优质课-直线与圆位置关系高三一轮复习课件
合集下载
4.2.1《直线与圆的位置关系》PPT课件
巩固练习:
①判断直线4x-3y=50与圆 x 2 y 2 100的位置关系.如
果相交,求出交点坐标.
解:因为圆心O(0,0)到直线4x-3y=50
| 0 0 50 |
的距离d=
5
= 10
而圆的半径长是10,所以直线与圆相切。 圆心与切点连线所得直线的方程为3x+4y=0
解方程组
4x 3x
3 4
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
A2 B2
直线与圆的位置关系
在2009年08月08日台凤莫拉克袭击宝岛台湾时,
一艘轮船在沿直线返回泉州港口的途中,接到气象台
的台风预报:台风中心位于轮船正西70km处,受影响
的范围是半径长为30km的圆形区域.已知泉州港口位
于台风中心正北40km处,如果这艘轮船不改变航线,
那么它是否会受到台风莫拉克的影响? y
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
为解决这个问题,我们以台
港口
风中心为原点 O,东西方向为
x 轴,建立如图所示的直角坐 标系,其中取 10km 为单位长
O
轮船 x
度.
直线与圆的位置关系
这样,受台风影响的圆区域所对应的圆心为O的圆
2025高考数学一轮复习-2.2-直线与圆的位置关系【课件】
【例 2】 (1)已知直线 l:ax+by-3=0 与圆 M:x2+y2+4x-1 =0 相切于点 P(-1,2),则直线 l 的方程为________.
(2)过点 A(4,-3)作圆(x-3)2+(y-1)2=1 的切线,求此切线方程. [思路探究] (1)利用 MP⊥l,同时点 P 在直线 l 上. (2)先确定点 A 在圆外,利用 d=r 求切线方程.
第2章 圆与方程
2.2 直线与圆的位置关系
必备知识·情境导学探新知
知识点
“大漠孤烟直,长河落日圆”,这 是唐代诗人王维的诗句.它描述了黄昏 日落时分塞外特有的景象.如果我们把 太阳看成一个圆,地平线看成一条直线,观察下面三幅太阳落山的图 片.
图片中,地平线与太阳的位置关系怎样?结合初中知识总结,直 线与圆有几种位置关系?
[解] 法一:将直线 mx-y-m-1=0 代入圆的方程化简整理得, (1+m2)x2-2(m2+2m+2)x+m2+4m+4=0.
∵Δ=4m(3m+4),
∴(1)当 Δ>0 时,即 m>0 或 m<-43时,直线与圆相交,即直线与 圆有两个公共点;
(2)当 Δ=0 时,即 m=0 或 m=-43时,直线与圆相切, 即直线与圆只有一个公共点;
与圆 C 相交.]
类型 2 直线与圆相切问题 [探究问题] 1.怎样判断直线与圆相切? [提示] 一般采用几何法,即圆心到直线的距离等于半径. 2.当点(x0,y0)在圆外时,过该点的直线与圆相切有几条?当设 点斜式只求出一个解时怎么办? [提示] 有两条.虽设点斜式但要分斜率存在与不存在两种情况, 当只求出一个解时,另一条一定是 x=x0.
d>__r
d=__r
d<__r
方程组 方程组 方程组有两 _无__解_ 仅__有__一__组__解__ 组不同解
直线与圆的位置关系优质课PPT课件
O
它们的坐标分别是A(2,0),B(1,3).
A x
7
第7页/共34页
判断下列直线与圆的位置关系
(1).圆x2 y2 13与直线x y 1 0;
相交
(2).圆x2 y2 8x 2 y 8 0, 直线4x 3y 6 0;
相切
(3).圆( x 2)2 y2 1, 直线2x y 5 0.
例 2:已知圆 C:X2+y2=1和过点 P( -1 ,2) 的直线L.
(1)试判断点P的位置. (2)若直线L与圆C相切 ,求直线L的方程.
(3)若直线L与圆相交于A 、B两点,求直线 L 的斜率范围.
(4)当直线L的斜率为-1时,试判断它们的 位置关系. (5)若直线L与圆相交于A 、B两点 ,且满足 OA⊥OB, 求直线L的方程.
