3.理想光学系统
应用光学第3章 理想光学系统
nytgU nytgU (10)
此式即为理想光学系统 的拉赫不变量公式。
3.5 理想光学系统的放大率
一、垂轴放大率
1.定义:共轭面像高与物高之比
y
y
2.表达式:
根据牛顿公式,得以焦点为原点的放大率公式
y f x (1)
y x f
根据高斯公式,得以主点为原点的放大率公式
fl (2)
f l
根据两焦距的关系,可得 nl (3)
nl
结论:此式与单个折射球面和共轴球面系统的放 大率公式一致。
④当系统处于同一种介质中时
l (4)
l
结论:垂轴放大率随物体位置不同而不同,在不同 共轭面上,垂轴放大率不同;在同一共轭面上, 放大率是一个常数。
二、轴向放大率
1.定义:轴上像点移动微小距离与物点移动的微小 距离之比。 dl dx dl dx
三、由已知共轭面和共轭点确定一切物点的像点 a.已知两对共轭面的位置和垂轴放大率
b.已知一对共轭面的位置和垂轴放大率以及两对共轭 点的位置
3.2理想光学系统的基点和基面
1.物像方焦点、焦平面 2.物像方主点、主平面, 3.物象方焦距 4.单个折射球面的主平面 5.单个折射球面的焦距 6.单个球面反射镜的主平面和焦距
像距:以像方焦点F为原点,到像点的距离(F'A')为像 距,用x’表示。
牛顿公式:
用f和f ' 表示理想光学系统物、象方焦距,用
x和x'表示物体和像位置。
三角形ABF和三角形MHF相似,得:
y f
yx
三角形A’B’F’和三角形H’N’F’相似,得:
y x
y f xx ff
————此式即为牛顿公式。
03 理想光学系统(1)
x—以物方焦点为原点 的物距。称为焦物距。
以F为起始点, x方向与 光线方向一致为正。 (图中为-)
B
y A
Q
Q'
H H'
F
F'
A'
-y'
R R'
x’—以像方焦点为原点的 像距。称为焦像距。
以F ’为起始点, x’方向 与光线方向一致为正。 (图中为+)
反之为负(图中-)
B'
-x -l
-f
理想光学系统(1)
提纲
一、理想光学系统的物象关系
二、理想光学系统的三种放大率 三、系统的焦距关系及光焦度
四、理想光学系统的图解求像
前言
理想光学系统的基本概念:焦点、焦平面、主点、主平面 A E Q’ E’ U’ F’
h
H’
f’
F ’ 就是无限远轴上物点的像点,称像方焦点 过F ’ 点作垂直于光轴的平面,称为像方焦平面 它是无限远处垂直于光轴的物平面的共轭像平面 则Q’H’平面称为像方主平面,H’称为像方主点 从像方主点H’ 到像方焦点F ’ 之间的距离称为像方焦距,用 f ’ 表示
-f
f' l'
x'
由相似三角形Q’H’F’和 F’A’B’
y f y x
y x y f
一、理想光学系统的物象关系
B Q F Q' H H' F' A' -y' R R' B'
y A
-x
-l
由以上两式得:
-f
f' l'
x'
xx ff
以焦点为原点的物像位置公式, 通常称为牛顿公式
工程光学知识点整理
工程光学课件总结班级:姓名:学号:目录第一章几何光学基本原理 (1)第一节光学发展历史 (1)第二节光线和光波 (1)第三节几何光学基本定律 (3)第四节光学系统的物象概念 (6)第二章共轴球面光学系统 (7)第一节符号规则 (7)第二节物体经过单个折射球面的成像 (8)第三节近轴区域的物像放大率 (10)第四节共轴球面系统成像 (12)第二章理想光学系统 (14)第一节理想光学系统的共线理论 (14)第二节无限远轴上物点与其对应像点F’---像方焦点 (14)第三节理想光学系统的物像关系 1, 作图法求像 (17)第四节理想光学系统的多光组成像 (22)第五节实际光学系统的基点和基面 (25)第六节习题 (27)第四章平面系统 (27)第一节平面镜 (27)第二节反射棱镜 (28)第三节平行平面板 (29)第四节习题 (30)第五章光学系统的光束限制 (31)第一节概述 (31)第二节孔径光栅 (33)第三节视场光栅 (34)第四节景深 (35)第五节习题 (35)第八章典型光学系统 (36)第一节眼睛的光学成像特性 (36)第二节放大镜 (39)第三节显微镜系统 (41)第四节望远镜系统 (45)第五节目镜 (46)第六节摄影系统 (48)第七节投影系统 (49)第八节光学系统外形尺寸计算 (50)第九节光学测微原理 (53)第一章几何光学基本原理光和人类的生产活动和生活有着十分密切的关系, 光学是人类最古老的科学之一。
对光的每一种描述都只是光的真实情况的一种近似。
研究光的科学被称为“光学”(optics), 可以分为三个分支:几何光学物理光学量子光学第一节光学发展历史1,公元前300年, 欧几里得论述了光的直线传播和反射定律。
