第1章解题构建专题:反比例函数与一次函数的综合-2020秋湘教版九年级数学上册习题(共14张PPT)

合集下载

湘教版九年级上册数学精品教学课件 第1章 反比例函数 反比例函数的应用 (2)

湘教版九年级上册数学精品教学课件 第1章 反比例函数 反比例函数的应用 (2)

(1) 写出电流 I 与电阻 R 的函数关系式;(2) 如果该电路的
电阻 R 为220Ω,则通过它的电流是多少的值. 解:(1) 因为 U = IR,且 U = 220V ,
所以 IR = 220 ,
即该电路的电流 I 关于电阻 R 的函数表达式为 I 220 .
(2) 因为该电路的电阻 R = 220Ω,
(2) 若到达目的地后,按原路匀速返回,并要求
在 3 小时内回到 A 城,则返回的速度不能低 于__2_4_0_千__米__/_时__.
4. 学校锅炉旁建有一个储煤库,开学时购进一批煤, 现在知道:按每天用煤 0.6 吨计算,一学期 (按 150 天 计算) 刚好用完. 若每天的耗煤量为 x 吨,那么这批煤 能维持 y 天.
解:对当于提F函示=数:40对F0×于 6函120l 0数=,2F0当0时l6>0l,00,由时F2,0随0l =越l 的大60l增0,大F得而越减 小小. .因因此此,,只若要想l求用 出6力00不F=超32,过004N00时N对的应一的半l,的则值, 就动能力确臂定至动少力要臂加l长至201少0.5应m加. 长的量. 3-1.5 = 1.5 (m).
解:由 p= ,得 p= p 是 S 的反比例函数,因为给定一个 S 的值,就有唯一 的一个 p 值和它相对应,这符合反比例函数的定义. (2) 当木板面积为 0.2 m2 时,压强是多少? 解:当 S=0.2 m2 时,p= =3000 (Pa) . 答:当木板面积为 0.2 m2 时,压强是 3000 Pa.
天卸载完,则平均每天至少要卸载 48 吨.
练一练 某乡镇要在生活垃圾存放区建一个老年活动中心,
这样必须把 1200 立方米的生活垃圾运走. (1) 假如每天能运 x 立方米,所需时间为 y 天,写出 y

湘教版九年级数学上册知识点归纳总结

湘教版九年级数学上册知识点归纳总结

九年级数学上册第一章反比例函数(一)反比例函数1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;(二)反比例函数的图象与性质1.函数解析式:()2.自变量的取值范围:3.图象:反比例函数的图象:在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(1)图象的形状:双曲线越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:自变量,函数图象与x轴、y轴无交点,两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,若(a,b)在双曲线的一支上,(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义: 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(三)反比例函数的应用1、求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2、反比例函数与一次函数的联系.3、充分利用数形结合的思想解决问题.第二章一元二次方程(一)一元二次方程1、只含有一个未知数的整式方程(分母不含未知数),且都可以化为20ax bx c++=(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。

九年级数学上册1.1反比例函数(湘教版)

九年级数学上册1.1反比例函数(湘教版)

九年级数学上册1.1反比例函数(湘教版)第1章反比例函数1.1反比例函数1.理解并掌握反比例函数的概念,能判断一个给定的函数是否为反比例函数.(重点)2.能根据实际问题中的条件确定反比例函数的表达式,体会函数模型的思想.(重点)阅读教材P2~3,完成下列内容:(一)知识探究形如y=kx(k是常数,________)的函数称为________,其中x是________,y是________.自变量x的取值范围是不等于0的一切实数.(二)自学反馈下列函数中,属于反比例函数的是________;每一个反比例函数的比例系数是多少?①y=2x+1;②y=2x2;③y=15x;④y=-23x;⑤xy=3;⑥2y =x;⑦xy=-1.判断是不是反比例函数,一定要根据反比例函数的定义,牢记反比例函数的三种形式.活动1小组讨论例如图,已知菱形ABCD的面积为180,设它的两条对角线AC,BD的长分别为x,y.写出变量y与x之间的函数表达式,并指出它是什么函数.解:∵菱形的面积等于两条对角线长乘积的一半,∴S菱形=12xy=180.∴xy=360(定值),即y与x成反比例关系.∴y=360x.因此,当菱形的面积一定时,它的一条对角线长y是另一条对角线长x 的反比例函数.活动2跟踪训练1.下面的函数是反比例函数的是()A.y=3x+1B.y=x2+2xC.y=x2D.y=3x2.在函数y=3x中,自变量x的取值范围是()A.x≠0B.x>0C.x<0D.一切实数3.若函数y=kxk-2是反比例函数,则k=________.4.已知函数y=-6x,当x=-2时,y的值是________.5.列出下列问题中的函数表达式,并指出它们是什么函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食x(t)的函数表达式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数表达式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数表达式.活动3课堂小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=kx(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数?【预习导学】知识探究k≠0反比例函数自变量因变量自学反馈③④⑤⑦③y=15x中k=15;④y=-23x中k=-23;⑤xy=3中k=3;⑦xy=-1中k=-1.【合作探究】活动2跟踪训练1.D2.A3.14.35.(1)y=1500x,反比例函数.(2)y=4.75x,正比例函数.(3)t =100v,反比例函数.。

2019-2020学年湘教版九年级数学上册全册教案(含教学反思)

2019-2020学年湘教版九年级数学上册全册教案(含教学反思)

