北师大版九年级数学上期中数学试题.docx

合集下载

北师大版九年级数学上册期中试卷及答案【完整】

北师大版九年级数学上册期中试卷及答案【完整】

北师大版九年级数学上册期中试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A .1B .2C .3D .43.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030xx -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 4.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 5.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .16.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°8.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2) B.(―9,18)C.(―9,18)或(9,―18) D.(―1,2)或(1,―2)9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算(31)(31)+-的结果等于___________.2.分解因式:x 3﹣16x =_____________.3.函数132y x x =--+中自变量x 的取值范围是__________. 4.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个不相等实数根是a ,b ,求111a ab -++的值.3.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF 的长.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、D5、A6、D7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、x (x +4)(x –4).3、23x -<≤4、3x <-或1x >.5、x=26、8.三、解答题(本大题共6小题,共72分)1、2x =2、(1)k>-1;(2)13、(1)略;(2) 52.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1) 4800元;(2) 降价60元.。

北师大版2022~2023学年九年级数学第一学期期中质量检测题【含答案】

北师大版2022~2023学年九年级数学第一学期期中质量检测题【含答案】

北师大版2022~2023学年九年级数学第一学期期中质量检测题( 分值:150分)本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置.考试结束后,只交答题卡.第Ⅰ卷 (选择题 共60分)一、选择题(本题共15个小题,每题只有一个正确答案,每小题4分,共60分)1. 菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2. 已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC =BD D .AB⊥BC3.解一元二次方程x2﹣8x﹣5=0,用配方法可变形为( )A .(x+4)2=11B .(x﹣4)2=11C .(x+4)2=21D .(x﹣4)2=214.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M 与N 的大小关系正确的为( )A .M >NB .M=NC .M <ND .不确定5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .21B .41C .61D .1216.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )A .12B .9C .4D .37.如图,在△ABC 中,DE ∥BC ,AD =6,BD =3,AE =4,则EC 的长为( )A.1 B .2 C.3 D. 4第7题 图 第8题 图 第9题图 第10题图8.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD =∠ACB B .∠ADB =∠ABC B .AB 2=AD •AC D .AD AB AB BC=9.如图,点D 、E 分别为△ABC 的边AB 、AC 上的中点,则△ADE 的面积与四边形BCED 的面积的比为( )A .1:2B .1:3C .1:4D .1:110.如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为31,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)11.已知点A (-2,y 1),B (-3,y 2)是反比例函y=x 6-图象上的两点,则有( )A .y 1>y 2B .y 1<y 2C .y 1= y 2 D.不能确定12.函数xa y =(0≠a )与a ax y -=(0≠a )在同一平面直角坐标系中的大致图象是( )13.某村耕地总面积为 50 公顷,且该村人均耕地面积 y (单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是( )A .该村人均耕地面积随总人口的增多而增多B .该村人均耕地面积 y 与总人口 x 成正比例C .若该村人均耕地面积为 2 公顷,则总人口有 100 人A CBD .当该村总人口为 50 人时,人均耕地面积为 1 公顷14. 如图,菱形ABCD 的边AD⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数()0,0y >≠=x k x k 的图象同时经过顶点C.D ,若点C 的横坐标为5,BE=3DE.则k 的值为( ) A.25B.3C.415D.515.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE 2+PF 2=PO 2;④△POF∽△BNF;⑤当△PMN∽△AMP 时,点P 是AB 的中点.其中正确的结论有( )A .5个B .4个C .3个D .2个第Ⅱ卷(非选择题 共90分)二、填空题(本题共7个小题,每题4分,共28分)16.若3x=5y ,则y x = ;已知0,2≠++===f d b f e d c b a 且,则fd be c a ++++= .17. 一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .18.把长度为20cm 的线段进行黄金分割,则较长线段的长是________cm .(结果保留根号)19.如图所示,一个底面为等边三角形的三棱柱,底面边长为2,高为4,如图放置,则其左视图的面积是 .主视图 俯视图 左视图20.如下图,为了测量校园内一棵不可攀的树的高度,实验学校“玩转数学”社团做了如下的探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把镜子放在离树(AB )9米的点E 处,然后沿着直线BE 后退到点D ,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.8米,则树(AB)的高度为____________米.第20题图第21题图21.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.22.如图,在RT△A BC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.当t= 秒时△APQ与△ABC相似.三.解答题23.