2,公元前130年, 托勒密列出了几种介质的入射角和反射角。
3,1100年, 阿拉伯人发明了玻璃透镜。
4,13世纪, 眼镜开始流行。
5,1595年, 荷兰著名磨镜师姜森发明了第一个简陋的显微镜。
第三章 理想光学模型
dl'
dl
fl'2 f'l2
ff'2n nl'l'22
当物像方介质折射率相同时
l '2 l2
2
当 0 时,表示物体移动方向和像移动方向相
同。
三.角放大率g 角放大率是轴上一对共 轭点上,轴上物点 A 发出 的一对共轭光线孔径角U ' 和 U 的正切比。 高斯形式:
tgU ' u '
tgU u
物方焦平面——过物方焦点 F 的垂轴平面; 像方焦平面——过像方焦点F '的垂轴平面。
主平面:有相同高度 ,在光轴的同一侧,并且 垂轴 放大率+1为的共轭平面。
物方主点H——物方主面和光轴的交点;
像方主点H '——像方主面和光轴的交点。
物、像方焦点F、F ′ ,物、像方主点H、H ′称 为理想光学系统的基点,物、像方焦平面和物、 像方主平面称为它们的基面。
F
J J'
F'
F'
J J'
F
H H'
H H'
f '> 0
f '< 0
特 殊 光 线 的 共 轭 出 射 光 线
辅助线的作法
下面列举了对任意入射光线 a 借助于利用基点、基面性 质的辅助光线 b ,作出光线 a 的共轭出射光线可能的四种方 法。
f '> 0
折射后的出射光线平行于光轴; (3)过物方节点J的入射光线,经过光学
系统后的出射光线必通过像方节点J'。
• 有时为了作图方便,可根据焦平面性质 作图:
• (1)入射光线可认为是由轴外无限远物 点发出的平行光束(斜光束)中的一条。
理想光学系统
第三节 理想光学系统的物像关系
几何光学的基本内容之一是求像,即对于确定的 光学系统,给定物体的位置、大小、方向,求像的位 置、大小、正倒及虚实。常用的用以求取物象位置关 系的方法有二种:一为图解法,一为解析法。 一、图解法求像
图解法求像的定义
已知一个光学系统的主点(主面)和焦点的位置, 利用光线通过这些基点后表现的性质,对物空间给 定的点、线和面,通过画图追踪典型光线的方法求 像。
工程光学
石家庄铁道大学
机械工程学院
总第三讲
第二章 理想光学系统
Perfect Optical System
光学系统的具体结构(r、d、n) 实际光学系统与高斯(近轴)光学系统 研究光学系统成像的目的在于将高斯光学 完善成像的理论推广到任意大的空间,本 章的主要内容即介绍建立在高斯光学之上 的所谓理想光学系统,并研究理想光学系 统的主要光学参数、成像关系、放大率以 及光组组合和透镜。
可选择的典型光线和可利用的性质: ①平行于光轴入射的光线,经系统后过像方焦点; ②过物方焦点的光线,经过系统后平行于光轴; ③倾斜于光轴入射的平行光束经过系统后会交于像 方焦平面上的一点; ④自物方焦平面上一点发出的光束经系统后成倾斜 于光轴的平行光束; ⑤共轭光线在主面上的投射高度相等。 欲在理想光学系统条件下确定像点位置,只需 求出其对应物点发出的两条特定光线在像空间的共 轭光线,其交点即为所求像点。
总第三讲
3、主点与主平面
Q
Q'
h
f
'
h tanU '
F
U
H
H'
U
'
h'
F'
f
h tan U
3 第二章 理想光学系统
第二节 理想光学系统的基点与基面
共轴球面系统: 球面的曲率中心在同一轴线上的光学系统
前面讨论的单个折射球面的光路计算及成像特 性,对构成光学系统的每个球面都适用。 只要找到相邻球 面之间的关系,就可 以解决整个光学系统 的光路计算问题。
问题就是这么 简单!
共轴理想光学系统的基点和基面
大家可要做 好笔记呦!
N
A’ A
F
H
H’
F’
也可以利用像方焦平面。作和入射光线平行的辅 助光线,利用与光轴成一定角度的光束过光组后 交于像方焦平面。
N’ A’ A F H H’
F’
(二)负光组轴上点作图★
方法1: (1)AQ
N
(2)辅助焦平面 Q Q’ (3)延长AQ到N (4)NR F’ H H’ A F (5)RR’(主面上投射高 A’ 度相等) (6)R’F ’ (7)QQ’ (8)Q’A’//R’F ’(物方焦平面一点发出的光线过光 组后平行射出)
物方焦距 物方主点 像方主点 像方焦距
F
-f
H
H’
f’
F’
物方主平面 像方主平面
一对共轭面: 两个主平面。
提问:物方焦平面与像方焦平面是不是共轭面?
不是!!!
两对共轭点: 无限远轴上物点与F ’,F与无限远轴上像点。 它们构成了一个光学系统的基本模型。
如果已知共轴光 学系统的一对主 平面和两个焦点 的位置,就能根 据它们找出物空 间任意物点的像!
这可是 重点呦!