当 d>r 时,直线与圆的位置关系是相离 当 d=r 时,直线与圆的位置关系是相切 当 d<r 时,直线与圆的位置关系是相交
第3页/共34页
直线与圆的位置关系的判定方法
直线l:Ax+By+C=0,圆C:(x-a)2+(y-b)2=r2(r>0)
(1)利用圆心到直线的距离d与半径r的大小关系判断:
d>r d=r d<r
x2 y2 6x 5 0
(x 3)2 y2 4
圆心(3,0) 直线x-my+3=0
r=2
d 6 m2 1
比 相交
d<r
较
d 相切
d=r
与
相离
d>r
r
6 2,得m 2 2或m 2 2 m2 1
6 2,得m 2 2 m2 1
6 2,得 2 2 m 2 2 m2 1
高考数学一轮复习 第八章 立体几何 8.4 直线与圆、圆与圆的位置关系课件
12/13/2021
第十页,共四十一页。
1.思考辨析 判断下列结论正误(在括号内打“√”或“×”) (1) 如果 两个 圆 的方 程 组成 的方 程 组只 有一 组 实数 解 ,则 两 圆 外
切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公
(4)由题意知圆的方程为 x2+(y+1)2=4,所以圆心坐标为(0, -1),半径为 2,则圆心到直线 y=x+1 的距离 d=|-1-2 1|= 2, 所以|AB|=2 22- 22=2 2.
(5)由xx22+ +yy22- -44= x+04,y-12=0, 得两圆公共弦所在直线为 x -y+2=0.又圆 x2+y2=4 的圆心到直线 x-y+2=0 的距离为 2
若|AB|=2 3,则圆 C 的面积为( A )
A.4π
B.2π
C.9π
D.22π
12/13/2021
第十九页,共四十一页。
【解析】 (1)因为圆心(0,0)到直线 ax+by+c=0 的距离 d=
a2|c+| b2=
|c| = 2|c|
22,因此根据直角三角形的关系,弦长的一半
就等于 1- 222= 22,所以弦长为 2. (2)易知圆 C:x2+y2-2ay-2=0 的圆心为(0,a),半径为
置关系是( A )
A.相交
B.相切
C.相离
D.不确定
解析:直线 l:mx-y+1-m=0 过定点(1,1),因为点(1,1) 在圆 x2+(y-1)2=5 的内部,所以直线 l 与圆相交.
12/13/2021
第二十七页,共四十一页。
2.(方向 2)已知直线 y=ax 与圆 C:x2+y2-6y+6=0 相交于 A,B
2025年高考数学一轮复习-9.4-直线与圆、圆与圆的位置关系【课件】
第九章
第四节
直线与圆、圆锥曲线
直线与圆、圆与圆的位置关系
必备知识·逐点夯实
核心考点·分类突破
【课标解读】
【课程标准】
1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.
2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
【核心素养】
数学抽象、数学运算、逻辑推理.
【命题说明】
考向
考法
(3)若两圆外切,则两圆有且只有一个公共点,反之也成立.(
×
)
提示:(3)若两圆外切,则两圆有且只有一个公共点;若两圆有且只有一个公共点,则两
圆外切或内切,故(3)错误;
(4)若两圆有公共点,则|r1-r2|≤d≤r1+r2.(
√
)
提示:(4)若两圆有公共点,则两圆外切或相交或内切,所以|r1-r2|≤d≤r1+r2,故(4)正确.
2.当两圆外切时,两圆有一条内公切线,该公切线垂直于两圆圆心的连线;当两圆内
切时,两圆有一条外公切线,该公切线垂直于两圆圆心的连线.
3.两圆相交时公共弦的性质
圆C1:x2+y2+D1x+E1y+F1=0(12 +12 -4F1>0)与圆C2:x2+y2+D2x+E2y+F2 =0(22 +22 -
x= 或x+2 y-5 =0
______________________.
【解析】由圆C方程知:圆心C(0,1),半径r= 2;
当过P的直线斜率不存在,即直线方程为
x= 2时,直线与圆C相切;
设过P点且斜率存在的圆C的切线方程为y-2=k(x- 2),即kx-y- 2k+2=0,
第四节
直线与圆、圆锥曲线
直线与圆、圆与圆的位置关系
必备知识·逐点夯实
核心考点·分类突破
【课标解读】
【课程标准】
1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.
2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
【核心素养】
数学抽象、数学运算、逻辑推理.
【命题说明】
考向
考法
(3)若两圆外切,则两圆有且只有一个公共点,反之也成立.(
×
)
提示:(3)若两圆外切,则两圆有且只有一个公共点;若两圆有且只有一个公共点,则两
圆外切或内切,故(3)错误;
(4)若两圆有公共点,则|r1-r2|≤d≤r1+r2.(
√
)
提示:(4)若两圆有公共点,则两圆外切或相交或内切,所以|r1-r2|≤d≤r1+r2,故(4)正确.
