立体几何专题
立体几何专题
立体几何专题一.选择题(共6小题)1.L一个几何体的三视图如图所示(单位:m),其正视图、侧视图均有一个角为60°的菱形,俯视图为边长为1的正方形,则该几何体的体积为()A.m3B.m3C.m3D.m32.某几何体的三视图如图所示,且该几何体的体积为3,则正视图中的x=()A.1 B.2 C.3 D.43.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径,若该几何体的体积是,则三视图中圆的半径为()A.2 B.3 C.4 D.64.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π5.一个几何体的三视图如图所示,则该几何体的表面积为()A.24+πB.24﹣3πC.24﹣πD.24﹣2π6.已知四棱锥P﹣ABCD的三视图如图所示,则四棱锥P﹣ABCD的四个侧面中的最大面积是()A.6 B.8 C.2 D.3二.解答题(共10小题)7.如图,在三棱柱ABC﹣A 1B1C1中,AA1⊥底面ABC,AB=1,,∠ABC=60°.(1)证明AB⊥A1C;(2)求异面直线AB1和BC1所成角的余弦值;(3)求二面角A﹣A1C﹣B的平面角的余弦值.8.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AC=AB=AA1,E是BC的中点,G是CC1的中点.(I)求异面直线AE与A1C所成的角;(II)求证EG⊥A1C;(III)求二面角C﹣AG﹣E的正切值.9.如图,在长方体ABCD﹣A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,(1)求异面直线EF与A1D所成角的余弦值;(2)证明AF⊥平面A1ED;(3)求二面角A1﹣ED﹣F的正弦值.10.如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(Ⅰ)求证:MN∥平面ABCD(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.11.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.12.已知在直三棱柱ABC﹣A1B1C1中,AB⊥BC,且AA1=2AB=2BC=2,E,M分别是CC1,AB1的中点.(Ⅰ)证明:EM∥平面ABC;(Ⅱ)求直线A1E与平面AEB1所成角的正弦值;(Ⅲ)求二面角B﹣EM﹣B1的余弦值.13.如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE;(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若直线CA与平面BEA所成的角的正弦值为,求实数a的值.14.如图四棱锥P﹣ABCD,三角形ABC为正三角形,边长为2,AD⊥DC,AD=1,PO垂直于平面ABCD于O,O为AC的中点,PO=1.(1)证明PA⊥BO;(2)证明DO∥平面PAB;(3)平面PAB与平面PCD所成二面角的余弦值.15.如图,在三棱锥S﹣ABC中,SA=AB=AC=BC=SC,0为BC的中点.(I)求证:SO⊥面ABC;(II)求异面直线SC与AB所成角的余弦值;(III)在线段AB上是否存在一点E,使二面角B﹣SC﹣E的平面角的余弦值为;若存在,求BE:BA的值;若不存在,试说明理由.16.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PA,PB,BC的中点.(Ⅰ)求证:EF⊥平面PAD;(Ⅱ)求平面EFG与平面ABCD所成锐二面角的大小;(Ⅲ)线段PD上是否存在一个动点M,使得直线GM与平面EFG所成角为,若存在,求线段PM的长度,若不存在,说明理由.立体几何专题参考答案与试题解析一.选择题(共6小题)1.L一个几何体的三视图如图所示(单位:m),其正视图、侧视图均有一个角为60°的菱形,俯视图为边长为1的正方形,则该几何体的体积为()A.m3B.m3C.m3D.m3【解答】解:由三视图知几何体为两个大小相同的正四棱锥的组合体,∵正视图、侧视图均有一个角为60°的菱形,俯视图为边长为1m的正方形,∴正四棱锥的高是正视图、侧视图中边长为1m的正三角形的高(m),∴该几何体的体积V=2×=(m3),故选:C.2.某几何体的三视图如图所示,且该几何体的体积为3,则正视图中的x=()A.1 B.2 C.3 D.4【解答】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选:C.3.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径,若该几何体的体积是,则三视图中圆的半径为()A.2 B.3 C.4 D.6【解答】解:由三视图可知:该几何体为球去掉,余下的几何体.设三视图中圆的半径为r,则=,解得r=2.故选:A.4.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C.5.一个几何体的三视图如图所示,则该几何体的表面积为()A.24+πB.24﹣3πC.24﹣πD.24﹣2π【解答】解:几何体为棱长为2的正方体挖去半径为2的球,所以几何体的表面积为:=24﹣π;故选:C.6.已知四棱锥P﹣ABCD的三视图如图所示,则四棱锥P﹣ABCD的四个侧面中的最大面积是()A.6 B.8 C.2 D.3【解答】解:因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,后面是等腰三角形,腰为3,所以后面的三角形的高为:=,所以后面三角形的面积为:×4×=2.两个侧面面积为:×2×3=3,前面三角形的面积为:×4×=6,四棱锥P﹣ABCD的四个侧面中面积最大的是前面三角形的面积:6.故选:A.二.解答题(共10小题)7.如图,在三棱柱ABC﹣A 1B1C1中,AA1⊥底面ABC,AB=1,,∠ABC=60°.(1)证明AB⊥A1C;(2)求异面直线AB1和BC1所成角的余弦值;(3)求二面角A﹣A1C﹣B的平面角的余弦值.【解答】证明:(1)在三棱柱ABC﹣A1B1C1中,∵AA1⊥ABC,∴AA1⊥AB,在△ABC中,AB=1,,∠ABC=60°,由正弦定理得∠ACB=30°,∴∠BAC=90°,即AB⊥AC.且AA1,AC为平面ACC1A1内两条相交直线,∴AB⊥平面ACC1A1,又A1C⊂ACC1A,∴AB⊥A1C.解:(2)如图,以A为坐标原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),,,,∴,,∴,∴异面直线AB1和BC1所成角的余弦值为(3)可取为平面AA 1C的法向量,设平面A 1BC的法向量为,则,又∵,,∴,不妨取y=1,则,因此有∴二面角A﹣A1C﹣B的平面角的余弦值为.8.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AC=AB=AA1,E是BC的中点,G是CC1的中点.(I)求异面直线AE与A1C所成的角;(II)求证EG⊥A1C;(III)求二面角C﹣AG﹣E的正切值.【解答】解:(I)取B1C1的中点E1,连A1E1,E1C,E1C1,则AE∥A1E1,所以∠E1A1C是异面直线AE与A1C所成的角.设AC=AB=AA 1=2a,则,,..在△A1E1C中,.所以异面直线AE与A1C所成的角为.(II)由(I)可知,A1E1⊥B1C1,又因为三棱柱ABC﹣A1B1C1是直三棱柱,所以A1E1⊥面BCC1B1,得A1E1⊥EG;又由△E1CC1与△GEC相似,得又由A1E1∩CE1=E1,所以EG⊥面A1E1C,EG⊥A1C.(III)连接AG,设P是AC的中点,过点P作PQ⊥AG于Q,连EP,EQ,则EP⊥AC.又由平面ABC⊥平面ACC1A1,所以EP⊥平面ACC1A1.∠PQE是二面角C﹣AG﹣E的平面角,由,得所以二面角C﹣AG﹣E的平面角正切值是.9.如图,在长方体ABCD﹣A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,(1)求异面直线EF与A1D所成角的余弦值;(2)证明AF⊥平面A1ED;(3)求二面角A1﹣ED﹣F的正弦值.【解答】解:(1)如图所示,建立空间直角坐标系,点A为坐标原点,设AB=1,依题意得D(0,2,0),F(1,2,1),A1(0,0,4),E(1,,0).(1)易得=(0,,1),=(0,2,﹣4).于是cos<,>==.所以异面直线EF与A1D所成角的余弦值为.(2)证明:连接ED,易知=(1,2,1),=(﹣1,,4),=(﹣1,,0),于是=0,=0.因此,AF⊥EA1,AF⊥ED.又EA1∩ED=E,所以AF⊥平面A1ED.(3)设平面EFD的一个法向量为u=(x,y,z),则即不妨令x=1,可得u=(1,2,﹣1).由(2)可知,为平面A1ED的一个法向量.于是cos<u,>==,从而sin<u,>=.二面角A1﹣ED﹣F的正弦值是10.如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(Ⅰ)求证:MN∥平面ABCD(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.【解答】(Ⅰ)证明:如图,以A为坐标原点,以AC、AB、AA1所在直线分别为x、y、z轴建系,则A(0,0,0),B(0,1,0),C(2,0,0),D(1,﹣2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,﹣2,2),又∵M、N分别为B1C、D1D的中点,∴M(1,,1),N(1,﹣2,1).由题可知:=(0,0,1)是平面ABCD的一个法向量,=(0,﹣,0),∵•=0,MN⊄平面ABCD,∴MN∥平面ABCD;(Ⅱ)解:由(I)可知:=(1,﹣2,2),=(2,0,0),=(0,1,2),设=(x,y,z)是平面ACD1的法向量,由,得,取z=1,得=(0,1,1),设=(x,y,z)是平面ACB1的法向量,由,得,取z=1,得=(0,﹣2,1),∵cos<,>==﹣,∴sin<,>==,∴二面角D1﹣AC﹣B1的正弦值为;(Ⅲ)解:由题意可设=λ,其中λ∈[0,1],∴E=(0,λ,2),=(﹣1,λ+2,1),又∵=(0,0,1)是平面ABCD的一个法向量,∴cos<,>===,整理,得λ2+4λ﹣3=0,解得λ=﹣2或﹣2﹣(舍),∴线段A1E的长为﹣2.11.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.【解答】(1)证明:取AD的中点I,连接FI,∵矩形OBEF,∴EF∥OB,EF=OB,∵G,I是中点,∴GI∥BD,GI=BD.∵O是正方形ABCD的中心,∴OB=BD.∴EF∥GI,EF=GI,∴四边形EFIG是平行四边形,∴EG∥FI,∵EG⊄平面ADF,FI⊂平面ADF,∴EG∥平面ADF;(2)解:建立如图所示的坐标系O﹣xyz,则B(0,﹣,0),C(,0,0),E(0,﹣,2),F(0,0,2),设平面CEF的法向量为=(x,y,z),则,取=(,0,1)∵OC⊥平面OEF,∴平面OEF的法向量为=(1,0,0),∵|cos<,>|=∴二面角O﹣EF﹣C的正弦值为=;(3)解:AH=HF,∴==(,0,).设H(a,b,c),则=(a+,b,c)=(,0,).∴a=﹣,b=0,c=,∴=(﹣,,),∴直线BH和平面CEF所成角的正弦值=|cos<,>|==.12.已知在直三棱柱ABC﹣A1B1C1中,AB⊥BC,且AA1=2AB=2BC=2,E,M分别是CC1,AB1的中点.(Ⅰ)证明:EM∥平面ABC;(Ⅱ)求直线A1E与平面AEB1所成角的正弦值;(Ⅲ)求二面角B﹣EM﹣B1的余弦值.【解答】证明:(Ⅰ)在直三棱柱ABC﹣A1B1C1中,BB1⊥AB,BB1⊥BC,又∵AB⊥BC,∴AB⊥平面BCC1B1.…(1分)如图,以点B为原点,,,分别为x轴、y轴、z轴正方向,建立空间直角坐标系,则B(0,0,0),C(1,0,0),B1(0,2,0),A(0,0,1),C1(1,2,0),A1(0,2,1).…(3分)∵E,M分别是CC1,AB1的中点,∴E(1,1,0),M(0,1,),∴=(﹣1,0,).平面ABC的法向量为=(0,2,0),∵•=0,∴⊥.又∵EM⊄平面ABC,∴EM∥平面ABC.…(6分)(Ⅱ)=(0,2,﹣1),=(﹣1,1,0),=(﹣1,1,1).设=(x1,y1,z1)为面AEB1的法向量,则•=•=0,即取y1=1,则x1=1,z1=2,从而=(1,1,2),设直线A1E与平面AEB1所成角为θ,则sinθ=|cos<,>|===,即直线A1E与平面AEB1所成角的正弦值为.…(10分)(Ⅲ)=(1,1,0),=(0,1,).设=(x2,y2,z2)为面BEM的法向量,则•=•=0,即取z2=2,则x2=1,y2=﹣1,从而=(1,﹣1,2),∴cos<,>==,由图形可知所求二面角的平面角为钝角,∴二面角B﹣EM﹣B1的余弦值为﹣.…(13分)13.如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE;(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若直线CA与平面BEA所成的角的正弦值为,求实数a的值.【解答】证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,又∵平面AEF⊥平面EFCB,平面AEF∩平面EFCB=EF,AO⊂平面AEF,∴AO⊥平面EFCB,又BE⊂平面EFCB,∴AO⊥BE.(Ⅱ)取CB的中点D,连接OD,则OD⊥EF,以O为原点,分别以OE、OA、OD为坐标轴建立空间直角坐标系,则O(0,0,0),E(a,0,0),F(﹣a,0,0),,,,∴,=(a,﹣a,0),设平面AEB的一个法向量,则,∴,令y=1,得=(,1,﹣1).平面AEF的一个法向量为,∴=﹣1,||=,||=1,∴,由二面角F﹣AE﹣B为钝二面角,∴二面角F﹣AE﹣B的余弦值为﹣.(Ⅲ),∴=4,||=,||=,∴cos<,>=,∴6a2﹣12a+16=10,解得a=1.14.如图四棱锥P﹣ABCD,三角形ABC为正三角形,边长为2,AD⊥DC,AD=1,PO垂直于平面ABCD于O,O为AC的中点,PO=1.(1)证明PA⊥BO;(2)证明DO∥平面PAB;(3)平面PAB与平面PCD所成二面角的余弦值.【解答】解:(1)证明:如图以A为原点建立空间直角坐标系A﹣xyz,则,A(0,0,0),B(,﹣1,0),C(,1,0),D(0,1,0),O(,,0),P(,,1)…(2分)=(,,1),=(1,,0),,∴PA⊥BO.…(5分)(2)证明:=(,,1),=(,﹣1,0),设平面APB法向量为=(x0,y0,z0)可得,令x°=1,则=(1,,)…(7分).=(,,0),,DO∥平面PAB…(9分)(3)=(,,1),=(,0,0)设平面DPC法向量为,可得,令y°=1,则=(0,1,)…(11分).平面PAB与平面PCD所成二面角的余弦值为 (13)15.如图,在三棱锥S﹣ABC中,SA=AB=AC=BC=SC,0为BC的中点.(I)求证:SO⊥面ABC;(II)求异面直线SC与AB所成角的余弦值;(III)在线段AB上是否存在一点E,使二面角B﹣SC﹣E的平面角的余弦值为;若存在,求BE:BA的值;若不存在,试说明理由.【解答】解:(Ⅰ)连接SO,显然∴SO⊥BC,设SB=a,则SO=,AO=,SA=a∴SO2+OA2=SA2,∴SO⊥OA,又∴BC∩OA=0,∴SO⊥平面ABC.(Ⅱ)以O为原点,以OC所在射线为x轴正半轴,以OA所在射线为y轴正半轴以OS所在射线为z轴正半轴建立空间直角坐标系.则有O(0,0,0),,,,,∴∴,∴,∴异面直线SC与AB所成角的余弦值为,(Ⅲ)假设存在E满足条件,设(0≤λ≤1),则,.设面SCE的法向量为=(x,y,z),由,得,.因为OA⊥面ABC,所以可取向量=(0,1,0)为面SBC的法向量.所以,,解得,.所以,当BE:BA=1:2时,二面角B﹣SC﹣E的余弦值为.16.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PA,PB,BC的中点.(Ⅰ)求证:EF⊥平面PAD;(Ⅱ)求平面EFG与平面ABCD所成锐二面角的大小;(Ⅲ)线段PD上是否存在一个动点M,使得直线GM与平面EFG所成角为,若存在,求线段PM的长度,若不存在,说明理由.【解答】(Ⅰ)证明:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB ⊥AD∴AB⊥平面PAD,(2分)又∵EF∥AB∴EF⊥平面PAD,(3分)(Ⅱ)取AD中点O,连结PO∵平面PAD⊥平面ABCD,PO⊥AD∴PO⊥平面ABCD,(4分)如图以O点为原点分别以OG、OD、OP所在直线为x轴y轴z轴建立空间直角坐标系:∴O(0,0,0)A(0,﹣2,0)B(4,﹣2,0)C(4,2,0),D(0,2,0),G(4,0,0),,E(0,﹣1,),设平面EFG的法向量为,,∴,(6分)又平面ABCD的法向量为,(7分)设平面EFG与平面ABCD所成锐二面角为θ∴,∴平面EFG与平面ABCD所成锐二面角为.(9分)(Ⅲ)设,,∴,(10分),∴=,(12分)即2λ2﹣3λ+2=0,无解,∴不存在这样的M.(13分)。
专题07 立体几何小题常考全归类(精讲精练)(原卷版)
专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。
高考数学(文)《立体几何》专题复习
(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
立体几何专题