可供选择的典型光线和可供利用的性质有:
(1)平行于光轴入射的光线,经过系统后过 像方焦点。
H
H’
F’
(2)过物方焦点的光线,经过系统后平行于光轴。
《应用光学》第3章 理想像和理想光学系统
n' n n'n
l' l
上式两边同乘以l l',得
r n'l nl' n'n ll' r
13
上式左边为0,对主点来说,将l'=n'l / n代入右边得
n'n n' l 2 0 rn
由此得到l=0,代入nl'=n'l,又得l'=0。所以球面
的两个主点H、H'与球面顶点重合。
14
ቤተ መጻሕፍቲ ባይዱ、球面焦距公式 按照球面定义像方焦点为无限远
•n1'= n2= 1.5163; •求: lF, lF', lH, lH', f, f'
采用计算机编程(MATLAB 程序)
22
• 已知条件
• r1=10;r2=-50;d1=5;h1=10;n1=1; • 同理可得:
• n1'=1.5163;n2=n1';
• r2=-10;r2=50;d1=5;h1=10;n1=1;
• 焦距是以相应的主点为原点来确定正负的,如果 由主点到相应焦点的方向与规定光线的正方向相同 为正,反之为负。在图3-1中,f<0 , f '>0. 以后将会 知道 f '>0为正系统,f '<0 为负系统。在图3-1中物 像方平行于光轴的光线高度均为 h,其共轭光线与 光轴的夹角为u和u',则有:
学系统的物方焦点。显然,根据光路可逆原理,
物方焦点 F 经系统以后必成像于像方无限远的轴 上点。或者说,物方焦点与像方无限远的轴上点 是一对共轭点。
7
过物方焦点 F 的垂轴平面称为物方焦平面。显然,
第三章理想光学系统
引入理想光学系统的意义: 1、提供了方便的研究方法和工具; 2、指明了实际系统的设计方向和目标; 3、提供了衡量实际系统成像质量的标准。
3
二、理想光学系统的基本性质(共线理论)
理想光学系统 —— 物经这种光学系统所成的像是完善的。
基
本 性 质
物空间 点 直线 平面
像空间 点 直线 平面
R M S
光 学 系 统
重要性质:射向物方主面上某点的 光线,必从像方主面等高点出射。 H H′
f’
节点J、J’,节平面(略)
8
三、焦距
物方焦距 f : 定 物方主点H到物方焦点F的距离;
F
-f
H
H’
f’
F’
像方焦距 f′: 义 像方主点H′到像方焦点F′的距离。
特别注意:1、系统有两个焦距: f 、f′; 2、注意两个焦距的起点和终点; 3、折射系统两个焦距的符号相反; 4、两个焦距的绝对值不一定相等。 理想系统的一对焦点、一对主点确定后,焦距也就随之确定, 并且该理想系统的模型也完全确定了,进一步可方便地建立理 想光学系统理论的两个重要基本方法——图解法和解析法。
H H′ F′
F
A′
H
F
H′
F′
A′
12
练习:作图求像
A
H′ F H F′
A
H F H′ F′
A′
A′
F
A′
A
A A′
F′ H H′ F
H
H′
F′
A
F H
H
H′ F′
A′
A′ H′ F′
A
F
A
F
H
H′ F′
A′
13
理想光学系统
理想光学系统:通常把物、像空间符合“点对应点,直线对应直线,平面对应平面”关系的像称为理想像,把成像符合上述关系的光学系统称为理想光学系统。
1、由于系统的对称性,可以用一个过光轴的截面来代表一个共轴系统。
2、位于垂直于光轴的同一平面内的物所成的像,其几何形状和物完全相似。
所以对共轴理想光学系统来说,垂直于光轴的同一平面上的各部分具有相同的放大率。
3、共轴理想光学系统的成像性质可以用这些已知的共轭面和共轭点确来表示。
开卜勒望远镜:采用正光焦度目镜的望远镜,视放大率为负值(T<0)。
所以正立的物体成倒立的像,观察和瞄准极不方便,通常加入棱镜或透镜式倒像系统,使像正立。
开卜勒望远镜在物镜和目镜之间有中间实像,可以安装分划板,使像和分划板上的刻线进行比较,便于瞄准和测量,特别适合军用。
伽利略望远镜:采用负光焦度目镜的系统,视放大率为正值(T>0)。
成正像。
不必加倒像系统,但这种系统物镜的像方焦平面在目镜后方,系统中无法安装分划板,不适合军用。
另外它的视放大率受到物镜口径的限制,也不可能很大,一般在2-3倍左右,常用作观剧镜。
平面镜棱镜系统的主要作用1、将共轴系统折叠以缩小仪器的体积和减轻仪器的重量;2、改变像的方向——起倒像使用;3、改变共轴系统中光轴的位置和方向——即形成潜望高或使光轴转一定的角度;4、利用平面镜或棱镜的旋转,可连续改变系统光轴的方向,以扩大观察范围。
屋脊棱镜为了获得和物相似的像,可以用两个互相垂直的发射面代替其中的某一个反射面。
这种两个互相垂直的反射面叫屋脊面,带有屋脊面的棱镜叫屋脊棱镜。
