (a )=a (x -2)+x 2-4x +4, 由不等式f (x )>0恒成立, 即g (a )>0在[-1,1]上恒成立.∴有⎩⎨⎧ g (-1)>0g (1)>0,即⎩⎨⎧-(x -2)+x 2-4x +4>0(x -2)+x 2-4x +4>0, 解得x <1或x >3. 答案 B4.设f (x )=3ax +1-2a 在(-1,1)上存在x 0,使f (x 0)=0,则实数a 的取值范围是 A .a <15B .a >15 C .a >15或a <-1D .a <-1解析 f (x )在(-1,1)上存在x 0,使f (x 0)=0,说明f (x )的图象在(-1,1)上,有在x 轴上方的,也有在x 轴下方的,∴f (-1)·f (1)<0.∴a >15或a <-1.答案 C5.若正实数a ,b 满足a b =b a ,且a <1,则有 A .a >b B .a <bC .a =bD .不能确定a ,b 的大小解析 由a b =b a 得ln a a =ln b b ,令f (x )=ln xx , ∵0<a <1,∴f (a )<0,∴f (b )<0,即0<b <1. 在x ∈(0,1)上,f ′(x )=1-ln xx 2>0,∴f (x )在(0,1)上是增函数. 又f (a )=f (b ).∴a =b . 答案 C6.已知圆x 2+(y -1)2=1上任意一点P (x ,y )都使不等式x +y +m ≥0恒成立,则m 的取值范围是A .[2-1,+∞)B .(-∞,0]C .(2,+∞)D .[1-2,+∞)解析 由x 2+(y -1)2=1知令x =cos θ, y =1+sin θ,θ∈R ,则x +y +m =cos θ+1+sin θ+m =2sin ⎝ ⎛⎭⎪⎫θ+π4+1+m ≥-2+1+m ,又x +y +m ≥0恒成立,∴-2+1+m ≥0,得m ≥2-1. 答案 A二、填空题7.已知命题“∃x ∈[1,2],使x 2+2x +a ≥0”为真命题,则a 的取值范围是________. 解析 由x 2+2x +a ≥0得a ≥-(x 2+2x ), 令y =-(x 2+2x )=-(x +1)2+1, 由于x ∈[1,2],∴y min =-8,∴a ≥-8. 答案 a ≥-88.在△OAB 中,O 为坐标原点,点A (1,cos θ),B (sin θ,1),其中θ∈⎝ ⎛⎦⎥⎤0,π2,那么当△OAB 的面积最大时,角θ=________.解析 易得S △OAB =1-12sin θ-12cos θ-12(1-cos θ)(1-sin θ)=12-14sin 2θ, ∴当θ=π2时,△OAB 的最大面积是12. 答案 π29.(2011·漳州模拟)请阅读下列材料:对命题“若两个正实数a 1,a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.”证明如下:构造函数f (x )=(x -a 1)2+(x -a 2)2,因为对一切实数x ,恒有f (x )≥0,又a 21+a 22=1,所以f (x )=2x 2-2(a 1+a 2)x +1,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2. 根据上述证明方法,条件为“若n 个正实数满足a 21+a 22+…+a 2n =1”时,你可以构造函数g (x )=________,进一步能得到的结论为________(不必证明).解析 根据已知条件g (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2, 类比n =2时,可以证明a 1+a 2+…+a n ≤n .答案 (x -a 1)2+(x -a 2)2+…+(x -a n )2;a 1+a 2+…+a n ≤n 三、解答题 10.求函数f (x )=sin x5+4cos x(0≤x ≤2π)的值域.解析 由y =sin x 5+4cos x 得y 2=sin 2x 5+4cos x ,即1-cos 2x =5y 2+4y 2cos x , 整理得cos 2x +4y 2cos x +5y 2-1=0, 将其视为关于cos x 的一元二次方程, 因为0≤x ≤2π,所以-1≤cos x ≤1,因此方程应该在[-1,1]上有实数根, 令g (t )=t 2+4y 2t +5y 2-1, 因为g (-1)=y 2≥0,g (1)=9y 2≥0,故有⎩⎨⎧ Δ≥0-1≤-2y 2≤1,即⎩⎨⎧16y 4-20y 2+4≥0-1≤-2y 2≤1, 解得y 2≤14,即值域为⎣⎢⎡⎦⎥⎤-12,12.11.设f (x )=ax 3+bx 2+cx 的极小值为-8,其导数y =f ′(x )的图象经过(-2,0),⎝ ⎛⎭⎪⎫23,0两点,如图所示.(1)求f (x )的解析式;(2)若对x ∈[-3,3]都有f (x )≥m 2-14m 恒成立,求实数m 的取值范围. 解析 (1)∵f ′(x )=3ax 2+2bx +c ,且y =f ′(x )的图象经过点(-2,0),⎝ ⎛⎭⎪⎫23,0,∴⎩⎪⎨⎪⎧-2+23=-2b3a ,-2×23=c 3a⇒⎩⎨⎧b =2a ,c =-4a . ∴f (x )=ax 3+2ax 2-4ax ,由图象可知函数y =f (x )在(-∞,-2)上单调递减,在⎝ ⎛⎭⎪⎫-2,23上单调递增,在⎝ ⎛⎭⎪⎫23,+∞上单调递减,∴f (x )的极小值为f (-2)=a (-2)3+2a (-2)2-4a (-2)=-8, 解得a =-1.∴f (x )=-x 3-2x 2+4x .(2)要使对x ∈[-3,3]都有f (x )≥m 2-14m 恒成立, 只需f (x )min ≥m 2-14m 即可.由(1)可知函数y =f (x )在[-3,-2)上单调递减,在⎝ ⎛⎭⎪⎫-2,23上单调递增,在⎝ ⎛⎦⎥⎤23,3上单调递减,且f (-2)=-8,f (3)=-33-2×32+4×3 =-33<-8,∴f (x )min =f (3)=-33,-33≥m 2-14m ⇒3≤m ≤11. 故所求的实数m 的取值范围为 {m |3≤m ≤11}.12.某地区要在如图所示的一块不规则用地规划建成一个矩形商业楼区,余下的作为休闲区,已知AB ⊥BC ,OA ∥BC ,且AB =BC =2OA =4 km ,曲线OC 段是以O 为顶点且开口向上的抛物线的一段,如果矩形的两边分别落在AB 、BC 上,且一个顶点在曲线OC 段上,应当如何规划才能使矩形商业楼区的用地面积最大?并求出最大的用地面积.解析 以点O 为原点,OA 所在的直线为x 轴,建立直角坐标系,设抛物线的方程为x 2=2py , 由C (2,4)代入得:p =12,所以曲线段OC 的方程为:y =x 2(x ∈[0,2]). A (-2,0),B (-2,4), 设P (x ,x 2),(x ∈[0,2]),过P 作PQ ⊥AB 于Q ,PN ⊥BC 于N , 故PQ =2+x ,PN =4-x 2, 则矩形商业楼区的面积 S =(2+x )(4-x 2)(x ∈[0,2]). S =-x 3-2x 2+4x +8,令S ′=-3x 2-4x +4=0得x =23或x =-2(舍去),当x ∈⎣⎢⎡⎦⎥⎤0,23时,S ′>0,S 是x 的增函数,当x ∈⎣⎢⎡⎦⎥⎤23,2时,S ′<0,S 是x 的减函数,所以当x =23时,S 取得最大值, 此时PQ =2+x =83,PN =4-x 2=329, S max =83×329=25627(km 2).故该矩形商业楼区规划成长为329km ,宽为83km 时,用地面积最大为25627km 2.。

2013届高三文科数学专题强化训练附解析(一)

2013届高三文科数学专题强化训练附解析(一)