(8分)同一时刻,物体的高与影子的长成比例,某一时刻,高1.6m的人影长1.2m,一电线杆影长为9m,则电线杆的高为多少米?24.(8分)在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.25.(8分)如图,在△ABC 中, 点D,E 分别是AB,AC 边上的两点,且AB=8,AC=6,AD=3,AE=4,DE=6,求BC 的长.26.(12分)如图,△ABC 为锐角三角形,AD 是BC 边上的高,正方形EFGH 的一边FG 在BC 上,顶点E 、H 分别在AB 、AC 上,已知BC=40cm ,AD=30cm .(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.27.(12分)如图,已知反比例函数x k y =与一次函数b x y +=的图象在第一象限相交于点A (1,4+-k ).(1)试确定这两个函数的表达式;(2)求出这两个函数的另一个交点B的坐标,并求出△AOB的面积.(3)直接写出当反比例函数值大于一次函数值时,x的取值范围.28(14分)已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.数学试题答案一选择题1—5BB DB C 6~10 ABDBA 11~15 AADCB二填空题16. 35 217. 用A 和a 分别表示第一个有盖茶杯的杯盖和茶杯;12用B 和b 分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa 、Ab 、Ba 、Bb .所以颜色搭配正确的概率是.1218. (105—10) 注:无括号也不再扣分19. 4320. 621. 622. 13501130或三解答题23.解设电线杆高x 米,由题意得:x 1.6=91.2 ---------------------------------------------------5分 X=12 ---------------------------------------------------7分答:电线高为12米 --------------------------------------------------8分24.解:(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率=433 =73;---------------------------------------------2分(2)画树状图为:---------------5分共有12种等可能的结果数,------------------------6分其中刚好是一男生一女生的结果数为6,----------------------------7分所以刚好是一男生一女生的概率==.----------------------8分25解:∵,-------------------------------1分, -----------------------------------2分∴AC AD =AB AE-------------------------------------3分∵∠A=∠A ,---------------------------------4分∴△ADE ∽△ACB.----------------------------------5分∴21==AC AD BC DE 即216=BC --------------------------------------7分∴BC=12---------------------------------------------8分26解:(1)证明:∵四边形EFGH 是正方形,∴EH ∥BC ,-----------------------1分∴∠AEH=∠B ,----------------------2分∠AHE=∠C ,-----------------------3分∴△AEH ∽△ABC .-------------------4分(2)解:如图设AD 与EH 交于点M .-----------------------5分∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM 是矩形,∴EF=DM ,设正方形EFGH 的边长为x ,-------------------6分∵△AEH ∽△ABC ,∴=,-------------------------------------------8分∴=,-------------------------------------10分∴x=,-----------------------------------------11分∴正方形EFGH 的边长为cm ,面积为cm 2.------------------------12分27题(1)∵点A (1,4k -+)在反比例函数k y x =的图象上∴=4k k -+解得=2k ----------------------------------------------------1分∴A (1,2)∵点A (1,2)在一次函数y x b =+的图象上∴12b +=解得1b =-----------------------------------------2分反比例函数的解析式为2y x =,一次函数的解析式为1y x =+-------4分(2)解方程组12y x y x =+⎧⎪⎨=⎪⎩得21x y =-⎧⎨=-⎩或12x y =⎧⎨=⎩∵点B 在第三象限 ∴点B 坐标为2-1------------------6分∵1y x =+,当0y =时1x =-∴点C 坐标为1-0------------7分∴S △A O B =23-----------------------------10分(3)x<- 2或0<x<1----------------------------------12分注:写出一种情况给1分28题已知:如图,在Rt △ACB 中,∠C=90°,AC=3cm ,BC=3cm ,点P 由B 点出发沿BA 方向向点A 匀速运动,速度为2cm/s ;点Q 由A 点出发沿AC 方向向点C 匀速运动,速度为cm/s ;若设运动的时间为t (s )(0<t <3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.【考点】相似形综合题.【分析】(1)先根据勾股定理求出AB,再用△APC∽△ACB,得出,即:,求出时间;(2)先用垂直平分线的性质得出QM=CM=CQ=(3﹣t),然后用平行线分线段成比例建立方程求出结论;(3)先由平行四边形的性质建立方程求出时间t,即求出PQ,PB,即可得到PQ≠PB判断出四边形PQGB不可能是菱形.解:(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,∴AB=6,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,∵△APC∽△ACB,∴,∴,∴t=;(2)存在,理由:如图②,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,CQ=3﹣t,∵点P是CQ的垂直平分线上,∴QM=CM=CQ=(3﹣t),∴AM=AQ+QM=t﹣(3﹣t)=(t﹣1)过点P作PM⊥AC,∵∠ACB=90°,∴PM∥BC,∴,∴,∴t=或t=(舍),∴t=.(3)不存在,理由:由运动知,BP=2t,AQ=t,∴AP=6﹣2t,假设线段BC上是存在一点G,使得四边形PQGB为平行四边形,∴PQ∥BG,PQ=BG,∴△APQ∽△ABC,∴,∴,∴t=,PQ=,∴BP=2t=3,∴PQ≠BP,∴平行四边形PQGB不可能是菱形.即:线段BC上不存在一点G,使得四边形PQGB为菱形.【点评】此题是相似形综合题,主要考查了勾股定理,线段的垂直平分线的性质,相似三角形的判定和性质,平行四边形的性质,菱形的判定,解本题的关键是用方程的思想解决问题.。