第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t的变化,平均速度v发生了怎样的变化?(4)平均速度v 是所用时间t 的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点? 【归纳结论】一般地,如果两个变量x,y 之间可以表示成y=kx(k 为常数且k ≠0)的形式,那么称y 是x 的反比例函数.其中x 是自变量,常数k 称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t ,其中自变量t 可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t 代表的是时间,且时间不能为负数,所有t 的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动. 三、运用新知,深化理解 1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm 2,它的一边是acm ,这边上的高是hcm ,则a 与h 的函数关系;(2)压强p 一定时,压力F 与受力面积S 的关系;(3)功是常数W 时,力F 与物体在力的方向上通过的距离s 的函数关系.(4)某乡粮食总产量为m 吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x 的函数关系式. 分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=kx(k 是常数,k ≠0).所以此题必须先写出函数解析式,后解答.解:(1)a=12/h ,是反比例函数; (2)F =pS ,是正比例函数; (3)F=W/s ,是反比例函数; (4)y=m/x ,是反比例函数. 3.当m 为何值时,函数y=224m x-是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m=3/2.所以反比例函数的解析式为y=4x.4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V=5m 3时,ρ=1.98kg /m 3 (1)求p 与V 的函数关系式,并指出自变量的取值范围. (2)求V=9m 3时,二氧化碳的密度. 解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y1与x 成正比例,则y1=k1x ,y2与x2成反比例,则y2=k2x2,又由y =y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y 与x 间的函数关系式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例,所以y 2=22k x ,而y =y 1+y 2,所以y=k 1x+22k x,当x =2与x =3时,y 的值都等于19.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.1”中第1、3、5题.教学反思学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)教学目标【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6x的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y 轴右边的各点,当横坐标x 逐渐增大时,纵坐标y 如何变化?y 轴左边的各点是否也有相同的规律?(2)这两条曲线会与x 轴、y 轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=3x的图形,并思考下列问题: (1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y 随自变量x 的变化是如何变化的? 【归纳结论】一般地,当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而减小.探究3:反比例函数y=-6x的图象.可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数y=-6x 的图象的方式与步骤进行自主探索其图象; (2)可以通过探索函数y=6x 与y=-6x 之间的关系,画出y=-6x的图象.【归纳结论】一般地,当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.探究4:反比例函数的性质反比例函数y=-6x与y=6x的图象有什么共同特征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数y=kx(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=kx与y=-kx(k≠0)的图象关于x轴或y轴对称.【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解1.教材P9例1.2.如果函数y=2x k+1的图象是双曲线,那么k=.【答案】-23.如果反比例函数y=3kx-的图象位于第二、四象限内,那么满足条件的正整数k的值是.【答案】1,24.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=kbx的图象在第象限.【答案】二、四5.反比例函数y=1x的图象大致是图中的( ).解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限. 【答案】 C6.下列反比例函数图象一定在第一、三象限的是( )【答案】 C7.已知函数23()2m y m x --为反比例函数.(1)求m 的值;(2)它的图象在第几象限内?在各象限内,y 随x 的增大如何变化? (3)当-3≤x ≤-12时,求此函数的最大值和最小值.8.作出反比例函数y=12x的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围. 解:列表:由图知: (1)y =3; (2)x =-6; (3)0<x <69.作出反比例函数y=-4x的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围. 解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时反比例函数的图象与性质(2)教学目标【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.教学过程一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知1.思考:已知反比例函数y=kx的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x 的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y 随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=kx的图象,根据图象,回答下列问题:(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B 都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-3x上,则y1、y2中较小的是.【答案】y22.已知点A(x1,y1),B(x2,y2)是反比例函数y=kx(k>0)的图象上的两点,若x1<0<x2,则有( ).A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0【答案】 A3.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( )A.b 1<b 2B.b 1=b 2C.b 1>b 2D.大小不确定 【答案】 D 4.函数y=-1x的图象上有两点A(x 1,y 1),B(x 2,y 2),若0<x 1<x 2,则( ) A.y 1<y 2 B.y 1>y 2 C.y 1=y 2 D.y 1、y 2的大小不确定 【答案】 A5.已知点P(2,2)在反比例函数y=kx(k ≠0)的图象上, (1)当x=-3时,求y 的值;(2)当1<x <3时,求y 的取值范围.6.已知y=kx(k ≠0,k 为常数)过三个点A(2,-8),B(4,b),C(a ,2). (1)求反比例函数的表达式; (2)求a 与b 的值. 解:(1)将A (2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16x; (2)将B (4,b )代入反比例解析式得:b=-4;将C (a ,2)代入反比例解析式得:2=-16a,即a=-8.7.已知反比例函数的图象过点(1,-2). (1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上?分析:(1)反比例函数的图象过点(1,-2),即当x =1时,y =-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A 在反比例函数的图象上,易求出m 的值,再验证点A 关于两坐标轴和原点的对称点是否在图象上.解:(1)设:反比例函数的解析式为:y=kx (k ≠0).而反比例函数的图象过点(1,-2),即当x =1时,y =-2.所以-2=1k,k =-2.即反比例函数的解析式为:y=-2x.(2)点A(-5,m)在反比例函数y=-2x图象上,所以m=25-- =25 ,点A 的坐标为(-5, 25).点A 关于x 轴的对称点(-5,-25)不在这个图象上;点A 关于y 轴的对称点(5, 25)不在这个图象上;点A 关于原点的对称点(5,-25)在这个图象上;【教学说明】通过练习,巩固本节课数学内容.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第7题.教学反思教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.第3课时 反比例函数的图象与性质(3)教学目标【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题. 【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力. 【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知 1.正比例函数有哪些性质? 2.一次函数有哪些性质? 3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P (-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k 1x,y=2k x,其中,k 1,k 2是常数,且均不为0. 由于这两个函数的图象交于P (-3,4),则P (-3,4)是这两个函数图象上的点,即点P 的坐标分别满足这两个表达式.因此,4=k 1×(-3),4=23k -解得,k 1=43k 2=-12所以,正比例函数解析式为y=43 x,反比例函数解析式为y=-12x.函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S 1= ;过点Q分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S2= ;S 1与S 2有什么关系?为什么?【归纳结论】反比例函数y=kx(k ≠0)中比例系数k 的几何意义:过双曲线y=kx(k ≠0)上任意一点引x 轴、y 轴的平行线,与坐标轴围成的矩形面积为k 的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A 是反比例函数y=kx 的图象上的一点,AB 丄x 轴于点B ,且△ABO 的面积是3,则k 的值是( )A.3B.-3C.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k|.解:根据题意可知:S △AOB =12|k|=3,又反比例函数的图象位于第一象限,k >0,则k =6.【答案】 C 2.反比例函数y=6x 与y=2x在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )A.12B.2C.3D.1分析:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,再根据反比例函数系数k 的几何意义分别求出四边形OEAC 、△AOE 、△BOC 的面积,进而可得出结论.解:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,∵由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3, S △BOC =1,∴S △AOB =S 四边形OEAC -S △AOE -S △BOC =6-3-1=2.【答案】 B3.已知直线y =x +b 经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C ,求k 、b 的值.解:点A(3,0)在直线y =x +b 上,所以0=3+b ,b =-3.一次函数的解析式为:y =x -3.又因为点B(-2,m)也在直线y =x -3上,所以m =-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=kx上,所以k =-2×(-5)=10.4.已知反比例函数y=1k x的图象与一次函数y =k 2x -1的图象交于A(2,1). (1)分别求出这两个函数的解析式;(2)试判断A 点关于坐标原点的对称点与两个函数图象的关系.分析: (1)因为点A 在反比例函数和一次函数的图象上,把A 点的坐标代入这两个解析式即可求出k 1、k 2的值.(2)把点A 关于坐标原点的对称点A ′坐标代入一次函数和反比例函数解析式中,可知A ′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2. 1=2k 2-1,k 2=1.所以反比例函数的解析式为:y=2x;一次函数解析式为:y =x -1.(2)点A(2,1)关于坐标原点的对称点是A ′(-2,-1).把A ′点的横坐标代入反比例函数解析式得,y=22=-1,所以点A 在反比例函数图象上.把A ′点的横坐标代入一次函数解析式得,y =-2-1=-3,所以点A ′不在一次函数图象上.5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数的y=-3x的图象上.(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由(1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和(4)都是利用函数的图象进行解题.一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y 的值在-1≤y ≤3范围内时,相应的x 的值为:-1≤x ≤1.(4)从图象可知,y 随x 的增大而减小,又m +1>m ,所以y 1>y 2. 或解:当x 1=m 时,y 1=-2m +1;当x 2=m +1时,y 2=-2×(m +1)+1=-2m -1所以y 1-y 2=(-2m +1)-(-2m -1)=2>0,即y 1>y2.6.如图,一次函数y =kx +b 的图象与反比例函数y=mx的图象交于A 、B 两点.(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x 的取值范围.分析:(1)把A 、B 两点坐标代入两解析式,即可求得一次函数和反比例函数解析式. (2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.1.3反比例函数的应用教学目标【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.教学过程一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=FS,请你判断:当F一定时,p是S的反比例函数吗?(2)如人对地面的压力F=450N,完成下表:(3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S 增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=FS,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.(2)因为F=450N,所以当S=0.005m2时,由p=FS得:p=450/0.005=90000(Pa)类似的,当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V 的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y与x的函数关系式是,自变量x的取值范围是.【答案】y=12x;x>03.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数关系是(不考虑x的取值范围).【答案】y=90 x4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是( )【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是( )A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是( ).A.y=3000xB.y=6000xC.y=3000xD.y=6000x【答案】D。

湘教版数学九年级上册1.3《 反比例函数的应用》教学设计

湘教版数学九年级上册1.3《 反比例函数的应用》教学设计

湘教版数学九年级上册1.3《反比例函数的应用》教学设计一. 教材分析湘教版数学九年级上册1.3《反比例函数的应用》是本册教材中的一个重要内容,主要介绍了反比例函数的定义、性质及应用。

本节内容是在学生已经掌握了正比例函数的基础上进行学习的,对于学生来说,反比例函数的概念和性质相对较为抽象,因此,在教学过程中,需要通过具体实例让学生理解和掌握反比例函数的概念和性质,并能够运用反比例函数解决实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和性质有一定的了解。

但是,对于反比例函数的理解和应用还需要通过具体实例来进行引导和培养。

此外,学生的学习习惯和思维方式各有不同,因此在教学过程中,需要关注学生的个体差异,充分调动学生的积极性,激发学生的学习兴趣。

三. 教学目标1.理解反比例函数的定义和性质。

2.能够运用反比例函数解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.反比例函数的定义和性质。

2.运用反比例函数解决实际问题。

五. 教学方法1.实例教学法:通过具体实例让学生理解和掌握反比例函数的概念和性质。

2.问题驱动法:引导学生主动探究反比例函数的应用,培养学生的解决问题的能力。

3.分组合作法:分组讨论和解决问题,培养学生的团队合作能力和沟通能力。

六. 教学准备1.教学课件:制作反比例函数的定义、性质和应用的课件。

2.实例材料:准备一些实际问题,让学生运用反比例函数进行解决。

3.练习题:准备一些练习题,巩固学生对反比例函数的理解和应用。

七. 教学过程1.导入(5分钟)利用课件介绍反比例函数的背景知识,引导学生回顾正比例函数的概念和性质,为新课的学习做好铺垫。

2.呈现(15分钟)利用课件展示反比例函数的定义和性质,通过具体实例让学生理解和掌握反比例函数的概念和性质。

3.操练(15分钟)让学生分组讨论,运用反比例函数解决实际问题。

教师巡回指导,解答学生的问题,并给予鼓励和表扬。

反比例函数与一次函数的综合-完整版课件

反比例函数与一次函数的综合-完整版课件

下节课预习提示和作业布置
预习提示
下节课将学习反比例函数与二次函数的综合应用,请学生提前预习相关内容,了 解基本概念和性质
作业布置
布置与反比例函数与一次函数综合应用相关的练习题和思考题,要求学生认真完 成并提交作业
THANKS FOR WATCHING
感谢您的观看
行程问题
结合反比例函数和一次函 数,可以解决与行程相关 的问题,如根据速度和时 间的关系计算路程等。
经济问题
反比例函数和一次函数也 可以应用于经济领域,如 分析成本、收益和利润之 间的关系等。
两者结合的综合题型分析
函数图像分析 通过观察和分析反比例函数和一 次函数的图像,可以判断它们的 增减性、对称性等性质,进而解 决相关问题。
反比例函数的图像关于原点对称,即 满足奇函数的性质 $f(-x) = -f(x)$。
反比例函数在其定义域内具有单调性 :在第一、三象限内单调递减,在第 二、四象限内单调递增。
反比例函数在其定义域内没有极值点 ,也没有拐点。
CHAPTER 03
一次函数基本概念与性质
一次函数定义及表达式
一次函数定义
反比例函数与一次函 数的综合-完整版课件
汇报人:XXX 2024-01-22
contents
目录
• 引言 • 反比例函数基本概念与性质 • 一次函数基本概念与性质 • 反比例函数与一次函数综合应用 • 典型例题解析与讨论 • 课堂小结与作业布置
CHAPTER 01
引言
目的和背景
帮助学生理解反比例 函数和一次函数的基 本概念、性质和应用 。
学生2
对于例题2,我首先根据点 M、N 的坐标和距离关系列出方程组,然后利用待 定系数法求出反比例函数和一次函数的解析式。最后通过解方程组求出两个函 数的交点坐标。