立体几何专题1. (北京文) (18) (本小题 14 分)如图,在四棱锥 P-ABCD 中,底面 ABCD 为矩形, 平面 PAD⊥平面 ABCD , PA⊥ PD , PA=PD , E , F 分别为 AD , PB 的中点.( Ⅰ ) 求证: PE ⊥BC ; (Ⅱ)求证:平面 PAB ⊥平面 PCD ; (Ⅲ) 求证: EF∥平面 PCD.2. (北京理) (16) (本小题 14 分)如图, 在三棱柱 ABC- A 1B 1C 1 中, CC 1 」平面 ABC , D , E , F , G 分别为 AA 1,AC , A 1C 1,BB 1 的中点, AB=BC= 5, AC= AA 1 =2.( Ⅰ ) 求证: AC⊥平面 BEF ; ( Ⅱ ) 求二面角B-CD-C 1 的余弦值; (Ⅲ) 证明: 直线 FG 与平面 BCD 相交.3. (江苏) (15) (本小题满分 14 分)在平行六面体ABCD 一 A B C D 中,AA = AB, AB 」B C .求证: (1) AB∥平面A B C; (2) 平面ABB A 」平面A BC.4. (浙江) (19) (本题满分 15 分)如图,已知多面体 ABCA1B1C1,A1A, B1B, C1C均垂直于平面 ABC,∠ABC=120°, A1A=4, C1C=1, AB=BC=B1B=2.(Ⅰ)证明:AB1 ⊥平面A1B1C1;(Ⅱ)求直线 AC1 与平面 ABB1 所成的角的正弦值.1 1 1 1 1 1 1 1 1 1 1 1 1第 2 页共 10 页5. (天津文) (17)(本小题满分 13 分)如图,在四面体 ABCD 中,△ABC 是等边三角形,平面 ABC⊥平面 ABD,点 M 为棱AB 的中点, AB=2, AD= 2 3 ,∠BAD=90°.( Ⅰ )求证:AD⊥BC;( Ⅱ ) 求异面直线 BC 与 MD 所成角的余弦值;(Ⅲ)求直线 CD 与平面 ABD 所成角的正弦值.6. (天津理) (17)(本小题满分 13 分)如图,AD∥BC 且 AD=2BC,AD 」CD , EG∥AD且 EG=AD,CD∥FG 且 CD=2FG,DG 」平面ABCD, DA=DC=DG=2.(I)若 M 为 CF 的中点, N 为 EG 的中点,求证:MN∥平面CDE;(II)求二面角E BC F 的正弦值;(III)若点 P 在线段 DG 上,且直线 BP 与平面 ADGE 所成的角为60°,求线段 DP 的长.7. (全国卷一文)(18)(12 分)如图, 在平行四边形 ABCM 中, AB = AC = 3, ∠ACM = 90, 以 AC 为折痕 将△ ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA. (1)证明:平面 ACD ⊥平面 ABC ;(2) Q 为线段 AD 上一点, P 在线段 BC 上, 且 BP = DQ = DA , 求三棱锥3Q ABP 的体积.8. (全国卷一理)(18)(12 分)如图, 四边形 ABCD 为正方形, E, F 分别为 AD, BC 的中点, 以 DF 为折 痕把 △DFC 折起,使点 C 到达点 P 的位置,且 PF 」BF . (1)证明:平面 PEF 」平面 ABFD ; (2)求 DP 与平面 ABFD 所成角的正弦值 .29. (全国卷二文)( 19) (12 分)如图,在三棱锥P ABC 中,AB = BC = 2 2,PA = PB = PC = AC = 4,O为AC 的中点.(1)证明:PO 」平面ABC;(2)若点M 在棱 BC 上,且MC = 2MB,求点C 到平面POM 的距离.10. (全国卷二理)(20)(12分)如图,在三棱锥P ABC 中,AB = BC = 2 2,PA = PB = PC = AC = 4,O 为AC 的中点.(1)证明:PO 」平面ABC;(2) 若点M 在棱BC 上,且二面角M PA C 为30,求PC 与平面 PAM 所成角的正弦值.POA CMB11. (全国卷三文)(19)(12分)如图,矩形ABCD所在平面与半圆弧 CD 所在平面垂直,M 是CD 上异于C, D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM 上是否存在点 P ,使得MC∥平面PBD ?说明理由.12. (全国卷三理)(19)(12分)如图,边长为 2 的正方形ABCD所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C, D 的点.(1)证明:平面 AMD⊥平面BMC;(2) 当三棱锥M ABC 体积最大时,求面 MAB 与面MCD所成二面角的正弦值.13. (12 分)如图,四棱锥 P-ABCD 中,侧面 PAD 为等比三角形且垂直于底面 ABCD,1AB = BC = AD, 三BAD = 三ABC = 90o , E 是 PD 的中点.2(1) 证明:直线CE/ / 平面 PAB(2) 点 M 在棱 PC 上,且直线 BM 与底面 ABCD 所成锐角为45o ,求二面角 M-AB-D 的余弦值14. (12 分)如图,在四棱锥 P-ABCD 中, AB//CD,且三BAP = 三CDP = 90(1)证明:平面 PAB⊥平面PAD;(2)若 PA=PD=AB=DC, 三APD = 90 ,求二面角 A-PB-C 的余弦值.15. (12 分)如图,四面体 ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD= ∠CBD,AB=BD.(1) 证明:平面ACD⊥平面 ABC;(2) 过 AC 的平面交 BD 于点 E,若平面 AEC 把四面体 ABCD 分成体积相等的两部分,求二面角 D –AE –C 的余弦值.16.如图,在四棱锥 P-ABCD 中,底面 ABCD 为正方形,平面PAD⊥平面 ABCD,点 M在线段 PB 上, PD//平面 MAC, PA=PD= 6, AB=4.(I)求证: M 为 PB 的中点;(II)求二面角 B-PD-A 的大小;(III)求直线 MC 与平面 BDP 所成角的正弦值.17.如图,在三棱锥 P-ABC 中,PA⊥底面 ABC,三BAC = 90o .点 D, E, N 分别为棱PA, PC, BC 的中点, M 是线段 AD 的中点, PA=AC=4, AB=2.(Ⅰ)求证: MN∥平面BDE;(Ⅱ)求二面角 C-EM-N 的正弦值;7(Ⅲ) 已知点 H 在棱 PA 上,且直线 NH 与直线 BE 所成角的余弦值为,求线段 AH21的长.18.如图,几何体是圆柱的一部分,它是由矩形为旋转轴旋转得到的,是的中点.(Ⅰ)设是(Ⅱ)当上的一点,且,求的大小;,,求二面角的大小.(及其内部) 以边所在直线19. (本题满分 15 分)如图,已知四棱 P–ABCD,△PAD 是以 AD 为斜边的等腰直角三角形,BC∥AD,D⊥AD, PC=AD=2DC=2CB, E 为 PD 的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.。
立体几何《球》 专题(提高题)(题目及答案)
《球》【类型1:求长度】1、设正三棱锥A BCD -的所有顶点都在球O 的球面上,1BC =,,E F 分别是,AB BC 的中点,EF DE ⊥,则球O 的半径为2、点S 、A 、B 、C 2的同一球面上,点S 到平面ABC 的距离为12,3AB BC CA ===则点S 与ABC ∆中心的距离为( )A 3B 2C .1D .123、已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M 与圆N 的公共弦,4AB =.若3OM ON ==,则两圆圆心的距离MN = .4、高为24的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为5、(2013年辽宁卷)已知三棱柱111C B A ABC - 的6个顶点都在球O 的球面上,若AB = 3,AC = 4 ,AB AC ⊥ 121=AA ,则球O 的半径为( )A 317B .210C .132D .3106、已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=32,则球心到平面ABC的距离为()A.1 B.2C.3D.27、已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.2C.3D.28、已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________.9、(2013年天津卷)已知一个正方体的所有顶点在一个球面上. 若球的体积为92, 则正方体的棱长为______.【类型2:求面积】1、在四面体ABCD 中,若AB CD ==2AC BD ==,AD BC ==ABCD 的外接球的表面积为( )A .2πB .4πC .6πD .8π2、四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________.3、已知点A 、B 、C 、D 均在球O 上,AB =BC =错误!未找到引用源。
立体几何复习专题及答案-高中数学
立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
立体几何专题复习(自己精心整理)
专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD。
(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1(1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD。
题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC。
求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE。
微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD。
微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=错误!PD,求证:平面PQC⊥平面DCQ。
思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD。
高中数学《立体几何》专题复习 (1)
高中数学《立体几何》专题复习一1.(2018·安徽东至二中段测)将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆锥D.一个圆柱、两个圆锥答案 D解析把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.2.以下关于几何体的三视图的论述中,正确的是()A.正方体的三视图是三个全等的正方形B.球的三视图是三个全等的圆C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆答案 B解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.3.如图所示,几何体的正视图与侧视图都正确的是()答案 B解析侧视时,看到一个矩形且不能有实对角线,故A,D排除.而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应为B中所示,故选B.4.一个几何体的三视图如图,则组成该几何体的简单几何体为()A.圆柱和圆锥B.正方体和圆锥C.四棱柱和圆锥D.正方体和球答案 C5.(2018·沧州七校联考)三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB 的长为()A.16 3 B.38C.4 2 D.211答案 C解析由已知中的三视图可得SC⊥平面ABC,且底面△ABC为等腰三角形.在△ABC中,AC=4,AC边上的高为23,所以BC=4.在Rt△SBC中,由SC=4,可得SB=4 2. 6.(2017·衡水中学调研卷)已知一个四棱锥的高为3,其底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为()A.2 2 B.6 2C.1 D. 2答案 A解析因为底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,所以在直角坐标系中,底面是边长为1和3的平行四边形,且平行四边形的一条对角线垂直于平行四边形的短边,此对角线的长为22,所以该四棱锥的体积为V=13×22×1×3=2 2.7.(2018·四川泸州模拟)一个正四棱锥的所有棱长均为2,其俯视图如图所示,则该正四棱锥的正视图的面积为()A. 2B. 3C.2 D.4答案 A解析由题意知,正视图是底边长为2,腰长为3的等腰三角形,其面积为12×2×(3)2-1= 2.8.(2018·湖南郴州模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()A.①②B.③④C.①③D.②④答案 D解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.9.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()答案 D解析依题意,此几何体为组合体,若上、下两个几何体均为圆柱,则俯视图为A;若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若上边的几何体为底面为等腰直角三角形的直三棱柱,下边的几何体为正四棱柱时,俯视图为C;若俯视图为D,则正视图中还有一条虚线,故该几何体的俯视图不可能是D,故选D.10.(2018·江西上馓质检)点M,N分别是正方体ABCD-A1B1C1D1的棱A1B1,A1D1的中点,用过平面AMN和平面DNC1的两个截面截去正方体的两个角后得到的几何体如图,则该几何体的正(主)视图,侧(左)视图、俯视图依次为()A.①②③B.②③④C.①③④D.②④③答案 B解析由直视图可知,该几何体的正(主)视图、侧(左)视图、俯视图依次为②③④,故选B. 11.(2018·四川宜宾期中)某几何体的三视图如图所示,则该几何体最长棱的长度为()A.4 B.3 2C.2 2 D.2 3答案 D解析由三视图可知,该几何体为如图所示的四棱锥P-ABCD,由图可知其中最长棱为PC,因为PB2=PA2+AB2=22+22=8,所以PC2=PB2+BC2=8+22=12,则PC=23,故选D.12.(2018·北京东城区期末)在空间直角坐标系O-xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).画该四面体三视图中的正视图时,以xOz平面为投影面,则得到的正视图可以为()答案 A解析设S(2,2,2),A(2,2,0),B(0,2,0),C(0,0,2),则此四面体S-ABC如图①所示,在xOz平面的投影如图②所示.其中S′是S在xOz平面的投影,A′是A在xOz平面的投影,O是B在xOz平面的投影,SB 在xOz平面的投影是S′O,并且是实线,CA在xOz平面的投影是CA′,且是虚线,如图③. 13.(2018·江西宜春模拟)某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大为()A.2 2 B.4C.2 3 D.2 6答案 C解析由三视图知该几何体为棱锥S-ABD,其中SC⊥平面ABCD,将其放在正方体中,如图所示.四面体S-ABD的四个面中△SBD的面积最大,三角形SBD是边长为22的等边三角形,所以此四面体的四个面中面积最大为34×8=2 3.故选C.14.(2018·江苏张家港一模)若将一个圆锥侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的高为________cm.答案 3解析设圆锥的底面圆半径为r cm,则2πr=2π,解得r=1 cm,∴h=22-1= 3 cm. 15.(2018·成都二诊)已知正四面体的俯视图如图所示,其中四边形ABCD是边长为2的正方形,则这个四面体的正视图的面积为________.答案2 2解析由俯视图可得,原正四面体AMNC可视作是如图所示的正方体的一内接几何体,则该正方体的棱长为2,正四面体的正视图为三角形,其面积为12×2×22=2 2.16.(2018·上海长宁区、嘉定区质检)如图,已知正三棱柱的底面边长为2,高为5,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为________.答案13解析将正三棱柱ABC-A1B1C1沿侧棱AA1展开,再拼接一次,如图所示,在展开图中,最短距离是六个矩形形成的大矩形对角线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理得d=122+52=13.17.某几何体的正(主)视图和侧(左)视图如图1,它的俯视图的直观图是矩形O1A1B1C1如图2,其中O1A1=6,O1C1=2,则该几何体的侧面积为________.答案96解析由俯视图的直观图可得y轴与C1B1交于D1点,O1D1=22,故OD=42,俯视图是边长为6的菱形,则该几何体是直四棱柱,侧棱长为4,则侧面积为6×4×4=96. 1.(课本习题改编)如图为一个几何体的三视图,则该几何体是()A.四棱柱B.三棱柱C.长方体D.三棱锥答案 B解析由几何体的三视图可知,该几何体的直观图如图所示,即为一个平放的三棱柱.2.(2018·山东泰安模拟)某三棱锥的三视图如图所示,其侧视图为直角三角形,则该三棱锥最长的棱长等于()A.4 2 B.34C.41 D.5 2答案 C解析根据几何体的三视图,得该几何体是底面为直角三角形,有两个侧面垂直于底面,高为5的三棱锥,最长的棱长等于25+16=41,故选C.3.(2018·安徽毛坦厂中学月考)已知一个几何体的三视图如图所示,则这个几何体的直观图是()答案 C解析A项中的几何体,正视图不符,侧视图也不符,俯视图中没有虚线;B项中的几何体,俯视图中不出现虚线;C项中的几何体符合三个视图;D项中的几何体,正视图不符.故选C.4.(2017·山东德州质检)如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是()答案 C解析此几何体的侧视图是从左边往右边看,故其侧视图应选C.5.(2017·广东汕头中学摸底)如图是一正方体被过棱的中点M,N,顶点A及过N,顶点D,C1的两个截面截去两角后所得的几何体,该几何体的正视图是()答案 B6.(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③,故选B.7.(2014·课标全国Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案 B解析由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.8.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()答案 B解析D项为主视图或者侧视图,俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.9.底面水平放置的正三棱柱的所有棱长均为2,当其正(主)视图有最大面积时,其侧(左)视图的面积为()A.2 3 B.3C. 3 D.4答案 A解析当正视图面积最大时,侧视图是一个矩形,一个边长为2,另一边长是三棱柱底面三角形的高为3,故侧视图面积为2 3.10.