最新北师大版九年级数学上册期中考试题及答案【完整版】

最新北师大版九年级数学上册期中考试题及答案【完整版】

最新北师大版九年级数学上册期中考试题及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)6.下列运算正确的是( )A .(﹣2a 3)2=4a 6B .a 2•a 3=a 6C .3a +a 2=3a 3D .(a ﹣b )2=a 2﹣b 2 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米二、填空题(本大题共6小题,每小题3分,共18分)1.计算(331)的结果等于___________.2.因式分解:x 2y ﹣9y =________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交1y x=的图象于点C ,连结AC .若△ABC 是等腰三角形,则k 的值是_________.6.在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab=__________.三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.105阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、D6、A7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、y (x+3)(x ﹣3)3、24、5、k =或.6、12三、解答题(本大题共6小题,共72分)1、4x =2、(1)2y x 2x 3=-++(2)(1,4)3、(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m 1,2.4、解:(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD , ∴四边形AEBD 是平行四边形.∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC .∴∠ADB=90°.∴平行四边形AEBD是矩形.(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.5、(1)5,20,80;(2)图见解析;(3)3 5.6、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤90.。

北师大版数学 九年级上册 期中考试试卷(含答案)

北师大版数学 九年级上册 期中考试试卷(含答案)

北师大版数学九年级上册期中考试试卷(含答案)北师大版数学九年级上册期中考试试卷一、选择题(本大题共12小题)1.下列方程是一元二次方程的是()A、ax2+bx+c=0B、x2-y+1=0C、x2=0D、(1/2)x+1=22.如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是()A、SASB、ASAC、AASD、SSS3.关于x的方程(3m+1)x+2mx-1=0的一个根是1,则m的值是()A、2/3B、-2/3C、-3/2D、3/24.如图,平行四边形ABCD的周长为16cm,AC、BD 相交于点O,OE⊥AC交AD于E,求△DCE的周长。

A、4cmB、6cmC、8cmD、10cm5.根据下列表格的对应值,判断ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是()x。

ax2+bx+c3.23.-0.063.24.-0.023.25.0.033.26.0.09A、3<x<3.23B、3.23<x<3.24C、3.24<x<3.25D、3.25<x<3.266.设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是()7.下列图形:线段、正三角形、平行四边形、矩形、菱形、正方形、等腰梯形、直角梯形,其中既是中心对称图形,又是轴对称图形的共有()A、3个B、4个C、5个D、6个8.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,列出方程正确的是()A、580(1+x)2=1185B、1185(1+x)2=580C、580(1-x)2=1185D、1185(1-x)2=5809.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A、30°B、36°C、45°D、70°10.如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件不可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C11.若等腰梯形两底的差等于一腰的长,则最小的内角是()12.如图,小亮拿一张矩形纸,沿虚线对折一次得到图(2),再将对角两顶点重合折叠得到图(3)。

新北师大版九年级数学上册期中考试题(完美版)

新北师大版九年级数学上册期中考试题(完美版)

新北师大版九年级数学上册期中考试题(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.若二次根式51x -有意义,则x 的取值范围是( )A .x >15B .x ≥15C .x ≤15D .x ≤53.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π 4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣27.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15° 8.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣110.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)181____________.2.分解因式:2242a a ++=___________.3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、B6、D7、B8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、22(1)a +3、7或-14、125.5、4π6、2.5×10-6三、解答题(本大题共6小题,共72分)1、x=32、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 1P 2352,),P 3),P 4.4、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)50、30%.(2)补图见解析;(3)35.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。

北师大版九年级数学上册期中考试卷及答案【完美版】

北师大版九年级数学上册期中考试卷及答案【完美版】

北师大版九年级数学上册期中考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( ) A .±2B .2C .﹣2D .162.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3B .m ≤3且m ≠2C .m <3D .m <3且m ≠24.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值()A .0或2B .-2或2C .-2D .25.下列各组数中,能作为一个三角形三边边长的是( ) A .1,1,2B .1,2,4C .2,3,4D .2,3,56.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分; ②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米。

北师大版九年级(上)期中数学试卷(含解析)

北师大版九年级(上)期中数学试卷(含解析)