2.当两圆外切时,两圆有一条内公切线,该公切线垂直于两圆圆心的连线;当两圆内
切时,两圆有一条外公切线,该公切线垂直于两圆圆心的连线.
3.两圆相交时公共弦的性质
圆C1:x2+y2+D1x+E1y+F1=0(12 +12 -4F1>0)与圆C2:x2+y2+D2x+E2y+F2 =0(22 +22 -
x= 或x+2 y-5 =0
______________________.
【解析】由圆C方程知:圆心C(0,1),半径r= 2;
当过P的直线斜率不存在,即直线方程为
x= 2时,直线与圆C相切;
设过P点且斜率存在的圆C的切线方程为y-2=k(x- 2),即kx-y- 2k+2=0,
直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习
, 到直线: − − = 的距离 =
≤ + ,解得−
≤≤
.
−−
+
=
+
≤ ,即
考点二 直线与圆位置关系的应用
角度1 圆的切线问题(链接高考)
例2 (2023·新课标Ⅰ卷)过点 , − 与圆 + − − = 相切的两条直
(2)过圆 + = 外一点 , 作圆的两条切线,则两切点所在
直线方程为 + = .
2.圆与圆的位置关系的常用结论
(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(2)两个圆系方程
①过直线 + + = 与圆 + + + + = 交点的圆系方
(其中不含圆 ,所以注意检验 是否满足题意,以防丢解).
1.若经过点 −, − 的直线与圆 + = 相切,则该直线在轴上的截
距为(
A.
)
√
C.−
B.5
解析:选C.因为 −
+ −
D.−
= ,所以点在圆上,
所以切线方程为− − = ,令 = 得 =
+ − − = 相交.
方法三:圆的方程可化为 −
+ = ,
所以圆的圆心为 , ,半径为3.
圆心到直线 − + − = 的距离为
+−
+
=
+
≤ < ,所以直线与圆相交.故选C.
≤ + ,解得−
≤≤
.
−−
+
=
+
≤ ,即
考点二 直线与圆位置关系的应用
角度1 圆的切线问题(链接高考)
例2 (2023·新课标Ⅰ卷)过点 , − 与圆 + − − = 相切的两条直
(2)过圆 + = 外一点 , 作圆的两条切线,则两切点所在
直线方程为 + = .
2.圆与圆的位置关系的常用结论
(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(2)两个圆系方程
①过直线 + + = 与圆 + + + + = 交点的圆系方
(其中不含圆 ,所以注意检验 是否满足题意,以防丢解).
1.若经过点 −, − 的直线与圆 + = 相切,则该直线在轴上的截
距为(
A.
)
√
C.−
B.5
解析:选C.因为 −
+ −
D.−
= ,所以点在圆上,
所以切线方程为− − = ,令 = 得 =
+ − − = 相交.
方法三:圆的方程可化为 −
+ = ,
所以圆的圆心为 , ,半径为3.
圆心到直线 − + − = 的距离为
+−
+
=
+
≤ < ,所以直线与圆相交.故选C.
直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习
(-4-0)2+(0-2)2=2 5,即公共弦长为 2 5.
规律方法
圆与圆的位置关系的求解策略 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离 与两圆半径之间的关系,一般不采用代数法. 2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差 消去x2,y2项得到.
对点练2.(1)圆x2-4x+y2=0与圆x2+y2+4x+3=0的公切线共有
4.(用结论)过点(2,2)作圆(x-1)2+y2=5的切线,则切线方程为
A.x-2y+2=0
B.3x+2y-10=0
√C.x+2y-6=0
D.x=2或x+2y-6=0
显然点(2,2)在圆上,由结论1可得切线方程为(2-1)·(x-1)+(2-0)y=5, 即x+2y-6=0.故选C.
5 . ( 用 结 论 ) 圆 x2 + y2 - 4 = 0 与 圆 x2 + y2 - 4x + 4y - 12 = 0 的 公 共 弦 长 为 _2__2_____.
(2)过两圆x2+y2-2y-4=0与x2+y2-4x+2y=0的交点,且圆心在直线l: 2x+4y-1=0上的圆的方程为__x_2+__y_2_-__3_x_+__y_-__1_=__0___.
设所求圆的方程为x2+y2-4x+2y+λ(x2+y2-2y-4)=0(λ≠-1),则(1 +λ)x2-4x+(1+λ)y2+(2-2λ)y-4λ=0,把圆心坐标 1+2 λ,λ1-+1λ 代入 直线l,可得λ= 1 ,故所求圆的方程为x2+y2-3x+y-1=0.