2020年中考数学高频重点《反比例函数与一次函数的综合》专题突破精练精解(含答案)

2020年中考数学高频重点《反比例函数与一次函数的综合》专题突破精练精解(含答案)

【中考数学】专题07 反比例函数与一次函数的综合【达标要求】1.认识反比例函数是描述具有反比例变化规律的数学模型.2.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式.3.能画出反比例函数ky x=(k 为常数,0k ≠)的图象,根据图象和解析式探索并理解0k > 和0k <时图象的变化情况.4.能用反比例函数解决简单的实际问题.【知识梳理】知识点1 反比例函数的概念形如 (k 为常数,0k ≠)的函数,叫做反比例函数,其中x 叫自变量,y 是x 的函数.变式:1y kx -=或xy k =(k 为常数,0k ≠). 知识点2 反比例函数的图像和性质知识点3 k的集合意义在反比例函数kyx=(k为常数,0k≠)的图象上任取一点,过这个点分别作x轴、y轴的平行线,两平行线与坐标轴围成的矩形的面积的于知识点4 用待定系数法求反比例函数的解析式先设函数解析式为kyx=(k为常数,0k≠),在根据条件求出未知系数k的值,从而写出这个函数解析式.【精练精解】1.在同一平面直角坐标系中,函数y=﹣x+k与y=(k为常数,且k≠0)的图象大致是()A.B.C.D.2.若反比例函数的图象上有两个不同的点关于y轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是()A.m>B.m<-C.m m><-.m-<<kxxy2-=3.如图,一次函数y=-x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标.4.如图,已知反比例函数y=kx(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点.(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=﹣x+b的图象于点M,交反比例函数y=kx上的图象于点N.若PM>PN,结合函数图象直接写出a的取值范围.5.已知一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A ,与x 轴交于点B (5,0),若OB =AB ,且S △OAB =152. (1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,△ABP 是等腰三角形,求点P 的坐标.6.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.7.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.8.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x >0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点. (1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB ,BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段. 请根据图中信息解答下列问题:(1)求这天的温度y 与时间x(0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10 ℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?10.如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)直接写出关于x的不等式>kx+b的解集.11.如图,矩形ABCD 的两边AD ,AB 的长分别为3,8,E 是DC 的中点,反比例函数y =mx 的图象经过点E ,与AB 交于点F.(1)若点B 坐标为(-6,0),求m 的值及图象经过A ,E 两点的一次函数的解析式; (2)若AF -AE =2,求反比例函数的解析式.12.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB 绕点A 顺时针旋转90°得到线段AC ,反比例函数y =(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =(k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =(k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.13.如图,已知点A在反比例函数(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b 的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.14.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.15.一次函数y=kx+b的图象经过点A(-2,12),B(8,-3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数的图象相交于点C(x1,y1),D(x2,y2),与轴交于点E,且CD=CE,求m的值.16.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.专题07 反比例函数与一次函数的综合【达标要求】1.认识反比例函数是描述具有反比例变化规律的数学模型.2.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式.3.能画出反比例函数ky x=(k 为常数,0k ≠)的图象,根据图象和解析式探索并理解0k > 和0k <时图象的变化情况.4.能用反比例函数解决简单的实际问题.【知识梳理】知识点1 反比例函数的概念形如ky x=(k 为常数,0k ≠)的函数,叫做反比例函数,其中x 叫自变量,y 是x 的函数. 变式:1y kx -=或xy k =(k 为常数,0k ≠). 知识点2 反比例函数的图像和性质知识点3 k 的集合意义 在反比例函数ky x=(k 为常数,0k ≠)的图象上任取一点,过这个点分别作x 轴、y 轴的平行线,两平行线与坐标轴围成的矩形的面积的于k || .知识点4 用待定系数法求反比例函数的解析式先设函数解析式为kyx=(k为常数,0k≠),在根据条件求出未知系数k的值,从而写出这个函数解析式.【精练精解】1.在同一平面直角坐标系中,函数y=﹣x+k与y=(k为常数,且k≠0)的图象大致是()A.B.C.D.【答案】C【解析】∵函数y=﹣x+k与y=(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=经过第一、三象限,故选项D错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=经过第二、四象限,故选项C正确,选项A、B错误,故选C.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用一次函数和反比例函数的性质解答.2.若反比例函数的图象上有两个不同的点关于y轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是()A.m>B.m<-C.m m><-.m-<<kxkxk xkx xy2-=【答案】C【解析】∵反比例函数2y x=-上两个不同的点关于y 轴对称的点,在一次函数y =–x +m 图象上,∴反比例函数2y x=-与一次函数y =–x +m 有两个不同的交点,联立两个函数解方程22220y x m x mx x x y x m⎧=⎪⇒=-+⇒-+=⎨⎪=-+⎩,∵有两个不同的交点,∴有两个不等的根,∴Δ=m 2–8>0,∴m或m <–,故选C .3.如图,一次函数y =-x +3的图象与反比例函数y =kx(k ≠0)在第一象限的图象交于A (1,a )和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)若点P 在x 轴上,且△APC 的面积为5,求点P 的坐标.【解析】(1)把点A (1,a )代入y =-x +3,得a =2,∴A (1,2),把A (1,2)代入反比例函数y =kx,∴k =1×2=2; ∴反比例函数的表达式为y =2x; (2)∵一次函数y =-x +3的图象与x 轴交于点C ,∴C (3,0), 设P (x ,0),∴PC =|3-x |,∴S △APC =12|3-x |×2=5,∴x =-2或x =8, 022=+-mxx∴P 的坐标为(-2,0)或(8,0).【点评】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.4.如图,已知反比例函数y =kx(k ≠0)的图象与一次函数y =﹣x +b 的图象在第一象限交于A (1,3),B (3,1)两点.(1)求反比例函数和一次函数的表达式;(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内交一次函数y =﹣x +b 的图象于点M ,交反比例函数y =kx上的图象于点N .若PM >PN ,结合函数图象直接写出a 的取值范围.【解析】(1)∵反比例函数y =kx(k ≠0)的图象与一次函数y =﹣x +b 的图象在第一象限交于A (1,3),B (3,1)两点,∴3=1k,3=﹣1+b ,∴k =3,b =4, ∴反比例函数和一次函数的表达式分别为y =3x,y =﹣x +4; (2)由图象可得:当1<a <3时,PM >PN .【点评】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.5.已知一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S△OAB=152.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.【解析】(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S△OAB=152,∴12×5×AD=152,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=mx中得,m=9×3=27,∴反比例函数的解析式为y=27x,将点A(9,3),B(5,0)代入直线y=kx+b中,9350k bk b+=⎧⎨+=⎩,∴3434kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AB的解析式为y=34x﹣34;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB =AP 时,设P (a ,0), ∵A (9,3),B (5,0),∴AP 2=(9﹣a )2+9,BP 2=(5﹣a )2, ∴(9﹣a )2+9=(5﹣a )2,∴a =658, ∴P (658,0), 即:满足条件的点P 的坐标为(0,0)或(10,0)或(13,0)或(658,0). 【点评】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键.6.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.【答案】(1)由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)P (23,73). 【解析】(1)∵点A 的坐标为(–1,4),点B 的坐标为(4,n ).由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =2k x的图象过点A (–1,4),B (4,n ), ∴k 2=–1×4=–4,k 2=4n ,∴n =–1,∴B (4,–1), ∵一次函数y =k 1x +b 的图象过点A ,点B ,∴11441k b k b -+=+=-⎧⎨⎩,解得k =–1,b =3,∴直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)设直线AB 与y 轴的交点为C ,∴C (0,3),∵S △AOC =12×3×1=32, ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152, ∵S △AOP :S △BOP =1:2,∴S △AOP =152×13=52, ∴S △COP =52–32=1,∴12×3x P =1,∴x P =23, ∵点P 在线段AB 上,∴y =–23+3=73,∴P (23,73).【点评】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.7.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.【答案】(1)一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)S△ABD=3.(3)y1<y2.【解析】(1)∵反比例函数y=mx经过点B(2,–1),∴m=–2,∵点A(–1,n)在y=2x-上,∴n=2,∴A(–1,2),把A,B坐标代入y=kx+b,则有221k bk b-+=+=-⎧⎨⎩,解得11kb=-=⎧⎨⎩,∴一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)∵直线y=–x+1交y轴于C,∴C(0,1),∵D,C关于x轴对称,∴D(0,–1),∵B(2,–1),∴BD∥x轴,∴S △ABD =12×2×3=3. (3)∵M (x 1,y 1)、N (x 2,y 2)是反比例函数y =–2x 上的两点,且x 1<x 2<0,s ∴y 1<y 2. 【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用函数的增减性,比较函数值的大小.8.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =m x(x >0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)【解析】:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形,∴AD =BC =2,BC ⊥x 轴.∴AD ⊥x 轴.又∵A(1,0),∴D(1,2).∵D 在反比例函数y =m x的图象上, ∴m =1×2=2.∴反比例函数的解析式为y =2x. (2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C.(3)设点P 的横坐标为a ,则23<a <3. 归纳:反比例函数中,y 随x 的大小变化的情况,应分x >0与x <0两种情况讨论,而不能笼统地说成“k <0时,y 随x 的增大而增大”.双曲线上的点在每个象限内,y 随x 的变化是一致的.运用反比例函数的性质时,要注意在每一个象限内的要求.9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB ,BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x(0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10 ℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【点拨】 (1)用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y =10即可.【解答】 解:(1)设线段AB 解析式为y =k 1x +b(k ≠0),∵线段AB 过点(0,10),(2,14),代入,得⎩⎪⎨⎪⎧b =10,2k 1+b =14,解得⎩⎪⎨⎪⎧k 1=2,b =10. ∴AB 解析式为y =2x +10(0≤x <5).∵B 在线段AB 上,当x =5时,y =20.∴B 坐标为(5,20).∴线段BC 的解析式为y =20(5≤x <10). 设双曲线CD 的解析式为y =k 2x(k 2≠0). ∵C(10,20),∴k 2=200.∴双曲线CD 解析式为y =200x(10≤x ≤24). ∴y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧2x +10(0≤x<5),20(5≤x<10),200x (10≤x ≤24).(2)由(1)可知,恒温系统设定恒定温度为20 ℃.(3)把y =10代入y =200x中,解得x =20. ∴20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.归纳:反比例函数实际应用题是近年中考常见的题型,解题时首先要仔细审读题目(或图象)中给予的信息,挖掘题目(或图象)中隐含的条件,提取有用信息,综合运用所学知识解决问题. 10.如图,已知点D 在反比例函数y=的图象上,过点D 作DB ⊥y 轴,垂足为B (0,3),直线y=kx+b 经过点A (5,0),与y 轴交于点C ,且BD=OC ,OC :OA=2:5.(1)求反比例函数y=和一次函数y=kx+b 的表达式;(2)直接写出关于x 的不等式>kx+b 的解集.【分析】(1)由OC、OA、BD之间的关系结合点A、B的坐标可得出点C、D的坐标,由点D的坐标利用反比例函数图象上点的坐标特征可求出a值,进而可得出反比例函数的表达式,再由点A、C的坐标利用待定系数法,即可求出一次函数的表达式;(2)将一次函数表达式代入反比例函数表达式中,利用根的判别式△<0可得出两函数图象无交点,再观察图形,利用两函数图象的上下位置关系即可找出不等式>kx+b的解集.解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3),∴OA=5,OC=BD=2,OB=3,又∵点C在y轴负半轴,点D在第二象限,∴点C的坐标为(0,﹣2),点D的坐标为(﹣2,3).∵点D(﹣2,3)在反比例函数y=的图象上,∴a=﹣2×3=﹣6,∴反比例函数的表达式为y=﹣.将A(5,0)、B(0,﹣2)代入y=kx+b,,解得:,∴一次函数的表达式为y=x﹣2.(2)将y=x ﹣2代入y=﹣,整理得: x 2﹣2x+6=0, ∵△=(﹣2)2﹣4××6=﹣<0,∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x <0时,反比例函数图象在一次函数图象上方,∴不等式>kx+b 的解集为x <0.11.如图,矩形ABCD 的两边AD ,AB 的长分别为3,8,E 是DC 的中点,反比例函数y =m x的图象经过点E ,与AB 交于点F.(1)若点B 坐标为(-6,0),求m 的值及图象经过A ,E 两点的一次函数的解析式;(2)若AF -AE =2,求反比例函数的解析式.【解析】:(1)点B 坐标为(-6,0),AD =3,AB =8,E 为CD 的中点,∴点A(-6,8),E(-3,4).∵函数图象经过点E ,∴m =-3×4=-12.设AE 的解析式为y =kx +b ,将点A ,E 坐标代入,得⎩⎪⎨⎪⎧-6k +b =8,-3k +b =4,解得⎩⎪⎨⎪⎧k =-43,b =0.∴一次函数的解析式为y =-43x. (2)AD =3,DE =4,∴AE =AD 2+DE 2=5.∵AF -AE =2,∴AF =7,BF =1.设点E 坐标为(a ,4),则点F 坐标为(a -3,1),∵E ,F 两点在函数y =m x图象上, ∴4a =a -3,解得a =-1.∴E(-1,4).∴m =-1×4=-4.∴反比例函数的解析式为y =-4x. 12.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB 绕点A 顺时针旋转90°得到线段AC ,反比例函数y =(k ≠0,x >0)的图象经过点C . (1)求直线AB 和反比例函数y =(k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =(k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.【答案】见解析。