屋脊面的作用就是在不改变光轴方向和主截面内成像方向的条件下,增加一次反射,使系统总的反射次数由奇数变成偶数,从而打到物像相似的要求。
孔径光阑:限制进入光学系统的成像光束口径的光阑视场光阑:限制成像范围的光阑入射窗:视场光阑在物空间的像出射窗:在像空间的像出瞳:孔径光阑在系统像空间所成的像入瞳:孔径光阑在物空间的共轭像入瞳和出瞳的关系:入瞳和出瞳对整个系统来说显然是物和像的关系。
工程光学第三章知识点
理想光学系统第三章 理想光学系统第一节 理想光学系统的共线理论● 理想光学系统:在任意大的空间内、以任意宽的光束都能成完善像的光学系统 ● 理想光学系统理论又称“高斯光学”,理想光学系统所成的完善像又称“高斯像” ●描述理想光学系统必须满足的物像关系的理论称为“共线理论”共线理论(1)物空间的每一点对应像空间的相应一点,且只对应一点(点对应点)(2)物空间的每一条直线对应像空间的相应直线,且只对应一条直线(直线对应直线) (3)物空间的每一平面对应像空间的相应平面,且只对应一个平面(平面对应平面)● 这种对应关系称为“共轭”,相应的点构成一对共轭点,直线构成一对共轭直线,平面构成一对共轭平面● 推论:物空间某点位于一条直线上,则像空间中该点的共轭点必定也位于这条直线的共轭直线上(点在线上对应点在线上)● 共轴球面系统用结构参数(r 、d 、n )描述系统 ● 理想光学系统用“基点”和“基面”来描述系统 ● 基点基面就是理想光学系统的特征参数第二节 无限远轴上物点与其对应像点F ’---像方焦点● 设有一理想光学系统● 有一条平行于光轴的光线A1E1入射到这个系统● 在像空间必有一条直线与之共轭,即PkF’,交光轴于F’点●在物空间中平行于光轴入射的光线都将汇聚在F’点上,F’点称为“像方焦点”共轴球面系统焦点、焦平面、主平面示意图焦点、焦平面、主平面示意图● 过F’点作垂直于光轴的平面,称为“像方焦平面” ● 像方焦平面与物方无限远处垂直于光轴的物平面共轭● 物方的任何平行光线若不与光轴平行,表示无限远处的轴外点,将汇聚在像方焦平面上的一点2,无限远的轴上像点和它所对应的物方共轭点F ——物方焦点● 像方平行于光轴的光线,表示像方光轴上的无限远点● 在物方光轴上必定有一点F 与之共轭,F 点称为物方焦点,过F 点的垂轴平面称为物方焦平面 ● 物方焦点F 与像方焦点F’不是一对共轭点3,垂轴放大率β=+1的一对共轭面——主平面● 在光学系统中存在着垂轴放大率β=+1的一对共轭平面,这一对共轭面称为“主平面”即物方主平面和像方主平面● 共轭垂轴平面QH 和Q’H’满足β=+1(因为高度h 相等) ● QH 为物方主平面,Q’ H’为像方主平面 ● H 为物方主点,H’为像方主点 ● 物方主平面QH 与像方主平面Q’H’共轭 ● 物方主点H 与像方主点H’共轭● 对于理想光学系统,不论其实际结构如何,只要知道了主点和焦点的位置,其特性就完全被决定了 4,光学系统焦距● 像方焦距:像方主点H ’到像方焦点F ’的距离f ’ ● 物方焦距:物方主点H 到物方焦点F 的距离f●焦距均以各自的主点为原点,与光线传播方向一致为正,相反为负 光学系统的焦距计算式tan tan h f U h f U '='=焦距包含了光学系统主点和焦点的相对位置,是描述光学系统性质的重要参数 像方焦距f ’>0的光组称为正光组,f ’<0的光组称为负光组无限远轴外物点的共轭像点焦点、焦平面、主平面示意图当光学系统的物方与像方处于同一介质中时,物方焦距与像方焦距数值相等,符号相反f = -f ’单折射球面的主平面和焦点共轴球面系统的成像性质可以用一对主平面和两焦点表示,为此目的,先研究单个折射球面的主平面和焦点位置。
2第二章理想光学系统(精通)
h1 r1
经过计算得 l 67.4907, u 0.121869,
焦距为 f h 82.055, tan u
主点位置l f 14.5644在最后折射面
左侧14.5644mm处
2020/6/15
14
3:物像关系
几何光学目的就是求像,(对于确定的光学系 统,给定物体的位置、大小、方向,求像的位 置、大小、正倒及虚实)。
2020/6/15
31
例题2
已知一个透镜把物体放大 -2倍,当透镜向物 体移近20mm时,放大倍数为 -3倍,求一开始 的物距以及透镜的焦距?
1
l l
1
1
f 1
l 2 l 1 (2)
3 (l 20) 1 (3)
l l f
l 180mm, f 2 (180) 120mm, 3
B
A
F
A’ F’
B’
注意:图像法只能求得像的大致位置,至 于具体位置在哪,完全不清楚!因此需要 一种可以定量求得像的位置的方法!!!