北师大版九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题目要求的) 1.(3分)关于x 的一元二次方程22(1)10a x x a -++-=的一个根 0 ,则a 值为( ) A . 1 B .1- C .1± D . 02.(3分)已知13a b =,那么aa b +的值为( ) A .13 B .23 C .14D .343.(3分)矩形具有而菱形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .邻边相等 4.(3分)用配方法解一元一次方程2840x x --=,经配方后得到的方程是( ) A .2(4)20x -= B .2(4)16x -= C .2(4)12x -=D .2(4)4x -= 5.(3分) 4 与 9 的比例中项是( )A . 36B . 6C .6-D .6±6.(3分)下列条件不能判定ADB ABC ∆∆∽的是( )A .ABD ACB ∠=∠B .ADB ABC ∠=∠ C .2AB AD AC = D .AD DBAC BC= 7.(3分)如图,在ABC ∆中,//DE BC ,//DF AG ,若12AD DB =,则下列结论正确的是( )A .12DE BC = B .12DE DF = C .14ADE ABC S S ∆∆= D .14ADE DECF S S ∆=四边形 8.(3分)如图,已知点P 是线段AB 的黄金分割点,且PA PB >,若1S 表示以PA 为边的正方形的面积,2S 表示以PD ,PB 为边的矩形的面积,且PD AB =,则1S 与2S 的关系是( )A .12S S >B .12S S =C .12S S <D .无法确定9.(3分)20172018-赛季中国男子篮球职业联赛, 采用双循环制 (每 两队之间都进行两场比赛) ,比赛总场数为 380 场, 若设参赛队伍有x 支, 则可列方程为( )A .1(1)3802x x -= B .(1)380x x -= C .1(1)3802x x += D .(1)380x x += 10.(3分)如图, 在直角梯形ABCD 中,//AD BC ,90ABC ∠=︒,7AB =,3AD =,4BC =. 点P 为AB 边上一动点, 若PAD ∆与PBC ∆是相似三角形, 则满足条件的点P 的个数是( )A . 1 个B . 2 个C . 3 个D . 4 个二、填空题(共4小题,每小题3分,计12分) 11.(3分)在 0 、 1 、 2 三个数字中, 任取两个, 组成两位数, 则在组成的两位数中, 是奇数的概率是 . 12.(3分)如图, 在正方形ABCD 外侧, 作等边三角形ADE ,AC ,BE 相交于点F ,则BFC ∠为 度 .13.(3分)如图, 已知ABC DEF ∆∆∽,且相似比为k ,则k 的值为 .14.(3分)如图,在矩形ABCD 中,10AB =,5BC =,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM MN +的最小值为 .三、解答题(共11小题,计78分.解答应写出过程) 15.(9分)解方程: (1)24(1)36x +=; (2)2560y y --=;(3)22410m m --=. 16.(7分)如图,O 是菱形ABCD 对角线AC 与BD 的交点,5CD cm =,3OD cm =;过点C 作//CE DB ,过点B 作//BE AC ,CE 与BE 相交于点E . (1)求OC 的长;(2)求四边形OBEC 的面积.17.(5分)如图, 已知ABC ∆,在AB 边上找一点M ,在AC 边上找一点N ,使MB MN =,且AMN ABC ∆∆∽,请利用没有刻度的直尺和圆规, 作出符合条件的线段MN (注 :不写作法, 保留作图痕迹, 对图中涉及到的点用字母进行标注) .18.(5分)已知关于x 的一元二次方程220x x a -+=的两实数根1x ,2x 满足12120x x x x ++>,求a 的取值范围 . 19.(6分)党的十八大提出, 倡导富强、 民主、 文明、 和谐, 倡导自由、 平等、 公正、 法治, 倡导爱国、 敬业、 诚信、 友善, 积极培育和践行社会主义核心价值观, 这 24 个字是社会主义核心价值观的基本内容 .其中: “富强、 民主、 文明、 和谐”是国家层面的价值目标; “自由、 平等、 公正、 法治”是社会层面的价值取向;“爱国、 敬业、 诚信、 友善”是公民个人层面的价值准则 .小明同学将其中的“文明”、 “和谐”、 “自由“平等”的文字分别贴在 4 张硬纸板上, 制成如图所示的卡片 . 将这 4 张卡片背面朝上洗匀后放在桌子上, 从中随机抽取一张卡片, 不放回, 再随机抽取一张卡片 . 请你用列表法或画树状图法, 帮助小明求出两次抽取卡片上的文字一次是国家层面价值目标、 一次是社会层面价值取向的概率 . (卡 片名称可用字母表示) . 20.