湘教版九上数学第一单元:建立反比例函数模型解跨学科问题习题课件

湘教版九上数学第一单元:建立反比例函数模型解跨学科问题习题课件

2.【中考·孝感】公元前 3 世纪,古希腊科学家阿基米德发现
了杠杆平衡,后来人们把它归纳为“杠杆原理”,即阻力×
阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知
阻力和阻力臂分别是 1 200 N 和 0.5 m,则动力 F(单位:
N)关于动力臂 l(单位:m)的函数表达式正确的是( B )
A.F=1
【答案】C
9.【中考·鄂尔多斯】教室里的饮水机接通电源就进入自 动程序,开机加热时每分钟上升10 ℃,加热到100 ℃ 停止加热,水温开始降落,此时水温y(℃)与开机后用 时x(min)成反比例关系,直至水温降至30 ℃,饮水机 关机,饮水机关机后即刻自动开机,重复上述自动程 序.若在水温为30 ℃时接通电源, 水温y(℃)与时间x(min)的关系如 图所示:
解:把 y=10 代入 y=20x0中,解得 x=20. ∴20-10=10(h). 答:恒温系统最多可以关闭 10 h,才能使蔬菜避免 受到伤害.
XJ版九年级上
第1章 反比例函数
1.3 反比例函数的应用 建立反比例函数模型解跨学科问题
提示:点击 进入习题
1C 2B 3C 4A
5D 6A 7C 8C
答案显示
提示:点击 进入习题
9 见习题 10 见习题 11 见习题
答案显示
1.物理学知识告诉我们,一个物体受到的压强 p 与所受 压力 F 及受力面积 S 之间的计算公式为 p=FS.当一个 物体所受压力为定值时,该物体所受压强 p 与受力面 积 S 之间的关系用图象表示大致为( C )
*8.某气球内充满了一定质量的气体,当温度不变时,气
球内气体的气压 p(kPa)是气体体积 V(m3)的反比例函
数,其图象如图所示.当气球内的气压大于 120 kPa

湘教版2019-2020学年度 九年级数学上学期全册教案(含教学反思)

湘教版2019-2020学年度 九年级数学上学期全册教案(含教学反思)

