第十八章平行四边形单元测试题(2)
2020年人教版初中数学八年级下册第18章《平行四边形》单元综合测试题含答案
平行四边形一.选择题(共10小题)1.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC2.平行四边形两邻角的平分线相交所成的角的大小是()A.90°B.60°C.45°D.30°3.下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形4.下列说法正确的有()①对角线互相平分的四边形是平行四边形;②平行四边形的对角互补;③平行线间的线段相等;④两个全等的三角形可以拼成一个平行四边形;⑤平行四边形的四内角之比可以是2:3:2:3.A.1个B.2个C.3个D.4个5.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.56.如图,在菱形ABCD中,∠BAD=120°,点A坐标是(﹣2,0),则点B坐标为()A.(0,2)B.(0,)C.(0,1)D.(0,2)7.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形8.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME⊥AB于E,MF⊥AC于F,N为EF的中点,则MN的最小值为()A.4.8 B.2.4 C.2.5 D.2.69.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断10.把一张长方形纸片ABCD按如图方式折一下,就一定可以裁出()纸片ABEF.A.平行四边形B.菱形C.矩形D.正方形二.填空题(共8小题)11.如图,在平行四边形ABCD中,∠BCD和∠ABC的平分线分别交AD于E、F两点,AB=6,BC=10,则EF的长度是.12.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC =∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)13.如图,将两条宽度都是为2的纸条重叠在一起,使∠ABC=45°,则四边形ABCD的面积为.14.如图,矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度运动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s),当t=时,四边形APQD 也为矩形.15.如图,在平行四边形ABCD中,AB=8,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=3,则AE的边长为.16.在▱ABCD中,AE平分∠BAD交边BC于E,DF⊥AE,交边BC于F,若AD=10,EF=4,则AB=.17.矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.18.如图,正方形OABC在直角坐标系中,点B(﹣2,2),点D为BC的中点,点E在线段OC上运动,射线ED交AB延长线于点F,设E(0,t),当△AEF是以AE为腰的等腰三角形时,点E的坐标是.三.解答题(共7小题)19.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC中点.求DE 的长.20.在▱ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:四边形DFBE是平行四边形;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以GH为边或对角线的所有平行四边形.21.已知:如图,在矩形ABCD中,点M、N在边AD上,且AM=DN,求证:BN=CM.22.如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.23.已知,如图,∠ABC=∠ADC=90°,点E、F分别是AC、BD的中点,AC=10,BD=6.(1)求证:EF⊥BD;(2)求EF的长.24.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB 的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:四边形BDCF为菱形;(2)若四边形BDCF的面积为24,tan∠EAC=,求CF的长.25.如图,在平行四边形ABCD中,过点D作DE⊥BC交BC于点E,且DE=AD,F为DC上一点,且AD=FD,连接AF与DE交于点G.(1)若∠C=60°,AB=2,求GF的长;(2)过点A作AH⊥AD,且AH=CE,求证:AB=DG+AH.第《18章平行四边形》单元测试题参考答案与试题解析一.选择题(共10小题)1.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.2.【分析】根据平行四边形的性质得到∠DAB+∠ABC=180°,由角平分线可得∠BAO+∠ABO=90°,根据三角形的内角和定理得∠AOB=90°,即可得到所选选项.【解答】解:▱ABCD的∠DAB的平分线和∠ABC的平分线交于O,∴∠DAB+∠ABC=180°,∠DAO=∠BAO=∠DAB,∠ABO=∠CBO=∠ABC,∴∠BAO+∠ABO=90°,∴∠AOB=180°﹣90°=90°.故选:A.【点评】本题主要考查了平行四边形的性质,角平分线的定义,三角形的内角和定理等知识点,能综合利用性质进行证明是解此题的关键.3.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.【解答】解:根据平行四边形的判定定理,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选:C.【点评】此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.4.【分析】根据平行四边形的判定定理以及性质定理即可判断.【解答】解:①正确;②平行四边形的对角相等,命题错误;③平行线间的平行线段相等,命题错误;④正确;⑤正确.故选:C.【点评】本题考查了平行四边形的判定定理以及性质定理,正确理解定理的内容是关键.5.【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.【分析】根据菱形的性质可得∠OAB=∠BAD=60°,∠AOB=90°,解直角△AOB,求出OB,即可得到点B坐标.【解答】解:∵在菱形ABCD中,∠BAD=120°,点A坐标是(﹣2,0),∴∠OAB=∠BAD=60°,∠AOB=90°,在直角△AOB中,∵OA=2,∴OB=OA•tan∠OAB=2×=2,∴点B坐标为(0,2).故选:D.【点评】本题考查了菱形的性质,掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角是解题的关键.也考查了锐角三角函数定义,坐标与图形性质.7.【分析】根据平行四边形和菱形的性质对各个选项进行分析从而得到最后答案.【解答】解:根据平行四边形和菱形的性质得到ACD均正确,而B不正确,因为对角线互相垂直的四边形也可能是梯形.故选:B.【点评】主要考查了平行四边形和特殊平行四边形的特性,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.菱形的特性是:四边相等,对角线互相垂直平分.8.【分析】过点A作AM⊥BC于点M′,根据勾股定理求出BC的长,再由三角形的面积公式求出AM′的长.根据题意得出四边形AEMF是矩形,故可得出AM=EF,MN=AM,当MN最小时,AM最短,此时M与M′重合,据此可得出结论.【解答】解:过点A作AM⊥BC于点M′,∵在△ABC中,∠BAC=90°,AB=8,AC=6,∴BC==10,∴AM′==.∵ME⊥AB于E,MF⊥AC于F,∴四边形AEMF是矩形,∴AM=EF,MN=AM,∴当MN最小时,AM最短,此时点M与M′重合,∴MN=AM′==2.4.故选:B.【点评】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AM的最小值是关键.9.【分析】由条件可知AB∥CD,AD∥BC,再再证明AB=BC即可解决问题.【解答】解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故选:B.【点评】本题考查了菱形的判定,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.10.【分析】根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.【解答】解:由已知,根据折叠原理,对折后可得:∠FAB=∠B=∠AFE=90°,AB=AF,∴四边形ABEF是正方形,故选:D.【点评】此题考查了正方形的判定和折叠的性质,关键是由折叠原理得到四边形有三个直角,且一组邻边相等.二.填空题(共8小题)11.【分析】根据平行四边形的性质可知∠DEC=∠ECB,又因为CE平分∠BCD,所以∠DCE=∠ECB,则∠DEC=∠DCE,则DE=DC,同理可证AF=AB,那么EF就可表示为AF+ED﹣BC=2AB﹣BC,继而可得出答案.【解答】解:∵平行四边形ABCD,∴∠DEC=∠ECB,又CE平分∠BCD,∴∠DCE=∠ECB,∴∠DEC=∠DCE,∴DE=DC,同理可证:AF=AB,∴2AB﹣BC=AF+ED﹣BC=EF=2.故答案为2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题,难度不大,关键是解题技巧的掌握.12.【分析】根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再证明△AOD≌△COB可得BO=DO,然后再根据对角线互相平分的四边形是平行四边形可得答案.【解答】解:可选条件①③,∵AD∥BC,∴∠DAO=∠OCB,∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB(AAS),∴DO=BO,∴四边形ABCD是平行四边形.故答案为:①③.【点评】此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形.13.【分析】根据折叠的性质易知,重合部分为菱形,然后根据菱形的面积公式计算即可.【解答】解:如图,过点A作AE⊥BC于点E,AF⊥CD于点F.则AE=AF=2.∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是2,∴S四边形ABCD=BC×2=CD×2,∴BC=CD,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.∴四边形ABCD的面积为2×2×=4.故答案是:4.【点评】本题主要考查菱形的性质和特殊角的三角函数值,通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.14.【分析】四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可.【解答】解:根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20﹣t,解得t=4(s).故答案是:4.【点评】本题考查了矩形的判定与性质.此题利用了矩形的对边相等的性质进行解题的.15.【分析】由平行四边形的性质和角平分线证出AD=DF,由F为DC中点,AB=CD,求出AD与DF 的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由AAS证明ADF≌△ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=4,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD中,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=2×2=4,故答案为:4【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解本题的关键.16.【分析】根据平行线的性质得到∠ADF=∠DFC,根据角平分线的定义得到∠BAE=∠DAE,推出AB=BE,根据已知条件推出∠ADF=∠ADC,得到∠DFC=∠CDF,推出CF=CD,于是得到结论.【解答】解:①如图1,在▱ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE+CF﹣EF=2AB﹣EF=2AB﹣4=10,∴AB=7;②如图2,在▱ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE++EF+CF=2AB+EF=2AB+4=10,∴AB=3;综上所述:AB的长为7或3.故答案为:7或3.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,平行四边形的性质,解答本题的关键是判断出AB=BE=CF=CD.17.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=2,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=4、GF=CE=2,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=2,PH=HG=PG,∵PD=AD﹣AP=2,GD=GC﹣CD=4﹣2=2∴GP==2∴GH=GP=故答案为:【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.18.【分析】由ASA证明△DBF≌△DCE,得出BF=CE=2﹣t,得出AF=AB+BF=4﹣t,即可得出点F的坐标;分两种情况:①当AE=AF时,根据勾股定理得出AE2=OA2+OE2,得出方程22+t2=(4﹣t)2,解方程即可求出t的值;②当AE=EF时,点E在AF的垂直平分线上,得出OE=AF,即t=(4﹣t),解方程即可求出t的值,从而求解.【解答】解:(1)∵四边形OABC是正方形,∴OA=AB=BC=OC=2,∠AOC=∠ABC=∠BCO=90°,∴∠FBD=90°,∵D是BC的中点,∴BD=CD,在△DBF和△DCE中,,∴△DBF≌△DCE(ASA),∴BF=CE=2﹣t,∴AF=AB+BF=4﹣t,∴D的坐标为(﹣2,4﹣t),当△AEF是以AE为腰的等腰三角形时,分两种情况:①当AE=AF时,∵AE2=OA2+OE2,∴22+t2=(4﹣t)2,解得:t=1.5;②当AE=EF时,点E在AF的垂直平分线上,∴OE=AF,即t=(4﹣t),解得:t=.综上所述:当△AEF是以AE为腰的等腰三角形时,点E的坐标是(0,1.5)或(0,).故答案为:(0,1.5)或(0,).【点评】考查了正方形的性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质等知识;本题综合性强,有一定难度,需要进行分类讨论才能得出结果.三.解答题(共7小题)19.【分析】延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF,然后求解即可.【解答】解:如图,延长BD与AC相交于点F,∵AD平分∠BAC,BD⊥AD,∴∠DAB=∠DAF,AD=AD,∠ADB=∠ADF,∴△ADB≌△ADF,∴AF=AB,BD=DF,∵AB=6,AC=10,∴CF=AC﹣AF=AC﹣AB=10﹣6=4,∵E为BC中点,∴DE是△BCF的中位线,∴DE=CF=×4=2.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的判定与性质,作辅助线构造出以DE为中位线的三角形是解题的关键.20.【分析】(1)由平行四边形的性质得出AB∥CD,∠ADE=∠CBF,AD=BC,由ASA证明△ADE≌△CBF,得出DE=BF,即可得出四边形DFBE是平行四边形;(2)由中点的定义得出DE=CE,由平行四边形的判定方法即可得出平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADE=∠CBF,AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF,又∵DE∥BF,∴四边形DFBE是平行四边形;(2)解:∵E是CD的中点,∴DE=CE,∴以GH为边的平行四边形有平行四边形GHFA、平行四边形GHBF、平行四边形GHED、平行四边形GHCE;以GH为对角线的平行四边形有GFHE.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出DE=BF是解决问题(1)的关键.21.【分析】由矩形的性质可得出BA=CD、∠A=∠D,由AM=DN可得出AN=DM,进而即可证出△ABN≌△DCM(SAS),根据全等三角形的性质可证出BN=CM.【解答】证明:∵四边形ABCD为矩形,∴BA=CD,∠A=∠D.∵AM=DN,∴AN=DM.在△ABN和△DCM中,,∴△ABN≌△DCM(SAS),∴BN=CM.【点评】本题考查了矩形的性质以及全等三角形的判定与性质,利用全等三角形的判定定理SAS 证出△ABN≌△DCM是解题的关键.22.【分析】延长EM交AD于点P,延长FM交AB于点Q,根据正方形的性质可得出:四边形PMFD、BEMQ为正方形,四边形AQMP、MECF为矩形,进而可得出AQ=FM,QM=ME,结合∠AQM=∠FME=90°即可证出△AQM≌△FME(SAS),再利用全等三角形的性质可证出AM=EF.【解答】证明:延长EM交AD于点P,延长FM交AB于点Q,如图所示.∵四边形ABCD为正方形,点M为对角线BD上一点,∴四边形PMFD、BEMQ为正方形,四边形AQMP、MECF为矩形,∴AQ=PM=FM,QM=ME.在△AQM和△FME中,,∴△AQM≌△FME(SAS),∴AM=EF.【点评】本题考查了全等三角形的判定与性质、正方形的性质以及矩形的性质,利用全等三角形的判定定值SAS证出△AQM≌△FME是解题的关键.23.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,可求BE=DE,根据等腰三角形的性质,可得结论;(2)根据题意可得BE=5,BF=3,根据勾股定理可求EF的长【解答】证明:(1)连接BE,DE∵∠ABC=∠ADC=90°,点E是AC的中点,∴BE=AC,DE=AC∴BE=DE∵点F是BD的中点,BE=DE∴EF⊥BD(2)∵BE=AC∴BE=5∵点F是BD的中点∴BF=DF=3在Rt△BEF中,EF===4【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,勾股定理,熟练掌握直角三角形斜边上的中线等于斜边的一半是本题的关键.24.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,根据菱形的判定得出即可;(2)设CE=2x,AC=3x,求出BC=4x,DF=AC=3x,根据菱形的面积公式求出x,求出EF和CE,根据勾股定理求出CF即可.【解答】(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∴四边形BDCF是菱形;(2)解:∵tan∠EAC==,∴设CE=2x,AC=3x,∵四边形BDCF是菱形,∴BE=CE=2x,∴BC=4x,∵四边形ADFC是平行四边形,∴DF=AC=3x,∵四边形BDCF的面积为24,∴=24,解得:x=2(负数舍去),∴CE=4,DF=6,∴DE=EF=×6=3,∵DE⊥BC,∴∠CEF=90°,∴由勾股定理得:CF===5.【点评】本题考查了勾股定理,平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.25.【分析】(1)过G作GH⊥CD于H,根据三角形的内角和得到∠CDE=60°,根据平行四边形的性质得到AD∥BC,AB=CD=2,得到∠ADC=120°,解直角三角形即可得到结论;(2)根据全等三角形的性质得到∠ADH=∠EDC,∠H=∠C,DH=DC,根据平行四边形的性质得到AB=CD,AB∥CD,推出∠DFA=∠C,在DH上截取HM=AH,得到∠HAM=∠HMA,求得∠DAM =∠H,根据全等三角形的性质即可得到结论..【解答】解:(1)如图1,过G作GH⊥CD于H,∵DE⊥BC,∴∠DEC=90°,∵∠C=60°,∴∠CDE=60°,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=2,∴∠ADC=120°,∵AD=DF,∴∠DAF=∠DFA=30°,∴∠GDF=∠DFG,∴DG=GF,∵CD=2,∴DF=,∴HF=DF=,∴GF=1;(2)∵AH⊥AD,DE⊥BC,∴∠DAH=∠DEC=90°,在△ADE与△DEC中,,∴△ADE≌△DEC(SAS),∴∠ADH=∠EDC,∠H=∠C,DH=DC,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠DAB=∠C,∠DFA=∠BAF,∵AD=DF,∴∠DAF=∠DFA,∴∠DFA=∠C,如图2,在DH上截取HM=AH,∴∠HAM=∠HMA,∴∠H=180°﹣2∠HAM,∵∠MAD=90°﹣∠HAM,∴∠DAM=∠H,∴∠MAD=∠GFD,在△ADM与△FDG中,,∴△ADM≌△FDG(ASA),∴DM=DG,∵AB=CD=DH=HM+DM,∴AB=AH+DG.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.。
华东师大版2019-2020学年八年级数学下学期第18章 平行四边形单元测试卷(含答案)