专题强化测评(一)A 组一、选择题1.(2011·江西高考)若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )(A)M ∪N (B)M ∩N (C)()()U U M N U 痧 (D)()()U U M N I 痧2.(2011·陕西高考)设a,b r r 是向量,命题“若a b,=-r r 则|a ||b |=r r ”的逆命题是( )(A)若a b ≠-r r ,则|a ||b |≠r r (B)若a b =-r r ,则|a ||b |≠r r(C)若|a ||b |≠r r ,则a b ≠-r r (D)若|a ||b |=r r ,则a b =-r r3.(2011·济南模拟)下列命题正确的是( )(A)“a=2”是“直线ax+2y=0平行于直线x+y=1”的充分不必要条件(B)“x=-1”是“x 2-5x-6=0”的必要不充分条件(C)命题“若x=y,则sinx=siny ”的逆否命题为真命题(D)命题“∃x ∈R 使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1<0”4.(2011·杭州模拟)已知直线l 过定点(-1,1),则“直线l 的斜率为0”是“直线l 与圆x 2+y 2=1相切”的( )(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件5.(2011·蚌埠模拟)集合A={(x,y)|y=a,x ∈R},集合B={(x,y)|y=b x +1,b >0,b ≠1},若集合A ∩B=Ø,则实数a 的取值范围是( )(A)(-∞,1] (B)(-∞,1) (C)(1,+∞) (D)R6.命题“函数y=f(x)(x ∈M)是偶函数”的否定是( )(A)∃x ∈M,f(-x)≠f(x)(B)∀x ∈M,f(-x)≠f(x) (C)∀x ∈M,f(-x)=f(x) (D)∃x ∈M,f(-x)=f(x)7.已知命题p 1:函数y=2x -2-x 在R 上为增函数,p 2:函数y=2x +2-x 在R 上为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(⌝p 1)∨p 2和q 4:p 1∧(⌝p 2)中,真命题是( )(A)q 1,q 3 (B)q 2,q 3 (C)q 1,q 4 (D)q 2,q 48.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},(U B ð)∩A={9},则A=( )(A){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}9.已知p:2x1x1<-,q:(x-a)(x-3)>0,若⌝p是⌝q的必要不充分条件,则实数a的取值范围是( )(A)(-∞,1) (B)[1,3](C)[1,+∞) (D)[3,+∞)10.定义差集A-B={x|x∈A,且x∉B},现有三个集合A、B、C分别用圆表示,则集合C-(A-B)可表示下列图中阴影部分的为( )二、填空题11.(2011·陕西高考)设n∈N+,一元二次方程x2-4x+n=0有整数根的充要条件是n=____________.12.已知集合A={3,m2},B={-1,3,2m-1}.若A⊆B则实数m的值为________.13.(2011·淄博模拟)命题p:∃x∈R,x2+2x+a≤0.若命题p是假命题,则a的取值范围是______.(用区间表示)14.A、B是非空集合,定义A×B={x|x∈(A∪B)且x∉(A∩B)},若A={x|y=x},则A×B=__________.B组一、选择题1.(2011·山东高考)设集合M={x|x2+x-6<0},N={x|1≤x≤3},则M∩N=( )(A)[1,2) (B)[1,2](C)(2,3](D)[2,3]2.(2011·安徽高考)命题“所有能被2整除的整数都是偶数”的否定是( )(A)所有不能被2整除的整数都是偶数(B)所有能被2整除的整数都不是偶数(C)存在一个不能被2整除的整数是偶数(D)存在一个能被2整除的整数不是偶数3.已知m、a都是实数,且a≠0,则“m∈{-a,a}”是“|m|=a”成立的( )(A)充分不必要条件(B)必要不充分条件(C)充分必要条件 (D)既不充分也不必要条件4.已知命题p:关于x 的函数y=x 2-3ax+4在[1,+∞)上是增函数,命题q:函数y=(2a-1)x 为减函数,若“p 且q ”为真命题,则实数a 的取值范围是( )(A)a ≤23 (B)0<a<12 (C)12<a ≤23 (D)12<a<1 5.已知命题p :抛物线y=2x 2的准线方程为y=-12;命题q :若函数f(x)为偶函数,则f(x-1)关于x=1对称,则下列命题是真命题的是( )(A)p ∧q (B)p ∨(⌝q) (C)( ⌝p)∧(⌝q) (D)p ∨q6.(2011·深圳模拟)已知a,b r r 是非零向量,则a r 与b r 不共线是|a b ||a ||b |+<+r r r r 的( )(A)充分非必要条件 (B)必要非充分条件(C)充分必要条件 (D)既非充分也非必要条件7.若集合M={1,m 2},集合N={2,4},M ∪N={1,2,4},则实数m 的值的个数 是( )(A)1 (B)2 (C)3 (D)4 8.已知A={x|-3≤x ≤2},B={x|2m-1≤x ≤2m+1},且A ⊇B ,则实数m 的取值范围是 (A)(-1,12] (B)[-1,12] (C)[-1,12) (D)(-1,12) 9.对于复数a,b,c,d ,若集合S={a,b,c,d}具有性质“对∀x,y ∈S ,必有xy ∈S ”,则当22a 1b 1c b =⎧⎪=⎨⎪=⎩时,b+c+d 等于( )(A)1 (B)-1 (C)0 (D)i10.(2011·福建高考)在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n+k|n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4]; ④“整数a,b 属于同一类”的充要条件是“a-b ∈[0]”.其中,正确结论的个数是( )(A)1 (B)2 (C)3 (D)4二、填空题11.(2011·山东高考改编)已知a,b,c ∈R,命题“若a+b+c=3,则a 2+b 2+c 2≥3”的否命题是______.12.某班有学生60人,其中体育爱好者有32人,电脑爱好者有40人,还有7人既不爱好体育也不爱好电脑,则班上既爱好体育又爱好电脑的学生有_____人.13. (2011·济南模拟)在命题p的四种形式(原命题、逆命题、否命题、逆否命题)中,正确命题的个数记为f(p),已知命题p:“若两条直线l1:a1x+b1y+c1=0,l2:a 2x+b2y+c2=0平行,则a1b2-a2b1=0”,那么f(p)= __________.14. (2011·宿州模拟)给出下列命题:①已知a,b都是正数,且a1ab1b++>,则a<b;②当x∈(1,+∞)时,函数y=x3,y=12x的图像都在直线y=x的上方;③命题“∃x∈R,使得x2-2x+1<0”的否定是真命题;④“x≤1,且y≤1”是“x+y≤2”的充要条件.其中正确命题的序号是______.(把你认为是正确命题的序号都填上)专题强化测评(一)A 组1.【解析】选D.由M={2,3},N={1,4}得,M ∪N={1,2,3,4},即U ð(M ∪N)={5,6},所以{5,6}=U ð(M ∪N)=(U M ð)∩(U N ð).故选D.2.【解析】选D.原命题的条件是a b =-r r ,作为逆命题的结论;原命题的结论是|a ||b |=r r ,作为逆命题的条件,即得逆命题“若|a ||b |=r r ,则a b =-r r ”,故选D.3.【解析】选C.选项A 中,“a=2”是“直线ax+2y=0平行于直线x+y=1”的充要条件,故A 不正确;选项B 中,“x=-1”是“x 2-5x-6=0”的充分不必要条件,故B 不正确;选项C 中,原命题为真命题,故逆否命题为真命题,故C 正确;选项D 中,原命题的否定是“∀x ∈R ,均有x 2+x+1≥0”,故D 不正确.4.【解析】选A.当直线l 的斜率为0时,直线l 与圆x 2+y 2=1相切,反之当直线l 与圆x 2+y 2=1相切时,直线l 的斜率可能为0,也可能不存在,故选A.5.【解析】选A.∵y=b x +1>1,数形结合知当a ≤1时,A ∩B=Ø即a ∈(-∞,1].6.【解析】选A.命题“函数y=f(x)(x ∈M)是偶函数”等价于“∀x ∈M,f(-x)=f(x)”是全称命题,故其否定为“∃x ∈M,f(-x)≠f(x)”.7.【解析】选C.p 1是真命题,则⌝p 1为假命题;p 2是假命题,则⌝p 2是真命题.∴命题q 1:p 1∨p 2是真命题,命题q 2:p 1∧p 2是假命题,命题q 3:(⌝p 1)∨p 2是假命题,命题q4:p 1∧(⌝p 2)是真命题.故真命题是q 1,q 4.8.【解析】选D.作出表示集合U ,A ,B 的Venn 图,可知:A=(A ∩B)∪(U B A I ð)={3}∪{9}={3,9}.故选D.9.【解析】选C.2x x 1100x 1x 1+-<⇒<-- ⇒(x-1)(x+1)<0⇒p:-1<x<1;当a ≥3时,q:x<3或x>a ;当a<3时,q:x<a 或x>3.⌝p 是⌝q 的必要不充分条件,即p 是q 的充分不必要条件,即p ⇒q 且q ¿p ,可推出a 的取值范围是a ≥1.10.【解析】选A.如图所示,A-B 表示图中阴影部分.故C-(A-B)所含元素属于C ,但不属于图中阴影部分,故选A.11.【解析】x 2==因为x 是整数,即2±为整数,所为整数,且n ≤4,又因为n ∈N +,取n=1,2,3,4,验证可知n=3,4符合题意;反之n=3,4时可推出一元二次方程x 2-4x+n=0有整数根.答案:3或412.∵A ⊆B,∴m 2=2m-1,或m 2=-1(舍).由m 2=2m-1得m=1.经检验m=1时符合题意.答案:113.因为p 是假命题,所以“∀x ∈R ,x 2+2x+a >0”为真命题,因此Δ=4-4a<0,解得a >1.14.【解析】{A x |y {x |x 0x 3}===≤≥或,B={y|y=3x }={y|y>0}, ∴A ∪B=R,A ∩B={x|x ≥3},∴A ×B={x|x<3}.答案:{x|x<3}B 组1.【解析】选A.∵M={x|-3<x<2},∴M ∩N={x|1≤x <2}.2.【解】选D.全称命题的否定为相应的特称命题,即将所有变为存在,并且将结论进行否定.3.【解析】选B.若m ∈{-a,a},则a>0时|m|=a,a<0时,|m|=-a,若|m|=a,则m ∈{-a,a}一定成立.故“m ∈{-a,a}”是“|m|=a ”成立的必要不充分条件.4.【解析】选C.命题p 等价于3a 12≤,即2a .3≤命题q 等价于0<2a-1<1,即12<a<1.因为“p 且q ”为真命题,所以p 和q 均为真命题,故12a .23<≤ 5.【解析】选D.抛物线y=2x 2的准线方程为1y ,8=-故命题p 是假命题,函数y=f(x-1)图象是函数y=f(x)的图象向右平移1个单位得到的,故命题q 是真命题,∴命题p ∨q 是真命题.6.【解析】选A.若a r 与b r 不共线,则|a b ||a ||b |+<+r r r r 成立,反之,若|a b ||a ||b |+<+r r r r ,则a r 与b r 可能不共线也可能反向共线,故选A.7.【解析】选D.∵M ∪N={1,2,4},∴m 2=2或m 2=4,∴m =m=±2,故选D.8.【解析】选B.∵A ⊇B,∴2m 132m 12-≥-⎧⎨+≤⎩,∴11m .2-≤≤ 9.【解析】选B.∵22a 1b 1c b =⎧⎪=⎨⎪=⎩,集合中的元素具有互异性,∴2a 1b 1,c 1⎧=⎪=-⎨⎪=-⎩∴(1)当a 1b 1c i =⎧⎪=-⎨⎪=⎩时,S={1,-1,i,d},又∵∀x,y ∈S ,必有xy ∈S,∴d=-i,∴b+c+d=-1;∴(2)当a1b1c i=⎧⎪=-⎨⎪=-⎩时,S={1,-1,-i,d},又∵∀x,y∈S,必有xy∈S,∴d=i,∴b+c+d=-1;综上所述:b+c+d=-1.10.【解析】选C.对于①:2011=5×402+1,∴2011∈[1],对于②:-3=5×(-1)+2,∴-3∈[2],故②不正确;对于③:∵整数集Z被5除,所得余数共分为五类. ∴Z=[0]∪[1]∪[2]∪[3]∪[4],故③正确;对于④:若整数a,b属于同一类,则a=5n1+k,b=5n2+k,∴a-b=5n1+k-(5n2+k)=5(n1-n2)=5n,∴a-b∈[0],若a-b∈[0],则a-b=5n,即a=b+5n,故a与b被5除的余数为同一个数,∴a与b属于同一类,∴“整数a,b属于同一类”的充要条件是“a-b∈[0]”,故④正确,∴正确结论的个数是3.11.【解析】直接否定条件和结论可得,否命题为“若a+b+c≠3,则a2+b2+c2<3”.12.【解析】设既爱好体育又爱好电脑的学生有x人,画出Venn图,易得(32-x)+x+(40-x)+7=60.解之得x=19.13.【解析】由l1∥l2⇒a1b2-a2b1=0,但a1b2-a2b1=0¿l1∥l2,故命题p的原命题,逆否命题正确,但逆命题和否命题错误.∴f(p)=2.答案:214.【解析】①中,由a1a,b1b++>a,b都是正数,得ab+b>ab+a,即a<b,故①正确;②中,当x∈(1,+∞)时,函数12y x=的图像在直线y=x的下方,故②不正确;③中原命题是假命题,故其否定是真命题,故③正确;④中“x≤1且y≤1”是“x+y ≤2”的充分不必要条件,故④不正确.答案:①③。