第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t的变化,平均速度v发生了怎样的变化?(4)平均速度v 是所用时间t 的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点? 【归纳结论】一般地,如果两个变量x,y 之间可以表示成y=kx(k 为常数且k ≠0)的形式,那么称y 是x 的反比例函数.其中x 是自变量,常数k 称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t ,其中自变量t 可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t 代表的是时间,且时间不能为负数,所有t 的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动. 三、运用新知,深化理解 1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm 2,它的一边是acm ,这边上的高是hcm ,则a 与h 的函数关系;(2)压强p 一定时,压力F 与受力面积S 的关系;(3)功是常数W 时,力F 与物体在力的方向上通过的距离s 的函数关系.(4)某乡粮食总产量为m 吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x 的函数关系式. 分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=kx(k 是常数,k ≠0).所以此题必须先写出函数解析式,后解答.解:(1)a=12/h ,是反比例函数; (2)F =pS ,是正比例函数; (3)F=W/s ,是反比例函数; (4)y=m/x ,是反比例函数. 3.当m 为何值时,函数y=224m x-是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m=3/2.所以反比例函数的解析式为y=4x.4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V=5m 3时,ρ=1.98kg /m 3 (1)求p 与V 的函数关系式,并指出自变量的取值范围. (2)求V=9m 3时,二氧化碳的密度. 解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y1与x 成正比例,则y1=k1x ,y2与x2成反比例,则y2=k2x2,又由y =y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y 与x 间的函数关系式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例,所以y 2=22k x ,而y =y 1+y 2,所以y=k 1x+22k x,当x =2与x =3时,y 的值都等于19.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.1”中第1、3、5题.教学反思学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)教学目标【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6x的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y 轴右边的各点,当横坐标x 逐渐增大时,纵坐标y 如何变化?y 轴左边的各点是否也有相同的规律?(2)这两条曲线会与x 轴、y 轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=3x的图形,并思考下列问题: (1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y 随自变量x 的变化是如何变化的? 【归纳结论】一般地,当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而减小.探究3:反比例函数y=-6x的图象.可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数y=-6x 的图象的方式与步骤进行自主探索其图象; (2)可以通过探索函数y=6x 与y=-6x 之间的关系,画出y=-6x的图象.【归纳结论】一般地,当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.探究4:反比例函数的性质反比例函数y=-6x与y=6x的图象有什么共同特征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数y=kx(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=kx与y=-kx(k≠0)的图象关于x轴或y轴对称.【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解1.教材P9例1.2.如果函数y=2x k+1的图象是双曲线,那么k=.【答案】-23.如果反比例函数y=3kx-的图象位于第二、四象限内,那么满足条件的正整数k的值是.【答案】1,24.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=kbx的图象在第象限.【答案】二、四5.反比例函数y=1x的图象大致是图中的( ).解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限. 【答案】 C6.下列反比例函数图象一定在第一、三象限的是( )【答案】 C7.已知函数23()2m y m x --为反比例函数.(1)求m 的值;(2)它的图象在第几象限内?在各象限内,y 随x 的增大如何变化? (3)当-3≤x ≤-12时,求此函数的最大值和最小值.8.作出反比例函数y=12x的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围. 解:列表:由图知: (1)y =3; (2)x =-6; (3)0<x <69.作出反比例函数y=-4x的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围. 解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时反比例函数的图象与性质(2)教学目标【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.教学过程一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知1.思考:已知反比例函数y=kx的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x 的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y 随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=kx的图象,根据图象,回答下列问题:(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B 都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-3x上,则y1、y2中较小的是.【答案】y22.已知点A(x1,y1),B(x2,y2)是反比例函数y=kx(k>0)的图象上的两点,若x1<0<x2,则有( ).A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0【答案】 A3.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( )A.b 1<b 2B.b 1=b 2C.b 1>b 2D.大小不确定 【答案】 D 4.函数y=-1x的图象上有两点A(x 1,y 1),B(x 2,y 2),若0<x 1<x 2,则( ) A.y 1<y 2 B.y 1>y 2 C.y 1=y 2 D.y 1、y 2的大小不确定 【答案】 A5.已知点P(2,2)在反比例函数y=kx(k ≠0)的图象上, (1)当x=-3时,求y 的值;(2)当1<x <3时,求y 的取值范围.6.已知y=kx(k ≠0,k 为常数)过三个点A(2,-8),B(4,b),C(a ,2). (1)求反比例函数的表达式; (2)求a 与b 的值. 解:(1)将A (2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16x; (2)将B (4,b )代入反比例解析式得:b=-4;将C (a ,2)代入反比例解析式得:2=-16a,即a=-8.7.已知反比例函数的图象过点(1,-2). (1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上?分析:(1)反比例函数的图象过点(1,-2),即当x =1时,y =-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A 在反比例函数的图象上,易求出m 的值,再验证点A 关于两坐标轴和原点的对称点是否在图象上.解:(1)设:反比例函数的解析式为:y=kx (k ≠0).而反比例函数的图象过点(1,-2),即当x =1时,y =-2.所以-2=1k,k =-2.即反比例函数的解析式为:y=-2x.(2)点A(-5,m)在反比例函数y=-2x图象上,所以m=25-- =25 ,点A 的坐标为(-5, 25).点A 关于x 轴的对称点(-5,-25)不在这个图象上;点A 关于y 轴的对称点(5, 25)不在这个图象上;点A 关于原点的对称点(5,-25)在这个图象上;【教学说明】通过练习,巩固本节课数学内容.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第7题.教学反思教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.第3课时 反比例函数的图象与性质(3)教学目标【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题. 【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力. 【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知 1.正比例函数有哪些性质? 2.一次函数有哪些性质? 3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P (-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k 1x,y=2k x,其中,k 1,k 2是常数,且均不为0. 由于这两个函数的图象交于P (-3,4),则P (-3,4)是这两个函数图象上的点,即点P 的坐标分别满足这两个表达式.因此,4=k 1×(-3),4=23k -解得,k 1=43k 2=-12所以,正比例函数解析式为y=43 x,反比例函数解析式为y=-12x.函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S 1= ;过点Q分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S2= ;S 1与S 2有什么关系?为什么?【归纳结论】反比例函数y=kx(k ≠0)中比例系数k 的几何意义:过双曲线y=kx(k ≠0)上任意一点引x 轴、y 轴的平行线,与坐标轴围成的矩形面积为k 的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A 是反比例函数y=kx 的图象上的一点,AB 丄x 轴于点B ,且△ABO 的面积是3,则k 的值是( )A.3B.-3C.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k|.解:根据题意可知:S △AOB =12|k|=3,又反比例函数的图象位于第一象限,k >0,则k =6.【答案】 C 2.反比例函数y=6x 与y=2x在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )A.12B.2C.3D.1分析:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,再根据反比例函数系数k 的几何意义分别求出四边形OEAC 、△AOE 、△BOC 的面积,进而可得出结论.解:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,∵由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3, S △BOC =1,∴S △AOB =S 四边形OEAC -S △AOE -S △BOC =6-3-1=2.【答案】 B3.已知直线y =x +b 经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C ,求k 、b 的值.解:点A(3,0)在直线y =x +b 上,所以0=3+b ,b =-3.一次函数的解析式为:y =x -3.又因为点B(-2,m)也在直线y =x -3上,所以m =-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=kx上,所以k =-2×(-5)=10.4.已知反比例函数y=1k x的图象与一次函数y =k 2x -1的图象交于A(2,1). (1)分别求出这两个函数的解析式;(2)试判断A 点关于坐标原点的对称点与两个函数图象的关系.分析: (1)因为点A 在反比例函数和一次函数的图象上,把A 点的坐标代入这两个解析式即可求出k 1、k 2的值.(2)把点A 关于坐标原点的对称点A ′坐标代入一次函数和反比例函数解析式中,可知A ′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2. 1=2k 2-1,k 2=1.所以反比例函数的解析式为:y=2x;一次函数解析式为:y =x -1.(2)点A(2,1)关于坐标原点的对称点是A ′(-2,-1).把A ′点的横坐标代入反比例函数解析式得,y=22=-1,所以点A 在反比例函数图象上.把A ′点的横坐标代入一次函数解析式得,y =-2-1=-3,所以点A ′不在一次函数图象上.5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数的y=-3x的图象上.(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由(1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和(4)都是利用函数的图象进行解题.一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y 的值在-1≤y ≤3范围内时,相应的x 的值为:-1≤x ≤1.(4)从图象可知,y 随x 的增大而减小,又m +1>m ,所以y 1>y 2. 或解:当x 1=m 时,y 1=-2m +1;当x 2=m +1时,y 2=-2×(m +1)+1=-2m -1所以y 1-y 2=(-2m +1)-(-2m -1)=2>0,即y 1>y2.6.如图,一次函数y =kx +b 的图象与反比例函数y=mx的图象交于A 、B 两点.(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x 的取值范围.分析:(1)把A 、B 两点坐标代入两解析式,即可求得一次函数和反比例函数解析式. (2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.1.3反比例函数的应用教学目标【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.教学过程一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=FS,请你判断:当F一定时,p是S的反比例函数吗?(2)如人对地面的压力F=450N,完成下表:(3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S 增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=FS,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.(2)因为F=450N,所以当S=0.005m2时,由p=FS得:p=450/0.005=90000(Pa)类似的,当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V 的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y与x的函数关系式是,自变量x的取值范围是.【答案】y=12x;x>03.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数关系是(不考虑x的取值范围).【答案】y=90 x4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是( )【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是( )A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是( ).A.y=3000xB.y=6000xC.y=3000xD.y=6000x【答案】D。