2020/6/15
24
解析法(牛顿公式以焦点为基准)
-x
A
FM
-f
H -y
x‘
M’ B’
f'
y’
H’ F’ A’
B
N
N’
-l
ABF MHF
MH
FH
l’
y
f
AB FA y x
二:选择主平面和焦点,在一定程度上决定了 光学系统的成像特性,加上后面的解析公式可 以更加方便的计算。
三:选择主平面的好处:将实际光学系统中多 次折射反射等效于共轭光线的一次偏折代替。
2020/6/15
11
第三章 理想光学系统
f′=
h tgU ′
f′ n′ n =n′ 2) = − ) f n
f =−f′
h = ltgU = l ′tgU ′
(x + f )tgU = (x′ + f ′)tgU ′
y y′ ′=− f′ x = − f ,x y′ y ′ yftgU = − y ′f tgU ′
yfu = − y ′f ′ ′ u nuy = n ′u ′y ′
α = β1 β 2
3.角放大率: 3.角放大率: 角放大率
tgU ′ γ = tgU
tgU ′ y f 1 f 1 n γ = =− =− = tgU y′ f ′ β f ′ β n′
f x′ β =− =− x f′
γ =
1
β
x f 1 f = = γ =− β f ′ f ′ x′
4.三者关系: 4.三者关系: 三者关系
′ x2 = x1 − ∆1
……… …
d1 = H 1′H 2
相应于牛顿公式: 相应于牛顿公式:
光学间隔) ′ x k = x k −1 − ∆ k −1 (光学间隔)
∆1 = d1 − f1′ + f 2
……… …
∆1 = F1′F2
光学间隔Δ和主面间隔d 光学间隔Δ和主面间隔d 的关系为: 的关系为:
β<0, 物象虚实一致。 β<0, 物象虚实一致。 β>0, 物象虚实相反。 β>0, 物象虚实相反。
例:空气中有一薄光组,当把一高20mm的物置于物方焦 空气中有一薄光组,当把一高 的物置于物方焦 点左方400mm处时,将会在光组像方焦点右方 处时, 点左方 处时 将会在光组像方焦点右方25mm处 处 成一虚像。 成一虚像。 光组的焦距; 求:1. 光组的焦距; 2. 像的大小; 像的大小; 3. 物右移 物右移200mm,像移动多大距离? ,像移动多大距离?
理想光学系统
3、入射光为平行光
在利用上式对光路进行计算时,若物体位于物方光轴上无限远 处,这时可认为由物体发出的光束是平行于光轴的平行光束,
即L=-∞,U=0,入射角应按下式计算:
sin I h r
三 、近轴光线的光路计算
结论:
2)垂直于光轴的平面物所成的共轭平面像的几何 形状与物相似;
3)如果已知两对共轭面的位置和放大率,或者已知 一对共轭面的位置和放大率以及光轴上的两对共 轭点的位置,则其它的一切物点的像点都可以根据 这些已知的共轭面和共轭点确定。
2.1 光路计算与近轴光学系统
光路计算的依据:
以理想像成像性质为基础; 沿着任意一条光线的踪迹可以找到其共轭光线。
转面公式:
u2 u`1 l2 l`1d1
作业:
p47: 1
• 问题:u 0的光线是不是近轴光线
常用近轴光学基本公式:
n
U
Aห้องสมุดไป่ตู้
L
IE
n
h
I'
U'
O
C
r
L'
如图中,h满足: l`u` lu h
由近轴光线公式可得: n`u`nu n`n h
r
或者,
n` n n`n l` l r
(2-11) (公式二)
2)当β>0, l′和l同号,表示物和像处于球面的同侧, 物像虚实相反,即:实物成虚像,虚物成实像。
3)当β<0, l′和l异号,表示物和像处于球面的两侧, 物像虚实相同,即:实物成实像,虚物成虚像。
一、基本概念
n
I E
n
h
I'
U
U'
理想光学系统节点
理想光学系统节点光学系统节点是一个用于搭建光学系统的节点。
该节点通常用于光学系统的绘制和分析,以实现最佳效果。
理想光学系统节点是一种典型的光学系统节点,它是通用和可重复使用的。
在本文中,我们将讨论关于理想光学系统节点的一些基本知识。
第一步:理解理想光学系统节点的定义理想光学系统节点是一种用于光学系统的组件,它提供了一个理想的物理系统,可用于光线的模拟和分析。
通过使用理想光学系统节点,光学工程师可以在没有配置硬件的情况下快速建立光学系统模型,并进一步分析其光学性能。
第二步:认识理想光学系统的特性理想光学系统节点具有以下特点:1. 具有无限远物点聚焦性能,因此其成像能力非常良好。
2. 具有无限的光阑大小,不会产生光阑效应的影响。
3. 具有无损的光学分辨率,不会有光学系统分辨率的损失。
通过使用光学系统模拟软件,光学工程师可以充分利用这些属性进行模拟和分析。
第三步:了解理想光学系统节点的应用理想光学系统节点可以用于实现以下应用:1. 光学设计:理想光学系统节点可用于生成典型的光学系统图像,以进行光学设计。
2. 光学分析:使用理想光学系统节点可以有效地比较不同的光学设计,并通过光学分析获得最佳结果。
3. 教学:理想光学系统节点可以帮助教师和学生教学光学原理。
4. 研究:通过使用理想光学系统节点可以对光学系统进行研究和分析。
总结:理想光学系统节点是光学系统设计和分析的重要组件。
具有无限远物点聚焦性能、无限的光阑大小和无损的光学分辨率。
它可以用于光学设计、光学分析、教学和研究。
光学工程师可以利用它快速建立光学系统模型,并进一步分析其性能。
大学物理:第三章 理想光学系统
3. 物右移200mm,像移动多大距离?