(2015·北京,文)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2C. 3 D.2答案 C解析将三视图还原成几何体的直观图,如图,由三视图可知,底面ABCD是边长为1的正方形,SB⊥底面ABCD,SB=AB=1,由勾股定理可得SA=SC=2,SD=SB2+DB2=1+2=3,故四棱锥中最长棱的棱长为 3.故选C. 11.(2017·南昌模拟)若一几何体的正视图与侧视图均为边长为1的正方形,则下列图形一定不是该几何体的俯视图的是()答案 D解析 若该几何体的俯视图为选项D ,则其正视图为长方形,不符合题意,故选D. 12.某几何体的正视图与侧视图如图所示,若该几何体的体积为13,则该几何体的俯视图可以是( )答案 D解析 通过分析正视图和侧视图,结合该几何体的体积为13,可知该几何体的底面积应为1,因为符合底面积为1的选项仅有D 选项,故该几何体为一个四棱锥,其俯视图为D. 13.(2018·兰州诊断考试)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中x 的值是( )A .2 B.92 C.32 D .3答案 D解析 由三视图知,该几何体是四棱锥,底面是一个直角梯形,底面积S =12×(1+2)×2=3,高h =x ,所以其体积V =13Sh =13×3x =3,解得x =3,故选D.14.某几何体的三视图如图所示,则该几何体中,最大侧面的面积为( )A.12B.22C.52D.62答案 C解析 由三视图知,该几何体的直观图如图所示.平面AED ⊥平面BCDE ,四棱锥A -BCDE 的高为1.四边形BCDE 是边长为1的正方形,则S △AED =12×1×1=12,S △ABC =S △ABE =12×1×2=22,S △ACD =12×1×5=52,故选C.15.(2017·山东师大附中月考)如图是各棱长均为2的正三棱柱ABC -A 1B 1C 1的直观图,则此三棱柱侧视图的面积为________. 答案 2 3解析 依题意,得此三棱柱的侧视图是边长分别为2,3的矩形BB 1D 1D ,故其面积是2 3.16.(2017·北京西城区期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________. 答案 2 3解析 由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.17.用小立方块搭一个几何体,使它的正视图和俯视图如图所示,则它最多需要______个小立方块.答案14解析本题考查了三视图的有关知识.需要小立方块最多则:第一层最多6个,第二层最多5个,第三层最多3个,故最多用14个.18.(2017·湖南株洲质检)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()答案 C解析通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求.。
立体几何中的组合体问题专题(有答案)
立体几何中的组合体问题专题(有答案)例1.正方体与球问题:正方体的棱长为1.求球的半径:⑴若正方体的八个顶点都在球面上,⑵若球内切于正方体;⑶12条棱组成一个正方体,一充气球在正方体内,求球的最大半径.例2.正四面体与球问题:正四面体的棱长为1.求球的半径:⑴若正四面体的四个顶点都在球面上,⑵若球内切于正四面体;⑶6条棱组成一个正四面体,一充气球在正四面体内,求球的最大半径.例3.四球问题:四个球的半径都为1.⑴桌面放两两相切的3个球,这3个球上面放一个球,求这个球的最高点离桌面的距离;⑵求与上述4个球都相切的小球的半径.例4.圆锥、圆柱与球⑴底面半径为1cm高为10cm的圆柱内,可以放几个半径为0.5cm的小球?⑵圆锥底面半径为3,高为4,一个球内切于圆锥,求球的半径;⑶圆锥底面半径为3,高为4,两个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑷圆锥底面半径为3,高为4,三个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑸圆锥底面半径为3,内接于一个半径为4的球,求圆锥的高.例5.圆锥与正四棱柱⑴圆锥底面半径为3,高为4,正四棱柱的高为3,且内接于圆锥,求正四棱柱的底面边长;⑵圆锥底面半径为3,高为4,正四棱柱的高为x,且内接于圆锥,求正四棱柱的体积.练习一、补(补成长方体或正方体)1. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为A 、3πB 、4πC 、33πD 、6π2. 在正三棱锥ABC S -中,M 、N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱32=SA ,则正三棱锥ABC S -外接球的表面积是( ) A .π12 B .π32 C .π36 D .π483. 点P 在直径为6的球面上,过P 作两两互相垂直的三条弦(两端点均在球面上的线段),若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是 A .6B .435C .2215D .210554. 一个正方体的体积是8,则这个正方体的内切球的表面积是( )A .8πB .6πC .4πD .π 5. 设正方体的棱长为233,则它的外接球的表面积为( )A .π38B .2πC .4πD .π346. 已知三棱锥S ABC -的三条侧棱两两垂直,且2,4SA SB SC ===,则该三棱锥的外接球的半径为 A .3 B .6 C .36 D .97. 已知长方体1111ABCD A B C D -的外接球的表面积为16,则该长方体的表面积的最大值为A .32B .36C .48D .648. 长方体1111ABCD A B C D -的各个顶点都在表面积为16π的球O 的球面上,其中1::2:1:3AB AD AA =,则四棱锥O ABCD -的体积为A .263 B . 63C .23D .3 9.【山东省潍坊一中2013届高三12月月考测试数学文】四棱锥P ABCD 的三视图如右图所示,四棱锥P ABCD 的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为22,则该球表面积为A .12B .24C .36D .4810. (河南省豫东、豫北十所名校2013届高三阶段性测试四)已知四面体ABCD 中,AB =AD =6,AC =4,CD =213,AB 丄平面ACD ,则四面体 ABCD 外接球的表面积为A . π36B . π88C . π92D . π12811. 正方体1111ABCD A B C D -的棱长为6,一个球与正方体的棱长都相切,则这个球的半径是____________.12. 三棱锥A -BCD 中,侧棱AB 、AC 、AD 两两垂直,ΔABC ,ΔACD , ΔADB 的面积分别为,222,则三棱锥A -BCD 的外接球的体积为. ______13. 四面体ABCD 中,共顶点A 的三条棱两两相互垂直,且其长分别为361、、,若四面体的四个顶点同在一个球面上,则这个球的表面积为 。
【小升初培优专题】 立体几何综合训练
立体几何综合训练1. 一个长方体仓库从里面量约长10米,宽5米,高6米,如果放入棱长是2米的正方体木箱,至多可以放进多少个?【解答】分别从长、宽、高三个方向进行考虑:10÷2=5(个)长这个方向可以放5个;5÷2=2(个)……1(米),宽这个方向可以放2个;6÷2=3(个),高这个方向可以放3个,5×2×3=30(个),所以至多可以放30个。
2. 如图,用棱长是1厘米的立方体拼成如图所示的立体图形,这个立体图形的表面积是多少平方厘米?上、下底面:3×5×2=30(平方厘米)左、右侧面:6×2=12(平方厘米)前、后侧面:8×2=16(平方厘米)立体图形的表面积:30+12+16=58(平方厘米)3. 如图(单位:厘米),要将一个圆锥形的零件用一个长方体硬纸板的盒子包装起来,至少需要多少平方厘米的硬纸板?(接头处忽略不计)。
5×2=10(厘米),长=宽=高10(厘米)硬纸板面积=10×10×6=600(平方厘米)立体几何综合训练4. 如图,甲圆柱体容器是空的,乙长方体容器中水深6.28厘米,将容器乙中的水全部倒入甲容器后水深8厘米,则甲容器的底面半径是多少厘米?【解答】水从乙容器倒入甲容器体积不变,找准这一点。
水的体积=10×10×6.28=628(立方厘米)S甲=V÷h=628÷8=78.5(平方厘米)因为S甲=78.5=πr²,那么r²=78.5÷3.14=25=5²,则r=5(厘米)5. 用铁皮做一个如图所示的水管(单位:厘米),需用铁皮多少平方厘米?铁皮围成的物体的体积是多少?如图,把两根一样的水管拼接成一根圆柱形水管,r=18÷2=9(厘米),h=45+55=100(厘米)S铁皮=2mrh÷2=2×3.14×9×100÷2=2826(平方厘米)V=πr²h÷2=3.14×9²×100÷2=12717(立方厘米)立体几何综合训练 6. 如图是一个棱长为6厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个棱长1厘米的正方体,做成一种零件,问它的表面积是多少?体积是多少?原表面积=6×6×6=216(平方厘米)新增表面积=1×1×4×6=24(平方厘米) 零件的表面积=216+24=240(平方厘米) 原体积=6×6×6=216(立方厘米)减少的体积=1×1×1×6=6(立方厘米) 零件的体积=216-6=210(立方厘米)答:它的表面积是240平方厘米,体积是 210立方厘米。
立体几何的综合问题专题
立体几何的综合问题A组1.如图,在平行六面体ABCD-A1B1C1D1中,AB=BC,AA1=DA1,∠ABC=120°.(1)证明:AD⊥BA1;(2)若AD=DA1=4,BA1=26,求多面体BCD-A1B1C1D1的体积.2.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2,∠BAC=120°,AA1=3,D,D1分别是BC,B1C1上的中点,P是线段AD上的一点(不包括端点).(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,并证明直线l⊥平面ADD1A1;(2)设(1)中的直线l交AC于点Q,求三棱锥A1-QC1D的体积.3.如图所示,在三棱锥P-ABC中,PC⊥平面ABC,PC=3,D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)求证:DE⊥平面PCD;(2)求点B到平面PDE的距离.4.如图,四棱锥P-ABCD的底面是直角梯形,AD∥BC,AD=3BC=6,PB=62,点M在线段AD上,且MD=4,AD⊥AB,PA⊥平面ABCD.(1)求证:平面PCM⊥平面PAD;(2)当四棱锥P-ABCD的体积最大时,求四棱锥P-ABCD的表面积.B组1.如图,在菱形ABCD中,∠BAD=π3,其对角线AC与BD相交于点O,四边形OAEF为矩形,平面OAEF⊥平面ABCD,AB=AE=2.(1)求证:平面DEF⊥平面BDF;(2)若点H在线段BF上,且BF=3HF,求三棱锥H-DEF的体积.2.如图,四棱锥E-ABCD中,平面ABCD是平行四边形,M,N分别为BC,DE的中点.(1)证明:CN∥平面AME;(2)若△ABE是等边三角形,平面ABE⊥平面BCE,CE⊥BE,BE=CE=2,求三棱锥N-AME的体积.3.如图,三棱柱ABC-A1B1C1的各棱长均为2,AA1⊥面ABC,E,F分别为棱A1B1,BC的中点.(1)求证:直线BE∥平面A1FC1;(2)平面A1FC1与直线AB交于点M,指出点M的位置,说明理由,并求三棱锥B-EFM 的体积.4.如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1⊥底面ABC,AC⊥AB,AC=AB=AA1=2,∠AA1B1=60°,E,F分別为棱A1B1,BC的中点.(1)求三棱柱ABC-A1B1C1的体积;(2)在直线AA1上是否存在一点P,使得CP∥平面AEF?若存在,求出AP的长;若不存在,说明理由.答案A组3.如图,在平行六面体ABCD-A1B1C1D1中,AB=BC,AA1=DA1,∠ABC=120°.(1)证明:AD⊥BA1;(2)若AD=DA1=4,BA1=26,求多面体BCD-A1B1C1D1的体积.(1)证明:取AD中点O,连接OB,OA1.∵AA1=DA1,∴AD⊥OA1.∵在▱ABCD中,∠ABC=120°,∴∠BAD=60°.又∵AB=BC,则AB=AD,∴△ABD是正三角形,∴AD⊥OB,∵OA1⊂平面OBA1,OB⊂平面OBA1,OA1∩OB=O,∴AD⊥平面OBA1,∴AD⊥A1B.(2)解:由题设知△A1AD与△BAD都是边长为4的正三角形.∴A1O=OB=23.∵A1B=26,∴A1O2+OB2=A1B2,∴A1O⊥OB,∵A1O⊥AD,∴A1O⊥平面ABCD,∴A1O是平行六面体ABCD-A1B1C1D1的高,又S ABCD=AD·OB=4×23=83,∴V=VABCD-A1B1C1D1=S ABCD·A1O=83×23=48,V1=VA1-ABD=13S△ABD·A1O=13×12×23×4×23=8,∴VBCD-A1B1C1D1=V-V1=40,即几何体BCD-A1B1C1D1的体积为40.2.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2,∠BAC=120°,AA 1=3,D ,D 1分别是BC ,B 1C 1上的中点,P 是线段AD 上的一点(不包括端点).(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,并证明直线l ⊥平面ADD 1A 1; (2)设(1)中的直线l 交AC 于点Q ,求三棱锥A 1-QC 1D 的体积.解:(1)在平面ABC 内作直线l ∥BC ,则直线l 与平面A 1BC 平行,即图中的直线PQ .AB =AC =2, D 是BC 上的中点,则AD ⊥BC ,即l ⊥AD , 又侧棱AA 1⊥底面ABC ,则l ⊥AA 1,AD ∩AA 1=A ,故直线l ⊥平面ADD 1A 1. (2)VA 1-QC 1D =VD -A 1QC 1=13S △A 1QC 1·h ,因为平面A 1ACC 1⊥平面ABC ,过D 作线段DE ⊥AC 于E , 则DE ⊥平面AA 1C 1C ,即DE 为D -A 1QC 1的高, 由AB =AC =2,∠CAB =120°,得DE =32, 则VD -A 1QC 1=13S △A 1QC 1·h =13×12×2×3×32=32.3. 如图所示,在三棱锥P -ABC 中,PC ⊥平面ABC ,PC =3,D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2.(1)求证:DE ⊥平面PCD ; (2)求点B 到平面PDE 的距离.(1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,故PC ⊥DE .由CE =2,CD =DE =2,得△CDE 为等腰直角三角形,故CD ⊥DE .又PC ∩CD =C ,故DE ⊥平面PCD .(2)解:由(1)知,△CDE 为等腰直角三角形,∠DCE =π4,过D 作DF 垂直CE 于F ,易知DF =CF =EF =1,又DE ⊥平面PCD ,所以DE ⊥PD ,PD =PC 2+CD 2=11, 设点B 到平面PDE 的距离为h ,即为三棱锥B -PDE 的高, 由V B -PDE =V P -BDE得 13S △PDE ·h =13S △BDE ·PC , 即13·12·PD ·DE ·h =13·12·BE ·DF ·PC , 即11×2×h =1×1×3,所以h =32222,所以点B 到平面PDE 的距离为32222. 4. 如图,四棱锥P -ABCD 的底面是直角梯形,AD ∥BC ,AD =3BC =6,PB =62,点M 在线段AD 上,且MD =4,AD ⊥AB ,PA ⊥平面ABCD .(1)求证:平面PCM ⊥平面PAD ;(2)当四棱锥P -ABCD 的体积最大时,求四棱锥P -ABCD 的表面积. (1)证明:由AD =6,DM =4可得AM =2, 易得四边形ABCM 是矩形,∴CM ⊥AD ,又PA ⊥平面ABCD ,CM ⊂平面ABCD ,∴PA ⊥CM , 又PM ∩AD =M ,PM ,AD ⊂平面PAD , ∴CM ⊥平面PAD ,又CM ⊂平面PCM ,∴平面PCM ⊥平面PAD .(2)解:四棱锥P -ABCD 的体积为V =13·12·(AD +BC )·AB ·PA =43AB ·PA ,要使四棱锥P -ABCD 的体积取最大值,只需AB ·PA 取得最大值. 由条件可得PA 2+AB 2=PB 2=72,∴72≥2PA ·AB ,即PA ·AB ≤36,当且仅当PA =AB =6时,PA ·AB 取得最大值36. PC =219,PD =62,CD =213,cos ∠CPD =PC 2+PD 2-CD 22·PC ·PD =2219,则sin ∠CPD =1119, ∴S △PCD =12PC ·PD ·sin ∠CPD =622,则四棱锥P -ABCD 的表面积为12×(6+2)×6+⎝⎛⎭⎫12×6×6×2+12×2×62+622=6(10+22+2).B 组2. 如图,在菱形ABCD 中,∠BAD =π3,其对角线AC 与BD 相交于点O ,四边形OAEF为矩形,平面OAEF ⊥平面ABCD ,AB =AE =2.(1)求证:平面DEF ⊥平面BDF ;(2)若点H 在线段BF 上,且BF =3HF ,求三棱锥H -DEF 的体积. (1)证明:∵ABCD 为菱形,∴AO ⊥BD . ∵四边形OAEF 为矩形,∴AO ⊥FO ,EF ∥AO , ∴EF ⊥BD ,∴EF ⊥FO ,又∵BD ∩FO =O ,∴EF ⊥平面BDF . 又EF ⊂平面DEF ,∴平面DEF ⊥平面BDF . (2)解:连接EH ,DH ,EB ,则由(1)可知EF ⊥平面BDF ,又△BDF 中,BD =OF =2,EF =AO =3, 故三棱锥E -BDF 的体积为13×12×2×2×3=233,又BF =3HF ,所以V E -BDF =V B -DEF =3V H -DEF =233,故V H -DEF =239. 2. 如图,四棱锥E -ABCD 中,平面ABCD 是平行四边形,M ,N 分别为BC ,DE 的中点.(1)证明:CN ∥平面AME ;(2)若△ABE 是等边三角形,平面ABE ⊥平面BCE ,CE ⊥BE ,BE =CE =2,求三棱锥N -AME 的体积.