高三数学总复习知识点强化提升训练75---独立重复试验与二项分布

高三数学总复习知识点强化提升训练75---独立重复试验与二项分布

高三数学总复习知识点强化提升训练75---独立重复试验与二项分布[基础巩固练]一、选择题1.从1,2,3,4,5中不放回地依次取两个数,事件A ={第一次取到的是奇数},B ={第二次取到的是奇数},则P (B |A )=( )A.15 B .310 C .25D .12[解析] 解法一:依题意P (A )=35,P (AB )=35×24,所以P (B |A )=P (AB )P (A )=35×2435=12.解法二:第一次取到奇数后,第二次取数时还有四个数可取,其中两个奇数,故在第一次取到奇数的条件下,第二次取到奇数的概率为24=12.[答案] D2.(2019·内蒙古包头调研)甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的概率是( )A.25 B .1130 C .715D .16[解析] 三人中恰有两人合格的概率P =23×34×⎝ ⎛⎭⎪⎫1-25+23×⎝ ⎛⎭⎪⎫1-34×25+⎝ ⎛⎭⎪⎫1-23×34×25=715,故选C.[答案] C3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512 B .12 C .712D .34[解析] 用间接法考虑,事件A 、B 一个都不发生概率为 P (A -B -)=P (A )·P (B )=12×C 15C 16=512.则所求概率P =1-P (A -B -)=712. [答案] C4.(2019·广东汕头4月模拟)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.8192C .0.8D .0.75[解析] 因为某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次看做4次独立重复试验,则至少击中3次的概率C 34(0.8)3(1-0.8)+C 48(0.8)4=0.8192,故选B.[答案] B5.(2019·河南濮阳模拟)如图,已知电路中4个开头闭合的概率都是12,且是相互独立的,则灯亮的概率为()A.316B.3 4C.1316D.14[解析]灯泡不亮包括4个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中的事件是相互独立的,∴灯泡不亮的概率是12×12×12×12+12×12×12×12+12×12×12×12=316.∵灯亮和灯不亮是两个对立事件,∴灯亮的概率是1-316=1316,故选C.[答案] C二、填空题6.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A为“三个人去的景点不相同”,B为“甲独自去一个景点”,则概率P(A|B)等于________.[解析]由题意可知,n(B)=C1322=12,n(AB)=A33=6.∴P (A |B )=n (AB )n (B )=612=12. [答案] 127.(2019·扬州一模)在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为__________.[解析] 解法一:不妨设甲先抽奖,设甲中奖记为事件A ,乙中奖记为事件B ,两人都中奖的概率为P ,则P =P (AB )=23×12=13.解法二:甲乙从三张奖券中抽两张的方法有A 23=6种,两人都中奖的可能有2种,设两人都中奖的概率为P ,则P =26=13. [答案] 138.(2020·江西抚州一中月考)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________.[解析] 设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件C ,则P (C )=P (A 1A 2A 3A -4A -5)+P (A -1A 2A 3A 4A -5)+P (A -1A -2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881.[答案] 881 三、解答题9.(2019·哈尔滨质检)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.[解] 记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E -)=13,P (F )=35,P (F -)=25,且事件E 与F ,E 与F -,E -与F ,E -与F -都相互独立.(1)记H ={至少有一种新产品研发成功},则H -=E -F -, 于是P (H -)=P (E -)P (F -)=13×25=215, 故所求的概率为P (H )=1-P (H -)=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=P (E -F -)=13×25=215,P (X =100)=P (E -F )=13×35=315=15,P (X =120)=P (E F -)=23×25=415,P (X =220)=P (EF )=23×35=615=25. 故所求的分布列为10.(2019·石家庄模拟)1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障的概率为13.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维护的概率不少于90%?(2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资.每台机器不出现故障或出现故障能及时维修,就能使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的分布列.[解] (1)1台机器是否出现故障可看作1次试验,在1次试验中,机器出现故障设为事件A ,则事件A 的概率为13.该厂有4台机器,就相当于4次独立重复试验,可设出现故障的机器台数为X ,则X ~B ⎝ ⎛⎭⎪⎫4,13,∴P (X =0)=C 04·⎝ ⎛⎭⎪⎫234=1681, P (X =1)=C 14·13·⎝ ⎛⎭⎪⎫233=3281,P (X =2)=C 24·⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫232=2481, P (X =3)=C 34·⎝ ⎛⎭⎪⎫133·23=881, P (X =4)=C 44·⎝ ⎛⎭⎪⎫134=181. ∴X 的分布列为设该厂有n 名工人,则“每台机器在任何时刻同时出现故障时能及时进行维修”为X ≤n ,即X =0,X =1,X =2,…,X =n ,这n +1个互斥事件的和事件,则∵7281<90%≤8081,∴该厂至少需要3名工人,才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%.(2)设该厂每月可获利Y 万元,则Y 的所有可能取值为18,13,8,P (Y =18)=P (X =0)+P (X =1)+P (X =2)=7281,P (Y =13)=P (X =3)=881,P (Y =8)=P (X =4)=181,∴Y 的分布列为11.(2019·郑州模拟)某工程施工在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm)对工期延误天数Y 的影响及相应的概率P 如下表所示:) A .0.7 B .0.5 C .0.3D .0.2[解析] 设事件A 为“年降水量X 至少是100”,事件B 为“工期延误小于30天”,则P (B |A )=P (AB )P (A )=0.2+0.10.2+0.1+0.3=0.5,故选B.[答案] B12.设事件A 在每次试验中发生的概率相同,若在三次独立重复试验中,事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为( )A.14 B .34 C .964D .2764[解析] 假设事件A 在每次试验中发生的概率为p ,由题意得,事件A 发生的次数X ~B (3,p ),则有1-(1-p )3=6364,得p =34,所以事件A 恰好发生一次的概率为C 13×34×⎝ ⎛⎭⎪⎫1-342=964. [答案] C13.(2019·浙江模拟)某人有4把钥匙,其中2把能打开门.现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是________.如果试过的钥匙不扔掉,这个概率是________.[解析] 第二次打开门,说明第一次没有打开门,故第二次打开门的概率为24×23=13.如果试过的钥匙不扔掉,这个概率为24×24=14.[答案] 13 1414.(2019·洛阳市第二次联考)现有两种投资方案,一年后投资盈亏的情况如下表: 投资股市:购买基金:(1)当p=14时,求q的值;(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p的取值范围;(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知p=12,q=16,求丙投资两种方案的获利金额的分布列.[解](1)∵“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,∴p+13+q=1.又p=14,∴q=512.(2)记事件A为“甲投资股市且获利”,事件B为“乙购买基金且获利”,事件C为“一年后甲、乙两人中至少有一人投资获利”,则C=A B-∪A-B∪AB,且A,B独立.由题意可知,P(A)=12,P(B)=p,∴P(C)=P(A B-)+P(A-B)+P(AB)=12(1-p)+12p+12p=12+12p.∵P(C)=12+12p>45,∴p>35.又p+13+q=1,q≥0,∴p≤23.∴p 的取值范围为⎝ ⎛⎦⎥⎤35,23.(3)假设丙选择“投资股市”的方案进行投资,记X 为丙投资股市的获利金额(单位:万元),∴随机变量X 的分布列为假设丙选择“购买基金”(单位:万元),∴随机变量Y 的分布列为[拓展延伸练]15.(2019·河南郑州一模)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则从2号箱中取出红球的概率是( )A.1127B .1124C.1627D.38[解析]解法一:记事件A:从2号箱中取出的是红球;事件B:从1号箱中取出的是红球,则根据古典概型和对立事件的概率和为1,可知P(B)=46=23,P(B-)=1-23=1 3;由条件概率公式知P(A|B)=49,P(A|B-)=39=13.从而P(A)=P(AB)+P(A B-)=P(A|B)·P(B)+P(A|B-)·P(B-)=1127.故选A.解法二:根据题意,分两种情况讨论:①从1号箱中取出白球,其概率为26=13,此时2号箱中有6个白球和3个红球,从2号箱中取出红球的概率为13,则此种情况下的概率为13×13=19.②从1号箱中取出红球,其概率为23,此时2号箱中有5个白球和4个红球,从2号箱中取出红球的概率为49,则这种情况下的概率为23×49=827.故从2号箱中取出红球的概率是19+827=1127.故选A.[答案] A16.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入甲袋或乙袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入甲袋中的概率为__________.[解析] 记“小球落入甲袋中”为事件A ,“小球落入乙袋中”为事件B ,则事件A 的对立事件为B .若小球落入乙袋中,则小球必须一直向左或一直向右落下,故P (B )=⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫123=14,从而P (A )=1-P (B )=1-14=34.[答案] 34。