例:有一光组将物放大3倍,成像在影屏上,当透镜向物 体方向移动18mm时,物象放大率为4倍。求光组焦距。
三、由多个光组组成的理想光学系统
相应于高斯公式:
l2 l1 d1
………
d1 H1H 2
lk …lk1 d k1 (主面间隔)
相应于牛顿公式:
l HA,l H A
由图,有: x l f , x l f
代入牛顿公式,得: lf lf ll
f f 1 l l
n n n n l l f f
放大率公式为:
f f f f l nl
x f x f l n l
x f f f f f x f
x2 x1 1
………
1 F1F2
xk … xk 1 k1 (光学间隔)
光学间隔Δ和主面间隔d 的关系为:
1 d1 f1 f 2
………
k 1 …d k 1 f k1 f k 1
垂轴放大率为: yk y1 y2 yk
y1 y1 y2
yk
1 2 k
四、光学系统的光焦度
f h tgU
象方主点H′到象方焦点F′的距离称为象方 焦距(后焦距或第二焦距)
f h tgU
说明:
1)对于理想光学系统,不管其结构(r,d,n)如何,只 要知道其焦距值和焦点或主点的位置,其光学性质就确 定了。
2) f n n =n′ f f
fn
h ltgU ltgU
x f tgU x f tgU
§ 3-2 理想光学系统的基点、基面
1. 焦点、焦平面 物方焦点:对应像点在像方光轴上无限远处
焦点 像方焦点:对应物点在物方光轴上无限远处
【课堂笔记】理想光学系统
对高斯公式微分,可得高斯公式的轴向放大率
f' f 2 dl ' 2 dl 0 l' l
dl' l '2 f 2 dl l f'
f' 2 f
由式(2-44)与式(2-41)比较,可得
角放大率
• 定义
tgU ' tgU
计算
l l'
f 1 f'
f l' f x' f 'l x f'
垂轴放大 率β 轴向放大 率α
nl ' n' l
nl ' 2 n' l 2
物像方处于 相同介质 l l'
l '2 2 l
l '2 f x' 2 x l f'
角放大率γ
拉赫不变 量J
l l'
主面和主点
垂轴放大率等于+1的一对共轭平面称为主 面 主面与光轴的交点为主点 在物方的称为物方主面和物方主点 在像方的称为像方主面和像方主点 图
返回
光学系统的焦距
主面和主点
在一对主面上,只要知道其中一个面上的点, 就可以找到共轭点----等高度.
作图时,一般将物方光线延长交于物方主面, 根据共轭关系找到像方主面上的共轭点,然 后再确定光线经像方主面后的出射方向.
理想光学系统
理想光学系统
理想光学系统和共线成像
理想光学系统的基点、基面
理想光学系统的物象关系
理想光学系Байду номын сангаас的放大率
应用光学教学课件ppt作者刘晨第3章理想光学系统
应用光学第3章 理想光学系统3.1 理想光学系统的概念及性质3.2 理想光学系统的基点和基面、焦距3.3 理想光学系统的成像3.4 理想光学系统的组合3.5 透镜3.1 理想光学系统的概念及性质3.1.1 理想光学系统的概念3.1.2 理想光学系统的性质实际的光学系统要求用一定宽度的光束、对一定大小的范围成像。
在估计其成像质量时,需利用理想光学系统成像的概念。
如果光学系统对任意大的范围,以任意大的光束成像都是完善的,这样的光学系统便定义为理想光学系统。
1)物空间的每一点对应于像空间中的一点,且只有唯一的一点与之相对应,这两个对应点称为物像空间的共轭点。
2)物空间中的每一条直线对应于像空间中的一条直线,且只有唯一的一条直线与之相对应,这两条对应直线称为物像空间的共轭线。
3)物空间的任意一点位于直线上,那么其在像空间内的共轭点也必位于该直线的共轭线上。
4)物空间中的任一平面对应于像空间中的一个平面,且只有唯一的一个平面与之相对应,这两个对应平面称为物像空间的共轭面。
3.2 理想光学系统的基点和基面、焦距3.2.1 焦点、焦平面3.2.2 主点和主平面3.2.3 焦距3.2.4 节点和节平面图3-1 基点和基面图3-2 无限远轴外点和物方焦平面上点发出的光束a)无限远轴外点发出的光束 b)物方焦平面上点发出的光束如图3-1所示,延长入射光线A1E1和出射光线GkF′得交点Q′,同样延长光线A′kEk及物方的共轭光线G1F交于Q点。
根据光路的可逆性,物方光线FG1入射于光学系统后,其像方光线必沿E kA′k出射,物方光线A1E1入射于光学系统后,其像方光线必沿GkF′方向出射,显然Q和Q′是一对共轭点,分别过Q和Q′作垂直于光轴的平面QH、Q′H′交光轴于H点和H′点,此两平面同样也是共轭的。