(1)证明:取AE 中点F ,连接MF ,FN . 因为△AED 中,F ,N 分别为EA ,ED 的中点, 所以FN 綊12AD .又因为四边形ABCD 是平行四边形,所以BC 綊AD . 又M 是BC 中点,所以MC 綊12AD ,所以FN 綊MC .所以四边形FMCN 为平行四边形,所以CN ∥MF ,又CN ⊄平面AEM ,MF ⊂平面AEM ,所以CN ∥平面AEM . (2)解:取BE 中点H ,连接AH ,则AH ⊥BE ,因为平面ABE ⊥平面BCE ,平面ABE ∩平面BCE =BE ,AH ⊂平面ABE , 所以AH ⊥平面BCE . 又由(1)知CN ∥平面AEM , 所以V N -AEM =V C -AEM =V A -MEC . 又因为M 为BC 中点,所以V A -MEC =13S △MEC ·AH =13·12S △BEC ·AH =13×12×12×2×2×3=33.所以三棱锥N -AEM 的体积为33. 3. 如图,三棱柱ABC -A 1B 1C 1的各棱长均为2,AA 1⊥面ABC ,E ,F 分别为棱A 1B 1,BC 的中点.(1)求证:直线BE ∥平面A 1FC 1;(2)平面A 1FC 1与直线AB 交于点M ,指出点M 的位置,说明理由,并求三棱锥B -EFM 的体积.(1)证明:取A 1C 1的中点G ,连接EG ,FG , 于是EG 綊12B 1C 1,又BF 綊12B 1C 1,所以BF 綊EG .所以四边形BFGE 是平行四边形.所以BE ∥FG , 而BE ⊄面A 1FC 1,FG ⊂面A 1FC 1, 所以直线BE ∥平面A 1FC 1. (2)解:M 为棱AB 的中点.理由如下:因为AC ∥A 1C 1,AC ⊄面A 1FC 1,A 1C 1⊂面A 1FC 1, 所以直线AC ∥平面A 1FC 1,又面A 1FC 1∩平面ABC =FM , 所以AC ∥FM .又F 为棱BC 的中点. 所以M 为棱AB 的中点. 三角形BFM 的面积S △BFM =14S △ABC =14×⎝⎛⎭⎫12×2×2×sin 60°=34, 所以三棱锥B -EFM 的体积V B -EFM =V E -BFM =13×34×2=36. 4. 如图,在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1⊥底面ABC ,AC ⊥AB ,AC =AB =AA 1=2,∠AA 1B 1=60°,E ,F 分別为棱A 1B 1,BC 的中点.(1)求三棱柱ABC -A 1B 1C 1的体积;(2)在直线AA 1上是否存在一点P ,使得CP ∥平面AEF ?若存在,求出AP 的长;若不存在,说明理由.解:(1)三棱柱ABC -A 1B 1C 1中,A 1B 1=AB . 因为AB =AA 1=2,所以A 1B 1=AA 1=2. 又因为∠AA 1B 1=60°,连接AB 1,所以△AA 1B 1是边长为2的正三角形. 因为E 是棱A 1B 1的中点,所以AE ⊥A 1B 1,且AE =3, 又AB ∥A 1B 1,所以AE ⊥AB ,又侧面ABB 1A 1⊥底面ABC ,且侧面ABB 1A 1∩底面ABC =AB , 又AE ⊂侧面ABB 1A 1,所以AE ⊥底面ABC ,所以三棱柱ABC -A 1B 1C 1的体积为V =S △ABC ·AE =12AB ·AC ·AE =12×2×2×3=23.(2)在直线AA 1上存在点P ,使得CP ∥平面AEF .证明如下:连接BE 并延长,与AA 1的延长线相交,设交点为P ,连接CP .因为A 1B 1∥AB ,故PE PB =PA 1PA =A 1EAB . 由于E 为棱A 1B 1的中点, 所以A 1E AB =12,故有PE =EB ,又F 为棱BC 的中点,故EF 为△BCP 的中位线,所以EF ∥CP . 又EF ⊂平面AEF ,CP ⊄平面AEF ,所以CP ∥平面AEF .故在直线AA1上存在点P,使得CP∥平面AEF.此时,PA1=AA1=2.所以AP=2AA1=4.。
专题04 立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)
专题04立体几何题型简介立体几何一般作为全国卷第20题21题.重点题型主要是1体积问题及表面积问题2线面距离及线面角问题3二面角问题4空间几何综合问题典例在线题型一:体积及表面积问题1.在如图所示的多面体ABCDE 中,⊥AE 平面ABC ,AE CD ∥,22AE CD ==,3CA CB ==,25AB =(1)证明:平面ABE ⊥平面BDE ;(2)求多面体ABCDE 的体积.变式训练1.如图①,在平面四边形ABCD 中,2AB AD ==,2BC CD ==60BAD ∠= .将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB '的中点,E 是棱AB 上的点,且C E '与平面ABD 所成角的正233(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.题型二:线面距离及线面角问题1如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.变式训练1如图,PD 垂直于梯形ABCD 所在平面,90ADC BAD ∠=∠=,F 为PA 的中点,2PD =112AB AD CD ===,四边形PDCE 为矩形.(1)求证://AC 平面DEF ;(2)求平面ABCD 与平面BCP 的夹角的大小;(3)求点F 到平面BCP 的距离.题型三:二面角问题1如图,四棱锥P -ABCD 中,已知AD BC ∥,BC =2AD ,AD =DC ,∠BCD =60°,CD ⊥PD ,PB ⊥BD.(1)证明:PB ⊥AB ;(2)设E 是PC 的中点,直线AE 与平面ABCD 所成角等于45°,求二面角B -PC -D 的余弦值.变式训练1如图,在四棱锥S ABCD -中,底面ABCD 为梯形,AB CD ∥,2AB CD =,AD SD =,SAB △为正三角形,SC BC ⊥,CB CS =.(1)求证:平面SAB ⊥平面SBC ;(2)求二面角C SA D --的余弦值.题型四:空间几何综合问题1.如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,AN BM ∥,2AN AB BC ===,4BM =,23CN =(1)证明:BM ⊥平面ABCD ;(2)在线段CM (不含端点)上是否存在一点E ,使得二面角E BN M --33若存在,求出的CEEM值;若不存在,请说明理由.变式训练1如图,在四棱锥E -ABCD 中,平面ADE ⊥平面ABCD ,O 、M 分别为线段AD 、DE 的中点,四边形BCDO 是边长为1的正方形,AE =DE ,AE ⊥DE.(1)求证:CM //平面ABE ;(2)求直线CM 与BD 所成角的余弦值;(3)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.模拟尝试1.(2023·山东·潍坊一中校联考模拟预测)如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD .(1)证明:平面MCD ⊥平面PAB ;(2)若//AD BC ,2AD BC =,2CD AB =,求平面MCD 与平面PBC 夹角的余弦值.2.(2023·山东·日照一中校考模拟预测)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AAAB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.3.(2023·吉林·长春十一高校联考模拟预测)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为线段AB 的中点,4CB =,43AB =118AC =,三棱锥1A A DC -的体积为8.(1)证明:1A D ⊥平面11B C D ;(2)求平面1ACD 与平面1A BC 夹角的余弦值.4.(2022·江苏南京·南京师大附中校考模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ADC ∠=︒,PAD 为等边三角形,O 为线段AD 的中点,且平面PAD ⊥平面ABCD ,M 是线段PC 上的点.(1)求证:OM BC ⊥;(2)若直线AM 与平面PAB 的夹角的正弦值为1010,求四棱锥M ABCD -的体积.5.(2023·河北衡水·衡水市第二中学校考模拟预测)如图,直四棱柱1111ABCD A B C D -中,16AA =E 是1AA 的中点,底面ABCD 是平行四边形,若1A C ⊥平面1BDC.(1)若1AB AA =,证明:底面ABCD 是正方形(2)若60BAD ∠=︒,求二面角1B BE D --的余弦值6.(2022·河北衡水·河北衡水中学校考模拟预测)直四棱柱1111ABCD A B C D -被平面α所截,所得的一部分如图所示,EF DC =.(1)证明://ED 平面ACF ;(2)若1242DC AD A E ===,3ADC π∠=,平面EFCD 与平面ABCD 所成角的正切值433,求点E 到平面ACF 的距离.真题再练1.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.2.(2021·全国·统考高考真题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?3.(2021·全国·统考高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.4.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.5.(2022·全国·统考高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).6.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.7.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.8.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.9.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.。
专题04 立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)解析版1
专题04立体几何题型简介立体几何一般作为全国卷第20题21题.重点题型主要是1体积问题及表面积问题2线面距离及线面角问题3二面角问题4空间几何综合问题典例在线题型一:体积及表面积问题1.在如图所示的多面体ABCDE 中,⊥AE 平面ABC ,AE CD ∥,22AE CD ==,3CA CB ==,25AB =.(1)证明:平面ABE ⊥平面BDE ;(2)求多面体ABCDE 的体积.【答案】(1)证明见解析(2)25解(1)证明:设AB ,BE 的中点分别为F ,G ,连接CF ,FG ,DG ,则FG AE ∥,且12FG AE =,又CD AE ∥,且12CD AE =,所以FG CD ∥,且FG CD =,所以四边形CFGD 为平行四边形,所以∥CF DG .因为⊥AE 平面ABC ,CF ⊂平面ABC ,所以AE CF ⊥,所以AE DG ⊥,因为CA CB =,F 为AB 的中点,所以CF AB ⊥,所以DG AB ⊥,又AB ,AE ⊂平面ABE ,且AB AE A = ,所以DG ⊥平面ABE ,又DG ⊂平面BDE ,所以平面ABE ⊥平面BDE .(2)由(1)得CF AB ⊥,CF AE ⊥,且AB ,AE ⊂平面ABE ,AB AE A = ,所以CF ⊥平面ABE ,又因为3CA CB ==,25AB =,F 为AB 的中点,所以2CF =.因为CD AE ∥,AE ⊂平面ABE ,CD ⊄平面ABE ,所以CD ∥平面ABE ,所以点D 到平面ABE 的距离等于点C 到平面ABE 的距离CF .因为⊥AE 平面ABC ,AC ,BC ⊂平面ABC ,所以AE AC ⊥,AE BC ⊥,又CD AE ∥,所以CD AC ⊥,CD BC ⊥,又AC ,BC ⊂平面ABC ,且AC BC C = ,所以CD ⊥平面ABC ,连接AD ,多面体ABCDE 的体积V 等于三棱锥D ABC -的体积与三棱锥D ABE -的体积之和,而11252521323D ABC V -=⨯⨯⨯⨯=,11452522323D ABE V -=⨯⨯⨯⨯=,所以多面体ABCDE 的体积25452533V =+=.变式训练1.如图①,在平面四边形ABCD 中,2AB AD ==,2BC CD ==,60BAD ∠=.将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB'的中点,E 是棱AB 上的点,且C E '与平面ABD 所成角的正切值为3.(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.【答案】(1)证明见解析解(1),,P G F 分别为,,AC AD AB '的中点,//PG C D '∴,//PF BC ',,PG PF ⊄ 平面C DB ',,C D BC ''⊂平面C DB ',//PG ∴平面C DB ',//PF 平面C DB ',又PG PF P ⋂=,,PG PF ⊂平面PGF ,∴平面//PGF 平面C DB '.(2)取BD 的中点M ,连接,C M EM ',2AB AD == ,60BAD ∠= ,ABD ∴ 为等边三角形,2BD ∴=,又BC C D ''==222BC C D BD ''∴+=,C DB '∴ 为等腰直角三角形,112C M BD '∴==,C M BD '⊥; 二面角A BD C '--是直二面角,即平面C DB '⊥平面ABD ,平面C DB '⋂平面ABD BD =,C M '⊂平面C DB ',C M '∴⊥平面ABD ,C EM '∴∠即为C E '与平面ABD所成角,1tan 3C M C EM EM EM ''∴∠===,解得:2EM =;在EMB △中,由余弦定理得:2222cos60EM BM BE BM BE =+-⋅ ,即2314BE BE =+-,解得:12BE =,E ∴为线段AB 上靠近点B 的四等分点,111442ABD AGF BDE ABD ABD ABD ABDGFED S S S S S S S S ∴=--=--=四边形211222=⨯⨯⨯111113232P GFED GFED V S C M -'∴=⨯⨯=⨯=四棱锥四边形题型二:线面距离及线面角问题.如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.【答案】(1)DE ∥平面ABC ,证明见解析;(2)155【详解】(1)DE ∥平面ABC ,理由如下:分别取,AC BC 的中点,O P ,连接,,DO EP OP ,因为AD CD =,所以DO AC ⊥,又平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,DO ⊂平面ACD ,所以DO ⊥平面ABC ,同理EP ⊥平面ABC ,所以EP DO ∥,又因为,ACD BCE 是全等的正三角形,所以EP DO =,所以四边形DOPE 是平行四边形,所以DE OP ∥,因为ED ⊄平面ABC ,OP ⊂平面ABC ,所以ED ∥平面ABC ;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系O xyz -,令2AC =.则()()())13130,0,0,0,1,0,0,1,0,3,0,0,0,,,0,,2222O A C DH P ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,13,3,,22DE OP E ⎫=∴-⎪⎪⎭所以()33130,2,0,3,,3,2222AC AE DH ⎛=-=-= ⎭⎝⎭ ,设平面ACE 的法向量为(),,m x y z =,所以·0·0m AC m AE ⎧=⎪⎨=⎪⎩ ,所以20333022y y z -=⎧⎪⎨-+=⎪⎩则0y =,取2z =,1x ∴=-,则()1,0,2m =-,所以2315cos ,525DH m DH m DH m ===,设直线DH 与平面ACE 所成的角为θ,则15sin cos ,5DH m θ==.变式训练1如图,PD 垂直于梯形ABCD 所在平面,90ADC BAD ∠=∠=,F 为PA 的中点,2PD =112AB ADCD ===,四边形PDCE 为矩形.(1)求证://AC 平面DEF ;(2)求平面ABCD 与平面BCP 的夹角的大小;(3)求点F 到平面BCP 的距离.【答案】(1)证明见解析(2)45 (3)14【详解】(1)设CP DE G = ,连接FG,四边形PDCE 为矩形,G ∴为PC 中点,又F 为PA 中点,//AC FG ∴,又FG ⊂平面DEF ,AC ⊄平面DEF ,//AC ∴平面DEF .(2)以D 为坐标原点,,,DA DC DP正方向为,,x y z 轴,可建立如图所示空间直角坐标系,则()1,1,0B ,()0,2,0C,(P ,()1,1,0BC ∴=-,(0,CP =-,设平面BCP 的法向量(),,n x y z =,020BC n x y CP n y ⎧⋅=-+=⎪∴⎨⋅=-+=⎪⎩,令1y =,解得:1x =,z =,(n ∴=;z 轴⊥平面ABCD ,∴平面ABCD 的一个法向量()0,0,1m =,cos ,2m n m n m n⋅∴<>==⋅ ,则平面ABCD 与平面BCP的夹角为45 .(3)由(2)知:1,0,22F ⎛ ⎝⎭,(P,1,0,22PF ⎛⎫∴= ⎪ ⎪⎝⎭,由平面BCP的法向量(n =,∴点F 到平面BCP 的距离11224PF nd n⋅=== .题型三:二面角问题1如图,四棱锥P -ABCD 中,已知AD BC ∥,BC =2AD ,AD =DC ,∠BCD =60°,CD ⊥PD ,PB ⊥BD .(1)证明:PB ⊥AB ;(2)设E 是PC 的中点,直线AE 与平面ABCD 所成角等于【答案】(1)证明见解析(2)77解(1)连结BD ,在BDC 中,因为BC=2DC ,∠BCD=60°,由余弦定理()22222cos603BD DC DC DC DC +-⋅⋅︒.因为222BD CD BC +=,所以CD ⊥BD ,又CD ⊥PD ,BD PD D = ,,BD PD ⊂平面PDB ,所以CD ⊥平面PDB ,由于PB ⊂平面PDB ,所以CD ⊥PB .