高三数学答题强化日规范练

高三数学答题强化日规范练

高三数学答题强化训练三角问题【题目1】已知△ABC三个内角A,B,C对应三条边长分别是a,b,c,且满足c sin A-3a cos C=0.(1)求角C的大小;(2)若cos A=277,c=14,求sin B和b的值.解(1)由c sin A-3a cos C=0,得sin C sin A-3sin A cos C=0,∵A为△ABC的内角∴sin A≠0,∴sin C-3cos C=0,即tan C=3,又C∈(0,π),所以C=π3.(2)由cos A=277,且A是△ABC的内角,得sin A=21 7,∴sin B=sin(A+C)=sin A cos C+cos A sin C=217×12+277×32=32114.在△ABC中,由正弦定理bsin B=csin C,得b=c sin Bsin C=14×3211432=3 2.立体几何问题【题目2】如图,在四棱锥P-ABCD中,已知底面ABCD为矩形,PA⊥平面PDC,点E为棱PD的中点.(1)求证:PB∥平面EAC;(2)求证:平面PAD⊥平面ABCD.证明(1)连接BD,与AC相交于点O,连接OE.因为四边形ABCD为矩形,所以点O为BD的中点.因为点E为棱PD的中点,所以PB∥OE.因为PB⊄平面EAC,OE⊂平面EAC,所以PB∥平面EAC.(2)因为PA⊥平面PDC,CD⊂平面PDC,所以PA⊥CD.因为四边形ABCD为矩形,所以AD⊥CD.因为PA∩AD=A,PA,AD⊂平面PAD,所以CD⊥平面PAD.因为CD⊂平面ABCD,所以平面PAD⊥平面ABCD.解析几何问题【题目3】已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.解 (1)由题意,椭圆C的标准方程为x24+y22=1.所以a2=4,b2=2,从而c2=a2-b2=2.因此a=2,c= 2.故椭圆C的离心率e=ca =22.(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.因为OA⊥OB,所以OA→·OB→=0,即tx0+2y0=0,解得t=-2y0 x.当x0=t时,y0=-t22,代入椭圆C的方程,得t=±2,故直线AB的方程为x=± 2.圆心O到直线AB的距离d= 2.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为y-2=y-2x-t(x-t),即(y0-2)x-(x0-t)y+2x0-ty0=0. 圆心O到直线AB的距离d=|2x0-ty0|(y0-2)2+[-(x0-t)]2.又x20+2y20=4,t=-2y0 x,故d =⎪⎪⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x 20+4=⎪⎪⎪⎪⎪⎪4+x 20x 0x 40+8x 20+162x 20= 2. 此时直线AB 与圆x 2+y 2=2相切.实际应用问题【题目4】 某校为了落实“每天阳光运动一小时”活动,决定将原来的矩形操场ABCD (其中AB =60米,AD =40米)扩建成一个更大的矩形操场AMPN (如图),要求:B 在AM 上,D 在AN 上,对角线MN 过C 点,且矩形AMPN 的面积小于15 000平方米.(1)设AN 长为x 米,矩形AMPN 的面积为S 平方米,试将S 表示成x 的函数,并写出该函数的定义域;(2)当AN 的长为多少米时,矩形AMPN 的面积最小,并求最小面积. 解 (1)由△NDC ∽△NAM , 可得DN NA =DC AM ,∴x -40x =60AM, 即AM =60x x -40,故S =AN ·AM =60x 2x -40,由S =60x 2x -40<15 000且x >40,可得x 2-250x +10 000<0,解得50<x <200, 故所求函数解析式为S =60x 2x -40,定义域为(50,200).(2)令x -40=t ,则由x ∈(50,200),可得t ∈(10,160),故S =60x 2x -40=60(t +40)2t =60⎝ ⎛⎭⎪⎫t +1 600t +80≥ 60⎝⎛⎭⎪⎫2t ·1 600t+80=9 600,当且仅当t =1 600t,即t =40时S =9 600.又40∈(10,160), 故当t =40时,S 取最小值9 600.所以当AN 的长为80米时,矩形AMPN 的面积最小, 最小面积为9 600平方米.函数与导数问题【题目5】已知函数f (x )=e x⎣⎢⎡⎦⎥⎤13x 3-2x 2+(a +4)x -2a -4,其中a ∈R ,e 为自然对数的底数.(1)若函数f (x )的图象在x =0处的切线与直线x +y =0垂直,求a 的值; (2)关于x 的不等式f (x )<-43e x 在(-∞,2)上恒成立,求a 的取值范围;(3)讨论函数f (x )极值点的个数.解 (1)由题意得f ′(x )=e x ⎝ ⎛⎭⎪⎫13x 3-x 2+ax -a ,因为f (x )的图象在x =0处的切线与直线x +y =0垂直, 所以f ′(0)=1,解得a =-1. (2)法一 由f (x )<-43e x ,得e x⎣⎢⎡⎦⎥⎤13x 3-2x 2+(a +4)x -2a -4<-43e x ,即x 3-6x 2+(3a +12)x -6a -8<0对任意x ∈(-∞,2)恒成立, 即(6-3x )a >x 3-6x 2+12x -8对任意x ∈(-∞,2)恒成立,因为x <2,所以a >x 3-6x 2+12x -8-3(x -2)=-13(x -2)2,记g (x )=-13(x -2)2,因为g (x )在(-∞,2)上单调递增,且g (2)=0, 所以a ≥0,即a 的取值范围是[0,+∞). 法二 由f (x )<-43e x ,得e x⎣⎢⎡⎦⎥⎤13x 3-2x 2+(a +4)x -2a -4<-43e x ,即x 3-6x 2+(3a +12)x -6a -8<0在(-∞,2)上恒成立,因为x 3-6x 2+(3a +12)x -6a -8<0等价于(x -2)(x 2-4x +3a +4)<0, ① 当a ≥0时,x 2-4x +3a +4=(x -2)2+3a ≥0恒成立, 所以原不等式的解集为(-∞,2),满足题意.②当a <0时,记g (x )=x 2-4x +3a +4,有g (2)=3a <0, 所以方程x 2-4x +3a +4=0必有两个实数根x 1,x 2,且x 1<2<x 2, 原不等式等价于(x -2)(x -x 1)(x -x 2)<0, 解集为(-∞,x 1)∪(2,x 2),与题设矛盾, 所以a <0不符合题意.综合①②可知,a 的取值范围是[0,+∞). (3)由题意得f ′(x )=e x ⎝ ⎛⎭⎪⎫13x 3-x 2+ax -a ,所以f (x )只有一个极值点或有三个极值点. 令g (x )=13x 3-x 2+ax -a ,①若f (x )有且只有一个极值点,则函数g (x )的图象必穿过x 轴且只穿过一次,即g (x )为增函数或者g (x )的极值同号.当g (x )为增函数时,g ′(x )=x 2-2x +a ≥0在R 上恒成立,得a ≥1. 当g (x )极值同号时,设x 1,x 2为极值点, 则g (x 1)·g (x 2) ≥0,由g ′(x )=x 2-2x +a =0有解,得a <1,且x 21-2x 1+a =0,x 22-2x 2+a =0,则x 1,x 2为x 2-2x +a =0的两根, 所以x 1+x 2=2,x 1x 2=a , 所以g (x 1)=13x 31-x 21+ax 1-a=13x 1(2x 1-a )-x 21+ax 1-a =-13(2x 1-a )-13ax 1+ax 1-a=23[(a -1)x 1-a ], 同理可得g (x 2)=23[(a -1)x 2-a ],所以g (x 1)g (x 2)=23[(a -1)x 1-a ]·23[(a -1)x 2-a ] ≥0,化简得(a -1)2x 1x 2-a (a -1)(x 1+x 2)+a 2≥0, 所以(a -1)2a -2a (a -1)+a 2≥0, 即a ≥0,所以0≤a <1.所以当a ≥0时,f (x )有且仅有一个极值点;②若f (x )有三个极值点,则函数g (x )的图象必穿过x 轴且穿过三次, 同理可得a <0.综上,当a ≥0时,f (x )有且仅有一个极值点, 当a <0时,f (x )有三个极值点.数列问题【题目6】正项数列a1,a2,…,a m(m≥4,m∈N*),满足a1,a2,a3,…,ak-1,a k(k<m,k∈N*)是公差为d的等差数列,a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列.(1)若a1=d=2,k=8,求数列a1,a2,…,a m的所有项的和S m;(2)若a1=d=2,m<2 016,求m的最大值;(3)是否存在正整数k,满足a1+a2+…+a k-1+a k=3(a k+1+a k+2+…+a m-1+a m)?若存在,求出k的值;若不存在,请说明理由.解(1)由已知得k<m,k∈N*,a n=2n,a k=a8=16,故a1,a2,a3,…a k-1,a k(k<m,k∈N*)对应的数为2,4,6,8,10,12,14,16.因为a1,a m,a m-1,…,a k+1,a k的公比为2,则对应的数为2,4,8,16.从而a1,a2,…,a m即为2,4,6,8,10,12,14,16,8,4,此时m=10,S m=8(2+16)2+8+4=84.(2)因为a1,a2,a3,…,a k-1,a k(k<m,k∈N*)是首项为2,公差为2的等差数列,所以k<m,k∈N*,a n=2n,从而a k=2k.又a1,a m,a m-1,…,a k+1,a k是首项为2,公比为2的等比数列,且a k=2m-k+2,故2k=2m-k+2,即k=2m-k+1,即k必是2的整数幂.又k·2k=2m+1,要m最大,k必须最大,因为k<m<2 016,故k的最大值为210,所以210·2210=210·21 024=21 034=2m+1,即m的最大值为1 033.(3)存在.由数列a1,a2,a3,…,a k-1,a k是公差为d的等差数列知a k=a1+(k-1)d,又a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列,则a k=a1·2m+1-k,故a1+(k-1)d=a1·2m+1-k,即(k-1)d=a1(2m+1-k-1).又a1+a2+…+a k-1+a k=3(a k+1+a k+2+…+a m-1+a m),a m=2a1,则ka1+12k(k-1)d=3×2a1×1-2m-k1-2,即ka1+12ka1(2m+1-k-1)=3×2a1(2m-k-1),则12k·2m+1-k+12k=6(2m-k-1),即k·2m+1-k+k=6×2m+1-k-12,显然k≠6,则2m+1-k=k+126-k=-1+186-k,所以k<6,将k=1,2,3,4,5一一代入验证,易知当且仅当k=4时,上式右端为8,等式成立,此时m=6,综上,当且仅当m=6时,存在k=4满足等式.解答题综合练【题目1】在△ABC中,角A,B,C的对边分别为a,b,c,若a+c=2b.(1)求证:B≤π2;(2)当AB→·BC→=-2,b=23时,求△ABC的面积.(1)证明∵cos B=a2+c2-b22ac=a2+c2-12(a+c)22ac=12(a-c)22ac≥0,且0<B<π.∴B≤π2(当且仅当a=c时取得等号).(2)解∵AB→·BC→=-2,∴ac cos B=2,由余弦定理得b 2=a 2+c 2-2ac cos B =12, ∴a 2+c 2=16,又a +c =2b =26,∴ac =4,∴cos B =12,由(1)知0<B ≤π2,∴sin B =32.∴S △ABC =12ac sin B = 3.【题目2】如图,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AC ⊥CD ,∠DAC =60°,AB =BC =AC ,E 是PD 的中点,F 为ED 的中点.(1)求证:平面PAC ⊥平面PCD ; (2)求证:CF ∥平面BAE .证明 (1)因为PA ⊥底面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD , 又AC ⊥CD ,且AC ∩PA =A ,AC ,PA ⊂平面PAC , 所以CD ⊥平面PAC ,又CD ⊂平面PCD ,所以平面PAC ⊥平面PCD .(2)取AE 中点G ,连接FG ,BG .因为F 为ED 的中点,所以FG ∥AD 且FG =12AD .在△ACD 中,AC ⊥CD , ∠DAC =60°,所以AC =12AD ,所以BC =12AD .在△ABC 中,AB =BC =AC , 所以∠ACB =60°,从而∠ACB =∠DAC ,所以AD ∥BC .综上,FG ∥BC ,FG =BC ,四边形FGBC 为平行四边形,所以CF ∥BG .又BG ⊂平面BAE ,CF ⊄平面BAE , 所以CF ∥平面BAE .【题目3】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.解 (1)由于点P 3,P 4关于y 轴对称, 由题设知C 必过P 3,P 4.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎨⎧a 2=4,b 2=1.故C 的方程为x 24+y 2=1.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2. 如果直线l 的斜率不存在,l 垂直于x 轴. 设l :x =m ,A (m ,y A ),B (m ,-y A ),k P 2A +k P 2B =y A -1m +-y A -1m =-2m=-1,得m =2, 此时l 过椭圆右顶点,不存在两个交点,故不满足. 从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则解上述一元二次方程后得 x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.则k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2 =2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. ∴(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0.解之得m =-2k -1,此时Δ=32(m +1)>0有解, ∴当且仅当m >-1时,Δ>0, ∴直线l 的方程为y =kx -2k -1, 即y +1=k (x -2).当x =2时,y =-1,所以l 过定点(2,-1). 【题目4】如图,墙上有一壁画,最高点A 离地面4米,最低点B 离地面2米,观察者从距离墙x (x >1)米,离地面高a (1≤a ≤2)米的C 处观赏该壁画,设观赏视角∠ACB =θ.(1)若a =1.5,问:观察者离墙多远时,视角θ最大? (2)若tan θ=12,当a 变化时,求x 的取值范围.解 (1)当a =1.5时,过点C 作AB 的垂线,垂足为点D ,则BD =0.5,且θ=∠ACD -∠BCD , 由已知知观察者离墙x 米,且x >1, 则tan ∠BCD =0.5x,tan ∠ACD =2.5x,所以tan θ=tan(∠ACD -∠BCD )=2.5x-0.5x 1+2.5×0.5x 2=2x 1+1.25x2=2x +1.25x≤2254=255, 当且仅当x =52>1时,等号成立.又因为tan θ在⎝ ⎛⎭⎪⎫0,π2上单调递增,所以当观察者离墙52米时,视角θ最大. (2)由题意得tan ∠BCD =2-ax ,tan ∠ACD =4-ax,又tan θ=12,所以tan θ=tan ()∠ACD -∠BCD =2xx 2+(a -2)·(a -4)=12, 所以a 2-6a +8=-x 2+4x , 当1≤a ≤2时,0≤a 2-6a +8≤3, 所以0≤-x 2+4x ≤3,即⎩⎨⎧x 2-4x ≤0,x 2-4x +3≥0,解得0≤x ≤1或3≤x ≤4,又因为x >1,所以3≤x ≤4, 所以x 的取值范围为[3,4].【题目5】已知函数f (x )=x 2-(1+2a )x +a ln x (a 为常数). (1)当a =-1时,求曲线y =f (x )在x =1处切线的方程;(2)当a >0时,讨论函数y =f (x )在区间(0,1)上的单调性,并写出相应的单调区间.解 (1)当a =-1时,f (x )=x 2+x -ln x , 则f ′(x )=2x +1-1x,所以f (1)=2,且f ′(1)=2.所以曲线y =f (x )在x =1处的切线的方程为:y -2=2(x -1),即:y =2x .(2)由题意得f ′(x )=2x -(1+2a )+a x=2x 2-(1+2a )x +ax=(2x -1)(x -a )x(x >0),由f ′(x )=0,得x 1=12,x 2=a ,①当0<a <12时,由f ′(x )>0,又知x >0得0<x <a 或12<x <1由f ′(x )<0,又知x >0,得a <x <12,所以函数f (x )的单调增区间是(0,a )和⎝ ⎛⎭⎪⎫12,1,单调减区间是⎝ ⎛⎭⎪⎫a ,12.② 当a =12时,f ′(x )=(2x -1)22x ≥0,且仅当x =12时,f ′(x )=0,所以函数f (x )在区间(0,1)上是单调增函数. ③当12<a <1时,由f ′(x )>0,又知x >0得0<x <12或a <x <1,由f ′(x )<0,又知x >0,得12<x <a ,所以函数f (x )的单调增区间是⎝ ⎛⎭⎪⎫0,12和(a ,1),单调减区间是⎝ ⎛⎭⎪⎫12,a .③ 当a ≥1时,由f ′(x )>0,又知x >0得0<x <12,由f ′(x )<0,又知x >0,得12<x <1,所以函数f (x )的单调增区间是⎝ ⎛⎭⎪⎫0,12,单调减区间是⎝ ⎛⎭⎪⎫12,1.【题目6】设数列{b n }满足b n +2=-b n +1-b n (n ∈N *),b 2=2b 1. (1)若b 3=3,求b 1的值;(2)求证数列{b n b n +1b n +2+n }是等差数列;(3)设数列{T n }满足:T n +1=T n b n +1(n ∈N *),且T 1=b 1=-12,若存在实数p ,q ,对任意n ∈N *都有p ≤T 1+T 2+T 3+…+T n <q 成立,试求q -p 的最小值. (1)解∵b n +2=-b n +1-b n ,∴b 3=-b 2-b 1=-3b 1=3,∴b 1=-1.(2)证明 ∵b n +2=-b n +1-b n ①, ∴b n +3=-b n +2-b n +1②, ②-①得b n +3=b n ,∴(b n +1b n +2b n +3+n +1)-(b n b n +1b n +2+n ) =b n +1b n +2(b n +3-b n )+1=1为常数, ∴数列{b n b n +1b n +2+n }是等差数列.(3)解 ∵T n +1=T n ·b n +1=T n -1b n b n +1=T n -2b n -1b n b n +1=…=b 1b 2b 3…b n +1. 当n ≥2时T n =b 1b 2b 3…b n (*), 当n =1时,T 1=b 1适合(*)式, ∴T n =b 1b 2b 3…b n (n ∈N *).∵b 1=-12,b 2=2b 1=-1,b 3=-3b 1=32,b n +3=b n ,∴T 1=b 1=-12,T 2=T 1b 2=12,T 3=T 2b 3=34,T 4=T 3b 4=T 3b 1=34T 1,T 5=T 4b 5=T 2b 3b 4b 5=T 2b 1b 2b 3=34T 2,T 6=T 5b 6=T 3b 4b 5b 6=T 3b 1b 2b 3=34T 3, ……T 3n +1+T 3n +2+T 3n +3=T 3n -2b 3n -1b 3n b 3n +1+ T 3n -1b 3n b 3n +1b 3n +2+T 3n b 3n +1b 3n +2b 3n +3 =T 3n -2b 1b 2b 3+T 3n -1b 1b 2b 3+T 3n b 1b 2b 3 =34(T 3n -2+T 3n -1+T 3n ), ∴数列{T 3n -2+T 3n -1+T 3n }(n ∈N *)是等比数列, 首项T 1+T 2+T 3=34且公比q =34,记S n =T 1+T 2+T 3+…+T n , ①当n =3k (k ∈N *)时,S n =(T 1+T 2+T 3)+(T 4+T 5+T 6)…+(T 3k -2+T 3k -1+T 3k ) =34⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34k 1-34=3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34k ,∴34≤S n <3; ②当n =3k -1(k ∈N *)时,S n =(T 1+T 2+T 3)+(T 4+T 5+T 6)+…+(T 3k -2+T 3k -1+T 3k )-T 3k =3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34k -(b 1b 2b 3)k=3-4·⎝ ⎛⎭⎪⎫34k,∴0≤S n <3;③当n =3k -2(k ∈N *)时,S n =(T 1+T 2+T 3)+(T 4+T 5+T 6)+…+(T 3k -2+T 3k -1+T 3k )-T 3k -1-T 3k =3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34k -(b 1b 2b 3)k -1b 1b 2-(b 1b 2b 3)k=3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34k -12⎝ ⎛⎭⎪⎫34k -1-⎝ ⎛⎭⎪⎫34k=3-143·⎝ ⎛⎭⎪⎫34k,∴-12≤S n <3.综上得-12≤S n <3,故p ≤-12且q ≥3,∴q -p 的最小值为72.。