由图可知QH=Q′H′=h,故其放大率β=+1,称这对放大率为+1的共轭面为主平面,QH称为物方主平面(前主面或第一主面),Q′H′称为像方主平面(后主面或第二主面)。
理想光学系统
n' 2 n
三、角放大率 定义:
tgu' tgu
nytgu n' y' tgu' 有:
所以
tanu l ny n 1 tanu l n' y ' n'
n 1 1 f x f n f f x
1.在关于光轴的任一子午面内,成像性质不变。 2.位于光轴的物点其共轭像点一定位于光轴上; 子午面内的物点其共轭像点一定位于同一子午 面内; 垂直于光轴的物平面其共轭像平面也一定垂直 于光轴。 3.垂直于光轴的一对共轭平面内,物、像的几何 形状完全相似,即垂轴放大率相等。
理想光学系统具有以下基本特性:
第二章 理想光学系统
基点基面 成像特性
由静止图形构成的动态图片
§2.1
理想光学系统的基本特性 基点和基面
一、理想光学系统
它是一个理想模型,认为光学系统不仅在近 轴条件下可以完善成像,而且对任意宽的光束 (任意大的物体)都可以完善成像。
二、共线成像理论
这个系统对于任何一个物点发出的光线将 出射光线相交于一点形成一个唯一的像点。 对于多个物点集合成的线或面当然也形成 (成像)唯一的点或面,这种成像变换谓之 共线成像。
近轴光时
n
,则两焦距绝对值相
等,符号相反:
ff
4.拉亥不变量
ny tanu ny tanu
此式对任何能成 完善像的光学系 统均成立。
§2.3
理想光学系统的成像放大率
一、垂轴放大率
y' f x' nl y x f ' nl
二、轴向放大率 1.微小位移时的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ' f1 ' f 2 '
• 类似地,由前页(2)得
f f1 f 2
等效光组光焦度的解析式
将Δ=d-f1’+f2代入焦距解析式
d f1 ' f 2 1 f2 1 d f ' f1 ' f 2 ' f1 ' f 2 ' f 2 ' f1 ' f 2 ' f1 ' f 2 '
轴上物点的共轭像点也在轴上 过光轴的截面内的一个物点,其像点必在的 共轭面’内 垂直于光轴的截面内任意点的成像性质相同 若已知 (1)两对共轭面的位置和放大率,或 (2)一对共轭面的位置和放大率、以及轴上 两对共轭点的位置,则其他一切共轭点都可由 此确定
已知两对共轭面,求任意物点O的 像点O’
轴外点成像
理想光学系统中,点物成点像 要确定物点的像,只需跟踪物点发出的两条光 线
B’ A B F F’
H
H’
A’
轴上点成像
做辅助光线 物(像)方平行线交于像(物)方焦面
A F
A’ H H’ F’
A
A’
F
H
H’
F’
两个光组对轴上点的成像
光组:给定基点、基面的光学系统 多光组:逐组运用图解法
lF ' f ' 1 d f1 '
• 同理
lF f ' 1 d f2
用截距表示的等效光组主面
lH’=lF’-f’
lH ' d f '
• -lH=-lF+f
1
f'
lH d f'
2
f
多光组组合计算
寻找适合任意多 光组的计算方法 追迹一条入射高 度为h1的平行于 光轴的光线 得到最后一个光 组的出射高度hk 和孔径角U’K
望远系统
第一光组的像方焦点与第二光组的物方焦点 重合,f1’>f2’
• 平行于光轴的光线入射,平行于光轴出 射。组合光组的焦距无限大,=0
望远系统的放大率
=y’/y=-h2’/h1=-f2’/f1’
与物距无关
=n/(n’)=1/=-f1’/f2’=tgw’/tgw
目视光学系统
l ' f ' l x , x= f ' l l '
y ' y f x fl ' f ' l
• 由于f=-f’
f ' l ' f l 1
fl ' f ' l
1 l ' 1 l 1 f '
l' l
多个理想光组的成像
各光组的基面、基点,以及相互位置已知 逐个光组计算,并运用过渡关系
透镜的光学间隔 等效焦距公式
透镜焦距 透镜光焦度
d f1 ' f2
f ' f1 ' f 2 '
nr1r2 f ' n 1 n r2 r1 n 1 d
其中, =1/r
基点位置
焦点位置
• 主点位置
1与1’共轭, 2与2’共轭
O
B
O1
O2 A
O1’ O’ B ’
A’ O2’
1
2
1’
2’
已知一对共轭面、两对共轭点,求任意 物点O的像点O’
1与1’共轭, 轴上点O1与O1’共轭, O2与 O2’共轭
O
B
A
O1
O2
A’ O’ B ’ 1’
O1’
O2’
1
共轭面和共轭点的选取
(1)对第二光组用牛顿公式得xF’=f2f2’/(-Δ)