(6分)在图的方格纸中,OAB ∆的顶点坐标分别为(0,0)O 、(2,1)A --、(1,3)B --,△111O A B 与OAB ∆是以点P 为位似中心的位似图形(1) 在图中标出位似中心P 的位置, 并写出点P 及点B 的对应点1B 的坐标;(2) 以原点O 为位似中心, 画出OAB ∆的位似图形△22OA B ,使它与OAB ∆都在位似中心的同侧且它与OAB ∆的位似比为2:1,并写出点B 的对应点2B 的坐标;(3)OAB ∆内部一点M 的坐标为(,)a b ,写出M 在△22OA B 中的对应点2M 的坐标;(4) 判断△22OA B 能否看作是由△111O A B 经过某种变换得到的图形 . 若能, 请指出是怎样变换得到的 (直 接写答案) .21.(6分)如图, 已知:AD DE AEAB BC AC==,求证:CAE BAD ∠=∠.22.(8分)在水果销售旺季, 某水果店购进一优质水果, 进价为 20 元/千克, 售价不低于 20 元/千克, 且不超过 32 元/千克, 根据销售情况, 发现该水果一天的销售量y (千 克) 与该天的售价x (元/千克) 满销售量y (千 克) ⋯34.8 32 29.6 28 ⋯ 售价x (元/千克) ⋯22.62425.226⋯(1) /(2) 如果某天销售这种水果获利 150 元, 那么该天水果的售价为多少元? 23.(8分)李爱数同学发现操场中有一个不规则的封闭图形ABC 如图所示, 为了知道它的面积, 他在封闭图形内画出了一个半径为 1 米的圆, 在不远处向圆内掷石子, 结果记录如下:石子落在圆内 (含 圆上) 的次数 14 43 93 150 石子落在阴影内的次数2391186300请根据以上信息, 回答问题: (1) 求石子落在圆内的频率;(2) 估计封闭图形ABC 的面积 .24.(8分)如图, 在矩形ABCD 中,4AB =,3AD =,M 是边CD 上一点, 将ADM ∆沿直线AM 对折, 得到AMM ∆.(1) 当AN 平分MAB ∠时, 求DM 的长; (2) 连接BN ,当1DM =时, 求BN 的长 .25.(10分)在四边形ABCD 中, 对角线AC 、BD 相交于点O ,过点O 的两条直线分别交边AB 、CD 、AD 、BC 于点E 、F 、G 、H .【感知】如图①, 若四边形ABCD 是正方形, 且AG BE CH DF ===,则AEOG S =四边形 ABCD S 正方形; 【拓展】如图②, 若四边形ABCD 是矩形, 且14ABCD AEOG S S =矩形四边形,设AB a =,AD b =,BE m =,求AG 的长 (用 含a 、b 、m 的代数式表示) ;【探究】如图③, 若四边形ABCD 是平行四边形, 且3AB =,5AD =,1BE =,试确定F 、G 、H 的位置, 使直线EF 、GH 把四边形ABCD 的面积四等分 .参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题目要求的) 【解答】解: 把0x =代入方程得:210a -=, 解得:1a =±,22(1)10a x x a -++-=是关于x 的一元二次方程, 10a ∴-≠, 即1a ≠,a ∴的值是1-.故选:B .【解答】解:13a b =, ∴设a k =,3(0)b k k =≠,则134a k a b k k ==++. 故选:C .【解答】解:矩形具有的性质:对角线相等,对角线互相平分;菱形具有的性质:邻边相等,对角线互相平分,对角线互相垂直;∴矩形具有而菱形不一定具有的性质是:对角线相等. 故选:B .【解答】解:284x x -=,2816164x x ∴-+=+,即2(4)20x -=, 故选:A .【解答】解: 设它们的比例中项是x ,则249x =⨯, 6x =±. 故选:D .【解答】解:A 、ABD ACB ∠=∠,A A ∠=∠,ABC ADB ∴∆∆∽,故此选项不合题意; B 、ADB ABC ∠=∠,A A ∠=∠,ABC ADB ∴∆∆∽,故此选项不合题意;C 、2AB AD AC =,∴AC ABAB AD=,A A ∠=∠,ABC ADB ∆∆∽,故此选项不合题意; D 、AD DBAC BC =不能判定ADB ABC ∆∆∽,故此选项符合题意 . 故选:D .【解答】解://DE BC ,//DF AG , ADE ABC ∴∆∆∽,BDF BAC ∆∆∽. 12AD DB =, 11123DE BC ∴==+,22213BD BA ==+, 21()9ADE ABC S DE S BC ∆∆∴==,24()9BDF BAC S BD S BA ∆∆==, 19ADE ABC S S ∆∆∴=,49BDF ABC S S ∆∆=,49ABC DECF S S ∆∴=四边形,14ADE DECF S S ∆∴=四边形. 故选:D .【解答】解:P 是线段AB 的黄金分割点,且PA PB >,2PA PB AB ∴=,又1S 表示PA 为一边的正方形的面积,2S 表示长是AB ,宽是PB 的矩形的面积,21S PA ∴=,2S PB AB =, 12S S ∴=.故选:B .【解答】解: 设参赛队伍有x 支, 则 (1)380x x -=.