高考数学倒计时20天正能量第1辑金题强化卷08理解析版

高考数学倒计时20天正能量第1辑金题强化卷08理解析版

普通高等学校招生全国统一考试金题强化卷数学理(8)第I卷一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 【改编题】若集合A={-1,0,1},B={y|y=cosx,x∈A},则A∩B=A.{0}B.{1}C.{0,1}D.{-1,0,1}2. 【山东省莱芜市2012届高三4月高考模拟试题】设,p q是两个命题,1:0,:|21|1,xp q x p qx+≤+<则是(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分又非必要条件3. 【广州市高三年级1月调研测试】已知函数()230xx xf xxlog,,⎧>=⎨≤⎩, 则14f f⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭的值是A.9 B.19C.9- D.19-4. 【山东省日照市2012届高三下学期5月份模拟训练】要得到函数)42cos(3π-=xy的图象,可以将函数xy2sin3=的图象(A)沿x轴向左平移8π个单位(B)沿x向右平移8π个单位(C )沿x 轴向左平移4π个单位 (D )沿x 向右平移4π个单位【答案】A【解析】.).8(2sin 3)42sin(3)]42(2sin[3)42cos(3A x x x x y 选πππππ+=+=-+=-= 5. 【河南省三门峡市高三第一次大练习】i 是虚数单位,1233ii+等于 A.13412i + B.33i + C.33i - D. 13412i -6. 【安徽省示范高中高三9月模底考试】样本中共有5个个体,其中四个值分别为0,1,2,3,第五个值丢失,但该样本的平均值为1,则样本方差为=( ) A 、305 B 、65C 、2D 、27. 【湖北省武汉市2012届高中毕业生五月供题训练(二)】设2920012929100129101010(12)(1)(1)b b x b x b x x a a x a x a x a x x x +++++=+++++++-,则a 9=A .0B .410C .10·410D .90·4108.[安徽省宣城市6校高三联合测评考]三个正数a,b,c 满足2a b c a ≤+≤,2b a c b ≤+≤,则ba的取值范围是( )A.23[,]32B.2[,2]3C.3[1,]2D.[1,2]【答案】A【解析】∵0,a>2,12b ca b c aa a∴≤+≤≤+≤由得,212.b c bb ac ba a a≤+≤≤+≤由得设,b cx ya a==,则有12112x yx yy x≤+≤⎧⎪≤+⎨⎪+≤⎩,其可行域如图: 其中A(21,33),B(31,22),∴bxa=∈[23,32].9.【江西省百所重点高中2012届高三下学期模拟考试】已知各项均为正数的等比数列{a n}满足a1a7=4,a6=8,函数,则()f x在x=时的导数的值等于A.554B.574C. 16D. 1810. 【临沂市高三教学质量检测考试】函数)42(cos2)21()(1≤≤-+=-xxxf xπ的所有零点之和等于(A)2 (B)4 (C)6 (D)8【答案】C【解析】xyπcos2-=由0cos2)21()(1=+=-xxf xπ,得xxπcos2)21(1-=-令)42(cos2,)21(1≤≤--==-xxyy xπ,在同一坐标系中分别做出函数1)21(-=xy,)42(cos2≤≤--=xxyπ,⎪⎩⎪⎨⎧<≤-≤≤==---12,241,)21()21(111xxyxxx,由图象可知,函数1)21(-=xy关于1=x对称,又1=x也是函数)42(cos2≤≤--=xxyπ的对称轴,所以函数)42(cos2,)21(1≤≤--==-xxyy xπ的交点也关于1=x对称,且两函数共有6个交点,所以所有零点之和为6.第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。

2024学年郑州市第一中学高三临门一脚强化训练模拟考试数学试题试卷

2024学年郑州市第一中学高三临门一脚强化训练模拟考试数学试题试卷

2024学年郑州市第一中学高三临门一脚强化训练模拟考试数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.用电脑每次可以从区间(0,3)内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于1的概率为( )A .427B .13C .127D .192.已知,a R b R ∈∈,则“直线210ax y +-=与直线(1)210a x ay +-+=垂直”是“3a =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.执行如图所示的程序框图若输入12n =,则输出的n 的值为( )A .32B .2C .52D .34.设12,F F 分别是双线2221(0)x y a a-=>的左、右焦点,O 为坐标原点,以12F F 为直径的圆与该双曲线的两条渐近线分别交于,A B 两点(,A B 位于y 轴右侧),且四边形2OAF B 为菱形,则该双曲线的渐近线方程为( ) A .0x y ±= B 30x y ±= C .30x y ±= D .30x y ±=5.设集合{}1,2,3A =,{}220B x x x m =-+=,若{3}A B ⋂=,则B =( ) A .{}1,3- B .{}2,3- C .{}1,2,3-- D .{}36.已知直线,m n 和平面α,若m α⊥,则“m n ⊥”是“//n α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .不充分不必要 7.数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为( )A .72B .5319C .2319-D .12- 8.如图,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )A .22B .32C .212+D .312+ 9.已知集合M ={x |﹣1<x <2},N ={x |x (x +3)≤0},则M ∩N =( )A .[﹣3,2)B .(﹣3,2)C .(﹣1,0]D .(﹣1,0) 10.已知数列满足:.若正整数使得成立,则( )A .16B .17C .18D .19 11.二项式732x x ⎛⎫- ⎪⎝⎭展开式中,1x 项的系数为( ) A .94516- B .18932- C .2164- D .2835812.在311(21)x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为( ) A .1 B .2 C .3 D .7二、填空题:本题共4小题,每小题5分,共20分。

圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)

圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)