(2)直线kx-y+2-k=0与圆x2+y2-2x-8=0的位置关系为
A.相交、相切或相离
B.相交或相切
√C.相交
D.相切
法一:直线kx-y+2-k=0的方程可化为k(x-1)-(y-2)=0,该直线恒
高考数学一轮总复习课件:圆的方程及直线与
所以圆的方程为x2+y2-4x-235y-5=0. 将D(a,3)代入得a2-4a-21=0. 解得a=7或a=-3(舍).
(2)(2021·辽宁大连模拟)在直线l:y=x-1上有两个点A, B,且A,B的中点坐标为(4,3),线段AB的长度|AB|=8,则过 A,B两点且与y轴相切的圆的方程为____(_x_-_4_)_2+__(y_-__3)_2=__1_6___
解析 (x+2m)2+(y-1)2=4m2-5m+1表示圆,则 4m2-5m+1>0,解得m<14或m>1.
3.(2021·成都七中月考)圆心在y轴上,且过点(3,1)的圆与
x轴相切,则该圆的方程是( B )
A.x2+y2+10y=0
B.x2+y2-10y=0
C.x2+y2+10x=0
D.x2+y2-10x=0
第3课时 圆的方程及直线与 圆的位置关系
[复习要求] 1.掌握确定圆的几何要素.2.掌握圆的标准方 程和一般方程.3.掌握直线与圆的位置关系.
课前自助餐
圆的定义 平面内到定点的距离__等_于__定_长___的点的集合(轨迹)是圆,定点 是圆心,定长是半径. 注:平面内动点 P 到两定点 A,B 距离的比值为 λ,即||PPAB||= λ, ①当 λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当 λ≠1 时,P 点轨迹是圆.
A=B≠0,
__D_2+__E_2_-_4_A_F_>_0.
圆的参数方程 圆心为(a,b),半径为 r 的圆的参数方程为xy==ab++rrcsoinsθθ,(θ 为参数).
确定圆的方程的方法和步骤 确定圆的方程的主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于 a,b,r 或 D,E,F 的方程组; (3)解出 a,b,r 或 D,E,F 代入标准方程或一般方程.
(2)(2021·辽宁大连模拟)在直线l:y=x-1上有两个点A, B,且A,B的中点坐标为(4,3),线段AB的长度|AB|=8,则过 A,B两点且与y轴相切的圆的方程为____(_x_-_4_)_2+__(y_-__3)_2=__1_6___
解析 (x+2m)2+(y-1)2=4m2-5m+1表示圆,则 4m2-5m+1>0,解得m<14或m>1.
3.(2021·成都七中月考)圆心在y轴上,且过点(3,1)的圆与
x轴相切,则该圆的方程是( B )
A.x2+y2+10y=0
B.x2+y2-10y=0
C.x2+y2+10x=0
D.x2+y2-10x=0
第3课时 圆的方程及直线与 圆的位置关系
[复习要求] 1.掌握确定圆的几何要素.2.掌握圆的标准方 程和一般方程.3.掌握直线与圆的位置关系.
课前自助餐
圆的定义 平面内到定点的距离__等_于__定_长___的点的集合(轨迹)是圆,定点 是圆心,定长是半径. 注:平面内动点 P 到两定点 A,B 距离的比值为 λ,即||PPAB||= λ, ①当 λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当 λ≠1 时,P 点轨迹是圆.
A=B≠0,
__D_2+__E_2_-_4_A_F_>_0.
圆的参数方程 圆心为(a,b),半径为 r 的圆的参数方程为xy==ab++rrcsoinsθθ,(θ 为参数).
确定圆的方程的方法和步骤 确定圆的方程的主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于 a,b,r 或 D,E,F 的方程组; (3)解出 a,b,r 或 D,E,F 代入标准方程或一般方程.