因为PB ⊥BD ,CD BD D =I ,,CD BD ⊂平面ABCD ,所以PB ⊥平面ABCD ,由于AB ⊂平面ABCD ,因此PB ⊥AB .(2)解法1:以B 为坐标原点,BC的方向为x 轴正方向,||DC为单位长度,建立如图所示的空间直角坐标系A-xyz ,由(1)可知y 轴在平面ABCD 内.则(0,0,0)B ,1322A ⎛⎫⎪ ⎪⎝⎭,(2,0,0)C ,3322D ⎛⎫ ⎪⎝⎭,13,22DC ⎛⎫= ⎪⎝⎭ .设(0,0,)(0)P t t >,则(2,0,)PC t =- ,1,0,2t E ⎛⎫ ⎪⎝⎭,13,222t AE ⎛⎫= ⎪⎝⎭ .因为平面ABCD 的法向量为(0,0,1)m =,所以2cos ,||||4AE m AE m AE m t 〈〉==⋅+⋅由AE 与平面ABCD 所成角等于45°,2sin 454t =+,解得t=2.设平面DPC 的法向量1(,,)n x y z =,则110,0.n PC n DC ⎧⋅=⎪⎨⋅=⎪⎩即220,130.22x z x -=⎧⎪⎨=⎪⎩所以可取1(3,1,3)n =.因为平面BPC 的法向量为2(0,1,0)n = ,于是1212127cos ,7n n n n n n 〈〉=⋅=.因为二面角B-PC-D 是锐二面角,所以其余弦值为77.解法2:取BC 中点为F ,连结EF ,AF ,则EF PB ∥,且AF=DC .由(1)可知EF ⊥平面ABCD ,∠EAF 是AE 与平面ABCD 所成角,所以∠EAF=45°,所以EF=AF=DC ,于是PB=2EF=2DC .以B 为坐标原点,BC的方向为x 轴正方向,||DC 为单位长度,建立如图所示的空间直角坐标系A-xyz ,由(1)可知y 轴在平面ABCD 内.则(0,0,0)B ,(2,0,0)C ,332D ⎛⎫ ⎪⎝⎭,(0,0,2)P ,(2,0,2)PC =-,13,22DC ⎛⎫= ⎪⎝⎭ .设平面DPC 的法向量(,,)m x y z =,则0,0.m PC m DC ⎧⋅=⎪⎨⋅=⎪⎩即可得220,130.22x z x y -=⎧⎪⎨-=⎪⎩所以可取(3,1,3)m = .因为平面BPC 的法向量(0,1,0)n = ,于是7cos ,7||||m n m n m n ⋅〈〉==⋅.因为二面角B-PC-D 是锐二面角,所以其余弦值为77.解法3:取BC 中点为F ,连结EF ,AF ,则//EF PB ,且AF=DC .由(1)可知EF ⊥平面ABCD ,∠EAF 是AE 与平面ABCD 所成角,故∠EAF=45°,因此EF=AF=DC ,于是PB=2EF=2DC=BC ,可得22PC DC =.连结BE ,则BE ⊥PC .过E 在平面PDC 内作EG ⊥PC ,交PD 于点G ,则∠BEG 是二面角B-PC-D 的平面角.因为PB ⊥BC ,所以2BE DC ,7PD DC =.因为CD ⊥PD ,由PEG PDC △∽△可得147EG =.由PC ⊥平面BEG ,BG ⊂平面BEG ,所以PC ⊥BG ,而CD ⊥BG ,,,PC CD C PC CD ⋂=⊂平面PDC ,故BG ⊥平面PDC ,由于GE Ì平面PDC ,所以BG ⊥GE ,所以由余弦定理得7cos 7GE BEG BE ∠==.因此二面角B PCD --的余弦值为77.变式训练1如图,在四棱锥S ABCD -中,底面ABCD 为梯形,AB CD ∥,2AB CD =,AD SD =,SAB △为正三角形,SC BC ⊥,CB CS =.(1)求证:平面SAB ⊥平面SBC ;(2)求二面角C SA D --的余弦值.【答案】(1)证明见解析(2)277解(1)分别取BS ,AS 的中点O ,E ,连接OE ,OC ,ED ,则//OE AB 且12OE AB =.因为//AB CD ,2AB CD =,所以//,OE CD OE CD =,所以四边形OCDE 为平行四边形,则//CO DE .因为AD SD =,故DE SA ⊥,故CO SA ⊥.因为CB CS =,故CO SB ⊥.因为SA SB S =I ,SA ,SB ⊂平面SAB ,所以CO ⊥平面SAB.因为CO ⊂平面SBC ,所以平面SAB ⊥平面SBC.(2)连接AO ,因为△SAB 为正三角形,所以AO SB ⊥,因为平面SAB ⊥平面SBC ,平面SAB 平面SBC SB =,AO ⊂面SAB ,所以AO ⊥平面SBC ,OC 、OS 在面SBC 内,又CO SB ⊥,故OA ,OS ,OC 两两垂直,故以O 为坐标原点,OC ,OS ,OA 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示.设2BC SC ==,则22AB SB ==,6OA =,2OC =,所以()0,0,6A ,()2,0,0C,()0,2,0S ,262,,22D ⎛⎫ ⎪ ⎪⎝⎭,(难点:点D 的坐标不易直接看出,可先求出点E 的坐标,利用CO DE =求解点D 的坐标)所以()0,2,6AS =- ,262,,22SD ⎛⎫=- ⎪ ⎪⎝⎭ ,()2,2,0CS =-.设面SAD 的法向量为()111,,m x y z =,由11111260262022m AS y z m SD x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令11z =,得()0,3,1m =.设面SAC 的法向量为()222,,x n y z =,则2222260220n AS y z n CS x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,令23y =,得()3,3,1n = .则427cos ,727m n m n m n ⋅===⨯⋅,显然二面角C SAD --为锐二面角,所以二面角C SA D --的余弦值为277.题型四:空间几何综合问题1.如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,AN BM ∥,2AN AB BC ===,4BM =,CN =(1)证明:BM ⊥平面ABCD ;(2)在线段CM (不含端点)上是否存在一点E ,使得二面角E BN M --的余弦值为3.若存在,求出的CE EM 值;若不存在,请说明理由.【答案】(1)见解析(2)存在,12CE EM =【详解】(1)证明:正方形ABCD 中,BC AB ⊥,平面ABCD ⊥平面ABMN ,平面ABCD ⋂平面ABMN AB =,BC ⊂平面ABCD ,BC ∴⊥平面ABMN ,又BM ⊂平面ABMN ,BC ∴⊥BM ,且BC BN ⊥,又2,BC ==BN ∴=2AB AN == ,222BN AB AN ∴=+,AN AB ∴⊥,又//AN BM ,BM AB ∴⊥,又,,BC BA B BA BC =⊂ 平面ABCD ,∴BM ⊥平面ABCD ;(2)解:如图,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系,则()()()0,0,0,2,0,0,0,0,2B A C ,()()()2,0,2,2,2,0,0,4,0D N M ,设点(),,E a b c ,()01CE CM λλ=<<,()(),,20,4,2a b c λ∴-=-,()04,0,4,2222a b E c λλλλ=⎧⎪∴=∴-⎨⎪=-⎩,()()2,2,0,0,4,22BN BE λλ∴==-,设平面BEN 的法向量为(),,m x y z = ,()2204220BN m x y BE m y z λλ⎧⋅=+=⎪∴⎨⋅=+-=⎪⎩,令221,1,,1,1,11x y z m λλλλ⎛⎫=∴=-=∴=- ⎪--⎝⎭ ,显然,平面BMN 的法向量为()0,0,2BC =,cos ,3BC m BC m BC m⋅∴==,==,即=即23210λλ+-=,解得13λ=或1-(舍),所以存在一点E,且12CE EM =.变式训练1如图,在四棱锥E -ABCD 中,平面ADE ⊥平面ABCD ,O 、M 分别为线段AD 、DE 的中点,四边形BCDO 是边长为1的正方形,AE =DE ,AE ⊥DE.(1)求证:CM //平面ABE ;(2)求直线CM 与BD 所成角的余弦值;(3)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.【答案】(1)证明见解析(2)6(3)53【详解】(1)证明:取AE 的中点P ,连接BP 、MP ,如图所示.∵M 、P 分别为ED 、AE 的中点,∴PM //AD ,且PM=12AD.又四边形BCDO 是边长为1的正方形,∴BC //OD ,且BC=OD ,又O 为AD 的中点,∴BC //AD ,且BC=12AD ,即PM //BC ,且PM=BC ,∴四边形BCMP 为平行四边形,∴CM //PB ,又CM ⊄平面ABE ,PB ⊂平面ABE ,∴CM //平面ABE.(2)(2)连接EO ,∵AE=DE ,O 为AD 中点,∴EO ⊥AD.∵EO ⊂平面ADE ,且平面ADE ⊥平面ABCD ,平面ADE∩平面ABCD=AD ,∴EO ⊥平面ABCD.又OB ⊂平面ABCD ,OD ⊂平面ABCD ,∴EO ⊥OB ,EO ⊥OD ,以O 为原点,OB 、OD 、OE 所在直线分别为x 轴,y 轴,z轴建立空间直角坐标系,如图所示,则(0A ,1-,0),C (1,1,0),B (1,0,0),D (0,1,0),(0E ,0,1),M 11(0,,22∴11(1,,),22CM BD=-- =(-1,1,0).设直线CM 与BD 所成角为θ,则cosθ=1||2||||CM BD CM BD ⋅=,∴直线CM 与BD所成角的余弦值为6.(3)设ON →=λOD →,则N (0,λ,0),∴NB →=(1,-λ,0),11(1,,)22MB =-- ,设平面BMN 的法向量为n →=(a ,b ,c),则0,0,n MB n NB ⎧⋅=⎨⋅=⎩ 即220220a b c a b λ⎧--=⎪⎨⎪-=⎩,令a=λ,则b=1,c=2λ-1,∴n →=(λ,1,2λ-1),设面ABE 的法向量为(,,)m x y z =,(1,1,0),(0,1,1)AB AE ==由00AB m x y AE m y z ⎧⋅=+=⎨⋅=+=⎩,可取(1,1,1)m =- .∵平面BMN ⊥平面ABE ,∴0m n →→⋅=,即λ-1+2λ-1=0,解得λ=23,53AN ∴=.模拟尝试一、解答题1.(2023·山东·潍坊一中校联考模拟预测)如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD.(1)证明:平面MCD ⊥平面PAB ;(2)若//AD BC ,2AD BC =,2CD AB =,求平面MCD 与平面PBC 夹角的余弦值.【答案】(1)证明见解析;.【详解】(1)设AD 的中点为E ,连接PE ,因为PAD 为等边三角形,所以PE AD ⊥,又因为平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,且PE ⊂平面PAD ,所以PE ⊥平面ABCD ,因为AB ⊂平面ABCD ,所以PE AB ⊥,又PD AB ⊥,,PD PE P PD PE =⊂ ,平面PAD ,所以AB ⊥平面PAD ,又因为MD ⊂平面PAD ,所以AB MD ⊥,因为在等边三角形PAD 中,M 为PA 的中点,所以MD AP ⊥,因为AB AP A =I ,,AB AP ⊂平面PAB ,所以MD ⊥平面PAB ,因为MD ⊂平面MCD ,所以平面MCD ⊥平面PAB ;(2)连接CE ,由(1)知,AB ⊥平面PAD ,因为AD ⊂平面PAD ,所以AB AD ⊥,因为//AD BC ,2AD BC =,2CD AB =,所以四边形ABCE 为矩形,即CE AD ⊥,BC AE DE ==,22CD AB CE ==,所以30∠=︒CDE ,设BC a =,2AD a =,tan 60PE AE =⋅︒,tan 303AB CE DE ==⋅︒=,以E 为原点,分别以EC 、ED 、EP 所在直线为x 、y 、z轴建立空间直角坐标系,所以()0,,0A a -,()P,C ⎫⎪⎪⎝⎭,,0B a ⎫-⎪⎪⎝⎭,()0,,0D a,0,2a M ⎛- ⎝⎭,所以,,322a MC ⎛⎫=- ⎪ ⎪⎝⎭,30,,22a MD ⎛⎫=- ⎪ ⎪⎝⎭,,,3PB a ⎛⎫=- ⎪ ⎪⎝⎭,,0,3PC ⎛⎫= ⎪ ⎪⎝⎭,设平面MCD 和平面PBC 的法向量分别为()1111,,n x y z =,()2222,,n x y z =,则111111102302a n MC y a n MD y ⎧⋅=+-=⎪⎪⎨⎪⋅=-=⎪⎩,222222200n PB ay n PC ⎧⋅=--=⎪⎪⎨⎪⋅=-=⎪⎩,即1111x z ⎧=⎪⎨=⎪⎩,22203y x z =⎧⎨=⎩,取11y =,21z =,则1n = ,()23,0,1n =,所以121212cos ,35n n n n n n ⋅==⋅,所以平面MCD 与平面PBC.2.(2023·山东·日照一中校考模拟预测)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】【详解】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则1111111111433333A A BC A A ABC A ABC A B BC C C B V S h h V S A A V ---=⋅===⋅== ,解得h =所以点A 到平面1A BC;(2)取1A B 的中点E,连接AE,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =,且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得2AE =,所以12AA AB ==,12A B =以2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c =,则20n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-r,则1cos ,222m n m n m n ⋅==⨯⋅,所以二面角A BD C --213122⎛⎫-= ⎪⎝⎭3.(2023·吉林·长春十一高校联考模拟预测)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为线段AB 的中点,4CB =,43AB =118AC =,三棱锥1A A DC -的体积为8.(1)证明:1A D ⊥平面11B C D ;(2)求平面1ACD 与平面1A BC 夹角的余弦值.【答案】(1)见解析65555【详解】(1)证明:因为1AA ⊥平面ABC ,CB ⊂平面ABC ,所以1AA BC ⊥,在三棱柱111ABC A B C -中,四边形11AAC C 为平行四边形,则118AC AC ==,因为43AB =4CB =,所以222AB CB AC +=,所以CB AB ⊥,又因为1AB AA A ⋂=,1AA ⊂平面11ABB A ,AB ⊂平面11ABB A ,所以CB ⊥平面11ABB A ,因为11//CB C B ,所以11C B ⊥平面11ABB A ,又1A D ⊂平面11ABB A ,所以111C B A D ⊥.1832ABC S AB BC =⋅=△,D 为AB 的中点,则132ACD ABC S S ==△△因为1AA ⊥平面ABC ,1111113833A A CD A ACD ACD V V S AA AA --==⋅=⨯= ,所以123AA =11A DB △中,1126A D B D ==1143A B =2221111A D B D A B +=,所以11A D B D ⊥,1111C B BD B ⋂=,111,C B B D ⊂平面11B C D ,所以1A D ⊥平面11B C D ;(2)因为1BB ⊥平面ABC ,BC AB ⊥,以点B 为坐标原点,BA 、1BB 、BC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,4C 、()3,0,0D 、()143,3,0A 、()10,23,0B ,设平面1DAC 的法向量为()111,,m x y z =,()123,3,0DA = ,()23,0,4DC =-,则11111330340m DA x y m DC x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩ ,取12x =,可得(2,3m =-,设平面1A CB 的法向量为()222,,x n y z =,()13,3,0BA = ,()0,0,4BC =,则1222433040n BA x y n BC z ⎧⋅=+=⎪⎨⋅==⎪⎩ ,取21x =,可得()1,2,0n =- ,所以,6655cos ,55115m n m n m n ⋅===⋅⨯,所以平面1DAC 与平面1ACB 夹角的余弦值为65555.4.(2022·江苏南京·南京师大附中校考模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ADC ∠=︒,PAD 为等边三角形,O 为线段AD 的中点,且平面PAD ⊥平面ABCD ,M 是线段PC 上的点.(1)求证:OM BC ⊥;(2)若直线AM 与平面PAB 的夹角的正弦值为1010,求四棱锥M ABCD -的体积.【答案】(1)证明见解析;(2)43【详解】(1)因为PAD 为等边三角形,O 为线段AD 的中点,所以PO AD ⊥;因为平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD ;又BC ⊂平面ABCD ,所以PO BC ⊥;在OCD 中,1,2,60OD CD ADC ==∠=︒,由余弦定理可得OC =因为222OC OD CD +=,所以CO AD ⊥;因为//AD BC ,所以CO BC ⊥,所以BC ⊥平面POC ;因为OM ⊂平面POC ,所以OM BC ⊥.(2)由(1)得,,OP OC OD 两两垂直,以O 为坐标原点,建系如图,则()())0,1,0,0,0,,2,0,A P BC -;)(1,0,,0,1,AB PC AP =-=-=;设PM PC λ=,则)AM AP PM =+= ;设平面PAB 的一个法向量为(),,n x y z =,则00n AB n AP ⎧⋅=⎨⋅=⎩,0y y -==⎪⎩,令y =则()1n =- .因为直线AM 与平面PAB所以n AM n AM ⋅==,解得13λ=或23λ=-(舍),即有13PM PC =,M 是靠近P 的三等分点,所以四棱锥M ABCD -的高等于OP 的23.