冲刺2023年高考二轮 圆锥曲线的综合问题强化训练(原卷+答案)考点一 证明问题——等价转化,直击目标圆锥曲线中证明问题的两种常见类型圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上,某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).例 1已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.对点训练已知直线y =3与曲线C :x 2+2py =0的两个公共点之间的距离为4√6. (1)求C 的方程;(2)设P 为C 的准线上一点,过P 作C 的两条切线,切点为A ,B ,直线P A ,PB 的斜率分别为k 1,k 2,且直线P A ,PB 与y 轴分别交于M ,N 两点,直线AB 的斜率为k 0.证明:k 1·k 2为定值,且k 1,k 0,k 2成等差数列.考点二 定点问题——目标等式寻定点解析几何中的定点问题一般是指与解析几何有关的直线或圆(其他曲线过定点太复杂,高中阶段一般不涉及)过定点的问题,其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动,这类问题的求解一般分为以下三步:一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一).二求:求出定点坐标所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程.三定点:对上述方程进行必要的化简,即可得到定点坐标. 例 2 已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,AB 为过椭圆右焦点的一条弦,且AB 长度的最小值为2.(1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点P (2,0),记直线PC 的斜率为k 1,直线PD 的斜率为k 2,当1k 1+1k 2=1时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.对点训练已知抛物线C :y 2=2px (p >0)的焦点为F ,S (t ,4)为C 上一点,直线l 交C 于M ,N 两点(与点S 不重合).(1)若l 过点F 且倾斜角为60°,|FM |=4(M 在第一象限),求C 的方程;(2)若p =2,直线SM ,SN 分别与y 轴交于A ,B 两点,且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =8,判断直线l是否恒过定点?若是,求出该定点;若否,请说明理由.考点三 定值问题——巧妙消元寻定值定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题,其求解步骤一般为:一选:选择变量,一般为点的坐标、直线的斜率等.二化:把要求解的定值表示成含上述变量的式子,并利用其他辅助条件来减少变量的个数,使其只含有一个变量(或者有多个变量,若是能整体约分也可以).三定值:化简式子得到定值.由题目的结论可知要证明为定值的量必与变量的值无关,故求出的式子必能化为一个常数,所以只需对上述式子进行必要的化简即可得到定值.例 3 已知双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,双曲线C 的右顶点A 在圆O :x 2+y 2=3上,且AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =-1.(1)求双曲线C 的方程;(2)动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于点M 、N ,设O 为坐标原点.求证:△OMN 的面积为定值.对点训练已知F 1(-√3,0),F 2(√3,0)分别是双曲线C :x 2a 2−y 2b 2=1(a >b >0)的左、右焦点,A 为双曲线在第一象限的点,△AF 1F 2的内切圆与x 轴交于点P (1,0).(1)求双曲线C 的方程;(2)设圆O :x 2+y 2=2上任意一点Q 处的切线l ,若l 与双曲线C 左、右两支分别交于点M 、N ,问:QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 是否为定值?若是,求出此定值;若不是,说明理由.考点四 圆锥曲线中的最值、范围问题——巧设变量,引参搭桥圆锥曲线中的最值 (1)椭圆中的最值 F 1,F 2为椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有:①|OP |∈________;②|PF 1|∈________;③|PF 1|·|PF 2|∈________;④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1,F 2为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O为坐标原点,则有:①|OP |≥________;②|PF 1|≥________. (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有:①|PF |≥________;②A (m ,n )为一定点,则|P A |+|PF |有最小值;③点N (a ,0)是抛物线的对称轴上一点,则|PN |min ={|a |(a ≤p ),√2pa −p 2(a >p).例 4如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q (0,12)在线段AB 上,直线P A ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD |的最小值.对点训练已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,P A ,PB 是C 的两条切线,A ,B 是切点,求△P AB 面积的最大值.[典例] 已知圆(x +√3)2+y 2=16的圆心为M ,点P 是圆M 上的动点,点N (√3,0),点G 在线段MP 上,且满足(GN⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ). (1)求点G 的轨迹C 的方程;(2)过点T (4,0)作斜率不为0的直线l 与轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.(1)因为(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ), 所以(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )·(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ )=0,即GN ⃗⃗⃗⃗⃗⃗ 2-GP ⃗⃗⃗⃗⃗ 2=0, 所以|GP |=|GN |,所以|GM |+|GN |=|GM |+|GP |=|MP |=4>2√3=|MN |, 所以点G 在以M ,N 为焦点,长轴长为4的椭圆上,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则2a =4,2c =2√3,即a =2,c =√3,所以b 2=a 2-c 2=1, 所以点G 的轨迹C 的方程为x 24+y 2=1. (2)依题意可设直线l :x =my +4. 由{x =my +4,x 24+y 2=1消去x ,得(m 2+4)y 2+8my +12=0.设A (x 1,y 1),B (x 2,y 2),由Δ=64m 2-4×12×(m 2+4)=16(m 2-12)>0,得m 2>12. ①且y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.②因为点A 关于x 轴的对称点为D , 所以D (x 1,-y 1), 可设Q (x 0,0),所以k BD =y 2+y 1x 2−x 1=y 2+y 1m (y 2−y 1), 所以BD 所在直线的方程为y -y 2=y 2+y 1m (y2−y 1)(x -my 2-4). 令y =0,得x 0=2my 1y 2+4(y 1+y 2)y 1+y 2. ③将②代入③, 得x 0=24m−32m−8m=1, 所以点Q 的坐标为(1,0).因为S △ABQ =|S △TBQ -S △TAQ |=12|QT ||y 2-y 1|=32√(y 1+y 2)2−4y 1y 2=6√m 2−12m 2+4,令t =m 2+4,结合①得t >16, 所以S △ABQ =6√t−16t= 6√−16t 2+1t =6√−16(1t −132)2+164.当且仅当t =32,即m =±2√7时,(S △ABQ )max =34. 所以△ABQ 面积的最大值为34.参考答案考点一[例1] 解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得{4n =1,94m +n =1,解得{m =13,n =14. 所以椭圆E的方程为x 23+y 24=1. (2)证明:方法一 设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组{x −1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t−84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0−32,得x 0=32y 1+3.设H (x ′,y ′). 由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1, 所以直线HN 的斜率k =y 2−y ′x 2−x ′=y 2−y 1x 2+x 1−(3y 1+6)=y 2−y 1t (y 1+y 2)−3y 1+4t−4,所以直线HN 的方程为y -y 2=y 2−y 1t (y 1+y 2)−3y 1+4t−4·(x -x 2).令x =0,得y =y 2−y 1t (y 1+y 2)−3y 1+4t−4·(-x 2)+y 2=(y 1−y 2)(ty 2+2t+1)t (y 1+y 2)−3y 1+4t−4+y 2=(2t−3)y 1y 2+(2t−5)(y 1+y 2)+6y 1t (y 1+y 2)−3y 1+4t−4=(2t−3)·16t 2+16t−84t 2+3+(5−2t )·16t 2+8t4t 2+3+6y 1−t(16t 2+8t)4t 2+3−3y 1+4t−4=-2.所以直线NH 过定点(0,-2).方法二 由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2. a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23+y 24=1,可得N (1,2√63),M (1,-2√63). 将y =-2√63代入y =23x -2,可得T (3-√6,-2√63).由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (5-2√6,-2√63). 此时直线HN 的方程为y =(2+2√63)(x -1)+2√63,则直线HN 过定点(0,-2). b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组{kx −y −(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以{x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则{y 1+y 2=−8(2+k )3k 2+4,y 1y 2=4(4+4k−2k 2)3k 2+4, 且x 1y 2+x 2y 1=−24k3k 2+4.①联立得方程组{y =y 1,y =23x −2,可得T (3y 12+3,y 1). 由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1−y 23y 1+6−x 1−x2(x -x 2). 将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.②将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立.综上可得,直线HN 过定点(0,-2).对点训练解析:(1)将y =3代入x 2+2py =0,得x 2=-6p . 当p ≥0时,不合题意;当p <0时,x =±√−6p ,则2√−6p =4√6, 解得p =-4,故C 的方程为x 2=8y .(2)证明:由(1)可知C 的准线方程为y =-2, 不妨设P (m ,-2),A (x 1,y 1),B (x 2,y 2),设过点P 且与C 相切的直线l 的斜率为k ,则l :y =k (x -m )-2,且k ≠0,联立{y =k (x −m )−2,x 2=8y ,得x 2-8kx +8(km +2)=0,则Δ=64k 2-32(km +2)=0,即k 2-12mk -1=0,由题意知,直线P A ,PB 的斜率k 1,k 2为方程k 2-12mk -1=0的两根, 则k 1+k 2=m2,k 1k 2=-1,故k 1·k 2为定值. 又x 2-8kx +8(km +2)=(x -4k )2=0, 则x 1=4k 1,同理可得x 2=4k 2,则k 0=y 1−y 2x 1−x 2=18x −1218x 22x 1−x 2=x 1+x 28,因此k 0=4(k 1+k 2)8=k 1+k 22,故k 1,k 0,k 2成等差数列.考点二[例2]解析:(1)因为x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,过椭圆右焦点的弦长的最小值为2b 2a=2,所以a =2,c =√2,b =√2,所以椭圆M 的方程为x 24+y 22=1. (2)设直线l 的方程为m (x -2)+ny =1,C (x 1,y 1),D (x 2,y 2),由椭圆的方程x 2+2y 2=4,得(x -2)2+2y 2=-4(x -2).联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4(x -2)[m (x -2)+ny ], 即(1+4m )(x -2)2+4n (x -2)y +2y 2=0,(1+4m )(x−2y )2+4n x−2y+2=0, 所以1k 1+1k 2=x 1−2y 1+x 2−2y 2=-4n 1+4m=1,化简得m +n =-14,代入直线l 的方程得m (x -2)+(−14−m)y =1,即m (x -y -2)-14y =1,解得x =-2,y =-4,即直线l恒过定点(-2,-4).对点训练解析:(1)抛物线C :y 2=2px (p >0)的焦点为F (p2,0),因为l 过点F 且倾斜角为60°,所以l :y =√3(x -p2), 联立y 2=2px (p >0),可得12x 2-20px +3p 2=0,解得x =32p 或x =p6,又M 在第一象限,所以x M =32p ,因为|FM |=4,所以32p +p2=4,解得p =2,所以抛物线C 的方程为y 2=4x ;(2)由已知可得抛物线C 的方程为y 2=4x ,点S (4,4), 设直线l 的方程为x =my +n ,点M (y 12 4,y1),N (y 22 4,y2),将直线l 的方程与抛物线C :y 2=4x 联立得y 2-4my -4n =0, 所以Δ=16m 2+16n >0,y 1+y 2=4m ,y 1y 2=-4n (*),直线SM 的方程为y -4=y 1−4y 12 4-4(x -4),令x =0求得点A 的纵坐标为4y 1y 1+4,同理求得点B 的纵坐标为4y 2y2+4, 由OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =16y 1y 2y 1y 2+4(y 1+y 2)+16=8,化简得y 1y 2=4(y 1+y 2)+16,将上面(*)式代入得-4n =16m +16,即n =-4m -4, 所以直线l 的方程为x =my -4m -4,即x +4=m (y -4), 所以直线l 过定点(-4,4).考点三[例3] 解析:(1)不妨设F 1(-c ,0),F 2(c ,0), 因为A (a ,0), 从而AF 1⃗⃗⃗⃗⃗⃗⃗ =(−c −a ,0),AF 2⃗⃗⃗⃗⃗⃗⃗ =(c -a ,0) ,故有 AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =a 2-c 2=-1, 又因为a 2+b 2=c 2, 所以 b =1,又因为A (a ,0) 在圆 O :x 2+y 2=3 上, 所以 a =√3,所以双曲线C的标准方程为x 23-y 2=1.(2)证明:设直线l 与x 轴交于D 点,双曲线的渐近线方程为y =±√33x ,由于动直线l 与双曲线C 恰有1个公共点, 且与双曲线C 的两条渐近线分别交于点M 、N ,当动直线l 的斜率不存在时, l :x =±√3,|OD |=√3,|MN |=2,S △OMN =12×√3×2=√3,当动直线l 的斜率存在时, 且斜率k ≠±√33, 不妨设直线 l :y =kx +m,故由{y =kx +m x 23−y 2=1⇒(1-3k 2)x 2-6mkx -3m 2-3=0, 依题意,1-3k 2≠0且m ≠0,Δ=(-6mk )2-4(1-3k 2)(-3m 2-3)=0, 化简得 3k 2=m 2+1,故由{y =kx +my =√33x ⇒x M =√33−k , 同理可求,x N =-√33+k, 所以|MN |=√1+k 2|xM−x N |=2√3|m|√k 2+1|1−3k 2|,又因为原点O 到直线l :kx -y +m =0的距离d =√k 2+1,所以S △OMN =12|MN |d =√3m 2|1−3k 2|,又由3k 2=m 2+1,所以S △OMN =√3|m|√k 2+1|1−3k 2|=√3,故△OMN 的面积为定值,定值为√3.对点训练解析:(1)如图,设AF 1,AF 2与△AF 1F 2的内切圆分别交于G ,H 两点, 则2a =|AF 1|−|AF 2|=|F 1P |−|PF 2| =(1+√3)-(√3-1)=2,所以a =1,则b 2=c 2-a 2=2, 则双曲线C 的方程为x 2-y 22=1.(2)由题意得,切线l 的斜率存在.设切线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2). 因为l 与圆O :x 2+y 2=2相切,所以√1+k 2=√2,即m 2=2k 2+2.联立{y =kx +m ,x 2−y 22=1,消去y 并整理得(2-k 2)x 2-2kmx -m 2-2=0, 所以x 1+x 2=2km2−k 2,x 1x 2=−m 2−22−k 2.又QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =(QO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(QO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ) =|QO ⃗⃗⃗⃗⃗ |2-OQ ⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|ON ⃗⃗⃗⃗⃗ |cos ∠QON -|OQ ⃗⃗⃗⃗⃗ |·|OM ⃗⃗⃗⃗⃗⃗ |cos ∠QOM +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |−|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ −|OQ ⃗⃗⃗⃗⃗ |2. 又OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m )=(k 2+1)x 1x 2+km (x 1+x 2)+m 2 =(k 2+1)(−m 2−2)2−k 2+2k 2m 22−k2+m 2=m 2−2k 2−22−k 2,将m 2=2k 2+2代入上式得OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =0.所以QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =0-|OQ ⃗⃗⃗⃗⃗ |2=-2. 综上所述,QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 为定值,且QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =-2.考点四(1)[b ,a ] [a -c ,a +c ] [b 2,a 2] (2)a c -a (3)p2[例4] 解析:(1)设M (2√3cos θ,sin θ)是椭圆上一点,P (0,1),则|PM |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=14411-11(sin θ+111)2≤14411.故|PM |的最大值为12√1111.(2)由题意,知直线AB 的斜率存在,故设直线AB 的方程为y =kx +12.将直线方程与椭圆方程联立,得{y =kx +12,x 212+y 2=1.消去y 并整理,得(k 2+112)x 2+kx -34=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-kk 2+112,x 1x 2=-34(k 2+112).直线P A :y =y 1−1x 1x +1与直线y =-12x +3交于点C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1. 同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1,则|CD |= √1+14|x C -x D | =√52|4x1(2k+1)x1−1−4x2(2k+1)x2−1|=2√5|x 1−x 2[(2k+1)x1−1][(2k+1)x 2−1]|=2√5|x 1−x 2(2k+1)2x 1x 2−(2k+1)(x 1+x 2)+1|=3√52·√16k 2+1|3k+1|=6√55·√16k 2+1· √916+1|3k+1| ≥6√55,当且仅当k =316时等号成立.故|CD |的最小值为6√55.对点训练解析:(1)由题意知M (0,-4),F (0,p2),圆M 的半径r =1,所以|MF |-r =4,即p2+4-1=4,解得p =2.(2)由(1)知,抛物线方程为x 2=4y , 由题意可知直线AB 的斜率存在,设A (x 1,x 12 4),B (x2,x 22 4),直线AB 的方程为y =kx +b ,联立得{y =kx +bx 2=4y,消去y 得x 2-4kx -4b =0, 则Δ=16k 2+16b >0(※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=√1+k 2|x 1-x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=4√1+k 2·√k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x12,在点A 处的切线方程为y −x 12 4=x 12(x -x 1),即y =x 12x −x 12 4,同理得抛物线在点B 处的切线方程为y =x 22x −x 22 4,联立得{y =x 12x −x 124y =x22x -x 22 4,则{x =x 1+x 22=2ky =x 1x 24=−b , 即P (2k ,-b ).因为点P 在圆M 上,所以4k 2+(4-b )2=1 ①,且-1≤2k ≤1,-5≤-b ≤-3,即-12≤k ≤12,3≤b ≤5,满足(※). 设点P 到直线AB 的距离为d ,则d =2√1+k 2,所以S △P AB =12|AB |·d =4√(k 2+b )3.由①得,k 2=1−(4−b )24=−b 2+8b−154, 令t =k 2+b ,则t =−b 2+12b−154,且3≤b ≤5. 因为t =−b 2+12b−154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max =5,此时k =0,所以△P AB 面积的最大值为20√5.。