高三数学(文)一轮复习课件8-4 直线与圆、圆与圆的位置关系ppt版本
一组实数解 无解
微知识❸ 两圆公切线的条数
位置关系 内含 内切 相交
公切线条数 0
12
外切 3
外离 4
二、小题查验 1.思维辨析(在括号内打“√”或“×”) (1)如果直线与圆组成的方程组有解,则直线与圆相交或相切。(√) 解析:正确。直线与圆组成的方程组有一组解时,直线与圆相切, 有两组解时,直线与圆相交。
解析:(1)如图,若|MN|=2 3 ,则由圆与直线的位置关系可知圆心到直线 的距离满足d2=22-( 3)2=1。
∵直线方程为y=kx+3, ∴d=|k·2-1+3+k2 3|=1,
解得k=±
3 3
若|MN|≥2 3,则- 33≤k≤ 33。
(2)把圆的方程化为标准方程是x+12k2+(y+1)2=16-34k2,
【微练3】(1)两个圆:C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1
=0的公切线有且仅有( B )
A.1条 B.2条 C.3条 D.4条 (2)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y= kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k
方法
位置关系
几何法:圆心距d与r1,r2的关系
代数法:两圆方程联立 组成方程组的解的情况
外离 外切 相交 内切 内含
d>r1+r2
d=r1+r2 |r1-r2|<d<r1+r2 d=_|r_1_-__r2_| (r1≠r2) 0_≤____ d__<__ |r1-r2|(r1≠r2)
_无__解 _一__组___实数解 __两__组__不__同__的__实数解
(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切。 (×)
微知识❸ 两圆公切线的条数
位置关系 内含 内切 相交
公切线条数 0
12
外切 3
外离 4
二、小题查验 1.思维辨析(在括号内打“√”或“×”) (1)如果直线与圆组成的方程组有解,则直线与圆相交或相切。(√) 解析:正确。直线与圆组成的方程组有一组解时,直线与圆相切, 有两组解时,直线与圆相交。
解析:(1)如图,若|MN|=2 3 ,则由圆与直线的位置关系可知圆心到直线 的距离满足d2=22-( 3)2=1。
∵直线方程为y=kx+3, ∴d=|k·2-1+3+k2 3|=1,
解得k=±
3 3
若|MN|≥2 3,则- 33≤k≤ 33。
(2)把圆的方程化为标准方程是x+12k2+(y+1)2=16-34k2,
【微练3】(1)两个圆:C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1
=0的公切线有且仅有( B )
A.1条 B.2条 C.3条 D.4条 (2)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y= kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k
方法
位置关系
几何法:圆心距d与r1,r2的关系
代数法:两圆方程联立 组成方程组的解的情况
外离 外切 相交 内切 内含
d>r1+r2
d=r1+r2 |r1-r2|<d<r1+r2 d=_|r_1_-__r2_| (r1≠r2) 0_≤____ d__<__ |r1-r2|(r1≠r2)
_无__解 _一__组___实数解 __两__组__不__同__的__实数解
(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切。 (×)
高考数学第一轮单元复习课件 第45讲 直线与圆、圆与圆的位置关系
► 探究点2 圆的切线问题
例 2 已知圆 C:x2+y2+2x-4y+3=0. (1)若 C 的切线在 x 轴,y 轴上的截距的绝对值相等,求 此切线方程; (2)从圆 C 外一点 P(x1,y1)向圆引一条切线,切点为 M, O 为原点,且有|PM|=|PO|,求使|PM|最小的 P 点的坐标.
【思路】 (1)依据截距关系确定切线的斜率,设出直 线方程,利用点到直线的距离等于半径求解;
(2)首先确定P点的轨迹方程,从而确定|PM|最短时点 P的坐标满足的关系式.
【解答】 (1)∵切线在 x 轴,y 轴上的截距的绝对值 相等,∴切线的斜率是±1.设切线的方程为 y=x+b 或 y= -x+b,由点到直线的距离公式解得切线的方程为:x+y -3=0,x+y+1=0,x-y+5=0,x-y+1=0.
变式题 求圆心在直线 x+y=0 上,且过两圆 x2+y2 -2x+10y-24=0,x2+y2+2x+2y-8=0 的交点的圆的 方程.
【思路】 求出两圆的交点坐标,利用圆心到两交点的 距离都相等于半径,求出圆心和半径,也可以利用两交 点连结所得弦的垂直平分线与直线x+y=0的交点,就 是圆心;还可以利用圆系,先设出过两圆点的圆的方程, 再求系数.
①
x d 2 y2 r22 ②
将①②两式联立,研究此方程组的解.
如果方程组有解,且只有两解,这时相应的两 圆 相交于两点 。如图 45-2.
图 45-2
如果方程组有唯一解,这时两圆 相切(外切或内切) 。如 图 45-3.
图 45-3
如果方程组无解,这时两圆 外离或内含 。如图 45-4.
知识梳理
1.直线与圆的位置关系的判定方法 (1)代数法(或 Δ 法):看由直线与圆的方程组成的方程组有 无实数解。 将直线 l 的方程与圆 C 的方程联立,消元后得到关于 x(或 y)的一元二次方程. ①当 Δ>0 时,方程有 两 解,此时方程组也有两组实数 解,说明直线 l 与圆 C 相交 ; ②当 Δ=0 时,方程有唯一 解,此时方程组也有唯一一组 解,说明直线 l 与圆 C 相切 ;
2023版高考数学一轮总复习:圆的方程及直线圆的位置关系课件文
第九章
直线和圆的方程
第二讲 圆的方程及直线、圆的位置关系
要点提炼
考点1
圆的方程
1. 圆的定义与方程
定长
(a,b)
考点1
圆的方程
规律总结
(1)若没有给出r>0,则圆的半径为|r|.