故选:B .【解答】解:AB BC ⊥, 90B ∴∠=︒. //AD BC18090A B ∴∠=︒-∠=︒, 90PAD PBC ∴∠=∠=︒.设AP 的长为x ,则BP 长为7x -.若AB 边上存在P 点, 使PAD ∆与PBC ∆相似, 那么分两种情况: ①若APD BPC ∆∆∽,则::AP BP AD BC =, 即:(7)3:4x x -=,解得:3x =②若APD BCP ∆∆∽,则::AP BC AD BP =, 即:43:(7)x x =-,解得:4x =或 3 .∴满足条件的点P 的个数是 2 个, 故选:B .二、填空题(共4小题,每小题3分,计12分) 【解答】解: 画树状图得:∴共有 6 种情况, 是奇数的有 1 种情况,∴是奇数的概率是16.【解答】解:四边形ABCD 是正方形,AB AD ∴=,又ADE ∆是等边三角形,AE AD DE ∴==,60DAE ∠=︒, AB AE ∴=,ABE AEB ∴∠=∠,9060150BAE ∠=︒+︒=︒, (180150)215ABE ∴∠=︒-︒÷=︒,又45BAC ∠=︒,451560BFC ∴∠=︒+︒=︒.故答案为: 60 .【解答】解:ABC DEF ∆∆∽,∴相似比等于:1()()()2AB AC BC a b c DE DF EF b a a c c b ++++==+++++++.12k ∴=.故答案为:12. 【解答】解:过B 点作AC 的垂线,使AC 两边的线段相等,到E 点,过E 作EN AB ⊥于N 点,交AC 于M , 则BM MN +的最小值EN =, 10AB =,5BC =,2210555AC ∴=+=,AC ∴边上的高为10555⨯,所以45BE =,ABC ENB ∆∆∽,∴AB ACEN BE =, 8EN ∴=.故答案为:8.三、解答题(共11小题,计78分.解答应写出过程) 【解答】解: (1)24(1)36x +=,2(1)9x ∴+=, 13x ∴+=±,则12x =,24x =-;(2)2560y y --=,(8)(7)0y y ∴-+=, 则80y -=或70y +=, 解得:18y =,27y =-;(3)2a =,4b =-,1c =-, ∴△1642(1)240=-⨯⨯-=>, 则4262642m ±==. 【解答】解:(1)ABCD 是菱形, AC BD ∴⊥,∴直角OCD ∆中,2222534()OC CD OD cm =-=-=;(2)//CE DB ,//BE AC , ∴四边形OBEC 为平行四边形, 又AC BD ⊥,即90COB ∠=︒, ∴平行四边形OBEC 为矩形, 0OB D =, ()24312OBEC S OB OC cm ∴=⋅=⨯=矩形.【解答】解:如图 2 所示, 作B ∠的平分线BN ,交AC 于G ,作BN 的垂直平分线MG ,交AB 于M ,MN 即为所求 . 【解答】解:该一元二次方程有两个实数根,∴△2(2)41440a a =--⨯⨯=-, 解得:1a ,由韦达定理可得12x x a =,122x x +=,12120x x x x ++>, 20a ∴+>, 解得:2a >-, 21a ∴-<.【解答】解: 画树状图为:共有 12 种等可能的结果数, 其中两次抽取卡片上的文字一次是国家层面价值目标、 一次是社会层面价值取向的结果数为 8 种, 所以两次抽取卡片上的文字一次是国家层面价值目标、 一次是社会层面价值取向的概率82123==. 【解答】解: (1) 点P 的位置如图所示, 点(5,1)P --,点1(3,5)B -;(2)△22OA B 如图所示 . 点2B 的坐标(2,6)--;(3)OAB ∆内部一点M 的坐标为(,)a b ,写出M 在△22OA B 中的对应点2M 的坐标(2,2)a b ;(4)△22OA B 能看作是由△111O A B 经过平移变换得到的图形 .△111O A B 向左平移 5 个单位, 向下平移应该单位得到△22OA B . 【解答】证明:AD DE AEAB BC AC==, ABC ADE ∴∆∆∽, BAC DAE ∴∠=∠,BAD DAC DAC CAE ∴∠+∠=∠+∠, CAE BAD ∴∠=∠.【解答】解: (1) 设y 与x 之间的函数关系式为y kx b =+,将(22.6,34.8)、(24,32)代入y kx b =+,22.634.82432k b k b +=⎧⎨+=⎩,解得:280k b =-⎧⎨=⎩, y ∴与x 之间的函数关系式为280y x =-+. 当23.5x =时,28033y x =-+=.答: 当天该水果的销售量为 33 千克 .(2) 根据题意得:(20)(280)150x x --+=, 解得:135x =,225x =.2032x , 25x ∴=.答: 如果某天销售这种水果获利 150 元, 那么该天水果的售价为 25 元 .【解答】解: (1) 观察表格得: 随着投掷次数的增大, 石子落在圆内的频率值稳定在13;(2) 设封闭图形的面积为a ,根据题意得:13a π=, 解得:3a π=,则封闭图形ABC 的面积为3π平方米 .