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知反比例函数()10cy c x=≠和一次函数()20y kx b k =+≠的图象相交于点()2,3A -和()3,B a .(1)求反比例函数和一次函数的表达式;(2)将一次函数2y 向下平移5个单位长度后得到直线3y ,当213y y y >>时,求x 的取值范围. 2.如图,反比例函数()0ky k x=>的图象经过正方形OABC 的顶点B ,一次函数1y x =+经过BC 的中点D .(1)求反比例函数的表达式;(2)将ABD △绕点A 顺时针旋转90︒,点D 的对应点为E ,判断E 点是否落在双曲线上. 3.如图,反比例函数()0ky k x=< 的图象与矩形ABCO 的边相交于D 、E 两点()51E -,,且23AD BD =∶∶,一次函数经过D 、E 两点.(1)求反比例函数与一次函数的解析式; (2)求BDE △的面积.4.对于实数,a b ,我们可以用{}min ,a b 表示,a b 两数中较小的数,例如{}min 3,11-=- {}min 2,22=,类x x⎩⎭(1)求反比例函数的解析式;(2)请直接写出不等式2kx x ->的解集;(3)点P 为反比例函数ky x=图像的任意一点,若3POC AOC S S =△△,求点P 的坐标. 7.如图,一次函数y mx n =+()0m ≠的图象与反比例函数ky x=()0k ≠的图象交于第二、四象限内的点(),3A a 和点()6,B b .过点A 作x 轴的垂线,垂足为点C ,AOC 的面积为3(1)分别求出一次函数y mx n =+()0m ≠与反比例函数ky x=()0k ≠的表达式; (2)结合图象直接写出kmx n x>+的解集; (3)在x 轴正半轴上取点P ,使PA PB -取得最大值时,求出点P 的坐标.8.如图,直线y =2x +6与反比例函数=ky x(k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y =n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .x,求AOB 的面积;根据图象,请直接写出满足不等式1y kx b =+C ,点A 的坐标为(2)若点E 是点C 关于x 轴的对称点,求ABE 的面积. 11.已知平面直角坐标系中,直线AB 与反比例函数(0)ky x x=>的图象交于点()1,3A 和点()3,B n ,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数的表达式及n 的值;(2)将OCD 沿直线AB 翻折,点O 落在第一象限内的点E 处,EC 与反比例函数的图象交于点F . △请求出点F 的坐标;△将线段BF 绕点B 旋转,在旋转过程中,求线段OF 的最大值. 12.如图,正比例函数(0)y kx k =≠与反比例函数my (m 0)x=≠的图象交于A 、B 两点,A 的横坐标为4-,B 的纵坐标为6-.(1)求反比例函数的表达式. (2)观察图象,直接写出不等式mkx x<的解集. (3)将直线AB 向上平移n 个单位,交双曲线于C 、D 两点,交坐标轴于点E 、F ,连接OD 、BD ,若OBD 的面积为20,求直线CD 的表达式.13.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示.②的面积是OCD.如图,已知一次函数y轴交于点,若ACD的面积为16.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()1,0,点()44D ,在反比例函数()0k y x x=>的图象上,直线23y x b =+经过点C ,与y 轴交于点E ,与x 轴交于点M ,连接AC 、AE .(1)求k 、b 的值; (2)求ACE △的面积;(3)在x 轴上取点P ,求出使PC PE -取得最大值时点P 的坐标. 17.已知反比例函数1k y x=图象经过点(3,2)A ,直线:(0)l y kx b k =+<,经过点(2,0)C -,经过点A 且垂直于x 轴的直线与直线l 相交于B .(1)求1k 的值;(2)若ABC 的面积等于15,求直线l 的解析式;(3)点G 在反比例函数的图象上,点Q 在x 轴上,问是否存在点G 和点Q ,使以G .Q 及(2)中的C .B 四点为顶点的四边形是平行四边形,若存在,请求出点Q 的坐标,若不存在,请说明理由. 18.(综合与探究)如图,在平面直角坐标系中,已知反比例函数()0ky x x=<的图象过点()4,2C -,点D 的纵坐标为4,直线CD 与x 轴,y 轴分别交于点,A B .Rt AOB直角边上的一个动点,当16PCD AOBS S=时,求点关于y轴的对称点为x轴的对称点为,N 使得以点,,M N为顶点的四边形是平行四边形?若存在,标;若不存在,请说明理由..如图,已知直线y=x参考答案:3.(1)5y x =- 1722y x =+(2)944.(1)B (2)直线1x = 5.(1)1y x =- 2y x= (2)(1,0)C 12x <≤6.(1)3y x= (2)10x -<<或3>x (3)()1,3或()1,3--7.(1)反比例函数的表达式为6y x =-,一次函数表达式为122y x =-+.(2)2x <-或06x << (3)()10,0P 8.(1)8y x= (2)39.(1)反比例函数的表达式为:22y x=-(2)32AOBS=(3)20x -<<或1x >10.(1)一次函数解析式1y x 4=-,反比例函数解析式212y x= (2)32ABE S =△11.(1)3y x= 1n =(2)△F 点坐标为3(4,)4;△线段OF 的最大值为17104+12.(1)24y x=-(2)40x -<<或>4x。

2023年中考数学专题——反比例函数与一次函数的综合

2023年中考数学专题——反比例函数与一次函数的综合

2023年中考数学专题——反比例函数与一次函数的综合一、综合题1.如图,已知直线y=3x与双曲线y=kx交于A、B两点,且点A的横坐标为.(1)求k的值;(2)若双曲线y=kx上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=kx上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.2.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= nx(n为常数,且n≠0)的图象在第二象限交于点C.CD△x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤ nx的解集.3.如图,一次函数y mx b=+的图象与反比例函数kyx=的图象交于()3,1A,1(2B-,)n两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.4.如图,函数y1=﹣x+4的图象与函数y2=kx(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.5.已知一次函数y=kx+b和反比例函数y=mx图象相交于A(-4,2),B(n,-4)两点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b - mx<0的解集.6.如图,已知一次函数 ()1110y k x b k =+≠ 与反比例函数 ()2220k y k x=≠ 的图象交于 ()4,1A , (),2B n - 两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出 12y y < 时 x 的取值范围.7.如图,一次函数 y 2x 8=-+ 与函数 ky (x 0)x=> 的图象交于 ()A m,6 , ()B n,2 两点, AC y ⊥ 轴于C , BD x ⊥ 轴于D(1)求k 的值;(2)根据图象直接写出 k2x 80x-+-< 的x 的取值范围;(3)P 是线段AB 上的一点,连接PC ,PD ,若 PCA 和 PDB 面积相等,求点P 坐标.8.如图,在平面直角坐标系中,一次函数y =kx+b (k≠0)与反比例函数y =mx(m≠0)的图象相交于A 、B 两点,过点A 作AD△x 轴于点D ,AO =5,OD =34AD ,B 点的坐标为(﹣6,n )(1)求一次函数和反比例函数的表达式;(2)P 是y 轴上一点,且△AOP 是等腰三角形,请直接写出所有符合条件的P 点坐标.9.如图,A(3,m)是反比例函数y =kx 在第一象限图象上一点,连接OA ,过A 作AB△x 轴,连接OB ,交反比例函数y =kx的图象于点P(2 ,).(1)求m 的值和点B 的坐标; (2)连接AP ,求△OAP 的面积.10.如图,一次函数 4y x =-+ 的图象与反比例函数 ky x=(k 为常数,且 0k ≠ )的图象交于A (1,a )、B 两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.11.如图,正比例函数y1=﹣3x的图象与反比例函数y2= kx的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.12.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y= mx(m≠0)的图象交于第二、四象限A、B两点,过点A作AD△x轴于D,AD=4,sin△AOD= 45,且点B的坐标为(n,-2).(1)求一次函数与反比例函数的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.13.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.14.如图,一次函数y=x+4的图象与反比例函数y=kx(k为常数且k≠o)的图象交于A(-1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=32S△BOC,求点P的坐标.15.如图在平面直角坐标系中,直线AB与y轴交于点()0,7B,与反比例函数8yx=-在第二象限内的图象相交于点()1,A a-.(1)求直线AB的解析式;(2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点,E与y轴交于点,D求ACD的面积.16.如图,已知一次函数y= 12x+b的图象与反比例函数kyx=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当12kx bx+<时,请直接写出x的取值范围.17.如图,一次函数y1=kx+b的图象与反比例函数2myx=的图象交于点A(﹣2,﹣5),C(5,n),交y轴于点B,交x轴于点D.(1)求反比例函数2myx=和一次函数y1=kx+b的表达式;(2)连接OA,OC,求△AOC的面积;(3)根据图象,直接写出y1>y2时x的取值范围.18.如图,一次函数y=kx+b(k≠0)和反比例函数y=mx(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>mx的x的取值范围.19.如图,已知点A在反比例函数y=4x(x>0)的图象上,过点A作AC△x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A 的坐标;(2)若四边形ABOC 的面积是3,求一次函数y=kx+b 的表达式.20.如图,一次函数 y kx b =+ 的图象与反比例函数 my x=的图象相交于 ()1,A a , ()3,B c - 两点直线 y kx b =+ 分别交 x 轴、 y 轴于 C 、 D 两点.(1)直接写出不等式 0mkx b x+-> 的解集; (2)求ma c+ 的值; (3)求 C 点的坐标.答案解析部分1.【答案】(1)解:把x= 代入y x=,得y= 1,∴A(,1),把点)代入kyx=,解得:k=;(2)解:∵把y=3代入函数yx=,得x=3,∴C⎫⎪⎪⎝⎭,设过A,C两点的直线方程为:y kx b=+,把点),⎫⎪⎪⎝⎭,代入得:133b k b⎧=+⎪⎨=+⎪⎩,解得:4kb⎧=⎪⎨=⎪⎩,∴4y=+,设4y=+与x轴交点为D,则D点坐标为,03⎛⎫⎪⎪⎝⎭,∴113123233AOC CODAODS S S=-=⨯-⨯=;(3)解:设P点坐标a⎛⎫⎪⎪⎝⎭,由直线AB解析式可知,直线AB与y轴正半轴夹角为60,∵以O、M、P、N为顶点的四边形是有一组对角为60的菱形,P在直线3y x=上,∴点M只能在y轴上,∴N点的横坐标为a,代入yx=,解得纵坐标为:a,根据OP NP=,即得:,解得:1a=±.故P点坐标为:⎛⎝⎭或1,⎛-⎝⎭.【解析】【分析】(1)先求的A点纵坐标,然后用待定系数法求解即可;(2)先求出C点坐标,再用待定系数法求的直线AC的解析式,然后求得直线AC与x的交点坐标,再根据AOC COD AODS S S=-求解即可;(3)设P点坐标,3a a⎛⎫⎪⎪⎝⎭,根据题意用关于a的式子表示出N的坐标,再根据菱形的性质得OP NP=,求出a的值即可.2.【答案】(1)解:由已知,OA=6,OB=12,OD=4∵CD△x轴∴OB△CD∴△ABO△△ACD∴OA OBAD CD=∴61210CD=∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y= -80x把点A(6,0),B(0,12)代入y=kx+b得:0612k bb=+⎧⎨=⎩解得: 212k b =-⎧⎨=⎩∴一次函数解析式为:y=﹣2x+12 (2)解:当 80x- =﹣2x+12时,解得 x 1=10,x 2=﹣4 当x=10时,y=﹣8 ∴点E 坐标为(10,﹣8)∴S △CDE =S △CDA +S △EDA = 11201081014022⨯⨯+⨯⨯=(3)解:不等式kx+b≤nx,从函数图象上看,表示一次函数图象不低于反比例函数图象 ∴由图象得,x≥10,或﹣4≤x <0【解析】【分析】(1)根据三角形相似,可求出点 C 坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.3.【答案】(1)解:∵反比例函数y kx=的图象经过A (3,1),∴k =3×1=3,∴反比例函数的解析式为y 3x=; (2)解:把B ( 12-,n )代入反比例函数解析式,可得 12- n =3,解得n =﹣6,∴B ( 12- ,﹣6),把A (3,1),B ( 12- ,﹣6)代入一次函数y =mx+b ,可得13162m b m b =+⎧⎪⎨-=-+⎪⎩ ,解得 25m b =⎧⎨=-⎩ ,∴一次函数的解析式为y =2x ﹣5 【解析】【分析】(1)将点A 的坐标代入 反比例函数y kx=即可算出k 的值,从而求出反比例函数的解析式;(2)将 B ( 12-,n )代入反比例函数解析式 即可算出n 的值,从而求出B 点的坐标,将A,B 两点的坐标分别代入一次函数的解析式即可得出关于m,b 的二元一次方程组,求解得出m,b 的值,从而求出一次函数的解析式。