华东师大版八年级数学下册第18章平行四边形单元检测卷一、选择题(每小题4分,共28分)1.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD 于点F,则∠1=()A.40°B.50°C.60°D.80°(第1题)(第4题)(第5题)2.平行四边形两邻角的平分线相交所成的角为()A.锐角B.直角C.钝角D.不确定3.在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10 cmB.6 cmC.5 cmD.4 cm4.如图,四边形ABCD是平行四边形,点E在边BC上.如果点F是边AD上的点,那么△CDF 与△ABE不一定全等的条件是()A.DF=BEB.AF=CEC.CF=AED.CF∥AE5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()A.3cm<OA<5cm ;B.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm(第6题)(第7题) (第8题)7.如图所示,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD 于点F,连结AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(每小题5分,共25分)8.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB 的周长为.9.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为.(第9题) (第10题)10.如图所示,平行四边形ABCD的周长是18cm,对角线AC,BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是cm.11.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE∶EF∶FB的值是.(第11题)(第12题)12.如图,已知直线a∥b,点A、点C分别在直线a,b上,且AB⊥b,CD⊥a,垂足分别为B,D,有以下五种说法:①点A到直线b的距离为线段AB的长;②点D到直线b的距离为线段CD的长;③a,b两直线之间距离为线段AB的长;④a,b两直线之间距离为线段CD的长;⑤AB=CD,其中正确的有(只填相应的序号).三、解答题(共47分)13.(10分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.14.(12分)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF=∠DEF.15.(12分)如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.16.(13分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知,如图在四边形ABCD中,BC=AD,AB=.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证.(2)按嘉淇的想法写出证明:(3)用文字叙述所证命题的逆命题为.参考答案一、选择题(每小题4分,共28分)1.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD 于点F,则∠1=()A.40°B.50°C.60°D.80°【解析】选B.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=80°,∴∠BAD=100°,又∵AE平分∠BAD交BC于点E,∴∠EAD=∠BAD=50°,∵CF∥AE,∴四边形AECF是平行四边形,∴∠1=∠EAD=50°.2.平行四边形两邻角的平分线相交所成的角为()A.锐角B.直角C.钝角D.不确定【解析】选B.▱ABCD的∠DAB的平分线和∠ABC的平分线交于点O,∴∠DAB+∠ABC=180°,∠DAO=∠BAO=∠DAB,∠ABO=∠CBO=∠ABC,∴∠BAO+∠ABO=90°,∴∠AOB=180°-90°=90°.3.在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10 cmB.6 cmC.5 cmD.4 cm【解析】选A.因为平行四边形的对边相等,所以AD=BC=3cm,AB=CD=2cm,所以周长为10 cm.4.如图,四边形ABCD是平行四边形,点E在边BC上.如果点F是边AD上的点,那么△CDF 与△ABE不一定全等的条件是()A.DF=BEB.AF=CEC.CF=AED.CF∥AE【解析】选C.由平行四边形的性质可得AB=CD,AD=BC,∠B=∠D等.A中,DF=BE,∠B=∠D,AB=CD,符合“边角边”定理,△CDF≌△ABE,选项A成立;B中,AF=CE,可得DF=BE,同选项A,选项B成立;C中,CF=AE,∠B=∠D,AB=CD,条件为两边及一边的对角,C 不一定成立;D中,CF∥AE,可得四边形AECF是平行四边形,得AF=CE,所以BE=DF,同选项A,该选项成立.综上所述,选C.5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°【解析】选D.由平行四边形的性质及图形可知:∠1和∠2是邻补角,故∠1+∠2=180°,A 正确;因为AD∥BC,所以∠2+∠3=180°,B正确;因为AB∥CD,所以∠3+∠4=180°,C 正确;D.根据平行四边形的对角相等,∠2=∠4,∠2+∠4=180°不一定正确,故选D.6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()A.3cm<OA<5cmB.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm【解析】选C.在△ABC中,BC-AB<AC<AB+BC,即2cm<AC<8cm,所以1cm<OA<4cm.7.如图所示,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1【解析】选B.∵AE⊥BD于点E,CF⊥BD于点F,∴∠DFC=∠BEA=90°.∵DE=BF,∴DF=BE.又∵AB=CD,∴△DFC≌△BEA,∴CF=AE,①正确,∠CDF=∠ABE,∴AB∥C D.又∵AB=CD,∴四边形ABCD是平行四边形,③正确,∴OD=O B.又∵DF=BE,∴OE=OF,②正确,易知图中的全等三角形有:△DFC≌△BEA,△OFC≌△OEA,△AOF≌△COE,△AEF≌△CFE,△ACF≌△CAE,△AOB≌△COD,△AOD≌△COB,△ABD≌△CDB,△ACD≌△CAB,…,故④不正确.综上可知,正确的结论为①②③,共3个.二、填空题(每小题5分,共25分)8.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB 的周长为.【解析】因为平行四边形的对角线互相平分,所以OA=AC=7,OB=BD=4,又因为AB=10,所以△OAB的周长=7+4+10=21.答案:219.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为.【解析】点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=2,在Rt△ABE中,由勾股定理得AE===3.答案:310.如图所示,平行四边形ABCD的周长是18cm,对角线AC,BD相交于点O,若△AOD 与△AOB的周长差是5cm,则边AB的长是cm.【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.答案:211.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE∶EF∶FB的值是.【解析】∵四边形ABCD是平行四边形,∴∠DCE=∠BE C.∵CE是∠DCB的平分线,∴∠DCE=∠BCE,∴∠CEB=∠BCE,∴BE=BC=4.∵F是AB的中点,AB=6,∴FB=3.∴EF=BE-FB=1,∴AE=AB-BE=2,∴AE∶EF∶FB=2∶1∶3.答案:2∶1∶312.如图,已知直线a∥b,点A、点C分别在直线a,b上,且AB⊥b,CD⊥a,垂足分别为B,D,有以下五种说法:①点A到直线b的距离为线段AB的长;②点D到直线b的距离为线段CD的长;③a,b两直线之间距离为线段AB的长;④a,b两直线之间距离为线段CD的长;⑤AB=CD,其中正确的有(只填相应的序号). 【解析】本题主要考查点到直线的距离和平行线间的距离,①②③④⑤都正确.答案:①②③④⑤三、解答题(共47分)13.(10分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【证明】∵AB∥CD,∴∠BAE=∠DCF,∵BE∥DF,∴∠BEF=∠DFE,∴∠AEB=∠CF D.在△AEB和△CFD中,∴△AEB≌△CFD,∴AB=C D.又∵AB∥CD,∴四边形ABCD是平行四边形.14.(12分)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF=∠DEF.【证明】(1)∵点D,E分别是AB,BC的中点,∴DE∥AC;同理:EF∥AB,∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴∠DAF=∠DEF.∵在Rt△AHB中,D是AB中点,∴DH=AB=AD,∴∠DAH=∠DHA,同理:∠F AH=∠FHA,∴∠DAF=∠DHF,∴∠DHF=∠DEF.15.(12分)如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F 在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.【证明】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=B C.又∵CF=BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.16.(13分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知,如图在四边形ABCD中,BC=AD,AB=.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证.(2)按嘉淇的想法写出证明:(3)用文字叙述所证命题的逆命题为. 【解析】(1)CD平行(2)证明:连结B D.在△ABD和△CDB中,∵AB=CD,AD=CB,BD=DB,∴△ABD≌△CDB,∴∠1=∠2,∠3=∠4,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形.(3)平行四边形的对边相等.。
人教版初二数学8年级下册 第18章(平行四边形)单元测试题(含答案)
人教版八年级数学下册 第十八章 平行四边形 单元测试题一、选择题(30分)1.甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测,你认为最有说服力的是( )A .甲量得窗框的一组邻边相等B .乙量得窗框两组对边分别相等C .丙量得窗框的对角线长相等D .丁量得窗框的两组对边分别相等且两条对角线也相等2.菱形ABCD 的边长为5,一条对角线长为6,则菱形面积为( )A .20B .24C .30D .483.平行四边形ABCD 中,若∠A =2∠B ,则∠C 的度数为( )A .120°B .60°C .30°D .15°4.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,H 为CD 边中点,正方形ABCD 的周长为8,则OH 的长为( )A .4B .3C .2D .15.如图,菱形ABCD 的面积为24cm 2,对角线BD 长6cm ,点O 为BD 的中点,过点A 作AE ⊥BC 交CB 的延长线于点E ,连接OE ,则线段OE 的长度是( )A .3cmB .4cmC .4.8cmD .5cm 6.如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则()ABCD 6AB =BD BED BC =A.8B.10C.12D.147.将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是( )A.矩形B.菱形C.正方形D.梯形8.如图,为了测量池塘边A、B两地之间的距离,在线段AB的一侧取一点C,连接CA并延长至点D,连接CB并延长至点E,使A、B分别是CD、CE的中点,若DE=16m,则线段AB的长度是( )A.12m B.10m C.9m D.8m9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD10.如图,在平行四边形ABCD 中,,,以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于的长为半径画弧,两弧相交于点N,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .1B .2C .3D .4二、填空题(15分)11.已知矩形一条对角线长8cm ,两条对角线的一个交角是60°,则矩形较短的边长为 _____cm .12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.13.如图,菱形ABCD 的周长为40,面积为80,P 是对角线BC 上一点,分别作P 点到直线AB .AD 的垂线段PE .PF ,则等于______.14.如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为 _____.15.如图,四边形ABDE 和四边形ACFG 都是正方形,CE 与BG 交于点M ,点M 在△ABC 的外部.①;②;③.上述结论正确的是__________.4AB =5BC =12PQ PE PF +BG CE =CE BG ⊥120AME ∠=︒三、解答题(75分)16.如图,点O 是△ABC 外一点,连接OB 、OC ,线段AB 、OB 、OC 、AC 的中点分别为D 、E 、F 、G ,连接DE 、EF 、FG 、GD .(1)判断四边形DEFG 的形状,并说明理由;(2)若M 为EF 的中点,OM =2,∠OBC 和∠OCB 互余,求线段DG 的长.17. 如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连结CE .(1)求证:BD =EC .(2)当∠DAB =60°时,四边形BECD 为菱形吗?请说明理由.18.如图,四边形是平行四边形.求:(1)和的度数;(2)和的长度.19.如图,在矩形ABCD 中,已知AB =4,∠DBC =30°,求AC的长.ABCD ADC ∠BCD ∠AB BC20.如图,在中,点E ,H ,F ,G 分别在边上,,,与相交于点O ,图中共有多少个平行四边形?21.如图,A ,B 两地被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了A ,B 间的距离:先在外选一点C ,然后步测出的中点M ,N ,并测出的长,如果M ,N 两点之间还有阻隔,你有什么解决办法?说明你的理由.22.如图,在平行四边形中,过点作于点,点在边上,且,连接、.(1)求证:四边形是矩形;(2)若平分,,,求的长.23.如图,在四边形ABCD 中,,,对角线AC 、BD 交于点O ,AC 平分∠BAD ,过点C 作交AB 的延长线于点E.ABCD ,,,AB BC CD DA //AD EF //CD GH EFGH AB ,AC BCMN ABCD D DE AB ⊥E F CD FC A E =AFBF DEBF AF DAB ∠6FC =10DF =BF AB DC ∥AB AD =CE AB⊥(1)求证:四边形ABCD 是菱形;(2)若,,求CE 的长.【参考答案】1.D 2.B 3.A 4.D 5.B 6.C 7.B 8.D 9.B 10.A11.412.513.814.15.①②16.解:(1)四边形DEFG 是平行四边形,理由是:∵线段AB 、OB 、OC 、AC 的中点分别为D 、E 、F 、G ,∴EF ∥BC ,EF=BC ,DG ∥BC ,DG =BC ,∴EF ∥DG ,EF =DG ,∴四边形DEFG 是平行四边形;(2)∵∠OBC 和∠OCB 互余,∴∠OBC +∠OCB =90°,∴∠BOC =180°﹣90°=90°,∴∠EOF =90°,△EOF 为直角三角形,∵M 为EF 的中点,OM =2,∴EF =2OM =4,∵EF =DG ,∴DG =4.17.(1)证明:四边形ABCD 是菱形,∴AB =CD ,AB ∥CD ,又∵BE =AB ,∴BE =CD ,BE ∥CD ,∴四边形BECD 是平行四边形,∴BD =EC ;(2)解:结论:四边形BECD 是菱形.理由:∵四边形ABCD 是菱形,8AC =6BD =6+1212∴AD =AB ,∵∠DAB =60°,∴△ADB ,△DCB 都是等边三角形,∴DC =DB ,∵四边形BECD 是平行四边形,∴四边形BECD 是菱形.18.解:(1)∵四边形ABCD 是平行四边形∴ ,∵∴(2)∵四边形ABCD 是平行四边形∴∵∴19.解:∵四边形ABCD 是矩形,∴CD =AB =4,AC =BD ,∠BCD =90°,又∵∠DBC =30°,∴BD =2CD =2×4=8,∴AC =8.20.四边形是平行四边形,,,,平行四边形有:ABCD ,ABHG ,CDGH ,BCFE ,ADFE ,AGOE ,BEOH ,OFCH ,OGDF 共9个,共有9个平行四边形.21.解:用步测出CM ,CN 中点D 、E , 只要测量出DE 长便可求出AB ,∵点D 、E 分别为CM ,CN 的中点,∴DE =(三角形的中位线平行于第三边,并且等于第三边的一半),又∵点M ,N 分别为的中点,∴MN =(三角形的中位线平行于第三边,并且等于第三边的一半),∴AB =2MN =4DE .∴只要测量出DE 长便可求AB .=ADC B ∠∠180B BCD ∠+∠=56B =∠5618056124ADC BCD ∠=∠=-=,=,AB DC BC AD=25,30DC AD ==25,30AB BC == ABCD ∴//,//AB CD AD BC //AD EF //CD GH //,//AB GH BC EF∴∴ ∴12MN ,AC BC 12AB22.解:(1)证明:∵四边形是平行四边形,∴,,∵,∴,即,∴四边形是平行四边形,又∵,∴,∴平行四边形是矩形;(2)∵平分,∴,∵,∴,∴,∴,在中,,由勾股定理得:,由(1)得四边形是矩形,∴.23.(1)证明:∵,∴,∵AC 平分∠BAD ,∴,∴,∴,∵AB=AD ,∴,∵,ABCD //CD AB CD AB =FC A E =CD FC AB AE -=-DF BE =DEBF DE AB ⊥90DEB ∠=︒DEBF AF DAB ∠DAF BAF ∠=∠//CD AB DFA BAF ∠=∠DFA DAF ∠=∠10AD DF ==Rt AED △6AE FC ==8DE ===DEBF 8BF DE ==//AB DC OAB DCA ∠=∠OAB DAC ∠=∠DAC DCA ∠=∠CD AD =AB CD =//AB DC∴四边形ABCD 是平行四边形,又∵,∴四边形ABCD 是菱形;(2)∵四边形ABCD 是菱形,BD =6,AC =8,∴,,,∴,在中,根据勾股定理可知,,∴菱形的面积,∵,∴菱形面积,∴AB AD =118422OA OC AC ===⨯=BD AC ⊥116322OB OD BD ===⨯=90AOB ∠=︒Rt AOB△5AB ===11862422S AC BD ==⨯⨯= CE AB ⊥524S AB CE CE === 245CE =。
《第18章 平行四边形》单元测试(2)
《第18章平行四边形》单元测试(2)一.选择题(共10小题)1.如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点D在AB上,点E在AC上,分别过B、E作AC、BC的平行线,两平行线交于点H,已知CD=4,则BE长度是()A.4B.4C.4D.52.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,按这样的规律进行下去,第2011个正方形(正方形ABCD看作第1个)的面积为()A.5()2010B.5()2010C.5()2011D.5()2011 3.我们给出如下定义,顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,则中点四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形4.如图,菱形ABCD的边长为2,∠B=45°,AE⊥BC,则这个菱形的面积是()A.4B.8C.D.5.如图,把一张长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,BE与AD相交于点F,则下列结论不一定成立的是()A.△BFD是等腰三角形B.△ABF≌△EDFC.BE平分∠ABDD.折叠后的图形是轴对称图形6.如图,平行四边形ABCD中,AC、BD交于点O,分别以点A和点C为圆心,大于AC 的长为半径作弧,两弧相交于M、N两点,作直线MN,交AB于点E,交CD于点F,连接CE,若AD=3,CD=4,则△BCE的周长为()A.7B.6C.5D.37.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,若AB=4,EF=1,则BC长为()A.7B.8C.9D.108.下列四边形中,对角线互相垂直的是()A.B.C.D.9.Rt△ABC中,∠C=90°,锐角为30°,最短边长为5cm,则最长边上的中线是()A.5cm B.15cm C.10cm D.2.5cm10.如图,矩形ABCD的周长是16,DE=2,△FEC是等腰三角形,∠FEC=90°,则AE 的长是()A.3B.4C.5D.6二.填空题(共8小题)11.如图,在边长为6的菱形ABCD中,∠ABC=30°,P为BC上方一点,且S△PBC=S,则PB+PC的最小值为.菱形ABCD12.若菱形的周长为16,高为2,则该菱形两邻角的度数分别是.13.如图,直线m过正方形ABCD的顶点B,点A,C到直线m的距离分别是1和3,则正方形的边长是.14.如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是.15.如图,在△ABC中,∠C=90°,AB=13,AD是△ABC的一条角平分线,E为AB的中点,连接DE,若CD=,则△AED的面积为.16.如图,将一张矩形纸片沿EF折叠后,点D、C分别落在点D′,C′的位置,若∠1=40°,则∠D′EF=.17.如图,在▱ABCD中,AC=BC,∠CAD=30°,则∠D的度数为.18.已知直角坐标系中,菱形ABCD的顶点A、B、C的坐标分别是A(﹣2,0),B(0,﹣4),C(2,0),则点D的坐标是三.解答题(共9小题)19.如图所示,把四个相同的直角三角形拼成正方形,直角三角形两直角边长分别为24和7,通过面积计算该直角三角形的斜边长.20.如图,E,F是四边形ABCD的对角线BD的三等分点,CE,CF的延长线分别平分AB,AD,交点分别为点G,H.(1)求证:CE=2EG;(2)求证:四边形ABCD是平行四边形.21.2022年新版的《义务教育数学课程标准》、重新将梯形的概念作为需要理解的内容,如图所示:四边形ABCD为梯形,AB∥CD,E为AD的中点、解答下列问题:(1)作图:过点E作EF∥AB、交BC于点F;(2)EF和CD的位置关系如何?请写出简单的推理过程(推理的依据要写出来);(3)用刻变尺量一下BF和CF的长度,请你大胆猜想,直接写出BF和CF的数量关系;(4)用刻度尺量一下CD、EF、AB的长度,请你大胆猜想,直接写出CD、EF、AB这三条线段的数量关系.22.如图,将边长为6的正三角形ABC沿着MN折叠,使点A落在BC边上的D点处.(1)当折痕MN为△ABC的中位线时,求BD的长;(2)试说明△BDM与△CND是否相似;(3)若AM:AN=2:3时,求S△ABD:S△ADC.23.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是AO,CO的中点,连结BE,DF.(1)求证:BE=DF.(2)若BD=2AB=8,BC=6,求AC的长.24.矩形ABCD中,AB=3,AD=4,△ABC沿着AC翻折得到△AB'C,B'C交AD于点E,连接B'D.(1)求证:B'D∥AC;(2)求线段AE的长,直接写出线段B'D的长.25.图1、图2分别是7×6的网格,网格中的每个小正方形的边长均为1.请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画一个周长为8的菱形ABCD(非正方形);(2)在图2中画出一个面积为9,且∠MNP=45°的▱MNPQ,并直接写出▱MNPQ较长的对角线的长度.26.下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,ABC=90°.求作:矩形ABCD.作法:如图,①分别以点A,C为圆心、大于AC的长为半径作弧,两弧相交于E,F两点;②作直线EF,交AC于点P;③连接BP并延长至点D,使得PD=BP;④连接AD,CD.则四边形ABCD是矩形.根据小明设计的尺规作图过程,解决以下问题:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AE,CE,AF,CF.∵AE=CE,AF=CF,∴EF是线段AC的垂直平分线.∴AP=.又∵BP=DP,∴四边形ABCD是平行四边形()(填推理的依据).∵∠ABC=90°,∴四边形ABCD是矩形()(填推理的依据).27.[定义]:如果四边形的某条对角线平分一组对角,那么把这条对角线叫做“美妙线”,该四边形叫做“美妙四边形”.如图,在四边形ABDC中,对角线BC平分∠ACD和∠ABD,那么对角线BC叫“美妙线”,四边形ABDC就称为“美妙四边形”.[问题]:(1)下列四边形:平行四边形,矩形,菱形,正方形,其中是“美妙四边形”的是;(填写名称)(2)四边形ABCD是“美妙四边形”,AB=2,∠BAD=60°,∠ABC=90°,求美妙四边形ABCD的面积.(请画出图形,并写出解答过程)。
初中-数学-人教版-八年级数学第18章平行四边形单元测试卷(二)