(2)对第一光组用牛顿公式得xF=f1f1’/Δ
等效光组焦距的解析式
由前页(1) H’F’/F’H2’= F1’H1’/H2F1’ H’F’=-f’,F’H2’=f2’+xF’,F1’H1’=f1’, H2F1’=Δ-f2 -f’/(f2’+xF’)= f1’/(Δ-f2) 代入xF’=-f2f2’/Δ,得
• 多光组过渡公式
lk l 'k 1 d k 1 U 'k 1 U k
hk hk 1 dk 1tgU 'k 1
正切计算式
从U1=0开始,利用前面导出的式子。例如 三个光组
tgU '1 tgU 2 h1 f '1 h2 h1 d1tgU '1 tgU '2 tgU 3 tgU 2 h2 f '2 h3 h2 d 2tgU '2 tgU '3 tgU 3 h3 f '3
节点的应用
测无限远物体的理 想像高y’ 平行光管测量焦距 f2’
f 2 ' f1 y ' y
多个理想光组的组合
实践中常遇到的问题
两个及以上的光组组合为一个光组,求等效光
组的基点、基面 一个光组分解为若干个光组,分别计算,最后 再组合
两光组组合
-lH
lH’
用物距和像距表示的等效焦面
• 若各光组在同一介质中,f2=-f2’
1 1 1 d f ' f1 ' f 2 ' f1 ' f 2 '
1 2 d12
用截距表示的等效光组焦面
lF’=f2’+xF’=f2’-f2f2’/Δ=f2’(Δ-f2)/Δ 代入Δ=d-f1’-f2’,得 lF’= (f2’d- f2f2’)/Δ,利用f’=-f1’f2’/Δ
2 理想光学系统
共线成像理论 基点与基面 理想光学系统的物像关系 理想光学系统的放大率 理想光学系统的组合 透镜
理想光学系统的定义
任意宽度光束都成完善像的系统 目的:
衡量成像质量的标准 简化分析(无像差、无结构细节)
又名:高斯光学 特点:点对点、线对线、平面对平面
共轴理想成像系统的性质
=n/[n’(-x’/f’)]=-nf ’/(n’x’)=f/x’=x/f’ 三个放大率之间的关系
n' 2 n n n'
理想光学系统的节点
节点:角放大率=+1的一对共轭点J,J’ 由=f/x’=x/f’=1知,节点位于 xJ f ', xJ ' f
-y B
B’ y’ A’
A
-x
F H -l -f H’ f’
F’ x‘
l‘
y ' y f
x ,
y ' y x ' f '
xx ' ff '
y' y f x x' f '
高斯公式
由前图知
x l f , x ' l ' f '
原则上,共轭面、点无限制 实际上,为计算方便,有限制 一经选定,理想光学系统的共轭面称为基面, 共轭点称为基点
有限远轴上点发出的光线
tg(-U)=h/(-L)
-U
h
-L
无限远轴上点发出的光线
• L-,U 0
h F U -f
Q’ H’ U’ f’ F’
H -h Q
F’(F)像(物)方焦点,H’ (H) 像(物)方主点 f’(f) 像(物)方焦距,f’=h/tgU’, f=-h/tgU
=x’/x=(x2’-x1’)/(x2-x1)=[-f’2+
[-f/2+ f/1]= 12n’/n
f’1]/
理想光学系统的角放大率
=tgU’/tgU=l/l’ (h=ltgU=l’tgU’) =ny/(n’y’) (=y’/y=nl’/(n’l)) =n/(n’)
显微系统视角放大率
物镜放大率为。目镜出射角度
tgw ' y '/ f 2 ' y / f 2 ', x1 ' f1 ' f1 ' tgw ' y
f1 ' f 2 '
• 物对眼睛直接张角tgw=y/L
tgw '/ tgw L f1 ' f2 '
厚透镜
正透镜>0,会聚平行光,双外向箭头 负透镜<0,发散平行光,双内向箭头 两个折射球面包围透明介质。把两个球面看成 两个光组,分别求出各自的焦距和基点,再求 两光组组合的焦距和基点 单球面光组的物方和像方主点重合于顶点
单球面的焦距
第一球面
n1’/l1’-n1/l1=(n1’-n1)/r1,令n1’=n,n1=1 ,l1=l1’=f1’; l’1=l1=f1
• 代入牛顿公式
xx ' ff '
l f l ' f ' ff ' ll ' lf ' fl '
f ' l ' f l 1
物方焦距f和像方焦距f’的关系
lu=l’u’=h(x+f)u=(x’+f’)u’ =y’/y=-x’/f’=-f/x x=-fy/y’, x’=-f’y’/y (-y/y’+1)fu=(-y’/y+1)f’u’ (-y+y’)fuy=(y’+y)f’u’y’ fuy=-f’u’y’ J=n’u’y’=nuy