高三二轮复习数学(理)专题八 思想方法强化课时训练 专题八第三讲综合验收评估

高三二轮复习数学(理)专题八 思想方法强化课时训练 专题八第三讲综合验收评估

一、选择题1.正三棱柱的侧面展开图是两边长分别为2和4的矩形,则它的体积为 A.893 B.49 3 C.29 3D.493或89 3解析 矩形的其中一条边的长度为正三棱柱的高,因此可分高为2或4两种情况进行讨论求解.答案 D2.(2011·南昌模拟)已知双曲线的渐近线方程为y =±34x ,则双曲线的离心率为 A.54B.53C.54或53D.35或45解析 当双曲线的焦点在x 轴上时,b a =34,∴e =54, 当双曲线的焦点在y 轴上时,b a =43,∴e =53. 答案 C3.已知集合A ={x |x 2-x -2=0},B ={x |ax -1=0},若A ∩B =B ,则a 的值是 A .-1 B .-1或12 C .0或12D .-1或0或12解析 A ={-1,2},当a =0时,B =∅,A ∩B =B ;当a ≠0时,B =⎩⎨⎧⎭⎬⎫1a ,∴-1=1a 或2=1a ,得a =-1或a =12.故选D. 答案 D4.已知f (x )、g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x )、g (x )均为偶函数”是“h (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 若f (x )、g (x )均是偶函数, 则h (x )=f (x )+g (x )是偶函数;当h (x )=f (x )+g (x )是偶函数时,例如f (x )=x ,g (x )=-x ,f (x )与g (x )显然不是偶函数,故选A. 答案 A5.对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎨⎧a (a ≤b )b (a >b ),则函数f (x )=log 12(3x -2)*log 2x的值域为A .(-∞,0]B.⎣⎢⎡⎦⎥⎤log 223,0 C.⎣⎢⎡⎭⎪⎫log 223,+∞D .R解析 根据题目给出的情境可得, f (x )=log 12(3x -2)*log 2x =log 2⎝ ⎛⎭⎪⎫13x -2*log 2x=⎩⎪⎨⎪⎧log213x -2 (x ≥1)log 2x ⎝ ⎛⎭⎪⎫23<x <1.由于y =log 2x 在定义域上为增函数, 可得f (x )的值域为(-∞,0]. 答案 A6.如图所示,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE =x ,过E 作OB 的垂线l ,记△AOB 在直线l 左边部分的面积为S ,则函数S =f (x )的图象是解析 当0≤x ≤2时,S =12·x ·12x =14x 2;当2<x ≤3时,S =1+12(x -2)(4-x )=-12x 2+3x -3; 当x ≥3时,S =32,故选D. 答案 D 二、填空题7.已知定义在闭区间[0,3]上的函数f (x )=kx 2-2kx 的最大值为3,那么实数k 的取值集合为________.解析 f (x )=kx 2-2kx =k (x -1)2-k ,(1)当k >0时,二次函数开口向上,当x =3时,f (x )有最大值, 即f (3)=3k =3,解之得k =1;(2)当k <0时,二次函数开口向下,当x =1时,f (x )有最大值, 即f (1)=-k =3,解之得k =-3; (3)当k =0时,显然不成立. 答案 {1,-3}8.过点M (2,4)向圆(x -1)2+(y +3)2=1作切线,所得切线方程是________. 解析 (1)当斜率k 不存在时,x =2符合题意; (2)当斜率k 存在时,设切线方程为y -4=k (x -2), 即kx -y -2k +4=0,圆心(1,-3)到切线的距离为d =|k +3-2k +4|1+k 2=1.解得k =247,即切线方程为24x -7y -20=0. 综上,切线方程为x =2或24x -7y -20=0. 答案 x =2或24x -7y -20=09.已知函数y =a x -a -x (a >0且a ≠1),则当a ________时,此函数是增函数. 解析 y ′=a x ln a +a -x ln a =(a x +a -x )ln a >0, ∵a x +a -x >0恒成立,故ln a >0,即a >1. 答案 >1 三、解答题10.已知函数f (x )=2a sin 2x -23a sin x cos x +a +b (a ≠0)的定义域为⎣⎢⎡⎦⎥⎤0,π2,值域为[-5,1],求常数a ,b 的值.解析 f (x )=a (1-cos 2x )-3a sin 2x +a +b =-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,76π.∴-12≤sin ⎝ ⎛⎭⎪⎫2x +π6≤1,因此,由f (x )的值域为[-5,1] 可得⎩⎪⎨⎪⎧a >0-2a ×⎝ ⎛⎭⎪⎫-12+2a +b =1-2a ×1+2a +b =-5或⎩⎪⎨⎪⎧a <0,-2a ×1+2a +b =1,-2a ×⎝ ⎛⎭⎪⎫-12+2a +b =-5,解得⎩⎨⎧ a =2b =-5或⎩⎨⎧a =-2,b =1.11.在△ABC 中,设AB→=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 解析 因为△ABC 是直角三角形,所以 当∠A =90°,则AB →⊥AC →,于是2×1+3×k =0,得k =-23. 当∠B =90°,则AB →⊥BC →,又BC→=AC →-AB →=(-1,k -3), 故2×(-1)+3(k -3)=0,得k =113. 当∠C =90°,则AC→⊥BC →,故1×(-1)+k (k -3)=0,得k =3±132.综上所求k 的值为-23或113或3±132. 12.已知f (x )=x 3x +1,数列{a n }满足a 1=13,a n +1=f (a n ) (n ∈N +). (1)求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)记S n (x )=x a 1+x 2a 2+…+x na n(x >0),求S n (x ).解析 (1)证明 由已知得a n +1=a n 3a n +1,∴1a n +1=3a n +1a n =3+1a n .∴1a n +1-1a n =3.∴⎩⎨⎧⎭⎬⎫1a n 是首项为3,公差为3的等差数列. (2)由(1)得1a n=3+3(n -1)=3n ,∴S n (x )=3x +6x 2+9x 3+…+3nx n . x =1时,S n (1)=3+6+9+…+3n =3(n +1)n2; x ≠1时,S n (x )=3x +6x 2+9x 3+…+3nx n , xS n (x )=3x 2+6x 3+…+3(n -1)x n +3nx n +1,(1-x )S n (x )=3x +3x 2+…+3x n -3nx n +1=3x (1-x n)1-x-3nx n +1,S n (x )=3x -3(n +1)x n +1+3nx n +2(1-x )2.综上,当x =1时,S n (1)=32n (n +1), 当x ≠1时,S n (x )=3x -3(n +1)x n +1+3nx n +2(1-x )2.。