【解答】解: (1) 由折叠性质得:ANM ADM ∆≅∆, MAN DAM ∴∠=∠,AN 平分MAB ∠,MAN NAB ∠=∠, DAM MAN NAB ∴∠=∠=∠, 四边形ABCD 是矩形, 90DAB ∴∠=︒, 30DAM ∴∠=︒,3tan 3tan 30333DM AD DAM ∴=∠=⨯︒=⨯=;(2) 如图, 作NE AB ⊥于E ,延长EN 交CD 于F . 则NF CD ⊥.90MFN MNA AEN ∠=∠=∠=︒,90MNF ANE ∴∠+∠=︒,90ANE NAE ∠+∠=︒, FNM NAE ∴∠=∠, MNF NAE ∴∆∆∽, ∴MN MF FNAN NE AE ==,设MF x =,FN y =, 则有1331x yy x ==-+,解得0.8x =,0.6y =,1.8AE ∴=,2.4NE =, 2.2BE AB AE =-=222226522245BN BE NE ∴=+=+=【解答】解: 【感知】如图①, 四边形ABCD 是正方形,45OAG OBE ∴∠=∠=︒,OA OB =,在AOG ∆与BOE ∆中,AG BE AOG BOE AO BO =⎧⎪∠=∠⎨⎪=⎩,AOG BOE ∴∆≅∆,14AOB ABCD AEOG S S S ∆∴==正方形四边形;故答案为:14;【拓展】如图②, 过O 作ON AD ⊥于N ,OM AB ⊥于M ,14AOB ABCD S S ∆=矩形,14ABCD AEOG S S =矩形四边形,AOB AEOG S S ∆∴=四边形,AOB BOE AOE S S S ∆∆∆=+,AOG AOE AEOG S S S ∆∆=+四边形,BOE AOG S S ∆∆∴=,11112224BOE S BE OM m b mb ∆===,11112224AOG S AG ON AG a AG a ∆===,∴1144mb AG a =, mbAG a∴=;【探究】如图③, 过O 作KL AB ⊥,PQ AD ⊥, 则2KL OK =,2PQ OQ =,ABCD S AB KL AD PQ =⋅=⋅平行四边形, 3252OK OQ ∴⨯=⨯, ∴53OK OQ =, 14AOB ABCD S S ∆=平行四边形,14AEOG ABCD S S =四边形平行四边形,AOB AEOG S S ∆∴=四边形,BOE AOG S S ∆∆∴=,11122BOE S BE OK OK ∆==⨯⨯,12AOG S AG OQ ∆=,∴11122OK AG OQ ⨯⨯=,∴53OK AG OQ ==, ∴当53AG CH ==,1BE DF ==时, 直线EF 、GH 把四边形ABCD 的面积四等分 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
鼎尚图文**整理制作
上学期期中数学试题
班级: 姓名: 成绩:
一、选择题(答案填在下表中,否则不得分.每题3分,共30分)
题号 1 2 3 4 5 6 7 8
9 10 选项
1. 一元二次方程x 2=x 的解是 ( )
(A) x=0 (B) x=1 (C) x 1=0,x 2=1 (D) x 1=0,x 2=-1 2. 用配方法解方程2x 2-7x-1=0,正确的是( ) (A) (x+
47)2=1657 (B) (x-47)2=1657 (C) (x+47)2=1681 (D) (x+47)2=1641
3. 若分式
1
x 3
2x x 2
--+的值为零,则x=( )
(A) 1 (B) -3 (C) 1和-3 (D) 1或-3 4. 已知等腰三角形的一个角为80°,则其顶角为( ) (A) 20° (B) 80° (C) 100° (D) 20°或80°
5. 某商品连续两次涨价10﹪后,价格是a 元,那么原价是( ) (A)
1.1a 元 (B) 21.1a 元 (C) 0.9a 元 (D) 2
0.9a 元 6. 下列命题中,真命题是( )
(A) 对角线相等的四边形是矩形 (B) 对角线互相垂直的四边形是菱形
(C) 顺次连接四边形的各边中点所得的四边形是平行四边形 (D) 两条对角线互相平分且相等的四边形是正方形
7. 有一实物如图,那么它的主视图( )
(A) (B) (C) (D)
8. 下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是( )
(A) (B) (C) (D) 9. 在反比例函数x
k
y =
(k>0)的图像上有两点A(x 1,y 1),B(x 2,y 2),且x 1>0>x 2,则y 1-y 2的值为( )
(A) 正数 (B) 负数 (C) 非正数 (D) 非负数
10. 均匀的正四面体的各面上依次标有1,2,3,4,四个数字,同时抛掷两
个这样的正四面体,着地的一面数字之和为5的概率是( )
(A)
163 (B) 41 (C) 681 (D) 16
1
二、填空题
E D
C B A 11. 已知3是关于x 的方程
3
4x 2
-2a+1=0的一个解,则2a 的值是 。