湘教版九年级数学上册-考点综合专题:反比例函数与一次函数、几何图形的综合

湘教版九年级数学上册-考点综合专题:反比例函数与一次函数、几何图形的综合

考点综合专题:反比例函数与一次函数、几何图形的综合◆类型一 同一坐标系中判断图象1.函数y =ax (a ≠0)与y =ax在同一坐标系中的大致图象是( )2.(2016·杭州中考)设函数y =k x (k ≠0,x >0)的图象如图所示,若z =1y ,则z 关于x 的函数图象可能为( )◆类型二 求交点坐标或根据交点求(取)值3.正比例函数y =kx 的图象与反比例函数y =mx 的图象有一个交点的坐标是(-1,-2),则另一个交点的坐标是____________.【方法4①】4.(2016·岳阳中考)如图,一次函数y =kx +b (k ,b 为常数,且k ≠0)和反比例函数y =4x (x >0)的图象交于A ,B 两点,利用函数图象直接写出不等式4x <kx +b 的解集是____________.【方法5】5.★(2016-2017·张家界市桑植县期中)如果一个正比例函数的图象与反比例函数y =-5x的图象交于A (x 1,y 1),B (x 2,y 2)两点,那么(x 2-x 1)(y 2-y 1)的值为________.【方法4②】 6.如图,反比例函数y =kx 的图象经过点A (-1,4),直线y =-x +b (b ≠0)与双曲线y=kx在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C ,D 两点. (1)求k 的值;(2)当b =-2时,求△OCD 的面积;(3)连接OQ ,是否存在实数b ,使得S △ODQ =S △OCD ?若存在,请求出b 的值;若不存在,请说明理由.7.如图,正比例函数y 1=mx (m >0)的图象与反比例函数y 2=kx (k >0)的图象交于点A (n ,4)和点B ,AM ⊥y 轴,垂足为M .若△AMB 的面积为8,若y 1>y 2,求实数x 的取值范围.【方法5】◆类型三 与面积相关的问题(含k 的几何意义)8.如图,矩形AOCB 的面积为4,反比例函数y =kx 的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是( )A .y =4xB .y =2xC .y =1xD .y =12x第8题图第9题图9.如图,直线y =x -2与y 轴交于点C ,与x 轴交于点B ,与反比例函数y =kx 的图象在第一象限交于点A ,连接OA .若S △AOB ∶S △BOC =1∶2,则k 的值为( )A .2B .3C .4D .6 10.(2016-2017·常德市澧县期中)如图,已知平面直角坐标系中,直线AB 与x 轴交于点A (3,0),与某反比例函数的图象在第三象限交于点B (-1,a ),连接BO ,若S △AOB =3.(1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与y 轴的交点为C 点,求S △OCB .◆类型四 与几何图形的综合11.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =kx的图象经过点B ,则k 的值是__________.【方法3】第11题图第12题图第13题图12.如图,A (4,0),B (3,3),以AO ,AB 为边作平行四边形OABC ,则经过C 点的反比例函数的解析式为____________.13.★(2016·菏泽中考)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6x在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差为( )A .36B .12C .6D .314.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =kx(x >0)的图象上,点D 的坐标为(4,3).(1)求k 的值;(2)将这个菱形沿x 轴正方向平移,当顶点D 落在反比例函数y =kx (x >0)的图象上时,求菱形平移的距离.考点综合专题:反比例函数与一次函数、几何图形的综合1.D 2.D3.(1,2) 4.1<x <45.-20 解析:∵正比例函数的图象与反比例函数y =-5x 的图象交于A (x 1,y 1),B (x 2,y 2)两点,∴点A ,B 关于原点对称,∴x 1=-x 2,y 1=-y 2,∴(x 2-x 1)(y 2-y 1)=2x 2·2y 2=4x 2y 2=-5×4=-20.6.解:(1)∵反比例函数y =kx的图象经过点A (-1,4),∴k =-1×4=-4;(2)当b =-2时,直线解析式为y =-x -2.∵当y =0时,-x -2=0,解得x =-2,∴C (-2,0).∵当x =0时,y =-x -2=-2,∴D (0,-2),∴S △OCD =12×2×2=2;(3)存在.当y =0时,-x +b =0,解得x =b .则C (b ,0),∵S △ODQ =S △OCD ,∴点Q 和点C 到OD 的距离相等,而Q 点在第四象限,∴Q 的横坐标为-b ,当x =-b 时,y =-x +b =2b ,则Q (-b ,2b ),∵点Q 在反比例函数y =-4x 的图象上,∴-b ·2b =-4,解得b=-2或b =2(舍去),∴b 的值为- 2.7.解:∵正比例函数y 1=mx (m >0)的图象与反比例函数y 2=kx (k ≠0)的图象交于点A (n ,4)和点B ,∴B (-n ,-4).∵△AMB 的面积为8,AM ⊥y 轴,∴12×8×n =8,解得n =2.∴A (2,4),B (-2,-4).由图形可知,当-2<x <0或x >2时,正比例函数y 1=mx (m >0)的图象在反比例函数y 2=kx(k ≠0)图象的上方,即y 1>y 2.8.C 9.B10.解:(1)由题意知AO =3,a <0.∵S △AOB =12AO ·|y B |=12×3×|a |=3,∴a =-2.即点B的坐标为(-1,-2).设该反比例函数的解析式为y =kx ,将点B (-1,-2)代入得k =2,∴该反比例函数的解析式为y =2x.设直线AB 的解析式为y =ax +b ,将点A (3,0),B (-1,-2)代入得⎩⎪⎨⎪⎧0=3a +b ,-2=-a +b ,解得⎩⎨⎧a =12,b =-32.∴直线AB 的解析式为y =12x -32; (2)由题意得C 点的坐标为⎝⎛⎭⎫0,-32,∴OC =32,∴S △OCB =12OC ·|x B |=12×32×|-1|=34. 11.3 12.y =-3x13.D 解析:设△OAC 和△BAD 的直角边长分别为a ,b ,则点B 的坐标为(a +b ,a -b ).∵点B 在反比例函数y =6x 的第一象限图象上,∴(a +b )(a -b )=a 2-b 2=6.∴S △OAC -S △BAD =12a 2-12b 2=12(a 2-b 2)=12×6=3.故选D.14.解:(1)如图,过点D 作DE ⊥y 轴于点E ,DF ⊥x 轴于点F ,∵点D 的坐标为(4,3),∴FO =4,DF =3,∴DO =5.∵四边形ABCD 为菱形,∴AD =DO =5,∴A 点坐标为(4,8).又∵点A (4,8)在反比例函数y =kx(x >0)的图象上,∴k =4×8=32;(2)将菱形ABCD 向右平移,使点D 落在反比例函数y =32x (x >0)的图象上的D ′点,过点D ′作D ′F ′⊥x 轴于F ′.∵DF =3,∴D ′F ′=3,∴D ′点的纵坐标为3,∴OF ′=323,∴FF ′=OF ′-OF =323-4=203,∴菱形ABCD 向右平移的距离为203.。