八年级数学第18章平行四边形单元测试卷(二)一.选择题1、如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A. AE=CFB. BE=DFC. ∥EBF=∥FDED. ∥BED=∥BFD2、在四边形ABCD中,若有下列四个条件:∥AB//CD;∥AD=BC;∥∥A=∥C;∥AB=CD,现以其中的两个条件为一组,能判定四边形ABCD是平行四边形的条件有()A. 3组B. 4组C. 5组D. 6组3、如图,在Rt∥ABC中,∥BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∥FDA=∥B,AC=6,AB=8,则四边形AEDF的周长为()A. 16B. 20C. 18D. 224、如图是屋架设计图的一部分,D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=4m,∥A=30°,则DE等于()A. 1mB. 2mC. 3mD. 4m5、如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD 的周长为32,则OH的长等于()A. 4B. 8C. 16D. 186、如图,∥ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A. AB=ACB. AD=BDC. BE∥ACD. BE平分∥ABC7、如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∥BEF=2∥BAC,FC=2,则AB的长为()A. B. 8 C. D. 68、下列说法中正确的是()A. 有两个角为直角的四边形是矩形B. 矩形的对角线互相垂直C. 平行四边形的对角线互相平分D. 对角线互相垂直的四边形是菱形9、如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A. 30B. 34C. 36D. 4010、如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A. 四边形ACDF是平行四边形B. 当点E为BC中点时,四边形ACDF是矩形C. 当点B与点E重合时,四边形ACDF是菱形D. 四边形ACDF不可能是正方形二.填空题11、在∥MBN中,BM=6,BN=7,MN=10,点A、C、D分别是MB、NB、MN的中点,则四边形ABCD的周长是______;12、在矩形ABCD中,再增加条件______(只需填一个)可使矩形ABCD成为正方形.13、如图,在四边形ABCD中,∥ABC=∥ADC=90°,AC=26,BD=24,M、N分别是AC、BD的中点,则线段MN的长为______.14、如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2.则AC长是______cm.三.解答题15、在平行四边形ABCD中,对角线AC、BD交于点O,点E、F在AC上,且AE=CF,求证:DE=BF.16、如图,在∥ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB =CF ;(2)连接DE ,若AD =2AB ,求证:DE ∥AF .17、已知:如图,在∥ABCD 中,延长DA 到点E ,延长BC 到点F ,使得AE =CF ,连接EF ,分别交AB ,CD 于点H ,G ,连接DH ,BG .(1)求证:∥AEH ∥∥CFG ;(2)连接BE ,若BE =DE ,则四边形BGDH 什么特殊四边形?请说明理由.18、如图,在□ABCD 中,BF 平分∥ABC 交AD 于点F ,AE ∥BF 于点O ,交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)连接CF ,若∥ABC=60°,AB=4,AF =2DF ,求CF 的长.19、如图,在矩形ABCD 中,AB =8cm ,BC =16cm ,点P 从点D 出发向点A 运动,运动到点A 停止,同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm /s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为ts .(1)当t 为何值时,四边形ABQP 是矩形;(2)当t 为何值时,四边形AQCP 是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.是20、四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF∥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∥EFC的度数.参考答案1、【答案】B【分析】由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∥EBF=∥FDE,∥BED=∥BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.【解答】四边形ABCD是平行四边形,∥AD//BC,AD=BC,A、∥AE=CF,∥DE=BF,∥四边形BFDE是平行四边形,∥BE//DF,故本选项能判定BE//DF;B、∥BE=DF,∴四边形BFDE是等腰梯形,∴本选项不一定能判定BE//DF;C、∥AD//BC,∥∥BED+∥EBF=180°,∥EDF+∥BFD=180°,∥∥EBF=∥FDE,∥∥BED=∥BFD,∴四边形BFDE是平行四边形,∥BE//DF,故本选项能判定BE//DF;D、∥AD//BC,∥∥BED+∥EBF=180°,∥EDF+∥BFD=180°,∥∥BED=∥BFD,∥∥EBF=∥FDE,∥四边形BFDE是平行四边形,∥BE//DF,故本选项能判定BE//DF.选:B.2、【答案】A【分析】本题考查了平行四边形的判定.【解答】∥∥组合能根据平行线的性质得到∥B=∥D,从而利用两组对角分别相等的四边答案第1页,共12页形是平行四边形判定平行四边形;∥∥组合能利用一组对边平行且相等的四边形是平行四边形判定平行四边形;∥∥组合能利用两组对边分别相等的四边形是平行四边形判定,选A.3、【答案】A【分析】根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而不难求得其周长.【解答】在Rt∥ABC中,∥AC=6,AB=8,∥BC=10,∥E是BC的中点,∥AE=BE=5,∥∥BAE=∥B,∥∥FDA=∥B,∥∥FDA=∥BAE,∥DF∥AE,∥D、E分别是AB、BC的中点,∥DE∥AC,DE=12AC=3∥四边形AEDF是平行四边形∥四边形AEDF的周长=2×(3+5)=16.选:A.4、【答案】A【分析】利用直角三角形30°对的直角边等于斜边的一半,可得BC长,那么根据三角形中位线定理可得DE长应为BC长的一半.【解答】∥点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,∥点E是AC的中点,∥DE是直角三角形ABC的中位线,根据三角形的中位线定理得:DE=12 BC,又∥在Rt∥ABC中,AB=4m,∥A=30°,∥BC=12AB=2m.故DE=12BC=1m,选:A.5、【答案】A【分析】先根据菱形ABCD的周长为32,求出边长AB,然后根据H为AD边中点,可得OH=12AB,即可求解.【解答】∥菱形ABCD的周长为32,∥AB=8,∥H为AD边中点,O为BD的中点,∥OH=12AB=4.选:A.6、【答案】D【分析】当BE平分∥ABE时,四边形DBFE是菱形,由已知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【解答】解:当BE平分∥ABE时,四边形DBFE是菱形.理由:∥DE∥BC,EF∥AB,∥四边形DBEF是平行四边形,∥DE∥BC,∥∥DEB=∥EBC,∥∥EBC=∥EBD,∥∥EBD=∥DEB,∥BD=DE,∥平行四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形.选D.7、【答案】D【分析】连接OB,根据等腰三角形三线合一的性质可得BO∥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∥BAC=∥ABO,再根据三角形的内角和定理列式求出∥ABO=30°,即∥BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】如图,连接OB,答案第3页,共12页∥BE=BF,OE=OF,∥BO∥EF,∥在Rt∥BEO中,∥BEF+∥ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∥∥BAC=∥ABO,又∥∥BEF=2∥BAC,即2∥BAC+∥BAC=90°,解得∥BAC=30°,∥∥FCA=30°,∥∥FBC=30°,∥FC=2,∥BC∥AC=2BC∥AB6,选:D.8、【答案】C【分析】本题考查了平行四边形的性质、矩形的性质及判定.【解答】A项中,有三个角为直角的四边形是矩形,错误;B项中,矩形的对角线不一定互相垂直,互相垂直时是特殊的矩形正方形,错误;C项中,平项四边形的对角线互相平分,正确;D项中,对角线互相垂直但不平分的话不是菱形,选择C.故答案为:C9、【答案】B【分析】在Rt∥AEH中,由勾股定理求出EH.【解答】解:∥四边形ABCD是正方形,AE=BF=CG=DH,∥AH=DG=CF=BE,∥∥AEH∥∥DHG∥∥CGF∥∥BFE(SAS),∥EH=EF=FG=HG,∥∥A=∥D=90°,∥∥DGH+∥DHG=90°,∥∥AHE+∥DHG=90°,∥∥EHG=180°-90°=90°,∥四边形EFGH是正方形,在Rt∥AEH中,AE=2,AH=5,由勾股定理得:EH∥四边形EFGH是正方形,∥EF=FG=GH=EH∥四边形EFGH2=34.选B.10、【答案】B【分析】根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.【解答】解:∥∥ACB=∥EFD=30°,∥AC∥DF,∥AC=DF,∥四边形AFDC是平行四边形,选项A正确;当E是BC中点时,无法证明∥ACD=90°,选项B错误;B、E重合时,易证F A=FD,∥四边形AFDC是平行四边形,∥四边形AFDC是菱形,选项C正确;当四边相等时,∥AFD=60°,∥F AC=120°,∥四边形AFDC不可能是正方形,选项D正确.选B.11、【答案】13【分析】本题考查了平行四边形的判定与性质及三角形的中位线.【解答】∥点A,C,D分别是MB,NB,MN的中点,答案第5页,共12页∥CD∥AB,AD∥BC,∥四边形ABCD为平行四边形,∥AB=CD,AD=BC.∥BM=6,BN=7,MN=10,点A,C分别是MB,NB的中点,∥AB=3,BC=3.5,∥四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.12、【答案】AB=BC【分析】根据领边相等的矩形是正方形,即可判定四边形ABCD是正方形.【解答】∥AB=BC,∥矩形ABCD是正方形.故答案为:AB=BC13、【答案】5【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到BM=DM=13,根据等腰三角形的性质得到BN=12,根据勾股定理得到答案.【解答】连接BM、DM,∥∥ABC=∥ADC=90°,M是AC的中点,∥BM=12AC,DM=12AC,∥BM=DM=13,又N是BD的中点,∥BN=DN=12BD=12,∥MN,故答案为:5.14、【答案】【分析】证Rt∥AED∥Rt∥AFB,推出S∥AED=S∥AFB,根据四边形ABCD的面积是24cm2得出正方形AFCE的面积是24cm2,求出AE、EC的长,根据勾股定理求出AC即可.【解答】∥四边形AFCE是正方形,∥AF=AE,∥E=∥AFC=∥AFB=90°,答案第7页,共12页∥AB =AD∥Rt ∥AED ∥Rt ∥AFB (HL ),∥S ∥AED =S ∥AFB ,∥四边形ABCD 的面积是24cm 2,∥正方形AFCE 的面积是24cm 2,∴AE EC ===根据勾股定理得:AC ==15、【答案】证明见解答.【分析】首先连接BE ,DF ,由四边形ABCD 是平行四边形,AE =CF ,易得OB =OD ,OE =OF ,即可判定四边形BEDF 是平行四边形,继而证得DE =BF .【解答】连接BE ,DF ,∥四边形ABCD 是平行四边形,∥OA =OC ,OB =OD ,∥AE =CF ,∥OA ﹣AE =OC ﹣CF ,∥OE =OF ,∥四边形BEDF 是平行四边形,∥DE =BF .16、【答案】详见解答.【分析】(1)要证明AB =CF 可通过∥AEB ∥∥FEC 证得,利用平行四边形ABCD 的性质不难证明;(2)由平行四边形ABCD 的性质可得AB =CD ,由∥AEB ∥∥FEC 可得AB =CF ,∥DF =2CF =2AB ,∥AD =DF ,由等腰三角形三线合一的性质可证得ED ∥AF .【解答】(1)∥四边形ABCD 是平行四边形,∥AB ∥DF ,∥∥BAE =∥F,∥E 是BC 的中点,∥BE =CE ,BAE F AEB FEC BE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∥∥AEB ∥∥FEC (AAS ),∥AB =CF ;(2)∥四边形ABCD 是平行四边形,∥AB =CD ,∥AB =CF ,DF =DC +CF ,∥DF =2CF ,∥DF =2AB ,∥AD =2AB ,∥AD =DF ,∥∥AEB ∥∥FEC ,∥AE =EF ,∥ED ∥AF .17、【答案】(1)证明见解答(2)证明见解答【分析】(1)先根据平行四边形的性质可得出AD ∥BC ,∥DAB =∥BCD ,再根据平行线的性质及补角的性质得出∥E =∥F ,∥EAH =∥FCG ,从而利用ASA 可作出证明;(2)根据平行四边形的性质及(1)的结论可得BH ∥DG ,BH =DG ,则由有一组对边平行且相等的四边形是平行四边形证明四边形BHDG 是平行四边形,再证明BH =DH 即可得到四边形BHDG 是菱形【解答】(1)四边形ABCD 是平行四边形,∥∥DAB =∥BCD ,∥∥EAH =∥FCG ,又∥AD ∥BC ,∥∥E =∥F .∥在∥AEH 与∥CFG 中,EAH FCG AE CFE F ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∥∥AEH ∥∥CFG (ASA );(2)连接BE ,∥四边形ABCD 是平行四边形,又由(1)得AH=CG,∥AEH=∥F,AE=CF,∥BH∥DG,BH=DG,,∥四边形BHDG是平行四边形,∥AE=CF,AD=BC,∥DE=BF,∥BE=DE,∥BE=BF,∥∥BEF=∥F,∥∥AEH=∥F,∥∥BEF=∥DEF,在∥BEH和∥DEH中,∵BE DEBEH DEH EH EH=⎧⎪∠=∠⎨⎪=⎩,∥BH=DH,∥四边形BHDG是平行四边形,∥四边形BHDG是菱形.18、【答案】(1)证明见解答(2)【分析】(1)利用两对边分另相等的四边形是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)过点A作AG∥BC于点G,利用等边三角形的性质、矩形的判定,含30度角的直角三角形即可求出CF的长.【解答】(1)证明:∥BF平分∥ABC,∥∥ABF=∥CBF,∥□ABCD,∥AD∥B,答案第9页,共12页∥∥AFB=∥CBF,∥∥ABF=∥AFB,∥AB=AF,∥AE∥BF,∥∥ABF+∥BAO=∥CBF+∥BEO=90°,∥∥BAO=∥BEO,∥AB=BE,∥AF=BE,∥四边形ABEF是平行四边形,∥□ABEF是菱形.(2)解:∥AD=BC,AF=BE,∥DF=CE,∥BE=2CE,∥AB=4,∥BE=4,∥CE=2,过点A作AG∥BC于点G,∥∥ABC=60°,AB=BE,∥∥ABE是等边三角形,∥BG=GE=2,∥AF=CG=4,∥四边形AGCF是平行四边形,∥□AGCF是矩形,∥AG=CF,在∥ABG中,∥ABC=60°,AB=4,∥AG=∥CF=答案第11页,共12页19、【答案】(1)8;(2)6;(3),40cm ,80cm 2.【分析】(1)当四边形ABQP 是矩形时,BQ =AP ,据此求得t 的值;(2)当四边形AQCP 是菱形时,AQ =AC ,列方程求得运动的时间t ;(3)菱形的四条边相等,则菱形的周长=4t ,面积=矩形的面积-2个直角三角形的面积.【解答】(1)当四边形ABQP 是矩形时,BQ =AP ,即:t =16-t ,解得t =8.答:当t =8时,四边形ABQP 是矩形;(2)设t 秒后,四边形AQCP 是菱形当AQ =CQ-t 时,四边形AQCP 为菱形.解得:t =6.答:当t =6时,四边形AQCP 是菱形;(3)当t =6时,CQ =10,则周长为:4CQ =40cm ,面积为:10×8=80(cm 2).20、【答案】(1)证明见解答;(2)CG(3)∥EFC =120°或30°.【分析】(1)作EP ∥CD 于P ,EQ ∥BC 于Q ,证明Rt ∥EQF ∥Rt ∥EPD ,得到EF =ED ,根据正方形的判定定理证明即可;(2)通过计算发现E 是AC 中点,点F 与C 重合,∥CDG 是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可【解答】(1)证明:作EP ∥CD 于P ,EQ ∥BC 于Q ,∥∥DCA =∥BCA ,∥EQ =EP ,∥∥QEF +∥FEC =45°,∥PED +∥FEC =45°,∥∥QEF =∥PED ,在Rt ∥EQF 和Rt ∥EPD 中,QEF PED EQ EPEQF EPD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∥Rt ∥EQF ∥Rt ∥EPD ,∥EF =ED ,∥矩形DEFG 是正方形;(2)如图2中,在Rt∥ABC中.AC AB,∥EC,∥AE=CE,∥点F与C重合,此时△DCG是等腰直角三角形,易知CG.(3)①当DE与AD的夹角为30°时,∠EFC=120°,②当DE与DC的夹角为30°时,∠EFC=30°综上所述,∠EFC=120°或30°.。
人教版八年级下册数学《第十八章 平行四边形》单元测试卷02试卷含答案
人教版数学八年级下册《第十八章平行四边形》单元测试卷一、选择题1.四边形ABCD中,对角线AC、BD交于点O,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=AD,CB=CD D.AO=CO,BO=DO2.在平面直角坐标系xOy中,平行四边形的三个顶点O(0,0),A(3,0),B(3,2),则其第四个顶点C的坐标不可能是()A.(0,2)B.(6,2)C.(0,﹣2)D.(4,2)3.如图,在平行四边形ABCD中,CE平分∠BCD交AD于点E,若AE=2,平行四边形ABCD的周长等于24,则线段AB的长为()A.5B.6C.7D.84.如图,在四边形ABCD中,AB=AD,BC=DC,AC,BD交于点O.添加一个条件使这个四边形成为一种特殊的平行四边形,则以下说法错误的是()A.添加“AB∥CD”,则四边形ABCD是菱形B.添加“∠BAD=90°,则四边形ABCD是矩形C.添加“OA=OC”,则四边形ABCD是菱形D.添加“∠ABC=∠BCD=90°”,则四边形ABCD是正方形5.如图,在▱ABCD中,∠BAD和∠ADC的平分线交于点O,且分别交直线BC于点E,F.若AB=7,BC=4,则OE2+OF2的值是()A.50B.63C.100D.1216.如图,菱形中,对角线、BD交于点O,E为AD边中点,菱形ABCD的面积为24,OA =3,则OE的长等于()A.B.C.5D.7.如图,矩形ABCD的对角线相交于点O,OF⊥AB,BE⊥AC,E是OC的中点,OF=4,则BD的长为()A.16B.8C.4D.88.如图,点A,B,E在同一条直线上,正方形ABCD、正方形BEFG的边长分别为6、8,H为线段DF的中点,则BH的长为()A.6B.8C.6或8D.59.如图,在菱形ABCD中,AC与BD相交于点O,AB的垂直平分线EF交AC于点F,连接DF.若∠BAD=80°,则∠CDF的度数为()A.100°B.80°C.60°D.40°10.如图1,有一个含45°角且一组邻边长分别为b,的平行四边形纸片①和一个含45°角且边长为a的菱形纸片②,其中b<a.先将②按照图2的方式放置于▱ABCD(∠ABC =45°)纸片内,再将①按不同的方式放置到图2中依次得到图3、图4.平行四边形ABCD未被覆盖的部分用阴影表示,设图3和图4中阴影部分的面积分别为S1,S2,若S2﹣S1=2b,则AD﹣AB的值为()A.3B.6C.9D.1211.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④,其中正确结论有()个.A.1B.2C.3D.412.如图,在矩形ABCD中,对角线AC与BD相交于点O,EO⊥AC于点O,交BC于点E,若△ABE的周长为5,AB=2,则AD的长为()A.2B.2.5C.3D.4二、填空题13.▱ABCD周长为20,对角线交于点O,两邻边之差为2,点E是AB的中点,则OE长为.14.如图,EF过▱ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD 的周长是30,OE=3,则四边形ABFE的周长是.15.如图,平行四边形ABCD的对角线相交于点O,且BC≠CD,过O作OE⊥AC,交AD 于点E,若平行四边形ABCD的周长为48cm,则△CDE的周长为cm.16.如图在平行四边形ABCD中,E是CD的中点,F是AE的中点,CF交BE于点G,若BE=8,则GE=.17.如图,菱形的两条对角线长分别是12cm和16cm,则菱形的高DE为.18.把2张大小形状完全相同的平行四边形纸片(如图1)按两种不同的方式(如图2、图3)不重叠地放在平行四边形ABCD内,未被覆盖的部分用阴影表示,若AD﹣AB=1,则图3中阴影部分的周长与图2中阴影部分的周长的差值是.19.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE =,AF=,则AC的长为.20.如图,在菱形ABCD中,∠ADC=120°,AB=3,点E在BC上,且BE=2EC,BF⊥AE,垂足为F,则BF的值为.21.如图,正方形ABCD的边长为1,点E在对角线BD上,且∠BAE=22.5°,则BE的长为.22.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E、F,连接PB、PD,若AE=2,PF=9,则图中阴影面积为.三、解答题23.如图,在平行四边形ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠A=120°,求△DCE的底边CE上的高及DE的长.24.如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC,过点O 作EF⊥BD,交AD于点E,交BC于点F.(1)求证:四边形ABCD为平行四边形;(2)连接BE,若∠BAD=100°,∠DBF=2∠ABE,求∠ABE的度数.25.已知:在平行四边形ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD的一点,连接DF,BG,AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;(2)探究∠CEG与∠AGE的数量关系,并证明.26.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,过点A作AE∥BC,过点C作CE∥AD,连接DE与AC交于点O,求证:四边形ADCE是菱形.27.如图,在△ABC中,AC=BC,CD为△ABC的角平分线,AE∥DC,AE=DC,连接CE.(1)求证:四边形ADCE为矩形;(2)连接DE,若AB=10,CD=12,求DE的长.28.如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.参考答案一、选择题1.D 2.D 3.A 4.B 5.C 6.A 7.A 8.D 9.C 10.D 11.D 12.C二、填空题13.2或3.14.21.15.24.16.9.6cm.18.2.19.10.20..21.﹣1.22.18.三.解答题23.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵F是AD的中点,∴FD=AD,∵CE=BC,∴FD=CE,∵FD∥CE,∴四边形CEDF是平行四边形;(2)过点D作DG⊥CE于点G,∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=4,∠A=120°,BC=AD=6,∴∠DCE=∠B=60°,在Rt△DGC中,∠DGC=90°,∴CG=CD•cos∠DCE=2,DG=CD•sin∠DCE=2,∵CE=BC=3,∴GE=1,在Rt△DGE中,∠DGE=90°,∴DE==.24.(1)证明:∵AD∥BC,∴∠OAD=∠OCB,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴AD=CB,又∵AD∥BC,∴四边形ABCD为平行四边形;(2)解:设∠ABE=x,则∠DBF=2x,由(1)得:四边形ABCD为平行四边形,∴OB=OD,∵EF⊥BD,∴BE=DE,∴∠EBD=∠EDB,∵AD∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB=∠DBF=2x,∵∠BAD+∠ABE+∠EBD+∠EDB=180°,∴100°+x+2x+2x=180°,解得:x=16°,即∠ABE=16°.25.解:(1)∵CE=CD,点F为CE的中点,CF=2,∴DC=CE=2CF=4,∵四边形ABCD是平行四边形,∴AB=CD=4,∵AE⊥BC,∴∠AEB=90°,在Rt△ABE中,由勾股定理得:BE===;(2)∠AGE=2∠CEG,理由如下:延长AG,交BC延长线于M,在△ECG和△DCF中,,∴△ECG≌△DCF(AAS),∴CF=CG,∵CE=CD,F为CE的中点,∴DG=CG,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADG=∠MCG,在△ADG和△MCG中,,∴△ADG≌△MCG(ASA),∴AG=MG,∵∠AEC=90°,∴EG=AM=GM,∴∠GEC=∠M,∵∠AGE=∠GEC+∠M,∴∠CEG=∠AGE,∴∠AGE=2∠CEG.26.证明:∵AE∥BC,CE∥AD,∴四边形ADCE是平行四边形,∵∠BAC=90°,AD是边BC上的中线,∴AD=BC=CD,∴平行四边形ADCE是菱形.27.(1)证明:∵AE∥DC,AE=DC,∴四边形ADCE是平行四边形,∵AC=BC,CD为△ABC的角平分线,∴CD⊥AB,∴∠ADC=90°,∴平行四边形ADCE为矩形;(2)解:∵AC=BC,CD为△ABC的角平分线,∴BD=AD=AB=5,CD⊥AB,∴∠BDC=90°,∴AC===13,由(1)得:四边形ADCE为矩形,∴DE=AC=13.28.解:连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴AC=AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,∴∠ACF=45°+45°=90°,在Rt△ACF中,AF==,∵T为AF的中点,∴CT=AF=,∴CT的长为.。
人教版八年级数学下册 第十八章 平行四边形 单元测试卷(包含答案)