12. 如图,一个几何体的三视图如右图:
那么这个几何体是 。

13. 顶角为36°的等腰三角形称为黄金三角形。

如图,△ABC 、 △BDC 、△DEC
都是黄金三角形已知AB=1,则DE= 。

(第14题)
14. 如图,若将用四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,
并使其面积为矩形面积的一半,则这平行四边形的一个最大内角的值等于 。

度;
15. 点(a,b)在反比例函数x
k
y =的图像上,其中a 、b 是方程082x x 2=--的
两根,则k= 。

16、已知菱形的边长为6cm ,一个内角为600,则菱形的面积为 cm 2。

17、顺次连接等腰梯形各边的中点所得到的四边形的形状为 。

18、已知反比例函数x
2m
1y -=
的图象上有两点分别为A (x 1,y 1)、B (x 2,y 2),且 当x 1>x 2>0,有y 1<y 2,则m 的取值范围是 。

三、解答题
19. 解下列方程:(每小题4分,共8分)
(1) x 2+2x-99=0 (2) y(y-8)=-16
20、如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于点E ,已知△BCE 的周长
为8cm ,AC -BC=2,求AB 与BC 的长。

---6分
k
D A
B
C
E
(第22题)
21. (8分) 张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各
剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体运输箱,且此长方体运输箱的底面长比宽多
2
米,现已知购买这种铁皮每平方米需20
元,问张大叔购回这张铁皮共花多少元钱?
B A
C
D 主视图
左视图 俯视图
22. (8分)如图,已知正方形ABCD的边长为3cm,以CD为边向CD的两旁分别
作等边△PCD和等边△QCD.
(1) 四边形CPDQ是菱形吗?说明理由;
(2) 求PQ的长. 23、如图,在直角梯形ABCD中,AB∥CD,∠ABC=900,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm,
(1)求证:四边形ABFE是等腰梯形;
(2)求AE的长。

--------------(8分)
24、如图,直线与y=2x双曲线
x
8
y 相交于点A、E,直线AB与双曲线交于点B,与x 轴、y轴分别交于点C、D,且B点横坐标等于纵坐标的两倍,直线EB交x轴于点F,(1)求直线AB的解析式;
(2)求证:△COD∽△CBF --------------(9分)
A
B C P
D Q E
E
A B
C
D
F
C
E
y
x
F
D
O
B
A
C
25.(9分)在Rt△ABC中,∠C=900,AC=3,BC=4,点E在直角边AC上,(点E
与A、C两点不重合),点F在斜边AB上(点F与A、B两点不重合). (1) 若EF平分Rt△ABC的周长,设AE的长为x,试用含x的代数式表示
△AEF的面积;
(2) 是否存在线段EF将Rt△ABC的周长和面积同时平分?若存在,求出此
时AE的长;若不存在,说明理由. 26、实践与探索:
如图,已知正方形ABCD的面积为S,
(1)求作:四边形A1B1C1D1,使得点A1和点A关于点B对称,点B1和点B关于点C对称,点C1和点C关于点D对称,点D1和点D关于点A对称;(画出图形,不必写作法)
(2)用S表示(1)中作出的四边形A1B1C1D1的面积S1;
(3)若将已知条件中的正方形改为任意四边形,面积仍为S,并按(1)的要求作出一个新的四边形A2B2C2D2,面积为S2,则S1与S2是否相等?为什么? -----------(10分)
F
B
C E A
B
C D
A
参考答案
一.选择题
1.C
2.B
3.B
4.D
5.B
6.C
7.B
8.C
9.A 10.B
二.填空题
1. 13
2.圆锥体
3.
25
3- 4.1500 5.-8
三.解答题
16.(1)x1=9,x2=-11 (2)y1=y2=4
17. 连接BE,证明四边形ABEC是平行四边形,证明OF是△ABC
的中位线即可.18. 矩形面积为35平方米,花700元
19. 3
3
20. (1) P(
2
1,1)
(2) 直线AB为 y=-x+1,点E(
2
1,
2
1)点F(0,1),
S
△OEF.
=
4
1 21.
(1) 过F点作FD⊥AC于D点,证明△AFD∽△ABC,用含x 的代
数式表示FD,从而求出S△AEF=
5
x)
(6
2x-
-
(2) ∵S△ABC=
2
1×3×4=
6,∴S△AFE=3,故
5
x)
(6
2x-
-=3,解得x=
2
6
6-。

相关文档
最新文档