九年级数学上册考点综合专题反比例函数与一次函数几何图形的综合湘教版

九年级数学上册考点综合专题反比例函数与一次函数几何图形的综合湘教版

考点综合专题:反比例函数与一次函数、几何图形的综合◆类型一 同一坐标系中判断图象1.函数y =ax (a ≠0)与y =a x在同一坐标系中的大致图象是( )2.(2016·杭州中考)设函数y =k x(k ≠0,x >0)的图象如图所示,若z =1y,则z 关于x的函数图象可能为( )◆类型二 求交点坐标或根据交点求(取)值3.正比例函数y =kx 的图象与反比例函数y =m x的图象有一个交点的坐标是(-1,-2),则另一个交点的坐标是____________.【方法4①】4.(2016·岳阳中考)如图,一次函数y =kx +b (k ,b 为常数,且k ≠0)和反比例函数y =4x (x >0)的图象交于A ,B 两点,利用函数图象直接写出不等式4x<kx +b 的解集是____________.【方法5】5.★(2016-2017·张家界市桑植县期中)如果一个正比例函数的图象与反比例函数y =-5x的图象交于A (x 1,y 1),B (x 2,y 2)两点,那么(x 2-x 1)(y 2-y 1)的值为________.【方法4②】6.如图,反比例函数y =k x的图象经过点A (-1,4),直线y =-x +b (b ≠0)与双曲线y =k x在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C ,D 两点. (1)求k 的值;(2)当b =-2时,求△OCD 的面积;(3)连接OQ ,是否存在实数b ,使得S △ODQ =S △OCD ?若存在,请求出b 的值;若不存在,请说明理由.7.如图,正比例函数y 1=mx (m >0)的图象与反比例函数y 2=k x(k >0)的图象交于点A (n ,4)和点B ,AM ⊥y 轴,垂足为M .若△AMB 的面积为8,若y 1>y 2,求实数x 的取值范围.【方法5】◆类型三 与面积相关的问题(含k 的几何意义)8.如图,矩形AOCB 的面积为4,反比例函数y =k x的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是( )A .y =4xB .y =2xC .y =1xD .y =12x第8题图第9题图9.如图,直线y =x -2与y 轴交于点C ,与x 轴交于点B ,与反比例函数y =k x的图象在第一象限交于点A ,连接OA .若S △AOB ∶S △BOC =1∶2,则k 的值为( )A .2B .3C .4D .610.(2016-2017·常德市澧县期中)如图,已知平面直角坐标系中,直线AB 与x 轴交于点A (3,0),与某反比例函数的图象在第三象限交于点B (-1,a ),连接BO ,若S △AOB =3.(1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与y 轴的交点为C 点,求S △OCB .◆类型四 与几何图形的综合11.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =k x的图象经过点B ,则k 的值是__________.【方法3】第11题图 第12题图 第13题图12.如图,A (4,0),B (3,3),以AO ,AB 为边作平行四边形OABC ,则经过C 点的反比例函数的解析式为____________.13.★(2016·菏泽中考)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6x在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差为( )A .36B .12C .6D .314.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =k x(x >0)的图象上,点D 的坐标为(4,3).(1)求k 的值;(2)将这个菱形沿x 轴正方向平移,当顶点D 落在反比例函数y =k x(x >0)的图象上时,求菱形平移的距离.考点综合专题:反比例函数与一次函数、几何图形的综合 1.D 2.D3.(1,2) 4.1<x <45.-20 解析:∵正比例函数的图象与反比例函数y =-5x的图象交于A (x 1,y 1),B (x 2,y 2)两点,∴点A ,B 关于原点对称,∴x 1=-x 2,y 1=-y 2,∴(x 2-x 1)(y 2-y 1)=2x 2·2y 2=4x 2y 2=-5×4=-20.6.解:(1)∵反比例函数y =kx的图象经过点A (-1,4),∴k =-1×4=-4;(2)当b =-2时,直线解析式为y =-x -2.∵当y =0时,-x -2=0,解得x =-2,∴C (-2,0).∵当x =0时,y =-x -2=-2,∴D (0,-2),∴S △OCD =12×2×2=2;(3)存在.当y =0时,-x +b =0,解得x =b .则C (b ,0),∵S △ODQ =S △OCD ,∴点Q 和点C 到OD 的距离相等,而Q 点在第四象限,∴Q 的横坐标为-b ,当x =-b 时,y =-x +b =2b ,则Q (-b ,2b ),∵点Q 在反比例函数y =-4x的图象上,∴-b ·2b =-4,解得b =-2或b =2(舍去),∴b 的值为- 2.7.解:∵正比例函数y 1=mx (m >0)的图象与反比例函数y 2=kx(k ≠0)的图象交于点A (n ,4)和点B ,∴B (-n ,-4).∵△AMB 的面积为8,AM ⊥y 轴,∴12×8×n =8,解得n =2.∴A (2,4),B (-2,-4).由图形可知,当-2<x <0或x >2时,正比例函数y 1=mx (m >0)的图象在反比例函数y 2=k x(k ≠0)图象的上方,即y 1>y 2.8.C 9.B10.解:(1)由题意知AO =3,a <0.∵S △AOB =12AO ·|y B |=12×3×|a |=3,∴a =-2.即点B 的坐标为(-1,-2).设该反比例函数的解析式为y =k x,将点B (-1,-2)代入得k =2,∴该反比例函数的解析式为y =2x.设直线AB 的解析式为y =ax +b ,将点A (3,0),B (-1,-2)代入得⎩⎪⎨⎪⎧0=3a +b ,-2=-a +b ,解得⎩⎪⎨⎪⎧a =12,b =-32.∴直线AB 的解析式为y =12x -32;(2)由题意得C 点的坐标为⎝ ⎛⎭⎪⎫0,-32,∴OC =32,∴S △OCB =12OC ·|x B |=12×32×|-1|=34. 11. 3 12.y =-3x13.D 解析:设△OAC 和△BAD 的直角边长分别为a ,b ,则点B 的坐标为(a +b ,a -b ).∵点B 在反比例函数y =6x的第一象限图象上,∴(a +b )(a -b )=a 2-b 2=6.∴S △OAC -S △BAD=12a 2-12b 2=12(a 2-b 2)=12×6=3.故选D.14.解:(1)如图,过点D 作DE ⊥y 轴于点E ,DF ⊥x 轴于点F ,∵点D 的坐标为(4,3),∴FO =4,DF =3,∴DO =5.∵四边形ABCD 为菱形,∴AD =DO =5,∴A 点坐标为(4,8).又∵点A (4,8)在反比例函数y =kx(x >0)的图象上,∴k =4×8=32;(2)将菱形ABCD 向右平移,使点D 落在反比例函数y =32x(x >0)的图象上的D ′点,过点D ′作D ′F ′⊥x 轴于F ′.∵DF =3,∴D ′F ′=3,∴D ′点的纵坐标为3,∴OF ′=323,∴FF ′=OF ′-OF =323-4=203,∴菱形ABCD 向右平移的距离为203.。

湘教版九年级数学上册一次函数和反比例函数的综合问题专题

湘教版九年级数学上册一次函数和反比例函数的综合问题专题

一次函数和反比例函数的综合问题专题中考压轴题中函数之一次函数和反比例函数综合问题,选择、填空和解答三种题型都有,内容主要包括函数图象的分析,一次函数和反比例函数的交点问题,一次函数和反比例函数的综合应用三方面的内容。

一.函数图象的分析:原创模拟预测题1. 已知121<k <0<k -,则函数1y k x 1=-和2k y x= 的图象大致是【 】A. B. C. D.【答案】B 。

【考点】一次函数和反比例函数的性质,曲线上点的坐标与方程的关系,不等式的性质,排它法的应用。

【分析】∵2k >0,∴双曲线2k y x=的图象在一、三象限。

故排除C 。

又∵函数1y k x 1=-的b 1<0=-,∴直线1y k x 1=-与y 轴的交点在x 轴下方。

故排除D 。

又∵1k >1-,∴b>1b <a a--⇒,即OB<OA 。

故排除A 。

故选B 。

原创模拟预测题2.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系,直至水温降至20℃,饮水机关机。

饮水机关机后即刻自动开机,重复上述自动程序。

若在水温为20℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在下午第一节下课时(14:30)能喝到健康卫生和水温适中的水(水沸腾后水温在20℃和50℃之间,含20℃和50℃),则接通电源的时间最晚是当天下午的 之间。

【答案】13:50~14:14。

【考点】一次函数和反比例函数的图象分析,待定系数法的应用,曲线上点的坐标与方程的关系。

二. 一次函数和反比例函数的交点问题:原创模拟预测题3如图,反比例函数11k y x=的图象与正比例函数22y k x =的图象交于点(2,1),则使y 1>y 2的x 的取值范围是【 】A .0<x <2B .x >2C .x >2或-2<x <0D .x <-2或0<x <2 【答案】D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档