2
2
2
2
(2)在圆的一般方程中:当D +E -4F=0时,方程x +y +Dx+Ey+F=0表示一个点(- ,- );
( ✕)
( √ )
(4)如果两圆的圆心距小于两圆的半径之和,则两圆相交.
( ✕)
(5)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.
( ✕)
(6)联立两相交圆的方程,并消掉二次项后得到的二元一次方程是两圆的公共弦所在的
直线方程.
( √ )
(7)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点为A,B,则O,P,A,B四点共圆且直
R-r<d <R+r
____________
___________
d_________
>R+r ___________
_____
4
_____
3
________
2
1
0
考点3
圆与圆的位置关系
2.两圆相交时,公共弦所在直线的方程
设圆C1:x2+y2+D1x+E1y+F1=0
(*),圆C2:x2+y2+D2x+E2y+F2=0
y2=1,即x2+y2-2x=0.
直线和圆的方程
第二讲 圆的方程及直线、圆的位置关系
要点提炼
考点1
圆的方程
1. 圆的定义与方程
定长
(a,b)
考点1
圆的方程
规律总结
(1)若没有给出r>0,则圆的半径为|r|.
2
2
2
2
(2)在圆的一般方程中:当D +E -4F=0时,方程x +y +Dx+Ey+F=0表示一个点(- ,- );
( ✕)
( √ )
(4)如果两圆的圆心距小于两圆的半径之和,则两圆相交.
( ✕)
(5)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.
( ✕)
(6)联立两相交圆的方程,并消掉二次项后得到的二元一次方程是两圆的公共弦所在的
直线方程.
( √ )
(7)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点为A,B,则O,P,A,B四点共圆且直
R-r<d <R+r
____________
___________
d_________
>R+r ___________
_____
4
_____
3
________
2
1
0
考点3
圆与圆的位置关系
2.两圆相交时,公共弦所在直线的方程
设圆C1:x2+y2+D1x+E1y+F1=0
(*),圆C2:x2+y2+D2x+E2y+F2=0
y2=1,即x2+y2-2x=0.
直线与圆、圆与圆的位置关系课件-2024届高考数学一轮复习
( − ) +[ − (−)] = .所以| AB |= || − =
.
返回目录
(2) 已知圆 M : x 2+ y 2-2 x -2 y -2=0,直线 l :2 x + y +2=0, P
为直线 l 上的动点,过点 P 作圆 M 的切线 PA , PB ,切点分别为 A , B .
组不同的解,则直线与圆相交.
(
√
)
(2) (RA选一P92例2改编)若过一点向圆作切线,切线有两条,则点
在圆外.
(
√
)
返回目录
(3) (RA选一P96例5改编)若两圆没有公共点,则两圆相离.
(
√
)
(4) (RA选一P98习题2.5第7题改编)若圆 O 1: x 2+ y 2+ D 1 x + E 1 y
2. (RA选一P91例1改编)直线 x + y +1=0与圆( x -1)2+ y 2=2的位
置关系是( A )
A. 相切
B. 相交
C. 相离
D. 无法确定
3. (RA选一P98习题2.5第3题改编)已知圆 x 2+ y 2=4截直线 y = k ( x
-2)所得弦的长
度为2,则实数 k 的值为(
第八单元
第53课时
解析几何
直线与圆、圆与圆的位置关系
目
录
01
课前自学
02
课堂导学
【课时目标】
理解直线与圆的位置关系;理解圆与圆的位置关系;了
解直线和圆的简单应用.
【考情概述】
直线与圆、圆与圆的位置关系是新高考考查的重点
内容之一,常以选择题、填空题的形式进行考查,难度中等,属于
热点问题.
返回目录
2025高考数学一轮复习-8.4-直线与圆、圆与圆的位置关系【课件】
6.若圆 x2+y2=1 与圆 x2+y2-6x-8y-m=0 相切,则 m 的值为_-__9__或__1_1.
【解析】 x2+y2-6x-8y-m=0 可化为(x-3)2+(y-4)2=25+m,因为两圆相切, 所以 32+42=1+ 25+m或 32+42=|1- 25+m|,解得 m=-9 或 m=11.