第十八章 平行四边形 综合测试一、选择题(每小题3分,共30分)1.顺次连接对角线相等的四边形各边中点所形成的四边形是( )A .平行四边形B .菱形C .矩形D .正方形2.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB BC =;②90ABC =︒∠;③AC BD =;④AC BD ⊥中选两个作为补充件,使ABCD 成为正方形(如图).现有下列四种选法,你认为其中错误是( )A .①②B .②③C .①③D .②④3.如图,已知D 为ABC △边AB 的中点,E 在AC 上,将ABC △沿着DE 折叠,使A 点落在BC 上的F 处,若65B ∠=︒,则BDF ∠等于( )A .65︒B .50︒C .60︒D .57.5︒4.如图,在菱形ABCD 中,AC 、BD 是对角线,若50BAC ∠=︒,则ABC ∠等于( )A .40︒B .50︒C .80︒D .100︒5.已知:如图,在ABCD Y 中,CE AB ⊥,E 为垂足,如果125A ∠=︒,则BCE ∠的度数是( )A .25︒B .30︒C .35︒D .55︒6.已知ABCD Y 中,4B A ∠=∠,则A ∠=( )A .18︒B .36︒C .72︒D .144︒7.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE DC ∥交BC 于点E , 6 cm AD =,则OE 的长为( )A .6 cmB .4 cmC .3 cmD .2 cm8.如图,在矩形ABCD 中,E 点在BC 上,且AE 平分BAC ∠.若4BE =,15AC =,则AEC △面积为( ) A .15 B .30 C .45 D .609.如图,点E 在正方形ABCD 内,满足90AEB ∠=︒,6AE =,8BE =,则阴影部分的面积是( )A .48B .60C .76D .8010.如图,在ABCD Y 中,对角线AC 与BD 交于点O ,90OBC ∠=︒,8AC =,4BD =,则BCO △的面积是( )A .B .CD .3二、填空题(每小题3分,共24分)11.如图,在ABCD Y 中,AC 、BD 相交于点O ,10 cm AB =,8 cm AD =,AC BC ⊥,则OB =___________cm .12.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则BED ∠为___________度.13.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点,若8AB =,12AD =,则四边形ENFM 的周长为___________.14.如图,ABCD 是对角线互相垂直的四边形,且OB OD =,请你添加一个适当的条件___________,使ABCD 成为形(只需添加一个即可).15.如图,在ABCD Y 中,10 cm AD =, 6 cm CD =.E 为AD 上一点,有BE BC =,CE CD =,则DE =___________cm .16.如图,在平行四边形ABCD 中,AE 平分BAD ∠,若110D ∠=︒,则DAE ∠的度数为___________.17.如图,在MBN △中,6BM =,点A ,C ,D 分别在MB ,BN ,NM 上,四边形ABCD 为平行四边形,NDC MDA ∠=∠,那么平行四边形ABCD 的周长是___________.18.如图,在正方形ABCD 中,1AB =,延长AB 到E ,使AE AC =,则ACE △的面积是___________.三、解答题(共46分)19.(5分)已知:如图,在ABCD Y 中,5AB =,8AD =,ABC ∠的平分线BE 交AD 于点E ,求线段ED 的长.20.(5分)将矩形纸片ABCD 折叠,使点C 与点A 重合,然后展开,折痕为EF ,连接AE ,CF .求证:四边形AECF 是菱形。
人教版八年级下数学《第18章平行四边形》单元测试(含答案)
人教版八年级下数学《第18章平行四边形》单元测试(含答案)第18章平行四边形一、选择题1.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A. ﹣12+8B. 16﹣8C. 8﹣4D. 4﹣23.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100°的菱形,剪口与折痕所成的角的度数应为()A. 25°或80°或50° D. 40°或50° C. 40°或50° B. 20°4.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的过平行四边形AEMG的面积S1与?HCFM的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不能确定5.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A. 4B. ﹣4C. 8D. ﹣86.下列对正方形的描述错误的是()A. 正方形的四个角都是直角B. 正方形的对角线互相垂直C. 邻边相等的矩形是正方形D. 对角线相等的平行四边形是正方形7.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C.D. 28.矩形各个内角的平分线围成一个四边形,则这个四边形一定是()A. 正方形B. 菱形C. 矩形D. 平行四边形9.如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠AEB =60°,AB =AD= 2cm,则梯形ABCD的周长为( )A. 6cmB. 8cmC. 10cmD. 12cm10.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A. B. C. D.11.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C.D.二、填空题13.如图,△ABC,△ACE,△ECD都是等边三角形,则图中的平行四边形有哪些________.14.已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.15.如图,A、B是直线m上两个定点,C是直线n上一个动点,且m∥n.以下说法:①△ABC的周长不变;②△ABC的面积不变;③△ABC中,AB边上的中线长不变.④∠C的度数不变;⑤点C到直线m的距离不变.其中正确的有________ (填序号).16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F 上,则AF的长为________.17.在?ABCD中,AB=15,AD=9,AB和CD之间的距离为6,则AD和BC之间的距离为________18.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是________.19.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________。
人教版-八下数学第十八章《平行四边形》单元测试题及答案
进行平移后可得到一个边长为1m 的正方
形,所以它的周长为4m . (第8题) 9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半. 10. (1)(2)(4). 提示:四边形ABCD 是菱形. 11.B. 12.D. 13.C. 14.C. 15.C. 提示:因为ABC ?的底边BC 的长不变,BC 边上的高等于直线b a ,之间的距离也不变,所以ABC ?的面积不变. 16.A. 提示:由于() BAF DAE FAE DAE FAE ∠-=∠=∠∠∠ 9021,所以通过折叠后得到的是由 . 17.B. 提示:先说明DF=BF,DE=CE,所以四边形 AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. 18.C. 19.因为BD=CD ,所以,C DBC ∠=∠又因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以,DBC D ∠=∠因为 20709090,,=-=∠=∠?⊥D DAE AED BD AE 中所以在直角. 20.(1)因为四边形ABCD 是平行四边形,所以AB=DC ,又AF=CG ,所以AB -AF=DC -CG, 即GD=BF,又 DG ∥BF,所以四边形DFBG 是平行四边形,所以DF=BG ; (2)因为四边形DFBG 是平行四边形,所以DF ∥GB,所以AFD GBF ∠=∠,同理可得 DGE GBF ∠=∠,所以 100=∠=∠DGE AFD . 21.(1)平行四边,两组对边分别相等的四边形是平行四边形; (2)矩,有一个是直角的平行四边形是矩形. 22.下面给出两种参考答案: (1)添加条件AB ∥DC,可得出该四边形是矩形; 理由:因为AB ∥DC,AB=DC,所以四边形ABCD 是平行四边形.又因为AC=BD,所以四边形ABCD 是矩形. (2)添加条件AC 垂直平分BD,那么该四边形是正方形. 理由:因为AC 垂直平分BD,所以AB=AD,BC=CD,又因为AB=DC,所以AB=AD=BC=DC,所以四边形ABCD 是菱形,又因为AC 垂 直BD,所以四边形ABCD 是正方形. 说明:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联 系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论. 23. O 在AC 的中点时,四边形ABCD 是矩形.因为AO=CO,BO=DO,所以四边形ABCD 是平 行四边形,又()CAN MAC CAE FAC FAE CAN CAE MAC FAC ∠+∠=∠+∠=∠∠=∠∠= ∠21,21,21所以 = 18021 ?= 90,所以四边形ABCD 是矩形. 24.如图所示,连结对角线AC 、BD,过A 、B 、C 、D 分别作BD 、AC 、BD 、AC 的平行线,且这些 平行线两两相交于E 、F 、G 、H ,四边形EFGH 即为符合条件的平行四边形.
人教版初二数学8年级下册 第18章(平行四边形)单元测试(附答案)
人教版初中八年级数学下册第十八章 平行四边形班级:________ 姓名:________ 分数:________一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.菱形具有而矩形不一定具有的性质是( )A.两组对边分别平行 B.对角线相等C.对角线互相垂直 D.两组对边分别相等2.如图,一个矩形纸片,剪去一部分后得到一个三角形,则图中∠1+∠2的度数是( )A.30° B.60° C.90° D.120°3.如图,菱形ABCD的两条对角线相交于点O,若AC=8,BD=6,则菱形ABCD的周长是( )A.32 B.24 C.40 D.204.如图,▱ABCD的对角线AC,BD相交于点O,则下列结论中一定正确的是( )A.OB=OD B.AB=BC C.AC⊥BD D.∠ABD=∠CBD5.如图,一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等;b.一组对边平行且相等;c.一组邻边相等;d.一个角是直角.顺次添加的条件:①a→c→d;②b→d→c;③a→b→c.则正确的是( )A.仅① B.仅③ C.①② D.②③6.如图,已知在△ABC中,D,E,F分别是边BC,CA,AB的中点.AB =10,AC=8,则四边形AFDE的周长等于( )A.18 B.16 C.14 D.127.如图,在正方形ABCD中,E为对角线BD上一点,连接AE,CE,∠BCE=70°,则∠EAD为( )A.10° B.15° C.20° D.30°8.如图,在矩形ABCD中,AE平分∠BAD交BC于点E,连接ED,若ED=5,EC=3,则长方形的面积为( )A.15 B.16 C.22 D.289.如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,若∠C=100°,则∠BAD的大小是( )A.25° B.50° C.60° D.80°10.如图,在▱ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若∠BAE=40°,∠CEF=15°,则∠D的度数是( )A.65° B.55° C.70° D.75°11.如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E ,则线段DE 的长为( )A.125B.185 C .4 D.24512. 如图,在平行四边形ABCD 中,将△ABC 沿着AC 所在的直线折叠得到△AB ′C ,B ′C 交AD 于点E ,连接B ′D ,若∠B =60°,∠ACB =45°,AC 6,则B ′D 的长是( )A .1 B.2 C.3 D.62二、填空题:每小题4分,共16分.13.如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,3),则点C 的坐标为__ _.14. 如图,在矩形ABCD 中,点E 在边AD 上,将△ABE 沿直线BE 翻折,点A 落在AD 与BC 之间的点F 处,如果∠CBF =20°,那么∠BEF =__ __.15.如图,在△ABC 中,BD ⊥AC 于点D ,E 为AB 的中点,AD =6,DE =5,则线段BD 的长等于__ __.16. 如图,BD 为平行四边形ABCD 的对角线,∠DBC =45°,DE ⊥BC于点E ,BF ⊥CD 于点F ,DE ,BF 相交于点H ,直线BF 交线段AD 的延长线于点G ,下列结论:①CE =12BE ;②∠A =∠BHE ;③AB =BH ;④∠BHD =∠BDG.其中正确的结论是__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分) 如图,在Rt △ABC 中,∠ABC =90°,点D 是AC 的中点,BE ∥AC ,CE ∥BD ,BE 与CE 交于点E.求证:四边形BDCE 是菱形.18.(本题满分10分) 如图,在四边形ABCD 中,CD ∥AB ,连接AC ,E 是AC 的中点,连接DE 延长交AB 于点F.(1)求证:四边形AFCD 是平行四边形;(2)若BF =FC ,AB =10,则四边形AFCD 的周长为__ _.19.(本题满分10分)如图,在正方形ABCD 中,M ,N 分别是边CD ,AD 的中点,连接BN ,AM 交于点E.求证:AM ⊥BN.20.(本题满分10分) 如图,在矩形ABCD中,点E,F在对角线AC 上,且AE=CF,连接DE,BF.求证:∠ABF=∠CDE.21.(本题满分10分) 矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=4,求菱形ABCD的周长.22.(本题满分10分) 如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC,BE交于点P.求证:∠ANC=∠ABE.【应用】Q是线段BC的中点,若BC=6,则PQ的长度是__ __.23.(本题满分12分) 如图,在▱ABCD中,E为CD边的中点,连接BE 并延长,交AD的延长线于点F,延长ED至点G,使DG=DE,分别连接AE,AG,FG.(1)求证:△BCE≌△FDE;(2)当BF平分∠ABC时,四边形AEFG是什么特殊四边形?请说明理由.24.(本题满分12分) 如图,在菱形ABCD中,AB=6,∠ABC=60°,将△BCD沿菱形ABCD的对角线BD由B向D方向平移得△EFG,连接AE,DF.(1)当四边形AEFD是矩形时,则AE的长为__ __;(2)当BE为何值时,△ABE是直角三角形?25.(本题满分12分) 如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,C,D重合.(1)证明:不论E,F在BC,CD上如何滑动,总有BE=CF;(2)当点E,F在BC,CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.菱形具有而矩形不一定具有的性质是( C )A.两组对边分别平行 B.对角线相等C.对角线互相垂直 D.两组对边分别相等2.如图,一个矩形纸片,剪去一部分后得到一个三角形,则图中∠1+∠2的度数是( C )A.30° B.60° C.90° D.120°3.如图,菱形ABCD的两条对角线相交于点O,若AC=8,BD=6,则菱形ABCD的周长是( D )A.32 B.24 C.40 D.204.如图,▱ABCD的对角线AC,BD相交于点O,则下列结论中一定正确的是( A )A.OB=OD B.AB=BC C.AC⊥BD D.∠ABD=∠CBD5.如图,一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等;b.一组对边平行且相等;c.一组邻边相等;d.一个角是直角.顺次添加的条件:①a→c→d;②b→d→c;③a→b→c.则正确的是( C )A.仅① B.仅③ C.①② D.②③6.如图,已知在△ABC中,D,E,F分别是边BC,CA,AB的中点.AB =10,AC=8,则四边形AFDE的周长等于( A )A.18 B.16 C.14 D.127.如图,在正方形ABCD中,E为对角线BD上一点,连接AE,CE,∠BCE=70°,则∠EAD为( C )A.10° B.15° C.20° D.30°8.如图,在矩形ABCD中,AE平分∠BAD交BC于点E,连接ED,若ED=5,EC=3,则长方形的面积为( D )A.15 B.16 C.22 D.289.如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,若∠C=100°,则∠BAD的大小是( B )A.25° B.50° C.60° D.80°10.如图,在▱ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若∠BAE=40°,∠CEF=15°,则∠D的度数是( A )A.65° B.55° C.70° D.75°11.如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E ,则线段DE 的长为( D )A.125B.185 C .4 D.24512. 如图,在平行四边形ABCD 中,将△ABC 沿着AC 所在的直线折叠得到△AB ′C ,B ′C 交AD 于点E ,连接B ′D ,若∠B =60°,∠ACB =45°,AC 6,则B ′D 的长是( B )A .1 B.2 C.3 D.62二、填空题:每小题4分,共16分.13.如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,3),则点C 的坐标为__(2,-3)__.14. 如图,在矩形ABCD 中,点E 在边AD 上,将△ABE 沿直线BE 翻折,点A 落在AD 与BC 之间的点F 处,如果∠CBF =20°,那么∠BEF =__55°__.15.如图,在△ABC 中,BD ⊥AC 于点D ,E 为AB 的中点,AD =6,DE =5,则线段BD 的长等于__8__.16. 如图,BD 为平行四边形ABCD 的对角线,∠DBC =45°,DE ⊥BC于点E ,BF ⊥CD 于点F ,DE ,BF 相交于点H ,直线BF 交线段AD 的延长线于点G ,下列结论:①CE =12BE ;②∠A =∠BHE ;③AB =BH ;④∠BHD =∠BDG.其中正确的结论是__②③__.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分) 如图,在Rt △ABC 中,∠ABC =90°,点D 是AC 的中点,BE ∥AC ,CE ∥BD ,BE 与CE 交于点E.求证:四边形BDCE 是菱形.证明:∵CE ∥BD ,BE ∥AC ,∴四边形BDCE 是平行四边形,∵∠ABC =90°,点D 是AC 的中点,∴BD =AD =DC =12AC ,∴四边形BDCE 是菱形.18.(本题满分10分) 如图,在四边形ABCD 中,CD ∥AB ,连接AC ,E 是AC 的中点,连接DE 延长交AB 于点F.(1)求证:四边形AFCD 是平行四边形;(2)若BF =FC ,AB =10,则四边形AFCD 的周长为__20__.(1)证明:∵E 是AC 的中点,∴AE =CE ,∵CD ∥AB ,∴∠AFE =∠CDE ,在△AEF 和△CED 中,{∠AFE =∠CDE ,∠AEF =∠CED ,AE =CE ,∴△AEF ≌△CED(AAS),∴AF =CD ,∵CD ∥AB ,即AF ∥CD ,∴四边形AFCD 是平行四边形.19.(本题满分10分)如图,在正方形ABCD 中,M ,N 分别是边CD ,AD 的中点,连接BN ,AM 交于点E.求证:AM ⊥BN.证明:∵四边形ABCD 是正方形,∴AB =BC =CD =DA ,∠BAN =∠ADM =90°.∵M ,N 分别是边CD ,AD 的中点,∴AN =12AD ,DM =12CD ,∴AN =DM.在△ABN 和△DAM 中,{AB =DA ,∠BAN =∠ADM ,AN =DM ,∴△ABN ≌△DAM(SAS),∴∠ABN =∠DAM.∵∠DAM +∠BAE =90°,∴∠ABN +∠BAE =90°,∴∠AEB =90°,∴AM ⊥BN.20.(本题满分10分) 如图,在矩形ABCD 中,点E ,F 在对角线AC 上,且AE =CF ,连接DE ,BF.求证:∠ABF =∠CDE.证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD.∴∠BAC =∠DCA.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE.在△ABF 和△CDE 中,{AB =CD ,∠BAF =∠DCE ,AF =CE ,∴△ABF ≌△CDE(SAS),∴∠ABF =∠CDE.21.(本题满分10分) 矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形ABCD 的对角线BD 上.(1)求证:BG =DE ;(2)若E为AD中点,FH=4,求菱形ABCD的周长.(1)证明:在矩形EFGH中,EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE,在菱形ABCD中,AD∥BC,∴∠GBF=∠EDH,在△BGF与△DEH中,{∠BFG=∠DHE,∠GBF=∠EDH,GF=EH,∴△BGF≌△DEH(AAS),∴BG=DE.(2)解:连接EG.在菱形ABCD中,AD∥BC,AD=BC,∵E为AD的中点,∴AE=ED,∵BG=DE,∴AE∥BG且AE=BG,∴四边形AEGB为平行四边形,∴AB =EG,∵在矩形EFGH中,EG=FH=4,∴AB=4,∴菱形ABCD的周长为16. 22.(本题满分10分) 如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC,BE交于点P.求证:∠ANC=∠ABE.【应用】Q是线段BC的中点,若BC=6,则PQ的长度是__3__.【探究】证明:∵四边形ANMB和ACDE是正方形,∴AN=AB,AC=AE,∠NAB=∠CAE=90°,∵∠NAC=∠NAB+∠BAC,∠BAE=∠BAC+∠CAE,∴∠NAC=∠BAE,在△ANC和△ABE中,AN=AB,∠NAC=∠BAE,AC=AE,∴△ANC≌△ABE(SAS),∴∠ANC=∠ABE.23.(本题满分12分) 如图,在▱ABCD中,E为CD边的中点,连接BE 并延长,交AD的延长线于点F,延长ED至点G,使DG=DE,分别连接AE,AG,FG.(1)求证:△BCE≌△FDE;(2)当BF平分∠ABC时,四边形AEFG是什么特殊四边形?请说明理由.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DFE=∠CBE,∵E为CD边的中点,∴DE=CE,在△BCE和△FDE中,{∠BEC=∠FED,∠CBE=∠DFE,CE=DE,∴△BCE≌△FDE(AAS).(2)解:四边形AEFG是矩形,理由:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠AFB=∠FBC,由(1)得△BCE≌△FDE,∴BC=FD,BE=FE,∴FD=AD,∵GD=DE,∴四边形AEFG是平行四边形,∵BF平分∠ABC,∴∠FBC=∠ABF,∴∠AFB=∠ABF,∴AF=AB,∵BE=FE,∴AE⊥FE,∴∠AEF=90°,∴平行四边形AEFG是矩形.24.(本题满分12分) 如图,在菱形ABCD中,AB=6,∠ABC=60°,将△BCD沿菱形ABCD的对角线BD由B向D方向平移得△EFG,连接AE,DF.(1)当四边形AEFD是矩形时,则AE的长为__23__;(2)当BE为何值时,△ABE是直角三角形?解:(2)在Rt△ABE中,∠ABE=30°,①当∠AEB=90°时,AE=12AB=12×6=3,∴BE=3AE=33;②当∠BAE=90°时,AB=3AE,∴AE=23,∴BE=2AE=43.综上所述,当BE为33或43时,△ABE是直角三角形.25.(本题满分12分) 如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,C,D重合.(1)证明:不论E,F在BC,CD上如何滑动,总有BE=CF;(2)当点E,F在BC,CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.(1)证明:连接AC,∵菱形ABCD,∠BAD=120°,∴∠BAC=∠DAC=60°,∴∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,BC∥AD,∴∠ABC=∠BAC=∠ACB=60°,∴△ABC,△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,{∠1=∠3,AB=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA).∴BE=CF.(2)解:四边形AECF的面积不变.由(1)得△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC是定值,过点A作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC=12BC·AH=12BC·AB2-BH2=43.。