四棱锥M ABCD -的体积为114222sin 603233V ︒=⨯⨯⨯⨯⨯⨯=.5.(2023·河北衡水·衡水市第二中学校考模拟预测)如图,直四棱柱1111ABCD A B C D -中,1AA =,E 是1AA 的中点,底面ABCD 是平行四边形,若1A C ⊥平面1BDC.(1)若1AB AA =,证明:底面ABCD 是正方形(2)若60BAD ∠=︒,求二面角1B BE D --的余弦值【答案】(1)证明见解析;(2)【详解】(1)如图,连接1,AC CD ,1A C ⊥平面1BDC ,BD ⊂平面1BDC ,1C D ⊂平面1BDC ,则1AC BD ⊥,11AC C D ⊥,直棱柱中1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1AA BD ⊥,111AA A C A = ,11,AA A C ⊂平面1ACA ,则BD ⊥平面1ACA ,又AC ⊂平面1ACA ,所以BD AC ⊥,所以平行四边形ABCD 是菱形,1AA AB =,则直棱柱的侧面11ABB A 是正方形,因此侧面11CDD C 也是正方形,所以11CD C D ⊥,11A C CD C = ,11,AC CD ⊂平面11ACD ,所以1C D ⊥平面11ACD ,又11A D ⊂平面11ACD ,所以111C D A D ⊥,直棱柱中易知111DD A D ⊥,而111DD CD D = ,11,DD CD ⊂平面11CC D D ,所以11A D ⊥平面11CC D D ,11C D ⊂平面11CC D D ,所以1111A D C D ⊥,因此底面1111D C B A 是矩形,即四边形ABCD是矩形,所以四边形ABCD 是正方形;(2)由(1)知底面ABCD 是菱形,因此AC BD ⊥,设AC BD O ⋂=,分别以,OA OB 为,x y 轴,过O 与1AA 平行的直线为z 轴建立空间直角坐标系,如图,设2AB a =,则3OA a =,OB a =,1(36)A a ,(3,0,0)C a -,(0,,0)B a ,1(36)C a -,1(23,0,6)AC a =-- ,1(3,6)BC a a =-- ,由(1)知211660AC BC a ⋅=-= ,1a =(负值舍去),6(3,0,2E ,(0,1,0)B ,(0,1,0)D -,16)B ,6(3,)2BE =- ,(0,2,0)DB = ,16)BB = ,设平面1B BE 的一个法向量是111(,,)m x y z =,则11111606302m BB m BE y z ⎧⋅=⎪⎨⋅=-=⎪⎩,取11x =得3,0)m = ,设平面BED 的一个法向量是222(,,)n x y z =,则2222630220n BE x y n DB y ⎧⋅=-+=⎪⎨⎪⋅==⎩,取21x =,得(1,0,2)n = ,3cos ,623m n m n m n ⋅==⨯,所以二面角1B BE D--的余弦值为366.(2022·河北衡水·河北衡水中学校考模拟预测)直四棱柱1111ABCD A B C D -被平面α所截,所得的一部分如图所示,EF DC =.(1)证明://ED 平面ACF ;(2)若1242DC AD A E ===,3ADC π∠=,平面EFCD与平面ABCD 433,求点E 到平面ACF 的距离.【答案】(1)详见解析;(2255.【详解】(1)依题:平面α与两平行平面ABCD ,1111D C B A 的交线分别为EF ,DC ,故有//EF DC ,又EF DC =,故有平行四边形EFCD ,∴//ED FC ,ED ⊄面ACF ,FC ⊂面ACF ,∴//ED 平面ACF .(2)ADC △中,由余弦定理可得3AC =得AC AD ⊥,又1AA ⊥平面ABCD ,故而1AA ,AC ,AD 两两垂直,如图建系.【法一求EH 】取AD 中点H ,由1//AH A E ,1AH A E =得平行四边形1A AHE ,∴1//AA HE ,HE ⊥平面ACD ,作HI DC ⊥,(连EI ),又HE CD ⊥,∴CD ⊥平面EHI ,得CD EI ⊥,又HI DC ⊥,∴EIH ∠为所求二面角的平面角.易求3HI =4tan 33EH EIH HI ∠==,1EH =.【法二求EH 】面ABCD 的法向量显然为()0,0,1n =,设面EFCD 的法向量为(),,k x y z = ,1,0,2E h ⎛⎫⎪⎝⎭,00k DC k DE ⎧⋅=⎨⋅=⎩,令3x =33,1,2k h ⎫=⎪⎪⎭,依题:3119n k h n k⋅=⇒= .由//ED 平面ACF ,点E 到平面ACF 的距离转化为D 到平面ACF 的距离d ,()1,0,0D ,()3,0C ,13,12DC EF F ⎛⎫=⇒- ⎪⎝⎭ ,设平面ACF 的法向量为(),,m x y z = ,00m AC m m AF ⎧⋅=⇒⎨⋅=⎩可为()2,0,1,255m AD d m⋅== .真题再练1.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】(12(2)7014【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+= ,解得22a =22BC a ==[方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥.又因为PB AM ⊥,PB PD P = ,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB .所以 ∽ADB BAM ,于是=AD BAAB BM.所以2112BC =.所以BC =[方法三]:几何法+三角形面积法如图,联结BD 交AM 于点N.由[方法二]知⊥AM DB .在矩形ABCD 中,有 ∽DAN BMN ,所以2==AN DAMN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,=DB,=AM 由1122=⋅=⋅ DAB S DA AB DB AN,得=t 212t =,所以2==BC t (2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则,1,02AM ⎛⎫=- ⎪ ⎪⎝⎭,()AP = ,由1111020m AM x y mAP z ⎧⋅=+=⎪⎨⎪⋅=+=⎩,取1x =)m =,设平面PBM 的法向量为()222,,n x y z =,,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =- ,由222200n BM n BP y z ⎧⋅==⎪⎨⎪⋅=-+=⎩,取21y =,可得()0,1,1n =,cos ,14m n m n m n ⋅==⋅,所以,sin ,m n = 因此,二面角A PM B --14.[方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M ,故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 是边长为2的正方形,联结1D H ,HM .111111111,2D HM D HM D A H HBM MCD A BCD S D M HG S S S S S =⋅=--- 正方形,由等积法解得31010=HG .在Rt AHG 中,2310,210==AH HG ,由勾股定理求得355=AG .所以,70sin 14AH AGH AG ∠==,即二面角A PM B --的正弦值为7014.2.(2021·全国·统考高考真题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B AC ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=52520255-⨯⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z = ,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅ 222214a a =⨯-+22214a a =-+当12a =时,2224a a -+取最小值为272,此时cos θ=.所以()minsin θ=,此时112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT=,即11B H =1B H =所以DH ===则11sin B D DHB DH∠===所以,当12t =时,()1min sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF 过D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=sin DFE ∠=1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==sin θ当12t =,即112B D =,面11BBC C 与面DFE所成的二面角的正弦值最小,最小值为3.(2021·全国·统考高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,ABAD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)证明见解析;(2)6.(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz-,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,0)3322EB m BC =--= ,设(),,n x y z =r为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩ 可求得平面EBC 的一个法向量为2(3,1,)n m=--.又平面BCD 的一个法向量为()0,0,OA m =,所以222cos ,244n OA m m -=⋅+,解得1m =.又点C 到平面ABD 321133213226A BCD C ABD V V --==⨯⨯⨯=所以三棱锥A BCD -36.[方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以3BC =.因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯ .[方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos 2βα=.①使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.②将①②两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -的体积为6.4.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的437【详解】(1)因为AD CD =,E 为AC 的中点,所以AC DE ⊥;在ABD △和CBD △中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥;又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED ,所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小.因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,3BE =因为AD CD ⊥,所以112DE AC ==,在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -,则()()()1,0,0,3,0,0,0,1A B D ,所以()()1,0,1,3,0AD AB =-=-,设平面ABD 的一个法向量为(),,n x y z =,则00n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取y =()n = ,又因为()31,0,0,,4C F ⎛⎫- ⎪ ⎪⎝⎭,所以34CF ⎛⎫= ⎪ ⎪⎝⎭ ,所以cos ,7n CF n CF n CF⋅==,设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以sin cos ,n CF θ== 所以CF 与平面ABD所成的角的正弦值为7.5.(2022·全国·统考高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;【详解】(1)如图所示:分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .(2)[方法一]:分割法一如图所示:分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍.因为MN NL LK KM ====,8sin 60EM == 点B 到平面MNFE 的距离即为点B 到直线MN 的距离d,d =(21343V =⨯+⨯⨯==.[方法二]:分割法二如图所示:连接AC,BD,交于O ,连接OE,OF,OG,OH.则该几何体的体积等于四棱锥O-EFGH 的体积加上三棱锥A-OEH 的4倍,再加上三棱锥E-OAB 的四倍.容易求得,OE=OF=OG=OH=8,取EH 的中点P ,连接AP,OP.则EH 垂直平面APO.由图可知,三角形APO,四棱锥O-EFGH 与三棱锥E-OAB 的高均为EM 的长.所以该几何体的体积(21111144444433232V =⋅+⋅⋅⋅⋅6.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】2.【详解】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111111143333A A BC A A ABC A ABC A B BC C C B V S h V S A A V ---=⋅===⋅==,解得h =所以点A 到平面1A BC;(2)取1A B 的中点E,连接AE,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =,且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =以2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c = ,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-r,则1cos ,2m n m n m n ⋅==⋅,所以二面角A BD C --2=.7.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.【答案】(1)证明见解析(2)1113【详解】(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥-P ABC 的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC ,所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒,所以ODA OAD∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE ⊄平面PAC ,PD ⊂平面PAC ,所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立空间直角坐标系,因为3PO =,5AP =,所以224OA AP PO =-=,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD ,43AB =所以12AC =,所以()23,2,0O ,()43,0,0B ,()23,2,3P ,()0,12,0C ,所以333,1,2E ⎛⎫ ⎪⎝⎭,则333,1,2AE ⎛⎫= ⎪⎝⎭ ,()3,0,0AB =,()0,12,0AC = ,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则=3y -,0x =,所以()0,3,2n =-;设平面AEC 的法向量为(),,m a b c =,则33302120m AE a b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a 6c =-,0b =,所以)6m =-;所以cos ,n m n m n m⋅==设二面角C AE B --的大小为θ,则cos cos ,=n m θ=所以11sin 13θ==,即二面角C AE B --的正弦值为1113.8.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)见解析(2)见解析【详解】(1)取AB 的中点为K ,连接,MK NK ,由三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形,而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B ,而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B ,而,,NK MK K NK MK =⊂ 平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B ,(2)因为侧面11BCC B 为正方形,故1CB BB ⊥,而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A ,平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A ,因为//NK BC ,故NK ⊥平面11ABB A ,因为AB ⊂平面11ABB A ,故NK AB ⊥,若选①,则AB MN ⊥,而NK AB ⊥,NK MN N = ,故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩ ,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =--,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯ .若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面MKN ,故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =,而12B B MK ==,MB MN =,故1BB M MKN ≅ ,所以190BB M MKN ∠=∠=︒,故111A B BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM === ,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =--,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯.9.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,。