高三数学,应该选一本什么练习册

高三数学,应该选一本什么练习册

高三数学,应该选一本什么练习册1. 《2000题》全名《新高考数学真题全刷基础2000题(清华社出版)》市面上的2000题有好几个不同版本,比如我之前还买过一个X哥的,但有的版本题目太老,答案错误也比较多(不具体点名,免去麻烦)。

所以综合考量,我说的这一版是最推荐大家用的。

特点&定位•特点:本练习册特别适合巩固知识,打好基础。

答案很明确,有配套的讲解视频。

题目很详细,题量很大。

非常适合定点培训推广•定位:是一本专题练习册,第一轮复习阶段可用•难度:简单题和中档题为主,有一定的区分度适应人群数学不及格或分数低于100分的学生。

或者需要为某个知识点补充基础。

2. 《800题》全名《新高考数学真题全刷决胜800题(清华社出版)》。

与上面的《2000题》可以看作一套题。

同样的,市面上版本比较多,这里推荐清华社出版的这一版。

特点&定位•特点:这本练习册适合巩固基础之后进一步提升,专题分的很细致,题量比较多,很适合用来定点训练提升•定位:是一本专题练习册,第一轮复习阶段可用•难度:中档题和难题为主适应人群数学及格但分数低于130的学生。

或者某个知识点需要定点强化。

3. 《53基础题数学1500题》这个练习册和之前的2000本有点重复,选一本其实就够了。

特点&定位•特点:适合巩固基础刷题专用,按照考点分类习题,但是知识点讲解的比较一般可以不用看•定位:是一本专题练习册,第一轮复习阶段可用•难度:简单题和中档题为主,兼顾高考题和模拟题,有一定的区分度适应人群徘徊在数学及格线附近的同学。

或者需要为某个知识点补充基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三理科数学强化训练(8)命题人:丁霄 2012-12-28一.选择题:(5×12=60分)1.若复数(5sin 3)(5cos 4)z i θθ=-+-是纯虚数,则tan θ的值为( )A .43B .34-C .34D .3344-或2.已知函数xx f -=12)(的定义域为M ,)1ln(2)(x x g ++=的定义域为N ,则M N = ( ){}1.>x x A{}11.<<-x x B {}1.<x x C φ.D3."1"-=m 是”直线()0212=+-+y m mx 和直线033=++my x 垂直”的( )A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件4.函数()sin(2))f x x x θθ=++为奇函数,且在[0,]4π上为减函数的θ值可以是( )A .3π-B .6π-C .56π D .23π5.在等差数列{}n a 中,0>n a ,且301021=+++a a a ,则65a a ⋅的最大值是( )A .3B .6C .9D .366.已知平面区域如右图所示,)0(>+=m y mx z 多个,则m 的值为 ( ) A.21B.1C.207D.不存在7.设11cos ,sin ,a xdx b xdx ==⎰⎰下列关系式成立的是( A a b > B 1a b +< C a b < D 1a b +=8.新学期开始,学校接受6名师大学生生到校实习 ,学校要把他们分配到三个年级,每个年级2人,其中甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为( ) A .18 B .15 C .12 D .99. 已知某8个数的平均数为5,方差为2,现又加入一个新数据5,此时这9个数的平均数为, 方差为S 2,则( )A. B. C. D.10•设命题p:,命题,若P是q的充分不必要条件,则K的取值范围是( ) A(0,3] B. (0,6] C. (0,5] D. [1,6]11.已知21,FF分别为双曲线12222=-byax的左、右焦点,P为双曲线左支上的一点,若||||122PFPF的值为a8,则双曲线离心率的取值范围是( )()+∞,1.A[]3,2.B(]2,1.C(]3,1D12.数列{}n a满足61=a,)](24345[21++∈-+=Nnaaannn,其中[]x表示不超过x的最大整数。

则12320112012a a a a a+++⋅⋅⋅++的个位数字为()4.A5.B6.C7.D二、填空题(5×4=20分)13. 某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.从抽样的100根棉花纤维中任意抽取一根,则其棉花纤维的长度小于20mm的概率为.14.设(nx的展开式的各项系数之和为M,二项式系数之和为N,若M+N=16,则展开式中的常数项为.15. 已知函数的图象关于直线对称,点是函数图象的一个对称中心则的最小值是16. 若函数y=f(x)对定义域的每一个值x1,都存在唯一的x2,使成立,①是“滨湖函数”;②.I是“滨湖函数”;③是“滨湖函数”; ④是“滨湖函数”;⑤都是“滨湖函数”,且定义域相同,则是“滨湖函数”三、解答题:(本大题共70分。

解答应写出文字说明、证明过程或演算步骤。

) 17.(12分)已知B A ,是直线0y =与函数2()2coscos()1(0)23xf x x ωπωω=++->图像的两个相邻交点,且.2||π=AB(1)求ω的值;(2)在锐角ABC ∆中,c b a ,,分别是角,,A B C 的对边,若3(),3,2f A c ABC =-=∆的面积为33,求a 的值.18.(本小题满分12分)已知数列{}n a 的前n 项和为n n S n +=2,数列}{b n 满足+++322133b b b n n n a b =+-13,*N n ∈.(1)求数列{},{}n n a b 的通项公式; (2)求数列}{b n 的前n 项和n T .19.(本小题满分12分)甲、乙两个盒子里各放有标号为1,2,3,4的四个大小形状完全相同的小球,从甲盒中任取一小球,记下号码x 后放入乙盒,再从乙盒中任取一小球,记下号码y .(Ⅰ)求2y =的概率;(Ⅱ)设随机变量y x X -=,求随机变量X 的分布列及数学期望.20.(本小题满分12分)已知椭圆:C 22221(0)x y a b a b +=>>点构成的三角形的面积为3(Ⅰ)求椭圆C 的方程;(Ⅱ)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点. ①若线段AB 中点的横坐标为12-,求斜率k 的值;②若点7(,0)3M -,求证:MA MB ⋅ 为定值21. (本小题满分12分)已知函数22()(24)ln f x x ax x x =-+(0a >).(1)求函数()f x 的单调区间;(2)对[1,)x ∀∈+∞,不等式(24)ln x a x x ->-恒成立,求a 的取值范围.22,23两题只选做一题,若两题都做按第一题计分22.在直角坐标系xoy 中,直线l的参数方程为32x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρθ=。

(Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点,A B 。

若点P 的坐标为(3,求||||PA PB +。

23.选修4-5:不等式选讲已知函数.|,32|12)(R x x x x f ∈-+-=. (Ⅰ)解不等式5)(≤x f ;(Ⅱ)若mx f x g +=)(1)(的定义域为R ,求实数m 的取值范围.高三理科数学强化训练(8)参考答案一.选择题1-5 BBBDC 6-10 CADAB 11-12 DD 二、填空题13. 310 14. 4- 15. 13+ 16三、解答题17.解:(1)13()cos cos cos )223f x wx wx wx wx wx wx π=+==-由函数的图象及2AB π=,得到函数的周期222T w ππ==⨯,解得2w = ……5分 (2)3()),sin(2)323f A A A ππ=-=-∴-=又ABC 是锐角三角形, 222333333A A ππππππ-<-<∴-=,,即A= ……………8分由13sin 22ABC b S bc A === b=4由余弦定理得2222212cos 4324313a b c bc A a =+-=+-⨯⨯⨯==,即分 19.解:(Ⅰ)(2)(2,2)(2,2)P y P x y P x y ====+≠=1231145454=⨯+⨯=(Ⅱ)随机变量X 可取的值为0,1,2,3 当X =0时,(,)(1,1),(2,2),(3,3),(4,4)x y =121212122(0)454545455P X ∴==⨯+⨯+⨯+⨯= 当X =1时,(,)(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)x y =1111111111113(1)45454545454510P X ∴==⨯+⨯+⨯+⨯+⨯+⨯=同理可得11(2);(3)510P X P X ====01231510510EX ∴=⨯+⨯+⨯+⨯=20.解:(Ⅰ)因为22221(0)x y a b a b +=>>满足222a b c =+, c a =,…………2分1223b c ⨯⨯=。

解得2255,3a b ==,则椭圆方程为221553x y += ……………4分 (Ⅱ)(1)将(1)y k x =+代入221553x y +=中得 2222(13)6350k x k x k +++-=……………………………………………………6分 4222364(31)(35)48200k k k k ∆=-+-=+>2122631k x x k +=-+……………………………………………………………7分因为AB 中点的横坐标为12-,所以2261312k k -=-+,解得3k =±…………9分(2)由(1)知2122631k x x k +=-+,21223531k x x k -=+ 所以112212127777(,)(,)()()3333MA MB x y x y x x y y ⋅=++=+++ ……………11分2121277()()(1)(1)33x x k x x =+++++2221212749(1)()()39k x x k x x k =++++++………………………………………12分2222222357649(1)()()313319k k k k k k k -=+++-++++(Ⅱ)将l 的参数方程代入圆C 的直角坐标方程,得240t -+=由24420∆=-⨯=>,故可设12,t t 是上述方程的两根 所以12124t t t t ⎧+=⎪⎨⋅=⎪⎩,又直线l 过点,故结合t 的几何意义得||||PA PB +=1212||||t t t t +=+=23.(1)原不等式等价于⎪⎩⎪⎨⎧≤-<54421x x 或⎪⎩⎪⎨⎧≤≤≤522321x 或⎪⎩⎪⎨⎧≤->54423x x 因此不等式的解集为]49,41[-∈x(2)由于mx f x g +=)(1)(的定义域为R ,则0)(=+m x f 在R 上无解.又2|3212||32||12|)(=+--≥-+-=x x x x x f ,即)(x f 的最小值为2,所以0<-m ,即2->m。

相关文档
最新文档