人教版八年级数学下册 第18章平行四边形 单元测试试题(解析版)
人教版八年级数学下册第18章平行四边形单元测试题一.选择题(共10小题)1.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.对角线互相平分的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形2.如图,四边形ABCD是菱形,BD=4,AD=2,点E是CD边上的一动点,过点E作EF⊥OC于点F,EG⊥OD于点G,连接FG,则FG的最小值为()A.B.C.D.3.下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤邻边相等的矩形是正方形.其中正确的是()A.1个B.2个C.3个D.4个4.平行四边形ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得到四边形AECF一定为平行四边形的是()A.BE=DF B.AF∥CE C.AE=CF D.∠BAE=∠DCF 5.如图,在△ABC中,∠ACB=90°,点D是AB的中点,CD=3,且∠A=30°,则△ABC 的周长为()A.6 B.9+3C.6+3D.36.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF >S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④7.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为()A.35°B.40°C.45°D.50°8.已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是()A.12 B.13 C.14 D.159.如图,ABCD是平行四边形,则下列各角中最大的是()A.∠1 B.∠2 C.∠3 D.∠410.如图,EF过平行四边形ABCD对角线的交点O,交AD于E,交BC于F,若平行四边形ABCD的周长为36,OE=3,则四边形ABFE的周长为()A.24 B.26 C.28 D.20二.填空题(共8小题)11.△ABC中,三条中位线围成的三角形周长是15cm,则△ABC的周长是cm.12.如图,在△ABC中,AB=AC=12,BC=8,BE是高,且点D、F分别是边AB、BC的中点,则△DEF的周长等于.13.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为.14.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D的坐标为.15.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为.16.如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE ⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是.17.如图,在四边形ABCD中,AD∥BC(BC>AD),∠D=90°,∠ABE=45°,BC=CD,若AE=5,CE=2,则BC的长度为.18.如图,在平行四边形ABCD中,AB=13,AD=5,AC⊥BC,则BD=.三.解答题(共7小题)19.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD.20.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.(1)求∠B的度数:(2)求证:BC=3CE.21.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.22.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC 于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)当线段DE与正方形ABCD的某条边的夹角是35°时,求∠EFC的度数.23.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.24.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.(1)若∠B=30°,AC=6,求CE的长;(2)过点F作AB的垂线,垂足为G,连接EG,试判断四边形CEGF的形状,并说明原因.25.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.参考答案与试题解析一.选择题(共10小题)1.【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO =OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.2.【分析】由条件可知四边形OGEF是矩形,连接OE,则OE=GF,当OE⊥DC时,GF的值最小,可由OD•OC=DC•OE求出OE的值即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AD=DC,∵EF⊥OC于点F,EG⊥OD于点G,∴四边形OGEF是矩形,连接OE,则OE=GF,当OE⊥DC时,GF的值最小,∵BD=4,AD=2,∴OC==4,=OD•OC=DC•OE,∵S△ODC∴OD•OC=DC•OE,∴,故选:C.【点评】本题考查了菱形的性质、矩形的判定与性质、垂线段最短、勾股定理、三角形面积;熟练掌握菱形的性质,证明四边形OGEF为矩形是解决问题的关键.3.【分析】利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.【解答】解:①对角线互相垂直的四边形不一定是菱形,故①错误;②矩形的对角线垂直且互相平分,故②错误;③对角线相等的四边形不一定是矩形,故③错误;④对角线相等的菱形是正方形,故④正确,⑤邻边相等的矩形是正方形,故⑤正确故选:B.【点评】本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.4.【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;C、若AE=CF,则无法判断OE=OE,故本选项符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:C .【点评】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.5.【分析】由直角三角形斜边上的中线等于斜边的一半求得AB =2CD =6;由含30度角直角三角形的性质求得BC 、AC 的长度;最后根据三角形周长定义解答.【解答】解:∵∠ACB =90°,点D 是AB 的中点,CD =3,∴AB =2CD =6,∵∠A =30°,∴BC =AB •sin30°=3,AC =AB •cos30°=3, ∴△ABC 的周长为AB +BC +AC =9+3. 故选:B .【点评】本题考查的是直角三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.6.【分析】由AAS 证明△ABG ≌△DEG ,得出AG =DG ,证出OG 是△ACD 的中位线,得出OG =CD =AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB =BD =AD ,因此OD =AG ,得出四边形ABDE 是菱形,④正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG ∥AB ,OG =AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;③不正确;即可得出结果.【解答】解:∵四边形ABCD 是菱形,∴AB =BC =CD =DA ,AB ∥CD ,OA =OC ,OB =OD ,AC ⊥BD ,∴∠BAG =∠EDG ,△ABO ≌△BCO ≌△CDO ≌△AOD ,∵CD =DE ,∴AB =DE ,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴2OG=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△DEG(SAS),△BCO≌△DEG(SAS),△CDO≌△DEG(SAS),△AOD≌△DEG (AAS),△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD 的面积=△ABD 的面积,△ABF 的面积=△OGF 的面积的4倍,AF :OF =2:1, ∴△AFG 的面积=△OGF 的面积的2倍,又∵△GOD 的面积=△AOG 的面积=△BOG 的面积,∴S 四边形ODGF =S △ABF ;③不正确;正确的是①④.故选:A .【点评】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.7.【分析】根据矩形的判定得到四边形ABCD 是矩形,由矩形的性质求出∠DAB ,代入∠OAB =∠DAB ﹣∠OAD 求出即可.【解答】解:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵OA =OD ,∴AC =BD ,∴四边形ABCD 是矩形,∴∠DAB =90°,∵∠OAD =55°,∴∠OAB =∠DAB ﹣∠OAD =35°故选:A .【点评】本题考查了矩形的判定和性质,能根据矩形的性质求出∠DAB 的度数是解此题的关键.8.【分析】根据相似的判定与性质每一层的靠上的边的长度,从而判定可放置的正方形的个数及层数.【解答】解:作CF ⊥AB 于点F ,设最下边的一排小正方形的上边的边所在的直线与△ABC 的边交于D 、E ,∵DE ∥AB , ∴=,即=,解得:DE=,而整数部分是4,∴最下边一排是4个正方形.第二排正方形的上边的边所在的直线与△ABC的边交于G、H.则=,解得GH=,而整数部分是3,∴第二排是3个正方形;同理:第三排是:3个;第四排是2个,第五排是1个,第六排是1个,则正方形的个数是:4+3+3+2+1+1=14.故选:C.【点评】本题考查了相似三角形的性质与判定、正方形的性质等问题,解题的关键是在掌握所需知识点的同时,要具有综合分析问题、解决问题的能力.9.【分析】利用平行四边形的性质以及三角形的外角的性质即可判断.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BE,∴∠4=∠1,∵∠3>∠1,∠3>∠2,∴∠3>∠4,∴∠1,∠2,∠3,∠4中,最大的角是∠3,故选:C.【点评】本题考查平行四边形的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【分析】先利用ASA证明△AOE≌△COF,从而得OE=OF,AE=CF,再求得平行四边形周长的一半为多少,然后利用关系式AB+AE+BF+EF=AB+BF+CF+2OE,即可求得答案.【解答】解:∵四边形ABCD为平行四边形,对角线的交点为O,∴OA=OC,AD∥BC,∴∠EAO=∠FCO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∵平行四边形ABCD的周长为36,∴AB+BC=×36=18,∴四边形ABFE的周长为:AB+AE+BF+EF=AB+BF+CF+2OE=AB+BC+2×3=18+6=24故选:A.【点评】本题考查了平行四边形的性质及全等三角形的判定与性质,难度不大,属于中档题.二.填空题(共8小题)11.【分析】设△ABC三边的中点分别为E、F、G,由三角形中位线定理可求得△ABC三边的和,可求得答案.【解答】解:设△ABC三边的中点分别为E、F、G,如图,∵D、E、F分别为AB、BC、AC的中点,∴AB=2EF,BC=2DF,AC=2DE,∴AB+BC+AC=2(EF+DF+DE),∵△DEF的周长为15cm,∴EF+DF+DE=15cm,∴AB+BC+AC=2×15cm=30cm,即△ABC的周长为30cm,故答案为:30.【点评】本题主要考查三角形中位线定理,掌握三角形中位线平行且等于第三边的一半是解题的关键.12.【分析】由三角形中位线定理和直角三角形斜边上的中线性质求出DF、EF、DE的长,即可得出答案.【解答】解:∵点D、F分别是边AB、BC的中点,AB=AC=12,BE是高,∴DF是△ABC的中位线,AF⊥BC,BE⊥AC,∴DF=AC=6,EF=BC=4,DE=AB=6,∴△DEF的周长=DF+EF+DE=6+4+6=16;故答案为:16.【点评】此题考查的直角三角形斜边上的中线性质、等腰三角形的性质、三角形中位线的性质,熟记以上性质是解题的关键.13.【分析】由AD∥BC,则PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9﹣3t=5﹣t,解方程即可,②当Q运动到E和B之间时,设运动时间为t,则得:3t﹣9=5﹣t,解方程即可.【解答】解:∵E是BC的中点,∴BE=CE=BC=9,∵AD∥BC,∴PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9﹣3t=5﹣t,解得:t=2,②当Q运动到E和B之间时,设运动时间为t,则得:3t﹣9=5﹣t,解得:t=3.5;∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形,故答案为:2秒或3.5秒.【点评】本题考查了平行四边形的判定、分类讨论等知识,熟练掌握平行四边形的判定方法、进行分类讨论是解题的关键.14.【分析】直接利用平行四边形的性质得出D点坐标.【解答】解:连接AB、BC、CD、AD,如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴四边形ABCD是平行四边形,∴D点坐标为:(5,3).故答案为:(5,3).【点评】此题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解题关键.15.【分析】作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【解答】解:如图,作AR⊥BC于R,AS⊥CD于S,连接AC,BD交于点O,由题意知,AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.∵两张纸条等宽,∴AR=AS.∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD.在Rt△AOB中,OA=3cm,OB=4cm,∴AB==5(cm).故答案是:5cm.【点评】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.16.【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解即可.【解答】解:如图,连接CD.∵∠ACB=90°,AC=5,BC=12,∴AB===13,∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S=BC•AC=AB•CD,△ABC即×12×5=×13•CD,解得:CD=,∴EF=.故答案为:.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB 时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.17.【分析】过点B作BF⊥AD于点F,延长DF使FG=EC,由题意可证四边形CDFB是正方形,由正方形的性质可得CD=BC=DF=BF,∠CBF=90°=∠C=∠BFG,由全等三角形的性质可得AG=AE=5,可得AF=3,由勾股定理可得BC=DC=6.【解答】解:过点B作BF⊥AD于点F,延长DF使FG=EC,连接BG,∵AD∥BC,∠D=90°,∴∠C=∠D=90°,BF⊥AD∴四边形CDFB是矩形∵BC=CD∴四边形CDFB是正方形∴CD=BC=DF=BF,∠CBF=90°=∠C=∠BFG,∵BC=BF,∠BFG=∠C=90°,CE=FG∴△BCE≌△BFG(SAS)∴BE=BG,∠CBE=∠FBG∵∠ABE=45°,∴∠CBE+∠ABF=45°,∴∠ABF+∠FBG=45°=∠ABG∴∠ABG=∠ABE,且AB=AB,BE=BG∴△ABE≌△ABG(SAS)∴AE=AG=5,∴AF=AG﹣FG=5﹣2=3在Rt△ADE中,AE2=AD2+DE2,∴25=(DF﹣3)2+(DF﹣2)2,∴DF=6∴BC=6故答案为:6【点评】本题考查了正方形的判定和性质,全等三角形的判定和性质,勾股定理,添加恰当的辅助线构造全等三角形是本题的关键.18.【分析】由平行四边形的性质求得BC的长及OA=OC,OB=OD;在Rt△ABC中油勾股定理求得AC的长;在Rt△BOC中由勾股定理求得OB的长,再乘以2即可得出BD的长.【解答】解:∵在平行四边形ABCD中,AB=13,AD=5,∴BC=AD=5∵AC⊥BC∴在Rt△ABC中,由勾股定理可知AC==12∵四边形ABCD为平行四边形∴OA=OC,OB=OD∴OC=AC=6∴在Rt△BOC中,由勾股定理得:OB===∴BD=2OB=2故答案为:2.【点评】本题考查了平行四边形的性质及勾股定理在计算中的应用,熟练掌握相关性质定理是解题的关键.三.解答题(共7小题)19.【分析】首先根据等腰三角形的性质可得F是AD中点,再根据三角形的中位线定理可得EF=BD.【解答】证明:∵CD=CA,CF平分∠ACB,∴F是AD中点,∵AE=EB,∴E是AB中点,∴EF是△ABD的中位线,∴EF=BD.【点评】此题主要考查了三角形中位线定理,以及等腰三角形的性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.20.【分析】(1)根据余角的性质得到∠ECF=∠CAF,求得∠CAD=2∠DCB,由CD是斜边AB上的中线,得到CD=BD,推出∠CAB=2∠B,于是得到结论;(2)根据直角三角形的性质即可得到结论.【解答】解:(1)∵AE⊥CD,∴∠AFC=∠ACB=90°,∴∠CAF+∠ACF=∠ACF+∠ECF=90°,∴∠ECF=∠CAF,∵∠EAD=∠DCB,∴∠CAD=2∠DCB,∵CD是斜边AB上的中线,∴CD=BD,∴∠B=∠DCB,∴∠CAB=2∠B,∵∠B+∠CAB=90°,∴∠B=30°;(2)∵∠B=∠BAE=∠CAE=30°,∴AE=BE,CE=AE,∴BC=3CE.【点评】本题考查了直角三角形斜边上的中线,等腰三角形的性质,三角形的内角和,正确的识别图形是解题的关键.21.【分析】(1)先根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明;(2)根据平行四边形的性质及(1)的结论可得BM=DN,BM∥DN,则由有一组对边平行且相等的四边形是平行四边形即可证明.【解答】证明:(1)四边形ABCD是平行四边形,∴∠DAB=∠BCD,∴∠EAM=∠FCN,又∵AD∥BC,∴∠E=∠F.∵在△AEM与△CFN中,,∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD又由(1)得AM=CN,∴BM=DN,BM∥DN,∴四边形BMDN是平行四边形.【点评】本题考查了平行四边形的判定及性质,全等三角形的判定,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.22.【分析】(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,根据正方形的判定定理证明即可;(2)分两种情况讨论即可.【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA=45°,∴EQ=EP,∵∠QEF+∠PEF=90°,∠PED+∠PEF=90°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)①当DE与AD的夹角为35°时,如图2,∵∠ADE=35°,∠ADC=90°∴∠EDC=55°∵∠EDC+∠DEF+∠EFC+∠FCD=360°∴∠EFC=360°﹣90°﹣90°﹣55°=125°②当DE与DC的夹角为35°时,如图3∵∠DEF=∠DCF=90°∴点D,点E,点C,点F四点共圆∴∠EDC=∠EFC=35°【点评】本题考查了正方形的判定和性质,矩形的性质,全等三角形判定和性质,利用分类讨论思想解决问题是本题的关键.23.【分析】(1)由平行线的性质和角平分线得出∠ADB=∠ABD,证出AD=AB,由AB=BC 得出AD=BC,即可得出结论;(2)由菱形的性质得出AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得OD=4,得出BD=2OD=8,再由直角三角形斜边上的中线性质即可得出结果.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==4,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=4.【点评】本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.24.【分析】(1)根据∠ACB=90°,CD⊥AB,∠B=30°,AC=6,即可求CE的长;(2)过点F作AB的垂线,垂足为G,连接EG,根据菱形的判定即可判断四边形CEGF的形状,【解答】解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,∵AF平分∠CAB,∴∠CAF=∠BAF=30°,∴CE=AE,过点E用EH垂直于AC于点H,∴CH=AH∵AC=6,∴CE=2答:CE的长为2;(2)∵FG⊥AB,FC⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=GF,在Rt△ACF与Rt△AGF中,AF=AF,CF=GF,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∴四边形CEGF是菱形【点评】本题考查了菱形的判定和性质,解决本题的关键是综合运用角平分线的性质、等腰三角形的判定、30度特殊角的直角三角形.25.【分析】(1)先根据垂直于同一条直线的两直线平行,得AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;(2)四边形ACED是平行四边形,可得DE=AC=2.由勾股定理和中线的定义得到结论.【解答】解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD===2.∵D是BC的中点,∴BC=2CD=4.【点评】本题考查了平行四边形的判定与性质,勾股定理和中线的定义,注意寻找求AB 和EB的长的方法和途径是解题的关键.。
人教版初中数学八年级下册《第18章 平行四边形》单元测试卷(2)