易错易混 5.已知圆 C:x2+y2=9,过点 P(3,1)作圆 C 的切线,则切线方程为 _____x=__3__或__4_x_+__3_y_-__1_5_=__0___.
【解析】 由题意知 P 在圆外.当切线斜率不存在时,切线方程为 x=3,满足题意; 当 切 线 斜 率 存 在 时 , 设 切 线 方 程 为 y - 1 = k(x - 3) , 即 kx - y + 1 - 3k = 0 , 所 以 |k×0k-2+0+-11-23k|=3,得 k=-43,切线方程为 4x+3y-15=0.综上,切线方程为 x=3 或 4x+3y-15=0.
(2)解法一:∵直线 kx-y+1=0 与圆(x+1)2+(y-2)2=4 有公共点,∴直线与圆相切 或相交,又圆心(-1,2)到直线 kx-y+1=0 的距离 d=|-k-k2+2+1 1|= |kk+2+1|1,r=2,∴d≤r, 即 |kk+2+1|1≤2,∴3k2-2k+3≥0,又∵Δ=4-36=-32<0,∴k∈R,∴实数 k 的取值范围 为(-∞,+∞).故选 D.
2.圆与圆的位置关系(两圆半径为 r1,r2,d=|O1O2|)
相离
外切
相交
内切
图形
量的 关系
d>r1+r2
d=r1+r2 |r1-r2|<d<r1+r2
d=|r1-r2|Fra bibliotek内含 d<|r1-r2|
第四讲+直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习
(3)由(x2+y2-2x-6y+1)-(x2+y2-10x-12y+45)=0,得两 圆的公共弦所在直线的方程为 4x+3y-22=0.
故两圆的公共弦的长为
2
32-|4+34×2+3-3222|2=254.
【题后反思】 (1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间 的距离与两圆半径之间的关系,一般不采用代数法. (2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方 程作差消去 x2,y2 项得到.
解析:由 x2+y2-2x-2y+1=0 得(x-1)2+(y-1)2=1, 因为直线 x+my=2+m 与圆 x2+y2-2x-2y+1=0 相交,
所以|1+m1-+2m-2 m|<1,即 1+m2>1,
所以 m≠0,即 m∈(-∞,0)∪(0,+∞). 答案:D
【题后反思】判断直线与圆的位置关系的常见方法 (1)几何法:利用 d 与 r 的关系判断. (2)代数法:联立方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可 判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于 动直线问题.
解:由题意得圆心 C(1,2),半径 r=2. (1)∵( 2+1-1)2+(2- 2-2)2=4, ∴点 P 在圆 C 上. 又 kPC=2-2+12- -12=-1,
∴切线的斜率 k=-k1PC=1. ∴过点 P 的圆 C 的切线方程是 y-(2- 2)=x-( 2+1), 即 x-y+1-2 2=0.
如图 D72,设 P(0,-2),PA,PB 分别切圆 C 于 A,B 两点, PC= 22+22=2 2,θ=∠APB,α=π-θ.
图 D72
在 Rt△PAC 中,sin 2θ=PrC= 410, 所以 cos 2θ= 1-sin22θ= 46. 所以 sinθ=2sin 2θcos 2θ=2× 410× 46= 415,sin α=sin (π-θ) = 415.故选 B. 答案:B
高考数学一轮复习第九章直线和圆的方程圆与圆的位置关系课件
要不充分条件,Δ<0 是两圆外离(内含)的必要不充分条件.
5 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1.思维辨析 (1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × ) (3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × ) (4)过圆 O:x2+y2=r2 上一点 P(x0,y0)的圆的切线方程是 x0x+y0y=r2.( √ )
第一步,先求两圆公共弦所在的直线方程;
第二步,利用圆心到直线的距离、半径和弦长的一半,这三个量构成的直角三角形计算,即可求出两
圆公共弦长.
(3)两圆位置关系与公切线条数
两圆位置关系
内含 内切 相交 外切 外离
公切线条数
01234
12 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
撬点·基础点 重难点
4 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
圆与圆的位置关系
设两个圆的半径分别为 R,r,R>r,圆心距为 d,则两圆的位置关系可用下表来表示:
撬题·对点题 必刷题
13 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
10 撬点·基础点 重难点
撬法·命题法 解题法
直线与圆圆与圆的位置关系课件-2025届高三数学一轮复习
2. 过圆内一点最长的弦是直径,最短的弦是垂直于这点与圆心连线的弦.
3. 过两圆交点的圆系方程 过圆与圆 交点 的圆系方程为 , 此圆系中不含圆 .【注意】当时,得方程 ,即两个圆公 共弦所在的直线方程.