高三《立体几何》专题复习
高三《立体几何》专题复习一、常用知识点回顾1、三视图。
正侧一样高,正俯一样长,侧府一样宽,看不到的线画虚线。
2、常用公式与结论。
(1)圆柱、圆锥、圆台的侧面展开图及侧面积公式;(2)空间几何体的表面积与体积公式;(3)全品高考复习方案(听课手册)105页的常用结论3、两条异面直线所成的角;直线与平面所成的角。
4、证明两条直线平行的常用方法;直线与平面平行的判定与性质;面面平行的判定与性质。
5、证明两条直线垂直的常用方法;直线与平面垂直的判定与性质;两个平面垂直的判定与性质。
二、题型训练题型一:三视图的运用,求几何体的体积、表面积例1、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90(D)81【练习1】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()C.3D.2【练习2】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π【练习3】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π(B )24π(C )28π(D )32π例2、在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )(A )4π (B )9π2 (C )6π (D )32π3变式1:在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=5,则V的最大值是变式2:在封闭的长方体ABCD-A1B1C1D1内有一个体积为V的球.若AB=BC=6,AA1=3,则V的最大值是变式3:(1)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为(2)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为变式4:【练习1】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A. B.12π C. D.10π【练习3】已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°,若SAB的面积为8,则该圆锥的体积为_______题型二:平行问题例1、如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB; (II)求四面体N-BCM的体积.【练习1】如图,四棱锥P-ABCD中,侧面PADAD,为等边三角形且垂直于底面ABCD,AB=BC=12∠BAD=∠ABC=90°。
专题03 立体几何大题拔高练(解析版)
【一专三练】 专题03 立体几何大题拔高练-新高考数学复习分层训练(新高考通用)1.(2023·湖北·荆州中学校联考二模)如图,已知四棱锥P ABCE -中,1AB =,2BC =,BE =,PA ⊥平面ABCE ,平面PAB ⊥平面PBC(1)证明:AB BC ⊥;(2)若PA =,且AC AE =,G 为PCE V 的重心.求直线CG 与平面PBC 所成角的正弦值.2.(2023·安徽蚌埠·统考三模)如图,在四面体ABCD 中,G 为ABC V 的重心,E ,F 分别在棱BC ,CD 上,平面//ABD 平面EFG .(1)求DFCF的值;(2)若AB ⊥平面BCD ,DC CB ⊥,且3AB BC CD ===,求平面EFG 与平面ACD 的夹角的大小.因为G 为ABC V 的重心,所以因为平面//ABD 平面EFG ,平面DCH FG =,所以//FG DH ,所以23CF CG CD CH ==, 所以 DF CF (2)因为AB ⊥平面BCD ,BC 由(1)同理可得//EF BD ,则CF CE CD CB =所以()(),(),(),3000320,1,01,1,0A F E G ,,,,,所以 (1,2,2)GF =-u u u r , (1,0,0)GE =-u u u r 设平面EFG 的法向量为(,,)m a b c =u r ,则3.(2023·辽宁抚顺·统考模拟预测)如图,四棱锥S ABCD -的底面是正方形,点P ,Q 在侧棱SD 上,E 是侧棱SC 的中点.(1)若SQ QP PD ==,证明:BE ∥平面PAC ;(2)倍,从下面两个条件中选一个,求二面角P AC D --的大小.①SD ⊥平面PAC ;②P 为SD 的中点.注:如果选择多个条件分别解答,按第一个解答计分.在SCP V 中,点E 是SC 的中点,点又因为PC ⊂平面PAC ,且QE 在BQD V 中,点O 是线段BD 又因为OP ⊂平面PAC ,且QB 又因为BQ EQ Q ⋂=,且BQ ,BEQ 设1OC =,则2CD =,SC =所以(1,0,0)C ,(1,0,0)A -,(0,1,0)D 因为SD ⊥平面PAC ,所以平面显然平面DAC 的一个法向量为设1OC =,则2CD =,SC =所以(1,0,0)C ,(1,0,0)A -,D 则131,,22AP ⎛⎫= ⎪ ⎪⎝⎭u u u r ,1,CP ⎛=- ⎝u u u r u r4.(2023·云南曲靖·曲靖一中校考模拟预测)如图,在三棱柱111ABC A B C -中,四边形11AA C C 是边长为4的菱形,AB BC ==,点D 为棱AC 上的动点(不与A 、C 重合),平面1B BD 与棱11A C 交于点E .(1)求证1BB DE //;(2)若平面ABC ⊥平面11AA C C ,160A AC ∠=o,判断是否存在点D 使得平面11A ABB 与平面1B BDE 所成的锐二面角为π3,并说明理由.【答案】(1)证明见解析(2)不存在,理由见解析【分析】(1)先证明1//BB 平面11ACC A ,再由线面平行的性质定理证明1BB DE //;(2)假设D 点存在,建立空间直角坐标系,利用法向量解决二面角问题,判断D 点坐标是否有解.【详解】(1)11//BB CC ,且1BB ⊂/平面11ACC A ,1CC ⊂平面11ACC A ,∴1//BB 平面11ACC A ,又∵1BB ⊂平面1B BD ,且平面1B BD I 平面11ACC A DE =,∴1BB DE //;(2)连接1A C ,取AC 中点O ,连接1AO ,BO ,在菱形11ACC A 中,160A AC ∠=︒,∴1A AC △是等边三角形,又∵O 为AC 中点,∴1A O AC ⊥,∵平面ABC ⊥平面11ACC A ,平面ABC ⋂平面11ACC A AC =,1A O ⊂平面11ACC A ,且1A O AC ⊥,∴1A O ⊥平面ABC ,OB ⊂平面ABC ,∴1A O OB ⊥,又∵AB BC =,∴BO AC ⊥,以点O 为原点,OB ,OC ,1OA 为x 轴,y 轴,z 轴,建立空间直角坐标系,假设存在点D ,满足题意,设()()0,,022D a a -≤≤,5.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知平行六面体1111ABCD A B C D -中,1AB =,12BC B C ==,π3ABC ∠=,侧面11BB A A 是菱形,1π3B BA ∠=.(1)求1BC 与底面ABCD 所成角的正切值;(2)点,E F 分别在1B A 和1B C 上,11EF A C ∥,过点,,B E F 的平面与1B D 交于G 点,确定G 点位置,使得平面BEF ⊥平面11B C DA .∵侧面11BB A A 为菱形,1π3B BA ∠=,∴1ABB V 为等边三角形,11AB BB ==,1MB AB ⊥∵1AB =,2BC =,π3ABC ∠=,由余弦定理知∴222BC AB AC =+,∴AC AB ⊥.在1AB C V 中,11AB =,12B C =,有211B C AB =6.(2023·广东深圳·深圳中学校联考模拟预测)如图所示,在三棱锥A BCD -中,满足BC CD ==,点M 在CD 上,且5DM MC =,ABD △为边长为6的等边三角形,E 为BD 的中点,F 为AE 的三等分点,且2AF FE =.(1)求证://FM 面ABC ;(2)若二面角A BD C --的平面角的大小为23π,求直线EM 与面ABD 所成角的正弦值.∵6BD =,∴116BN BD ==,NE ∵12AF FE =,∴12BN AF NE FE ==,则FN AB ∥,又FN ⊄面ABC ,∴FN ∥面ABC ,∵1BN CM ==,∴NM BC ∥.7.(2023·辽宁·辽宁实验中学校考模拟预测)如图,在多面体PABCFE 中,PA ⊥平面ABC ,////PA CF BE ,且24PA CF BE ==,D 为PA 的中点,连接BD ,PC ,点M ,N 满足2,2DM MB PN NC ==u u u u r u u u r u u u u u r u u u r .(1)证明://MN 平面PEF ;(2)若224PA AB BC ===,cos PEF ∠PC 与平面PEF 所成角的正弦值.所以P (0,2,4),E (0,0,1),()2,0,1EF =u u u r ,()0,2,3EP =u u u r ,设平面不妨取x =1,则y =3,z =-2,即2sin cos ,PC n PC n θ⋅===u u u r r u u u r r u u u r r 8.(2023·山西·校联考模拟预测)如图,在三棱柱111ABC A B C -中,四边形11AA B B 为菱形,E 为棱1CC 的中点,1AB C V 为等边三角形.(1)求证:111AB B C ⊥;(2)若,4,3AC BC AC BC ⊥==,求平面11AA B B 和平面1AB E 夹角的余弦值.)B ,与1AB 相交于点F ,连接11AA B B 为菱形,所以F 为1AB 的中点,且为等边三角形,所以1CF AB ⊥,F =,BF 、CF 在面A 1BC 内,所以由(1)可知1AB BC ⊥,又AC BC ⊥所以BC ⊥平面1AB C ,OB 1、OC 在面因为OG BC ∥,所以OG ⊥平面AB 因为1AB C V 为等边三角形,所以B 以O 为坐标原点,1,,OG OC OB u u u r u u u r u u u r的方向分别为空间直角坐标系,9.(2023·河北衡水·河北衡水中学校考三模)图1是直角梯形ABCD ,//AB CD ,∠D =90°,四边形ABCE 是边长为2的菱形,并且∠BCE =60°,以BE 为折痕将△BCE 折起,使点C 到达1C 的位置,且1AC =(1)求证:平面1BC E ⊥平面ABED .(2)在棱1DC 上是否存在点P ,使得点P 到平面1ABC 求出直线EP 与平面1ABC 所成角的正弦值;若不存在,请说明理由.10.(2023·河北石家庄·统考一模)如图,四棱锥S ABCD -中,底面ABCD 为矩形且垂直于侧面SAB ,O 为AB 的中点,2SA SB AB ===,AD =(1)证明:BD⊥平面SOC;(2)侧棱SD上是否存在点E,使得平面ABE与平面SCD夹角的余弦值为15,若存在,求SESD的值;若不存在,说明理由.∵2SA SB AB ===,SAB ∴V 为等边三角形,Q O 为AB 的中点,112OB AB ∴==,2SO SB OB =-(0,3,0)S ,(1,0,2)C ,(1,0,2)D -(1,3,2)SD =--u u u r ,(2,0,0)AB =u u u r ,u u r u u u r11.(2023·河北邢台·校联考模拟预测)如图,在三棱柱111ABC A B C -中,侧面11A B BA 和侧面11A ACC 均为正方形,D 为棱BC 的中点.(1)证明:平面1ADC ⊥平面1B BCC ;(2)若直线1AC 与平面11B BCC 所成角为30°,求平面11A B BA 与平面1ADC 夹角的余弦值.以A 为原点,以AB u u u r,AC u u u r ,1AA u u u r 直角坐标系A xyz -,则()0,0,0A ,()1,1,0D ,(10,2,C 设(),,m x y z =u r是平面1ADC 的一个法向量,则10,0,AD m AC m ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u u r r 即0,220,x y y z +=⎧⎨+=⎩取12.(2023·福建厦门·统考二模)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,AB ⊥AD ,A 1D ⊥BD 1.(1)证明:四边形ADD1A 1为正方形;(2)若直线BD 1与平面ABCD CD =2AB ,求平面ABD 1与平面BCD 1的夹角的大小.,设1,AB a DD b ==,则()()10,,,,0,0B a b D b ,所以()1,,BD b a b =--u u u u r,设ABCD 的一个法向量为()1,0,0m =u r,直线BD 1与平面ABCD 所成的角为θ,13.(2023·山东潍坊·统考模拟预测)如图,直角梯形ABCD 中,//,,22AB DC AB BC AB BC CD ⊥===,直角梯形ABCD 绕BC 旋转一周形成一个圆台.(1)求圆台的表面积和体积;(2)若直角梯形ABCD 绕BC 逆时针旋转角(0)θθ>到11A BCD ,且直线1A D 与平面ABCD,求角θ的最小值.则()1,0,2D ,()12cos ,2sin ,0A θθ,即又平面ABCD 的一个法向量(0,1,0n =r则1sin cos ,A D nα=u u u r r(|12cosθ-=-两边平方并结合22sin cos 1θθ+=,1θ1cos θ14.(2023·山东青岛·统考一模)如图,在Rt PAB V 中,PA AB ⊥,且4PA =,2AB =,将PAB V 绕直角边PA 旋转2π3到PAC △处,得到圆锥的一部分,点D 是底面圆弧BC (不含端点)上的一个动点.(1)是否存在点D ,使得BC PD ⊥?若存在,求出CAD ∠的大小;若不存在,请说明理由;(2)当四棱锥P ABDC -体积最大时,求平面PCD 与平面PBD 夹角的余弦值.则()()(0,0,0,0,0,4,0,A P B15.(2023·山东·烟台二中校联考模拟预测)如图所示,在直三棱柱111ABC A B C -中,E ,F 分别是线段AC ,1AA 的中点,BCA BAC ∠=∠.(1)求证:平面BEF ⊥平面11ACC A ;(2)若cos ACB ∠=A BF E --1AA AC 的值.【答案】(1)证明见解析(2)3【分析】(1)根据线面垂直的判定可得BE ⊥平面11ACC A ,再由面面垂直判定定理得证;(2)设()0AF t t =>,则12AA t =,建立空间直角坐标系,利用向量法求出二面角余弦值解出t 即可得解.【详解】(1)因为BCA BAC ∠=∠,所以AB BC =,而E 为AC 的中点,所以BE AC ⊥.因为1A A ⊥平面ABC ,BE ⊂平面ABC ,所以1A A BE ⊥.又1A A AC A =I ,,1A A AC ⊂平面11ACC A ,所以BE ⊥平面11ACC A .因为BE ⊂平面BEF ,所以平面BEF ⊥平面11ACC A .设()0AF t t =>,则12AA t =,所以()2,0,0EB =u u u r ,(0,EF =u u u r 设平面BEF 的法向量为(n =r则00n EB n EF ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r ,得11120x y tz =⎧⎨-+=⎩r16.(2023·湖北·统考模拟预测)如图,在斜三棱柱111ABC A B C -中,底面ABC V 是边长为2的正三角形,侧面11BCC B 为菱形,已知160BB C ∠=o,1AB a =.(1)当a =时,求三棱柱111ABC A B C -的体积;(2)设点P 为侧棱1BB 上一动点,当3a =时,求直线1PC 与平面11ACC A 所成角的正弦值的取值范围.因为11BCC B 为菱形,且1BB C ∠又有ABC V 为正三角形且边长为且13AO B O ==,16AB =,所以所以1B O AO ⊥,因为又BC ⋂则133,0,22B ⎛⎫- ⎪ ⎪⎝⎭,()0,1,0B -,133,2,22C ⎛⎫- ⎪ ⎪⎝⎭,133,1,22A ⎛⎫ ⎪ ⎪⎝⎭,设(),,n x y z =r是平面11ACC A 的一个法向量,()3,1,0AC =-u u u r 33AC ⎛=-u u u u r17.(2023·湖北武汉·统考模拟预测)如图,四棱台1111ABCD A B C D -的下底面和上底面分别是边4和2的正方形,侧棱1CC 上点E 满足1113C EC C =.(1)证明:直线1//A B 平面1ADE ;(2)若1CC ⊥平面ABCD ,且13CC =,求直线1BB 与平面1AD E 所成角的正弦值.则()()()()(110,4,0,0,2,3,4,4,0,2,0,3,0,0,2B B A D E 所以()()()110,2,3,2,4,3,4,4,2BB AD AE =-=--=--u u u u u u u u r r u u r 设平面1AD E 的法向量(),,n x y z =r ,由100n AD n AE ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r ,得取()1,2,2n =--r,146213n BB ⋅-==u u u r r u u u r 18.(2023·湖南·模拟预测)如图,在三棱柱111ABC A B C -中,平面ABC ⊥平面11ACC A ,侧面11ACC A 为菱形2AC =,160A AC ∠=︒,底面ABC 为等腰三角形,AB BC =,O 是AC 的中点.(1)证明:1OA AB ⊥;(2)若二面角11A OB C --的余弦值为,求三棱柱111ABC A B C -的体积.