人教新版八年级下学期《第18章平行四边形》单元测试卷一.解答题(共50小题)1.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.2.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE =P A,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=度.3.如图1,△ABD和△BDC都是边长为1的等边三角形.(1)四边形ABCD是菱形吗?为什么?(2)如图2,将△BDC沿射线BD方向平移到△B1D1C1的位置,则四边形ABC1D1是平行四边形吗?为什么?(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请求出点B移动的距离(写出过程);如果不是,请说明理由(图3供操作时使用).4.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.5.如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.6.如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=20°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求▱ABCD的面积.7.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.8.如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是怎样的四边形,并说明理由.9.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG ∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.10.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.11.【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.12.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=°和∠AEB=°时,四边形ACED是正方形?请说明理由.13.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.14.如图:在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连结CD,BE,(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由(2)在(1)的条件下,当∠A=时四边形BECD是正方形.15.已知:如图,在△ABC中,AB=AC,AD是BC边的中线,AN为△ABC的外角∠CAM 的平分线,CE⊥AN于点E,线段DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)线段DF与AB有怎样的关系?证明你的结论.16.如图,在△ABC中,点O在AB边上,过点O作BC的平行线交∠ABC的平分线于点D,过点B作BE⊥BD交直线OD于点E.(1)求证:OE=OD;(2)当点O在AB的什么位置时,四边形BDAE是矩形?说明理由.17.【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为.18.探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=.19.以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.20.如图,正方形ABCD中,E是BD上一点,AE的延长线交CD于F,交BC的延长线于G,M是FG的中点.(1)求证:①∠1=∠2;②EC⊥MC.(2)试问当∠1等于多少度时,△ECG为等腰三角形?请说明理由.21.如图,已知△ABC为等边三角形,CF∥AB,点P为线段AB上任意一点(点P不与A、B重合),过点P作PE∥BC,分别交AC、CF于G、E.(1)四边形PBCE是平行四边形吗?为什么?(2)求证:CP=AE;(3)试探索:当P为AB的中点时,四边形APCE是什么样的特殊四边形?并说明理由.22.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.23.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.24.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.25.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.26.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.27.已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.28.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE 交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为线段BC上的一动点,当BP为何值时,△DEP为等腰三角形.请求出所有BP的值.29.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.30.如图,D是线段AB的中点,C是线段AB的垂直平分线上的一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:DE=DF;(2)当CD与AB满足怎样的数量关系时,四边形CEDF为正方形?请说明理由.31.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?32.如图,以△ABC的三边为边,在BC的同侧分别作3个等边三角形,即△ABD、△BCE、△ACF.(1)求证:四边形ADEF是平行四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形,并说明理由.(3)当△ABC满足什么条件时,四边形ADEF是菱形,并说明理由.(4)当△ABC满足什么条件时,四边形ADEF是正方形,不要说明理由.33.如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,且BE=3cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?34.如图,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,点P和Q同时从D、B出发,P由D向C运动,速度为每秒1cm,点Q由B向A运动,速度为每秒3cm,试求几秒后,P、Q和梯形ABCD的两个顶点所形成的四边形是平行四边形?35.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s 的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;DP=;BQ=;CQ=.(2)当t为何值时,四边形APQB是平行四边形?(3)当t为何值时,四边形PDCQ是平行四边形?36.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG 以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.37.如图,在矩形ABCD中,AB=24cm,BC=8cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度移动,点Q从C开始沿CD边以2cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t 为何值时,四边形QPBC为矩形?38.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b 满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C 运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.39.在正方形ABCD中,P是CD上的一动点,连接P A,分别过点B、D作BE⊥P A、DF ⊥P A,垂足为E、F.(1)求证:BE=EF+DF;(2)如图(2),若点P是DC的延长线上的一个动点,请探索BE、DF、EF三条线段之间的数量关系?并说明理由;(3)如图(3),若点P是CD的延长线上的一个动点,请探索BE、DF、EF三条线之间的数量关系?(直接写出结论,不需说明理由).40.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:△EAB≌△GAD;(2)若AB=3,AG=3,求EB的长.41.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F,另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变.(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.42.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP 是腰长为5的等腰三角形时,求点P的坐标.43.D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC 所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)44.如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG、DE上,连接AE、BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.45.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.46.已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.(1)当t为何值时,四边形PODB是平行四边形?(2)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值;若不存在,请说明理由;(3)△OPD为等腰三角形时,写出点P的坐标(不必写过程).47.如图1,在平面直接坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0)、(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,求点P的坐标.(友情提示:•图2、图3备用,‚不要漏解)48.在四边形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s 的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?49.如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA 方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.50.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE =度.人教新版八年级下学期《第18章平行四边形》2019年单元测试卷参考答案与试题解析一.解答题(共50小题)1.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.【分析】(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可;【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD,∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,∠EFC=120°,②当DE与DC的夹角为30°时,∠EFC=30°综上所述,∠EFC=120°或30°.【点评】本题考查正方形的性质、矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.2.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE =P A,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=115度.【分析】(1)先证出△ABP≌△CBP,得P A=PC,由于P A=PE,得PC=PE;(2)由△ABP≌△CBP,得∠BAP=∠BCP,进而得∠DAP=∠DCP,由P A=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)由△DP A≌△DPC,推出∠DAP=∠DCP,P A=PC,推出P A=PE,推出∠DAP=∠E,推出∠E=∠PCD,由∠DFE=∠CFP,推出∠CPF=∠EDF,由此即可解决问题;【解答】解:(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AD=DC,∠ADP=∠CDP,DP=DP,∴△DP A≌△DPC,∴∠DAP=∠DCP,P A=PC,∵P A=PE,∴∠DAP=∠E,∴∠E=∠PCD,∵∠DFE=∠CFP,∴∠CPF=∠EDF,∵∠ABC=∠ADC=65°,∴∠CPE=∠EDF=180°﹣∠ADC=115°故答案为115.【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等腰三角形的判定和性质,正确寻找全等三角形的条件是解题的关键.3.如图1,△ABD和△BDC都是边长为1的等边三角形.(1)四边形ABCD是菱形吗?为什么?(2)如图2,将△BDC沿射线BD方向平移到△B1D1C1的位置,则四边形ABC1D1是平行四边形吗?为什么?(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请求出点B移动的距离(写出过程);如果不是,请说明理由(图3供操作时使用).【分析】(1)根据四条边都相等的四边形ABCD是菱形证明即可;(2)四边形ABC1D1是平行四边形,根据一组对边平行且相等的四边形是平行四边形判定即可;(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形,此时此时,∠D1BC1=30°,∠D1C1B=90°,C1D1=1,利用在直角三角形中30°角所对的直角边是斜边的一半即可求出点B移动的距离.【解答】解:(1)四边形ABCD是菱形;理由如下:∵△ABD和△BDC都是边长为1的等边三角形.∴AB=AD=CD=BC=DB,∴AB=AD=CD=BC,∴四边形ABCD是菱形;(2)四边形ABC1D1是平行四边形.理由:∵∠ABD1=∠C1D1B=60°∴AB∥C1D1,又∵AB=C1D1,∴四边形ABC1D1是平行四边形(一组对边平行且相等的四边形是平行四边形).(3)四边形ABC1D1有可能是矩形.此时,∠D1BC1=30°,∠D1C1B=90°,C1D1=1∴BD1=2,又∵B1D1=1,∴BB1=1,即点B移动的距离是1.【点评】本题考查了等边三角形的性质、菱形的判定和性质矩形的判定和性质以及直角三角形的性质,掌握特殊平行四边形的判定定理是解此题的关键.4.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形判定,平行四边形判定,平行线性质,角平分线定义的应用,主要考查学生的推理能力.5.如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题(2)的关键.6.如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=20°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求▱ABCD的面积.【分析】(1)由平行四边形的性质和已知条件得出∠AEB=∠CBF,∠ABE=∠F=20°,证出∠AEB=∠ABE=20°,由三角形内角和定理求出结果即可;(2)求出DE,由勾股定理求出CE,即可得出结果.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,CD=AB=5,AB∥CD,∴∠AEB=∠CBF,∠ABE=∠F=20°,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠AEB=∠ABE=20°,∴AE=AB,∠A=(180°﹣20°﹣20°)÷2=140°;(2)∵AE=AB=5,AD=BC=8,CD=AB=5,∴DE=AD﹣AE=3,∵CE⊥AD,∴CE===4,∴▱ABCD的面积=AD•CE=8×4=32.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定、勾股定理;熟练掌握平行四边形的性质,证出∠AEB=∠ABE是解决问题的关键.7.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠F AE,根据平行四边形的性质可得∠F AE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO 的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠F AE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F AE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=F A,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.【点评】此题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.8.如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是怎样的四边形,并说明理由.【分析】(1)证明△DAE≌△DCF,根据全等三角形的性质证明;(2)根据全等三角形的性质得到DE=DF,证明DG是EF的垂直平分线,得到DE=EG=GF=GF,证明结论.【解答】(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,在△DAE和△DCF中,,∴△DAE≌△DCF,∴AE=CF;(2)四边形DEGF是菱形,∵△DAE≌△DCF,∴DE=DF,∵AE=CF,∴BE=BF,∴DG是EF的垂直平分线,∴GE=GF,∵OG=OD,DG⊥EF,∴ED=EG,∴DE=EG=GF=FD,∴四边形DEGF是菱形.【点评】本题考查的是正方形的性质、菱形的判定、全等三角形的判定和性质,掌握相关的性质定理和判定定理是解题的关键.9.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG ∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS 即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,设EF交BD于O.如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,∴△EDO≌△FBO,∴OB=OD,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点评】本题考查了全等三角形的性质和判定,平行线的性质,菱形的判定,等腰三角形的性质,平行四边形的性质和判定等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.10.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AF=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.【点评】此题考查了正方形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=90°.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.【分析】阅读发现:只要证明∠DFC=∠DCF=∠ADE=∠AED=15°,即可证明.拓展应用:(1)欲证明ED=FC,只要证明△ADE≌△DFC即可.(2)根据∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC即可计算.【解答】解:如图①中,∵四边形ABCD是正方形,∴AD=AB=CD,∠ADC=90°,∵△ADE≌△DFC,∴DF=CD=AE=AD,∵∠FDC=60°+90°=150°,∴∠DFC=∠DCF=∠ADE=∠AED=15°,∴∠FDE=60°+15°=75°,∴∠MFD+∠FDM=90°,∴∠FMD=90°,故答案为90°(1)∵△ABE为等边三角形,∴∠EAB=60°,EA=AB.∵△ADF为等边三角形,∴∠FDA=60°,AD=FD.∵四边形ABCD为矩形,∴∠BAD=∠ADC=90°,DC=AB.∴EA=DC.∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,∴∠EAD=∠CDF.在△EAD和△CDF中,,∴△EAD≌△CDF.∴ED=FC;(2)∵△EAD≌△CDF,∴∠ADE=∠DFC=20°,∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.【点评】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.12.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=45°和∠AEB=45°时,四边形ACED是正方形?请说明理由.【分析】(1)首先根据O是CD的中点,可得DO=CO,再证明∠D=∠OCE,然后可利用ASA定理证明△AOD≌△EOC;(2)当∠B=45°和∠AEB=45°时,四边形ACED是正方形;首先证明∠BAE=90°,然后证明AC是BE边上的中线,根据直角三角形的性质可得AC=CE,然后利用等腰三角形的性质证明AC⊥BE,可得结论.【解答】(1)证明:∵O是CD的中点,∴DO=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∴△AOD≌△EOC(ASA);(2)解:当∠B=45°和∠AEB=45°时,四边形ACED是正方形,∵∠B=45°和∠AEB=45°,∴∠BAE=90°,∵△AOD≌△EOC,∴AO=EO,∵DO=CO,∴四边形ACED是平行四边形,∴AD=CE,∵四边形ABCD是平行四边形,∴AD=BC,∴BC=CE,∵∠BAE=90°,∴AC=CE,∴平行四边形ACED是菱形,∵∠B=∠AEB,BC=CE,∴AC⊥BE,∴四边形ACED是正方形.故答案为:45,45.【点评】此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握邻边相等的矩形是正方形.13.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【分析】(1)由在△ABC中,AB=AC,AD是BC边的中线,可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,即可证得:四边形ADCE为矩形;(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:∵在△ABC中,AB=AC,AD是BC边的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°,∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形;(2)当△ABC满足∠BAC=90°时,四边形ADCE是正方形.证明:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,。
人教版八年级数学下册 第18章 《平行四边形》 单元测试卷(包含答案)
人教版八年级数学下册第18章平行四边形单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.在□ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则□ABCD的周长是() A.22 B.20 C.22或20 D.182. 如图,由六个全等的正三角形拼成的图,图中平行四边形的个数是()A.4个B.6个C.8个D.10个3.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是() A.20 cm B.21 cmC.22 cm D.23 cm4.如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE5.如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BED=150°,则∠A的大小为( ) A.150° B.130° C.120° D.100°6.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤7. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.32-49.如图,是边长分别为4和8的正方形ABCD、正方形CEFG并排放在一起,连接BD并延长交EG 于点T,交FG于点P,则GT的长为()A.2 2 B.2 C. 2 D.110. 如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为______ .12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13. 已知平行四边形的三个顶点坐标分别为(-1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为___________。
人教版八年级数学下册 第18章 平行四边形 单元练习卷含答案