题组1 走出误区
1. 判一判.(对的打“√”,错的打“×”)
(1)如果两圆的圆心距小于两圆的半径之和,那么两圆相交.( )
,
解析 因为,所以直线关于直线 的对称直线为,所以,整理可得 ,解得 .
判断直线与圆的位置关系常见的两种方法
代数法
将直线方程与圆的方程联立,消元得到一元二次方程,利用根的判别式: 相交; 相切; 相离
几何法
利用圆心到直线的距离和圆的半径的大小关系: 相交; 相切; 相离
考点二 圆的弦长、切线问题[多维探究]
1.(2024 · 海淀模拟改编)已知圆,若直线与圆 相切,则 的值为( ) .
D
A.1 B. C. D.
解析 在圆中,圆心,因为直线与圆 相切,所以,故 .故选D.
2.(2024 · 柳州校考)已知圆 及直线,则直线与圆 的位置关系是( ) .
A
A.相交 B.相切 C.相离 D.不确定
AD
A.2 B.3 C.4 D.5
解析 圆的圆心是,半径为 , 圆的圆心是,半径为 , 因为 ,所以两圆相离或内含,又 , 所以当两圆相离时,, ,故A正确;当两圆内含时,,,故B,C错误,D正确.故选 .
2.(改编)古希腊数学家阿波罗尼奥斯(约公元前 公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数且 的点的轨迹是圆.后人将这个圆称为阿波罗尼斯圆.已知,,动点满足,则动点 的轨迹与圆 的位置关系是( ) .
3. 过两圆交点的圆系方程 过圆与圆 交点 的圆系方程为 , 此圆系中不含圆 .【注意】当时,得方程 ,即两个圆公 共弦所在的直线方程.
题组1 走出误区
1. 判一判.(对的打“√”,错的打“×”)
(1)如果两圆的圆心距小于两圆的半径之和,那么两圆相交.( )
,
解析 因为,所以直线关于直线 的对称直线为,所以,整理可得 ,解得 .
判断直线与圆的位置关系常见的两种方法
代数法
将直线方程与圆的方程联立,消元得到一元二次方程,利用根的判别式: 相交; 相切; 相离
几何法
利用圆心到直线的距离和圆的半径的大小关系: 相交; 相切; 相离
考点二 圆的弦长、切线问题[多维探究]
1.(2024 · 海淀模拟改编)已知圆,若直线与圆 相切,则 的值为( ) .
D
A.1 B. C. D.
解析 在圆中,圆心,因为直线与圆 相切,所以,故 .故选D.
2.(2024 · 柳州校考)已知圆 及直线,则直线与圆 的位置关系是( ) .
A
A.相交 B.相切 C.相离 D.不确定
AD
A.2 B.3 C.4 D.5
解析 圆的圆心是,半径为 , 圆的圆心是,半径为 , 因为 ,所以两圆相离或内含,又 , 所以当两圆相离时,, ,故A正确;当两圆内含时,,,故B,C错误,D正确.故选 .
2.(改编)古希腊数学家阿波罗尼奥斯(约公元前 公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数且 的点的轨迹是圆.后人将这个圆称为阿波罗尼斯圆.已知,,动点满足,则动点 的轨迹与圆 的位置关系是( ) .
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结
题型二:相交问题
解题关键
初中常用三角形
在直角三角形OMN中,有
O r d M
N
弦心距 半弦长
圆半径
思
直线和圆相交问题中, 能否可以用代数法解决问 题呢?
考
CONSINDER
联立方程
韦达定理
1、解决直线与圆的位置关系一般有两种方法:几何法与代数法,几 何法更简单、合理,代数法更具有一般代表性 .
长清一中大学科技园校区
尹斌圆与Biblioteka 程(1)能根据给定直线、圆的方程判断直线与圆的位置关系 (2)能用直线和圆的方程解决一些简单问题
(3)初步了解用代数方法处理几何问题的思想
相离
相切
相交
几何法
圆心到直线的距离d与半径r的关系
d>r 相离 d=r 相切 d<r 相交
题型一:相切问题
小
SUMMARIZE
THANKS
总
结
SUMMARIZE
2、数形结合法(如几何法)是解决直线与圆位置关系的重要方法.
3、求经过已知点的切线方程时要分清点在圆外还是点在圆上.
4、分类讨论及数形结合的思想在本节有广泛应用,分类讨论时应做 到不重不漏.
必做:《练习册》课时规范训练(四十四)A组 选做:《练习册》课时规范训练(四十四)B组