则()0,0,0O ,()1,0,0A ,()0,0,B t ,C19.(2023·山东聊城·统考一模)如图,在四棱锥P ABCD -中,PAD V 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD .(1)证明:平面CDM ⊥平面PAB ;(2)若AD BC ∥,2AD BC =,2AB =,直线PB 与平面MCD ,求三棱锥P MCD -的体积.)N ,连接PN ,因为PAD V 为等边三角形,所以⊥平面ABCD ,平面PAD ⋂平面ABCD ABCD ,所以PN AB ⊥,AB ,PN PD P =I ,,PN PD ⊂平面))可知,PN AB ⊥且PD AB ⊥,PN AD ⊂平面PAD ,所以AB AD ⊥,为坐标原点,分别以,AB AD 所在直线为2AD a =,则可得)()()0,0,0,2,0,0,0,,3,0,a B P a a M ⎛20.(2023·湖南郴州·统考三模)如图,在三棱锥-P ABC 中,侧面PAC ⊥底面,,ABC AC BC PAC ⊥V 是边长为2的正三角形,4,,=BC E F 分别是,PC PB 的中点,记平面AEF 与平面ABC 的交线l .(1)证明:直线l ⊥平面PAC .(2)若Q 在直线l 上且BAQ ∠为锐角,当P AEFQ P ABC V V --=时,求二面角A PQ B --的余弦值.则()1,0,3P ,()()()2,0,0,0,4,0,2,6,0A B Q ()()1,0,3,0,6,0PA AQ =-=u u u r u u u r ,()()1,4,3,2,2,0PB BQ =-=u u u r u u u r 令平面PAQ 的法向量为(n x =r 21.(2023·湖南岳阳·统考二模)在ABC V 中,45,3ACB BC ∠==o ,过点A 作AD BC ⊥,交线段BC 于点D (如图1),沿AD 将ABD △折起,使90BDC ∠=o (如图2),点,E M 分别为棱,BC AC 的中点.(1)求证:CD ME ⊥;(2)在①图1中4tan23B =-,②图1中2133AD AB AC =+u u u r u u u r u u u r ,③图2中三棱锥A BCD -的体积最大.这三个条件中任选一个,补充在下面问题中,再解答问题.问题:已知__________,试在棱CD 上确定一点N ,使得EN BM ⊥,并求平面BMN 与平面CBN 的夹角的余弦值.注:如果选择多个条件分别解答,按第一个解答计分.()()()(0,0,0,1,0,0,0,2,0,0,0,D B C A 则()1,1,1BM =-u u u u r .设()0,,0N a ,则1,1,02EN a ⎛=-- ⎝u u u r 0EN BM EN BM ⊥∴⋅=u u Q u r u u u u r ,,即⎛- ⎝()()()(D B C A0,0,0,1,0,0,0,2,0,0,0,22.(2023·浙江·校联考模拟预测)在三棱锥A ABC '-中,D ,E ,P 分别在棱AC ,AB ,BC 上,且D 为AC 中点,2AD AE A D A E ''====,AP DE ⊥于F .(1)证明:平面AA P '⊥平面A DE ¢;(2)当1BE =,5BC =,二面角A DE P '--的余弦值为35时,求直线A B '与平面A DE ¢所成角的正弦值.(2)因为1BE =,5BC =,所以AB 所以90BAC ∠=︒,22222DE =+=由(1)知A FP ∠'为二面角A DE '--所以3cos 5A FP ∠=',4sin 5A FP ∠='以点F 为原点,,,FE FP Fz 分别为,x23.(2023·浙江嘉兴·统考模拟预测)如图在三棱柱111ABC A B C -中,D 为AC 的中点,2AB BC ==,111AA B B BC ∠=∠.(1)证明:1BB AC ⊥;(2)若1BB BC ⊥,且满足:______,______(待选条件).从下面给出的①②③中选择两个填入待选条件,求二面角11B B D C --的正弦值.①三棱柱111ABC A B C -的体积为②直线1AB 与平面11BCC B ③二面角1A BB C --的大小为60°;注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)证明见解析(2)答案见解析【分析】(1)通过证明AC ⊥平面1BDB 来证得1AC BB ⊥.法三:如图所示,建立空间直角坐标系,设平面1BDB 的一个法向量为(m =u r 300x m BB =⎧⎧⋅=⎪⎪u u u r r 方案二:选择①②;解析:过点A 作AO BC ⊥于点O方案三:选择②③;∵1BB ⊥平面ABC ,∴1BB AB ⊥,BB ∴ABC ∠为二面角1A BB C --的平面角,即AO BC ⊥O 24.(2023·浙江·校联考三模)如图,四面体ABCD 中,90B A D B A C C A D ∠=∠=∠=o ,AC AD =,AB 与面BCD 的所成角为45o .(1)若四面体ABCD ,求AC 的长;(2)设点M 在面BCD 中,45ABM ∠=o ,30ACM ∠=o ,过M 作CD 的平行线,分别交,BC BD 于点,H F ,求面AFH 与面ACD 所成夹角的余弦值.设AC a =,AB b =,则22AE a =,BC 则由AE AB AO BE ⋅=⋅得:22b a =,1136A BCD B ACD ACD V V S AB AC --∴==⋅=⨯V (2)设2AC =,由(1)得:1AB =延长CM 交于点G ,连接AG ,Rt BGM Q V ∽Rt BED △,BM BDBG ∴=又3BD =,33BG =,2BE =方法一://HF CD Q ,H ∴为BC 中点,以A 为坐标原点,,,AC AD AB u u u r u u u r u u u r正方向为则()0,0,0A ,()0,0,1B ,21,0,22H ⎛⎫ ⎪ ⎪⎝⎭,F ⎛ ⎝210,,22AF ⎛⎫∴= ⎪ ⎪⎝⎭u u u r ,21,0,22AH ⎛⎫= ⎪ ⎪⎝⎭u u u r ,AB u u ur 设平面AFH 的法向量(),,n x y z =r,则2102221AF n y z ⎧⋅=+=⎪⎪⎨u u u r r u u u r r ,令1x =,解得:AFH ∴V 在平面ACD 的投影为ATK V ,设平面AFH 与平面ACD 所成的二面角为25.(2023·广东江门·统考一模)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,O 是AD 的中点,点E 在PC 上,且//AP 平面BOE .(1)求PEEC的值;(2)若OP ⊥平面ABCD ,OE PC ⊥,2AB =,60BAD ∠=o ,求直线OE 与平面PBC 所成角的正弦值.。
高中数学 立体几何专题复习
图2侧视图俯视图正视图4x33x4DCBA侧视图正视图立体几何专题(一)一、三视图考点透视:①能想象空间几何体的三视图,并判断(选择题) ②通过三视图计算空间几何体的体积或表面积③解答题中也可能以三视图为载体考查证明题和计算题④旋转体(圆柱、圆锥、圆台或其组合体)的三视图有两个视图一样。
⑤基本几何体的画法,如:三棱柱(侧视图)、挡住的注意画虚线。
1. 一空间几何体的三视图如图2所示, 该几何体的 体积为85123π+,则正视图中x 的值为 A. 5 B . 4 C. 3 D . 22. 一个正方体截去两个角后所得几何体的正视图(又称主视图)、 侧视图(又称左视图)如右图所示,则其俯视图为c3.如图4,已知一个锥体的正视图(也称主视图),左视图(也称侧视图)和俯视图均为直角三角形, 且面积分别为3,4,6,则该锥体的体积是 4 .4. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积 为A .63B .93C .123D .1835、已知某几何体的直观图(图1)与它的三视图(图2), 其中俯视图为正三角形,其它两个视图是矩形.已知D 是正视图 左视图俯视图图4_3 _3 这个几何体的棱11C A 上的中点。
(Ⅰ)求出该几何体的体积;(Ⅱ)求证:直线11//BC AB D 平面; (Ⅲ)求证:直线11B D AA D ⊥平面.二、直观图掌握直观图的斜二测画法:①平行于两坐标轴的平行关系保持不变;②平行于y 轴的长度为原来的一半,x 轴不变;③新坐标轴夹角为45°。
6、如图,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=2,C 1D 1=3,A 1D 1=1,则梯形ABCD 的面积是( ) A .10 B .5 C .5 2D .102三、表面积和体积不要求记忆,但要会使用公式。
高三第二轮复习立体几何客观题组专题训练2
高三第二轮复习立体几何客观题组专题训练2一.选择题1.三条平行线所确定的平面的个数是A .三个B .两个C .一个D .一个或三个 2.空间交于一点的四条直线最多能够确定的平面的个数是 A .4 B .5 C .6 D .73.四条线段顺次首尾相接,它们所在的直线最多能够确定的平面的条数是 A .4 B .3 C .2 D .14.直线l 1∥l 2,l 1上取3点,l 2上取2点,由这五个点能确定的平面的个数是 A .1 B .3 C .6 D .95.空间三个平面两两相交,则它的交线的条数是 A .1 B .2 C .3 D .1或36.分别和两条异面直线平行的两条直线的位置关系是A .一定平行B .一定相交C .一定异面D .相交或异面7.正方体ABCD -A 1B 1C 1D 1中,异面直线CD 1和BC 1所成角的大小是 A .45° B .60° C .90° D .120°8.直线l 1∥l 2,a,b 与直线l 1和l 2都垂直,则a,b 的关系是A .平行B .相交C .异面D .平行,相交,异面都有可能 9.直线m,n 与异面直线a,b 相交于不同的四点,则m,n 的位置关系是 A .平行 B .相交 C .垂直 D .无公共点10.空间四边形ABCD 中,AC ⊥BD ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 是A .菱形B .矩形C .梯形D .正方形11.a,b 是异面直线,a ⊂平面α,b ⊂平面β,α∩β=c,则直线c A .同时与a,b 相交 B .至少和a,b 中的一条相交C .至多和a,b 中的一条相交D .与a,b 中的一条相交,一条平行12.正方体ABCD -A 1B 1C 1D 1中,表面的对角线与AD 1成60°的直线的条数有 A .4 B .6 C .8 D .1013.a,b 是异面直线,a ⊥b ,c 与a 成30°角,则c 与b 所成角的范畴是 A .[60°,90°] B .[30°,90°] C .[60°,120°] D .[30°,120°]14.空间四边形ABCD 的各边与两条对角线的长差不多上1,点P 在边AB 上移动,点Q 在CD 上移动,则点P 和Q 的最短距离是23432221. . . .D C B A 15.正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,BB 1的中点,则A 1E 与C 1F 所成角的余弦值是521522221D C B A . . . 16.直线a 是平面α的斜线,b ⊂α,当a 与b 成60°的角,且b 与a 在α内的射影成45°时a 与α所成的角为A .60°B .45°C .90°D .135° 17.a,b 是两条异面直线,下列结论正确的是A .过不在a,b 上的任一点,可作一个平面与a,b 都平行B .过不在a,b 上的任一点,可作一条直线与a,b 都相交C .过不在a,b 上的任一点,可作一条直线与a,b 都平行D .过a 能够同时只能够作一个平面与b 平行18.直角三角形ABC 的斜边BC 在平面α内,顶点A 在平面α外,则ΔABC 的两条直角边在平面α内的射影与斜边所组成的图形只能是 A .一条线段 B .一个锐角三角形C .一个钝角三角形D .一条线段或一个钝角三角形 19.与空间四边形ABCD 四个顶点距离相等的平面的个数有 A .1 B .5 C .6 D .720.两条异面直线在同一平面内的射影是 A .两条相交直线 B .两条平行直线C .一条直线及直线外一点D .以上三种情形都有可能21.在矩形ABCD 中,AB =3,BC =4,PA ⊥平面ABCD 且PA =1,则P 到对角线DB 的距离是129515175132921. . . .D C B A 22.已知直线a ∥平面α,a 与平面α相距4,平面α内直线b 与c 相距6,且a ∥b,同时相距5,则a 与c 相距565975975 或. . 或. .D C B A23.平面α的斜线与α所成的角是30°,则它和α内所有只是斜足的直线所成的角中,最大的角是 A .30° B .90° C .150° D .180°24.P 点在ΔABC 所在的平面外,O 点是P 点在平面ABC 内的射影,PA ,PB ,PC ,两两相互垂直,则O 是ΔABC 的A .重心B .内心C .垂心D .外心25.四面体ABCD 中,AB =AC =AD ,则A 在平面BCD 上的射影是ΔBCD 的 A .重心 B .内心 C .垂心 D .外心26.在ΔABC 中,AB =AC =5,BC =6,PA ⊥平面ABC ,PA =8,则P 到BC 的距离是5453525. . . .D C B A27.P 点在ΔABC 所在的平面外,O 点是P 点在平面ABC 内的射影,P 到ΔABC 三边的距离相等,且O 在ΔABC 内,则O 是ΔABC 的A .重心B .内心C .垂心D .外心28.P 为平行四边形ABCD 所在平面外的一点,且P 到四边形ABCD 的四条边的距离相等,则四边形ABCD 是A .正方形B .菱形C .矩形D .一样的平行四边形 29.与两相交平面的交线平行的直线和这两个平面的位置关系是 A .都平行 B .都相交C .在两个平面内D .至少和其中一个平行 30.在直角坐标系中,设A (3,2)B (-2,-3),沿y 轴把直角坐标系平面折成120°的二面角后,AB 的长度是11232246. . . .D C B A31.一个山坡面与水平面成60°的二面角,坡脚的水平线为AB ,甲沿山坡自P 朝垂直于AB 的方向走30米,同时乙沿水平面自Q 朝垂直于AB 的方向走30米,P ,Q 差不多上AB 上的点,若PQ =10米,则这时两人之间的距离是米.米 .米 . 米 .19103301010720D C B A32.二面角α—a —β的平面角为120°,在面α内,AB ⊥a 于B ,AB=2,在β内CD ⊥a 于D ,CD =3,BD =1,M 是棱a 上的一个动点,则AM +CM 的最小值是62262252. . . .D C B A33.ABCD 是正方形,以BD 为棱把它折成直二面角A -BD -C ,E 是CD 的中点,则∠AED 的大小为A .45°B .30°C .60°D .90°34.P 是ΔABC 外的一点,PA ,PB ,PC 两两相互垂直,PA =1,PB =2,PC =3,则ΔABC 的面积为4496112729. . . .D C B A 35.在ΔABC 中,AB =9,AC =15,∠BAC =120°,P 是ΔABC 所在平面外的一点,P 到三点间的距离差不多上14,则P 到ΔABC 所在平面的距离是 A .7 B .9 C .11 D1336.过正方形ABCD 的顶点A 作PA ⊥平面ABCD ,若PA=AB ,则平面APB 与平面CDP 所成二面角的度数是A .90°B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学立体几何专题复习1.如图,在正方体ABCD-A1B1C1D1中,E,F分别
是AD,DD1的中点.求证:
(1)EF∥平面C1BD; (2)A1C⊥平面C1BD.
2.如图,四棱锥P-ABCD的底面为矩形,AB=
2,BC=1,E,F分别是AB,PC的中点,DE⊥PA.
(1)求证:EF∥平面PAD;
(2)求证:平面PAC⊥平面PDE.
3.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,
CE∥BG,且∠BCD=∠BCE=π
2
,平面ABCD⊥平面BCEG,
BC=CD=CE=2AD=2BG=2.
(1)求证:EC⊥CD;
(2)求证:AG∥平面BDE;
4.如图,在三棱柱ABC -A 1B 1C 1中,各个侧面均是边长为2的正方形,D 为线段
AC 的中点.
(1)求证:BD ⊥平面ACC 1A 1;
(2)求证:AB 1∥平面BC 1D ;
5.如图1,在梯形ABCD 中,AD ∥BC ,AD ⊥DC ,BC =2AD ,四边形ABEF 是矩形,将矩形ABEF 沿AB 折起到四边形ABE 1F 1的位置,使平面ABE 1F 1⊥平面ABCD ,M 为
AF 1的中点,如图2.(1)求证:BE 1⊥DC ;
(2)求证:DM ∥平面BCE 1;
(3)判断直线CD 与ME 1的位置
关系,并说明理由.
6、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠=, 4===CA BC PB ,E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且
2AF FP =.
(1)求证:BE ⊥平面PAC ;
(2)求证://CM 平面BEF ;
7.如图,在四棱锥P-ABCD中,AD=CD=1
2 AB,
AB∥CD,AD⊥CD,PC⊥平面ABCD.(1)求证:BC⊥
平面PAC;(2)若M为线段PA的中点,且过C,D,M三点的平面与PB交于点N,求PN:PB的值.
8.如图,边长为2的正方形ADEF与梯形ABCD所在
的平面互相垂直,AB∥CD,AB⊥BC,DC=BC=1
2
AB=
1.点M在线段EC上.
(1)证明:平面BDM⊥平面ADEF;
9.在如图所示的几何体中,四边形ABCD为平行四边形,∠ACD=90°,AB=1,AD=2,四边形ABEF为正方形,平面ABEF⊥平面ABCD,P为DF的中点,AN⊥CF,垂足为N.
(1)求证:BF∥平面PAC;
(2)求证:AN⊥平面CDF;
10、如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,∠BAD=90°,BC=1,AB=3,AD=AA1=3,E1为A1B1中点.证明:(1)B1D∥平面AD1E1;
(2)平面ACD1⊥平面BDD1B1.
11.如图,已知四边形ABCD是正方形,DE⊥平面ABCD,FA⊥平面ABCD,FA=AB =2DE.(1)判断B,C,E,F四点是否共面,并证明你的结论;
(2)若CG⊥平面ABCD,且CG=FA,请问在平面ADEF上是否存在一点H,使得直线GH⊥平面BEF?若存在,求出H点的位置;若不存在,请说明理由.。