人教版八年级数学下册第18章平行四边形单元练习卷含答案一.选择题(共6小题)1.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直2.如图在▱ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD 于点F,点G为CD的中点,连接EG,BG.则△BEG的面积为()A.16B.14C.8D.73.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD 全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④4.在菱形ABCD中,∠A=110°,E、F分别是边AB和BC的中点,EP⊥CD,垂足为P,则∠EPF=()A.35°B.45°C.50°D.55°5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE ⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.B.C.D.56.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD 于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤二.填空题(共6小题)7.如图,E、F是平行四边形ABCD的对角线BD上的点,要使四边形AFCE是平行四边形,还需添加的一个条件是(只需添加一个正确的即可).8.如图,在△ABC中,∠ACB=90°,D为边AB的中点,E、F分别为边AC、BC上的点,且AE=AD,BF=BD.若DE=,DF=2,则∠EDF=°,线段AB的长度=.9.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣1,m)、B(﹣4,0)、C(1,0)、D(a,m),且m>0,若以点A、B、C、D为顶点的四边形是菱形,则点D的坐标为.10.如图,在矩形ABCD中,过点D作DE⊥AC,垂足为E,延长线ED至F,使DF=AC,连接BF交AD于G.若AB=1,AD=2,则∠ABG=,GF=.11.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.12.如图,在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么CD的长是.三.解答题13.如图,平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=2,FN=1,求BN的长.14.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.15.如图,已知E是▱ABCD中BC边的中点,AC是对角线,连结AE并延长AE交DC的延长线于点F,连结BF.(1)求证:四边形ABFC是平行四边形;(2)若∠AEC=2∠ABC,求证:四边形ABFC为矩形.16.如图,以△ABC的各边为边长,在边BC的同侧分别作正方形ABDI,正方形BCFE,正方形ACHG,连接AD,DE,EG.(1)求证:△BDE≌△BAC;(2)①设∠BAC=α,请用含α的代数式表示∠EDA,∠DAG;②求证:四边形ADEG是平行四边形;(3)当△ABC满足什么条件时,四边形ADEG是正方形?请说明理由.17.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.18.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.19.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.参考答案与试题解析一.选择题(共6小题)1.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.2.如图在▱ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD 于点F,点G为CD的中点,连接EG,BG.则△BEG的面积为()A.16B.14C.8D.7【分析】如图,取BC中点H,连接AH,连接EC交AD于N,作EM⊥CD交CD的延长线于M.构建S△BEG=S△BCE+S ECG﹣S△BCG计算即可;【解答】解:如图,取BC中点H,连接AH,连接EC交AD于N,作EM⊥CD交CD的延长线于M.∵BC=2AB,BH=CH,∠ABC=60°,∴BA=BH=CH,∴△ABH是等边三角形,∴HA=HB=HC,∴∠BAC=90°,∴∠ACB=30°,∵EC⊥BC,∠BCD=180°﹣∠ABC=120°,∴∠ACE=60°,∠ECM=30°,∵BC=2AB=8,∴CD=4,CN=EN=2,∴EC=4,EM=2,∴S△BEG=S△BCE+S ECG﹣S△BCG=×8×4+×2×2﹣S平行四边形ABCD=16+2﹣4=14故选:B.3.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD 全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④【分析】由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG =CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴2OG=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△DEG(SAS),△BCO≌△DEG(SAS),△CDO≌△DEG(SAS),△AOD≌△DEG(AAS),△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选:A.4.在菱形ABCD中,∠A=110°,E、F分别是边AB和BC的中点,EP⊥CD,垂足为P,则∠EPF=()A.35°B.45°C.50°D.55°【分析】延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而求得∠FPC的度数,根据余角的定义即可得到结果.【解答】解:如图,延长PF交AB的延长线于点G.在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵∠BEP=90°,∴EF=PG=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,∴∠FPC=55°,∴∠EPF=90°﹣55°=35°,故选:A.5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE ⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.B.C.D.5【分析】连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【解答】解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:B.6.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD 于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤【分析】①根据正方形对角线互相垂直、过一点有且只有一条直线与已知直线垂直即可得结论;②根据矩形的判定和性质、直角三角形的性质,证明三角形全等即可得结论;③根据全等三角形性质、矩形的性质进行角的计算即可得结论;④根据边边边证明三角形全等即可得结论;⑤根据割补法求四边形的面积,再求等腰直角三角形的面积,即可得结论.【解答】证明:①在正方形ABCD中,∠ADC=∠C=90°∵EF∥CD∴∠EFD=90°,得矩形EFDC.在Rt△FDG中,H是DG中点,∴FH⊥BD∵正方形对角线互相垂直,过A点只能有一条垂直于BD的直线,∴AE不垂直于BD,∴FH与AE不平行.所以①不正确.②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD∴∠AFH=∠AFE+∠GFH=90°+45°=135°∠EGH=180°﹣∠EGB=180°﹣45°=135°∴∠AFH=∠EGH∴△AFH≌△EGH,∴AH=EH,∠AHF=∠EHG∴∠AHF+AHG=∠EHG+∠AHG即∠FHG=∠AHE=90°∴AH⊥EH.所以②正确.③∵△AFH≌△EGH,∴∠FAH=∠GEH,∵∠BAF=CEG=90°∴∠BAH=∠HEC.所以③正确.④∵EF=AD,FH=DH,EH=AH∴△EHF≌△AHD所以④正确.⑤设EC=FD=x,则BE=AF=EG=2x,∴BC=DC=AB=AD=3x,AH2=(x)2+(x)2=x2,S四边形DHEC=S梯形EGDC﹣S△EGH=(2x+3x)•x﹣×=2x2S△AHE=AH•EH=AH2=x2∴==.所以⑤不正确.故选:B.二.填空题(共6小题)7.如图,E、F是平行四边形ABCD的对角线BD上的点,要使四边形AFCE是平行四边形,还需添加的一个条件是BF=DE(答案不唯一)(只需添加一个正确的即可).【分析】由平行四边形的判定定理,通过对角线互相平分得出结论.【解答】解:添加的一个条件为BF=DE;理由如下:∵四边形ABCD是平行四边形,∴AO=CO、BO=DO,∵BF=DE,∴OE=OF,∴四边形AFCE是平行四边形;故答案为:BF=DE(答案不唯一).8.如图,在△ABC中,∠ACB=90°,D为边AB的中点,E、F分别为边AC、BC上的点,且AE=AD,BF=BD.若DE=,DF=2,则∠EDF=45 °,线段AB的长度=2.【分析】延长FD到M使得DM=DF,连接AM、EM、EF,作EN⊥DF于N,先证明∠EDF=45°,在Rt△EMN中求出EM,再证明△AEM是等腰直角三角形即可解决问题.【解答】解:如图,延长FD到M使得DM=DF,连接AM、EM、EF,作EN⊥DF于N.∵∠C=90°,∴∠BAC+∠B=90°,∵AE=AD,BF=BD,∴∠AED=∠ADE,∠BDF=∠BFD,∴2∠ADE+∠BAC=180°,2∠BDF+∠B=180°,∴2∠ADE+2∠BDF=270°,∴∠ADE+∠BDF=135°,∴∠EDF=180°﹣(∠ADE+∠BDF)=45°,∵∠END=90°,DE=,∴∠EDF=∠DEN=45°,∴EN=DN=1,在△DAM和△DBF中,,∴△ADM≌△BDF(SAS),∴BF=AM=BD=AD=AE,∠MAD=∠B,∴∠MAE=∠MAD+∠BAC=90°,∴EM=AM,在Rt△EMN中,∵EN=1,MN=DM+DN=3,∴EM==,∴AM=,AB=2AM=2.故答案为:45,2.9.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣1,m)、B(﹣4,0)、C(1,0)、D(a,m),且m>0,若以点A、B、C、D为顶点的四边形是菱形,则点D的坐标为(4,4)或(﹣5,).【分析】作AM⊥BC于M,由题意得出AD∥BC,OB=4,OC=1,OM=1得出AD=BC=5,BM=3,CM=2,①当点D在y轴的右侧时,由菱形的性质得出AB=BC=5,由勾股定理得出AM==4,得出点D的坐标为(4,4);②当点D在y轴的左侧时,由菱形的性质得出AB=BC=5,由勾股定理得出AM==,得出点D的坐标为(﹣6,).【解答】解:作AM⊥BC于M,∵A(﹣1,m)、B(﹣4,0)、C(1,0)、D(a,m),且m>0,∴AD∥BC,OB=4,OC=1,OM=1,∴AD=BC=5,BM=3,CM=2,分两种情况:①当点D在y轴的右侧时,如图1所示:∵以点A、B、C、D为顶点的四边形是菱形,∴AB=BC=5,∴AM===4,∴点D的坐标为(4,4);②当点D在y轴的左侧时,如图2所示:∵以点A、B、C、D为顶点的四边形是菱形,∴AB=BC=5,∴AM===,∴点D的坐标为(﹣6,);综上所述,若以点A、B、C、D为顶点的四边形是菱形,则点D的坐标为(4,4)或(﹣6,);故答案为:(4,4)或(﹣6,).10.如图,在矩形ABCD中,过点D作DE⊥AC,垂足为E,延长线ED至F,使DF=AC,连接BF交AD于G.若AB=1,AD=2,则∠ABG=45°,GF=2.【分析】如图,作FH⊥AD交AD的延长线于H.由△ADC≌△FHD(AAS),推出FH=AD=2,DH=CD=1,由AB∥FH,推出AG:GH=AB:FH=1:2,由AH=AD+DH=2+1=3,推出AG =1,GH=2,由此即可解决问题;【解答】解:如图,作FH⊥AD交AD的延长线于H.∵四边形ABCD是矩形,∴AD=BC=2,AB=CD=1,∠ADC=∠CDH=∠H=∠BAD=90°,∵∠ACD+∠CDE=90°,∠CDE+∠FDH=90°,∴∠ACD=∠FDH,∵AC=DF,∴△ADC≌△FHD(AAS)∴FH=AD=2,DH=CD=1,∵AB∥FH,∴AG:GH=AB:FH=1:2,∵AH=AD+DH=2+1=3,∴AG=1,GH=2,∴AB=AG=1,GH=FH=2,∴∠ABG=45°,FG==2,故答案为45°,2.11.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.12.如图,在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么CD的长是 6.5 .【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD=AB.【解答】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD=AB=6.5,故答案是:6.5.三.解答题13.如图,平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=2,FN=1,求BN的长.【分析】(1)欲证明四边形AMCN是平行四边形,只要证明CM∥AN,AM∥CN即可;(2)首先证明△MDE≌△NBF,推出ME=NF=1,在Rt△DME中,根据勾股定理即可解决问题;【解答】证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,,∴△MDE≌△NBF,∴ME=NF=1,在Rt△DME中,∵∠DEM=90°,DE=4,ME=3,∴BN=DM===.14.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.【分析】(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由平行四边形的性质、等腰三角形的判定即可解决问题;【解答】(1)证明:∵AD是△ABC的中线,∴BD=CD,∵AE∥BC,∴∠AEF=∠DBF,在△AFE和△DFB中,,∴△AFE≌△DFB(AAS),∴AE=BD,∴AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由:∵四边形ADCE是平行四边形,∴AE=DC,AD∥EC,∵BD=DC,∴AE=BD,∵BE平分∠AEC,∴∠AEF=∠CEF=∠AFE,∴AE=AF,∵△AFE≌△DFB,∴AF=DF,∴AE=AF=DF=CD=BD.15.如图,已知E是▱ABCD中BC边的中点,AC是对角线,连结AE并延长AE交DC的延长线于点F,连结BF.(1)求证:四边形ABFC是平行四边形;(2)若∠AEC=2∠ABC,求证:四边形ABFC为矩形.【分析】(1)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,(2)根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE 的外角,利用外角的性质得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE =∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∵,∴△ABE≌△FCE(ASA);∴AB=CF,又∵四边形ABCD为平行四边形,∴AB∥CF,∴四边形ABFC为平行四边形,(2)∵四边形ABFC为平行四边形,∴BE=EC,AE=EF,又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB,∴∠ABC=∠EAB,∴AE=BE,∴AE+EF=BE+EC,即AF=BC,则四边形ABFC为矩形.16.如图,以△ABC的各边为边长,在边BC的同侧分别作正方形ABDI,正方形BCFE,正方形ACHG,连接AD,DE,EG.(1)求证:△BDE≌△BAC;(2)①设∠BAC=α,请用含α的代数式表示∠EDA,∠DAG;②求证:四边形ADEG是平行四边形;(3)当△ABC满足什么条件时,四边形ADEG是正方形?请说明理由.【分析】(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC,(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由▱ABDI 和▱ACHG的性质证得,AC=AB.【解答】(1)证明:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),(2)①解:∵△BDE≌△BAC,∠ADB=45°,∴∠EDA=α﹣45°,∵∠DAG=360°﹣45°﹣90°﹣α=225°﹣α,②证明:∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)解:结论:当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.理由:由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.17.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.【分析】(1)根据有三个角是直角的四边形是矩形证明四边形MANP是矩形,再根据角平分线的性质得:PM=PN,可得结论;(2)证明△EPM≌△BPN,可得结论.【解答】证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,(1分)∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形,(2分)∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,(3分)∴四边形MANP是正方形;(4分)(2)∵四边形ABCD是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,(5分)在△EPM和△BPN中,∵,∴△EPM≌△BPN(ASA),(6分)∴EM=BN.(7分)18.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH==,∴S△ABE=AE×BH=×4×=;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=NG=ME=BE,∴BE=GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=CG.19.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.【分析】(1)先根据线段垂直平分线的性质证明PB=PE,由ASA证明△BOQ≌△EOP,得出PE=QB,证出四边形ABGE是平行四边形,再根据菱形的判定即可得出结论;(2)根据三角形中位线的性质可得AE+BE=2OF+2OB=18,设AE=x,则BE=18﹣x,在Rt△ABE中,根据勾股定理可得62+x2=(18﹣x)2,BE=10,得到OB=BE=5,设PE =y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,根据勾股定理可得62+(8﹣y)2=y2,解得y=,在Rt△BOP中,根据勾股定理可得PO==,由PQ=2PO 即可求解.【解答】(1)证明:∵PQ垂直平分BE,∴PB=PE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,在△BOQ与△EOP中,,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵QB=QE,∴四边形BPEQ是菱形;(2)解:∵O,F分别为PQ,AB的中点,∴AE+BE=2OF+2OB=18,设AE=x,则BE=18﹣x,在Rt△ABE中,62+x2=(18﹣x)2,解得x=8,BE=18﹣x=10,∴OB=BE=5,设PE=y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,62+(8﹣y)2=y2,解得y=,在Rt△BOP中,PO==,∴PQ=2PO=.。
人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)
第十八章平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A.34B.26C.8.5D.6.52.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则AC 的长是( )A.4B.8C.4错误!未找到引用源。
D.8错误!未找到引用源。
3.一个菱形的周长为8 cm,高为1 cm,这个菱形相邻两角的度数之比为( )A.3∶1B.4∶1C.5∶1D.6∶14.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为( )A.12B.18C.24D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形( )A.①②B.①③C.①④D.④⑤8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )A.20°B.25°C.30°D.35°9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1B.错误!未找到引用源。
C.4-2 错误!未找到引用源。
D.3 错误!未找到引用源。
-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上的M点处,延长BC,EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S.其中,将正确结论的序号全部选对的是( )△BEF=3S△DEFA.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件__________,使四边形AECF是平行四边形(只填一个即可).12.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为__________.13.如图,已知AB=BC=CD=AD,∠DAC=30°,那么∠B=__________.14.如图,在矩形ABCD中,对角线AC,BD相交于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是__________.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C'处,得到经过点D的折痕DE.则∠DEC的大小为__________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为__________.18.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E,F分别是边AD,DC上的点,若AE=4 cm,CF=3 cm,且OE⊥OF,则EF的长为____cm.19.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,错误!未找到引用源。
人教版2020学年初中数学八年级下《第18章 平行四边形》单元测试卷
人教版2020学年初中数学八年级下《第18章平行四边形》单元测试卷一.选择题(共10小题)1.在▱ABCD中,∠A:∠B:∠C:∠D的值可能是()A.5:2:2:5B.5:5:2:2C.2:5:2:5D.2:2:5:52.如图,在平行四边形ABCD中,AD=2AB,AE平分∠BAD交BC边于点E,且CE=3,AD的长为()A.4B.5C.6D.73.下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AD∥BC,∠A=∠BC.AD∥BC,∠A=∠C D.AD∥BC,AB∥CD4.如图,在平行四边形ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,则AB的长是()A.3B.4C.5D.2.55.以上四个条件中可以判定四边形是平行四边形的有()①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线相等.A.1个B.2个C.3个D.4个6.在平面直角坐标系中,一个长方形的三个顶点坐标分别为(﹣2,0)、(﹣2,1)、(0,0),则第四个顶点的坐标为()A.(0,1)B.(1,0)C.(1,1)D.(﹣2,﹣1)7.如图,各正方形的边长均为1,则四个阴影三角形中,面积为1的是()A.②③B.①③C.①②③D.④8.下列说法不正确的是()A.四边都相等的四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分且相等的四边形是菱形9.如图,菱形ABCD沿对角线AC的方向平移到菱形A'B′C′D′的位置,点A′恰好是AC的中点.若菱形ABCD 的边长为2,∠BCD=60°,则阴影部分的面积为()A.B.C.1D.10.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列四个结论,其中正确结论的序号是()①AP=EF②∠PFE=∠BAP③△APD一定是等腰三角形④PD=ECA.①②④B.②④C.①②③D.①③④二.填空题(共8小题)11.如图在△ABC中,∠ACB=60°,D是AB边的中点,E是边BC上一点,若DE平分△ABC的周长,且DE=,则AC的长为.12.在平行四边形ABCD中,∠B+∠D=180°,则∠A=.13.如图,平行四边形ABCD的对角线交于坐标原点O,点A的坐标为(﹣3,2),点B的坐标为(﹣1,﹣2),则点C的坐标为.14.如图,△ADE中,C是AE中点,且DC⊥AE,BC∥DE,BC交AD于点B,DE=10cm,AE=8cm,则△ABC 的周长为cm.15.如图,在矩形ABCD中,AD=3,CD=4,点P是AC上一个动点(点P与点A,C不重合),过点P分别作PE⊥BC于点E,PF∥BC交AB于点F,连接EF,则EF的最小值为.16.如图,在正方形ABCD中,E是对角线BD上任意一点,过E作EF⊥BC于F,作EG⊥CD于G,若正方形ABCD 的周长为24cm,FG=5cm,则四边形EFCG的面积为.17.如图,在矩形ABCD中,BD为对角线,过点C作CE⊥BD,交AB于点E,点F在BC上,AF交CE于点G,且AG=GF=CF,BD=,则线段AB的长为.18.如图,正方形ABCD和正方形CEFG的边长分别为a和b,BE和DG相交于点H,连接HC,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论是.三.解答题(共6小题)19.将▱ABCD放在平面直角坐标系中,对角线AC,BD交于坐标原点O,B(﹣4,﹣3),C(0,﹣3),请根据要求画出图形,并求出▱ABCD的面积和周长.20.如图,在▱ABCD中,AM⊥BD,CN⊥BD,垂足分别为点M,N.求证:四边形AMCN是平行四边形.21.如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG于点E,连接AE,AE ⊥AD.(1)若BG=1,BC=,求EF的长度;(2)求证:AG=CG.22.已知,在长方形ABCD中,AB=8,BC=6,点E,F分别是边AB,BC上的点,连接DE,DF,EF.(1)如图①,当CF=2BE=2时,试说明△DEF是直角三角形;(2)如图②,若点E是边AB的中点,DE平分∠ADF,求BF的长.23.已知在△ABC中,AD平分∠BAC,交BC于点D,点E在边AC上AB=AE,过点E作EF∥BC,交AD于点F,连接BF.(1)如图1,求证:四边形BDEF是菱形;(2)如图2,当AB=BC时,在不添加辅助线的情况下,请直接写出图中度数等于∠BAD的2倍的所有的角.24.如图,在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°.(1)如图(1),试判断EF,BE,DF间的数量关系,并说明理由;(2)如图(2),若AH⊥EF于点H,试判断线段AH与AB的数量关系,并说明理由.人教版2020学年初中数学八年级下《第18章平行四边形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴A、B、D不正确,C正确;故选:C.2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB,又∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∵AD=2AB,∴BC=2BE,即点E是BC中点,∵CE=3,∴AD=BC=6,故选:C.3.【解答】解:A、AB=CD,AD=BC,即四边形ABCD的两组对边相等,则该四边形是平行四边形,故本选项不符合题意;B、∵AD∥BC,∴∠A+∠D=180°,∠B+∠C=180°,∵∠A=∠B,∴∠C=∠D,∴四边形ABCD不一定是平行四边形,故本选项符合题意;C、∵AB∥CD,∴∠A+∠D=180°,∠B+∠C=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,故本选项不符合题意;D、AD∥BC,AB∥CD即四边形ABCD的两组对边分别平行,则该四边形是平行四边形,故本选项不符合题意;故选:B.4.【解答】解:∵四边形ABCD是平行四边形,∠ABC、∠BCD的角平分线的交点E落在AD边上,∴∠BEC=×180°=90°,∵BE=4,CE=3,∴BC==5,∵∠ABE=∠EBC,∠AEB=∠EBC,∠DCE=∠ECB,∠DEC=∠ECB,∴∠ABE=∠AEB,∠DEC=∠DCE,∴AB=AE,DE=DC,即AE=ED=AD=BC=2.5,由题意可得:AB=CD,AD=BC,∴AB=AE=2.5.故选:D.5.【解答】解:①两组对边分别平行,符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选:C.6.【解答】解:如图,则第四个顶点的坐标为(0,1).故选:A.7.【解答】解:①阴影三角形=×1×1=;②阴影三角形=×2×1=1;③阴影三角形=×1×2=1;④阴影三角形=×2×2=2;则四个阴影三角形中,面积为1的是②③;故选:A.8.【解答】解:∵四边都相等的四边形是菱形,∴选项A不符合题意;∵有一组邻边相等的平行四边形是菱形,∴选项B不符合题意;∵对角线互相垂直平分的四边形是菱形,∴选项C不符合题意;∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.9.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AD=2=CD,∠DCA=∠BCD=30°,∴A'D=1,A'C=DA'=,∴菱形ABCD的面积=4××A'D×A'C=2,如图,由平移的性质得,▱ABCD∽▱A'ECF,且A'C=AC,∴四边形A'ECF的面积是▱ABCD面积的,∴阴影部分的面积==,故选:B.10.【解答】解:连接PC,如图所示:在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,∵在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴AP=PC,∠BAP=∠BCP,∵PE⊥BC,PF⊥CD,∴四边形PECF是矩形,∴PC=EF,∠BCP=∠PFE,∴AP=EF,∠PFE=∠BAP,故①②正确;∵PF⊥CD,∠BDC=45°,∴△PDF是等腰直角三角形,∴PD=PF,∵矩形的对边PF=EC,∴PD=EC,故④正确;只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故③错误;综上所述,正确的结论有①②④,故选:A.二.填空题(共8小题)11.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,设AC=x,DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=x,∴AM=2DE=2AN=2,∴AC=2,故答案为:2.12.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∴∠B+∠D=180°,∴∠B+∠B=180°,解得:∠B=90°,∴∠A=180°﹣∠B=90°.故答案为:90°.13.【解答】解:∵平行四边形ABCD的对角线交于坐标原点O,∴A点与C点关于原点对称,∴C点坐标为(3,﹣2).故答案为:(3,﹣2).14.【解答】解:∵C是AE中点,且DC⊥AE,∴AD=DE=10cm,∠ADC=∠EDC,∵BC∥DE,∴∠BCD=∠EDC,∴∠BDC=∠BCD,∴BD=BC,∵AE=8cm,∴AC=4cm,∴△ABC的周长=AB+BC+AC=AB+BD+AC=AD+AC=10+4=14cm,故答案为:14.15.【解答】(1)证明:如图,连接BP.∵∠B=∠D=90°,AD=3,CD=4,∴AC=5,∵PE⊥BC于点E,PF∥BC,∠B=90°,∴四边形PEBF是矩形;∴EF=BP,由垂线段最短可得BP⊥AC时,线段EF的值最小,此时,S△ABC=BC•AB=AC•CP,即×4×3=×5•CP,解得CP=.故答案为:.16.【解答】解:连接FG.∵ABCD为正方形,周长为24cm,∴∠DBC=∠BDC=45°,AB=BC=CD=AD=6cm,又∵EF⊥BC,EG⊥CD,∴∠EFC=∠EGC=90°,又∠C=90°,∴四边形EFCG为矩形,∴EG=FC,EF=GC,∵△BEF和△EDG都为等腰直角三角形,∴DG=EG,EF=BF,∴EG+EF=BF+CF=BC=6cm,设EG=xcm,EF=ycm,则有,①2﹣②可得2xy=11,∴xy=5.5,∴四边形EFCG的面积为5.5cm2故答案为5.5cm2.17.【解答】解:连接AC交BD于O,BD交AF于M,连接GO,CM,CE交BD于点N.∵四边形ABCD是矩形,∴OA=OC,∵AG=GF=CF,∴∠FCG=∠FGC,OG∥CF,∴∠OGC=∠FCG=∠FGC,∵CE⊥BD,∴∠GNO=∠GNM=90°,∵GN=GN,∴△GNO≌△GNM(ASA),∴ON=NM,OG=GM,∵∠CNO=∠CNM=90°,CN=CN,∴△CNO≌△CNM(SAS),∴∠OCN=∠MCN,OC=MC=AC,∴GC平分∠ACM,作GK⊥CM交CM的延长线于K,作GJ⊥AC于J.则有GJ=GK,∴==,∴==,∴AG=2GM,∵AG=GF,∴GM=MF,∵∠MOG=∠MBF,∠OMG=∠BMF,∴△MOG≌△MBF(AAS),∴OG=BF=GM=FM,设GM=k,则GM=BF=MF=OG=k,AG=FG=CF=2k,∴BC=3k,在Rt△ABF中,∵AF2=AB2+BF2,∴(4k)2=k2+AB2①,在Rt△ABC中,∵AC2=BC2+AB2,AC=BD=,∴()2=(3k)2+AB2②,由①②可得AB=.故答案为.18.【解答】解:如图,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,∵,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BHG=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DH2+BH2=BD2=BC2+CD2=2a2,EH2+HG2=EG2=CG2+CE2=2b2,则BG2+DE2=DH2+BH2+EH2+HG2=2a2+2b2,故③正确.故答案为:①②③.三.解答题(共6小题)19.【解答】解:如图所示,∵B(﹣4,﹣3),C(0,﹣3)∴BC=4,OC=3,∵四边形ABCD是平行四边形,∴OA=OC=3,AD=BC=4,AB=CD,∴AC=6,∵BC⊥AC,∴▱ABCD的面积=BC×AC=4×6=24;∵AB==2,∴▱ABCD的周长=2(AB+BC)=4+8.20.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABM=∠CND,∵AM⊥BD,CN⊥BD,∴∠AMB=∠CND=90°,∵在△ABM和△CDN中,,∴△ABM≌△CDN(AAS),∴AM=CN,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴四边形AMCN是平行四边形.21.【解答】解:(1)∵CG⊥AB,∴∠AGC=∠CGB=90°,∵BG=1,BC,∴CG=3,∵∠ABF=45°,∴BG=EG=1,∴CE=2,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠GCD=∠BGC=90°,∠EFG=∠GBE=45°,∴CF=CE=2,∴EF=CE=;(2)如图,延长AE交BC于H,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠AHB=∠HAD,∵AE⊥AD,∴∠AHB=∠HAD=90°,∴∠BAH+∠ABH=∠BCG+∠CBG=90°,∴∠GAE=∠GCB,在△BCG与△EAG中,,∴△BCG≌△EAG(AAS),∴AG=CG.22.【解答】(1)证明;∵CF=2BE=2,∴BE=1,∴AE=AB﹣BE=7.∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,CD=AB=8,AD=BC=6,在Rt△ADE中,DE2=AE2+AD2=62+72=85,在Rt△DCF中,DF2=DC2+CF2=82+22=68,在Rt△BEF中,EF2=BE2+EF2=12+42=17,∴DF2+EF2=DE2,∴△DEF是直角三角形,且∠DFE=90°;(2)解:作EH⊥DF于H,则∠A=∠DHE=90°.∵DE平分∠ADF,∴∠ADE=∠HDE,在△AED和△HED中,,∴△AED≌△HED(AAS),∴DA=DH=6,EA=EH=4,∴EH=EB=4,在Rt△EHF和Rt△EBF中,,∴Rt△EHF≌Rt△EBF(HL),∴BF=HF.设BF=x,则HF=x,CF=6﹣x,∴DF=DH+HF=6+x,在Rt△CDF中,DC2+CF2=DF2,∴82+(6﹣x)2=(6+x)2,∴x=,即BF=.23.【解答】解:(1)证明:∵AD平分∠BAC,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴△ABD≌△AED(SAS),∴DB=DE,∠BDA=∠EDA.∵EF∥BC,∴∠EFD=∠BDA,∴∠EFD=∠EDF,∴EF=ED,∴EF=BD,∵EF∥BD,∴四边形BDEF为菱形.(2)∵AD平分∠BAC,∴∠BAC=2∠BAD,∵AB=BC,∴∠BAC=∠BCA=2∠BAD,∵EF∥BC,∴∠FEC=∠BCA=2∠BAD,∵∠ABF=∠AEF,∴∠ABF=2∠BAD.所以图中度数等于∠BAD的2倍的所有的角:∠BAC,∠BCA,∠ABF,∠AEF.24.【解答】(1)解:BE+DF=EF;理由如下:如图1,延长FD到G,使DG=BE,连接AG,∵在△GDA和△EBA中,,∴△GDA≌△EBA(SAS),∴AG=AE,∠GAD=∠EAB,故∠GAF=45°,在△GAF和△EAF中,∵,∴△GAF≌△EAF(SAS),∴GF=EF,即GD+DF=BE+DF=EF;(2)AH=AB,理由如下:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴把△ADF绕点A顺时针旋转90°得到△ABQ,如图2,∴AQ=AF,∠F AQ=90°,∠ABQ=∠D=90°,而∠ABC=90°,∴点Q在CB的延长线上,∵∠EAF=45°,∴∠QAE=90°﹣∠EAF=45°,∴∠EAF=∠QAE,在△AEQ和△AEF中,,∴△AEQ≌△AEF(SAS),∴EQ=EF,∵AB⊥EQ,AH⊥FE,∴AB=AH.。
第18章平行四边形单元测试卷(含答案)
第18章平⾏四边形单元测试卷(含答案)第18章平⾏四边形单元测试卷⼀、选择题(每题3分,共30分)1.在?ABCD中,∠A∶∠B∶∠C∶∠D可以是()A.1∶2∶3∶4B.1∶2∶1∶2C.1∶1∶2∶2D.1∶2∶2∶12.如图,在?ABCD中,已知AD=12 cm,AB=8 cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8 cmB.6 cmC.4 cmD.2 cm(第1题) (第3题) (第5题)3.如图,在平⾏四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长为()A.7B.10C.11D.124.若平⾏四边形的⼀边长为10,则它的两条对⾓线长可以是()A.8和16B.6和8C.6和12D.24和45.如图,直线AB∥CD,P是AB上的动点,当点P的位置变化时,三⾓形PCD的⾯积将()A.变⼤B.变⼩C.不变D.变⼤变⼩要看点P向左还是向右移动6.在如图的⽹格中,以格点A、B、C、D、E、F中的4个点为顶点,共能画出平⾏四边形()A.2个B.3个C.4个D.5个(第6题) (第8题) (第9题)7.四边形ABCD中,AB∥CD,对⾓线AC与BD交于点O,下列条件中不能..判定这个四边形是平⾏四边形的是()A.AB=CDB.AD∥BCC.OA=OCD.AC=BD8.如图,在平⾏四边形ABCD中,AC,BD为对⾓线,BC=6,BC边上的⾼为4,则图中阴影部分的⾯积为()A.3B.6C.12D.249.如图,在平⾏四边形ABCD中,点E在AD上,连结CE并延长与BA的延长线交于点F,若AE=ED,CD=3 cm,则BF的长为()A.5 cmB.6 cmC.7 cmD.8 cm10.如图,在平⾏四边形ABCD中,AB>AD,按以下步骤作图:以A为圆⼼,⼩于AD的长为半径画弧,分别交AB、AD于E、F,再分别以E、F为圆⼼,⼤于错误!未找到引⽤源。
人教版八下数学第十八章《平行四边形》单元测试题及答案【2】
人教版八下数学第十八章《平行四边形》单元测试题及答案【 2】、选择题:(每题5分,共40分)已知菱形的边长为 6 cm, —个内角为60°,则菱形较短的对角线长是(7、下列说法中正确的是( ). A 等腰梯形两底角相等B 等腰梯形的一组对边相等且平行C 等腰梯形同一底上的两个角都等于90度D 等腰梯形的四个内角中不可能有直角8、 已知直角梯形的一腰长为 6cm ,这腰与底所成的角为 30°,那么另一腰长是()二、填空题:(每题5分,共30分)9、 已知在口 ABCD 中,AB=14cm ,BC=16cm ,则此平行四边形的周长为 ___________ cm .班级姓名学号总分1、 2、 6 cmB 、6 3 cmC 、3 cm在四边形 ABCD 中, O 是对角线的交点,能判定这个四边形是正方形的条件是(AC = BDAB 〃 CDB 、AD// BC, / A =ZC AO= BO= CO= DO AC 丄 BCD 、AO= CQ BO= DO AB= BC如图,在平面直角坐标系中, □ ABCD 勺顶点A 、B D 的坐标分别是(0, 0),( 5, 0) (2,C. (7, 3)D. (8, 2)4、已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为(2A. 4 cmE. 、3cm 2C. 2、3cm 2c2D. 3cm5、如图,在菱形ABCD 中, E 、F 分别是 A. B. C. AB CD 的中点,如果EF=2,那么ABCD 勺周长是D. 4 8 12 166、已知矩形一条对角线与一边的夹角是 A 、50 度; B 、60 度;40度,则两条对角线所成锐角的度数为 C 、70 度; D 、80 度;A 3cmB 1.5cmC 6cmD 9cm3、3)10、_______ 的平行四边形是菱形(填一个合适的条件)的对称轴,如果 AD // BC ,有下列结论:① AB // CD确的结论的序号都填上)12、如图,点D , E , F 分别是 △ ABC 三边上的中点.若厶ABC 的面积为12,则厶DEF的面积为13、矩形ABCD 的周长为40 cm, O 是它的对角线交点," AOB 比"AOD 周长多4 cm,则它的 各边之长为三、解答题(共80分)15、( 10分)如图,把一张长方形 ABCD 的纸片沿EF 折叠后,ED 与BC 的交点为G ,点D 、 C 分别落在 D '、C '的位置上,若/ EFG=55 °,求/ AEG 和/ ECB 的度数.17、(12分)如图7,平行四边形 ABCD 的对角线AC 、BD 相交于点O,E 、F 是直线AC 上的11、如图,I 是四形形ABCD ②AB = BC③AB 丄BC ④AO = OC 其中正确的结论是 ((把你认为正14、如图,在梯形 ABCD 中, 梯形的高为 _________ c mAD // BC ,对角线 AC 丄BD ,且 AC = 8 cm, BD = 8 cm,则此16、(10分)如图,正方形 求证:OE = OF ABCD 的对角线 AC 、BD 交于点 O ,/ OCF =Z OBE . O第12题D 1B两点,并且 AE=CF 求证:四边形 BFDE 是平行四边形19、(12分)如图:在正方形 ABCD 中,E 为CD 边上的一点,F 为BC 的延长线上一点, CE = CF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八章平行四边形测试题(2)
一选择题(每题3分共42分)
1. 平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cm B.6cm 和8cm C.8cm 和10cm D.10cm 和12cm
2.平行四边形ABCD 中,∠A 比∠B 大40°,则∠D 的度数为( ) A. 60° B. 70° C. 100° D. 110°
3矩形具有而菱形不具有的性质是( )A .两组对边分别平行
B .对角线相等
C .对角线互相平分
D .两组对角分别相等 4. 能判定四边形ABCD 为平行四边形的题设是( )
(A )AB∥CD,AD=BC (B )AB=CD ,AD=BC (C )∠A=∠B,∠C=∠D (D )AB=AD ,CB=CD
5、如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E , AB=5,BC=3,则EC 的长( )A.1 B.1.5 C.2 D.3
6.如图所示,在ABC D 中,对角线AC ,BD 相交于点O ,且AB ≠AD ,则下列式子正确的是( )A .AC ⊥BD B .∠BAD =∠C BA C .BO =OA D. AB =CD
‘
7.如图,在△ABC 中,点E ,D ,F 分别在边AB ,BC ,CA 上,且DE ∥CA ,DF ∥BA ,则下列四个判断中不正确的是( ) A .四边形AEDF 是平行四边形 B .如果∠BAC =90°,那么四边形AEDF 是矩形 C .如果AD 平分∠BAC ,那么四边形AEDF 是菱形 D .如果AD ⊥BC 且AB =AC ,那么四边形AEDF 是正方形
8如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE,则四边形ADCF 一定是( )
A .36°
B .9°
C .27°
D .18°
第5题
A
B
C
D E
10.如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BFA = 30°,那么∠CEF 等于( )A. 20°B. 30°C. 45°D. 60°
11.矩形具有而一般的平行四边形不一定具有的特征( ) A.对角相等 B.对角线互相平分 C.对角线相等 D.对边相等
12.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A.AC =BD ,AB =CD ,AB ∥CD B.AD //BC ,∠A =∠C C.AO =BO =CO =DO ,AC ⊥BD D.AO =CO ,BO =DO ,AB =BC
13.顺次连接四边形各边的中点所得的四边形是菱形则原四边形一定是( ) A .平行四边形 B .矩形 C .菱形 D .对角线相等的四边形 14.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ; 以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1; 以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推, 则平行四边形AO 4C 5B 的面积为( )
A .
45 cm 2 B .8
5
cm 2 C .cm 2
D .
cm 2
二.解答题
15.已知:如图,ABCD 中,E 、F 分别是AB 、CD 上的点,AE CF ,M 、N 分别是DE 、BF 的中点。
求证:四边形ENFM 是平行四边形。
16.如图,平行四边形ABCD 中,AF =CH ,DE =BG ,求证:EG 和HF 互相平分。
_
F _ E _ D
_ H
_ G
_ F
_ E
_ D _ C
_ B _ A
C
17.(10分)如图,在□ABCD 中,对角线AC , BD 交于点O ,点E ,点F 在BD 上,且BE=DF ,连接AE 并延长,交BC 于点G ,连接CF 并延长,交AD 于点H . (1)判断AE 和CF 有怎样的关系写出结论并说明理由 (2)若AC 平分∠HAG ,求证:四边形AGCH 是菱形.
18(10分)已知:如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E , (1)求证:四边形ADCE 为矩形;
(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.
20.如图,以△ABC 的三边为边,在BC 的同侧作三个等边△ABD 、△BEC 、△ACF . (1)判断四边形ADEF 的形状,并证明你的结论;
(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?是矩形?(8分)
A D H E
F
O A F E D C
B。