点与圆的位置关系 课件

合集下载

点和圆的位置关系(共32张PPT)

点和圆的位置关系(共32张PPT)

随堂练习
6.如图,⊿ABC中,∠C=90°, B
BC=3,AC=6,CD为中线,
以C为圆心,以 3 5 为半径作圆,
2
C
则点A、B、D与圆C的关系如何?
D A
7.画出由所有到已知点O的距离大于或 等于2CM并且小于或等于3CM的点组 成的图形。
OO
问:如图已知矩形ABCD的边AB=3厘米,AD=4厘米
(1)以点A为圆心,3厘米为半径作圆A ,则点B、C、D与圆A的位置关系如何?
(B在圆上,D在圆外,C在圆外)
A
D
(2)以点A为圆心,4厘米为半径作圆A,
则点B、C、D与圆A的位置关系如何?
B
C
(B在圆内,D在圆上,C在圆外)
(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D 与圆A的位置关系如何?
∴经过点A,B,C三点可以作一个圆,并且只能作 一个圆.
A
O C
B
定理:
不在同一直线上的三点确定一个圆.
1.由定理可知:经过三角形三
个顶点可以作一个圆.并且只 能作一个圆.
2.经过三角形各顶点的圆叫做三 角形的外接圆。
3.三角形外接圆的圆心叫做三角 B
形的外心,这个三角形叫做
这个圆的内接三角形。
经过一个已知点A能确定一个圆吗?
形的外接圆的面积. 垂直平分线的交点
已知:不在同一直线上的三点 A、B、C
()
证明:∵点O在AB的垂直平分线上,
⊙O的半径6cm,当OP=6时,点P在

经过三角形各顶点的圆叫做三角形的外接圆。
圆的外部可以看成是

思考:过任意四个点是不是一定可以作一个圆?请举
例说明.

【点和圆的位置关系】PPT课件

【点和圆的位置关系】PPT课件
【答案】6+3 3
9.用反证法证明“垂直于同一条直线的两条直线平行”, 第一步先假设( D ) A.相交 B.两条直线不垂直 C.两条直线不垂直于同一条直线 D.垂直于同一条直线的两条直线相交
10.【2018·舟山】用反证法证明时,假设结论“点在圆 外”不成立,那么点与圆的位置关系只能是( D )
1. 你虽然没有完整地回答问题,但你能大胆发言就是好样的!
此页为防盗标记页(下载后可删)
1、你的眼睛真亮,发现这么多问题! 2、能提出这么有价值的问题来,真了不起! 3、会提问的孩子,就是聪明的孩子! 4、这个问题很有价值,我们可以共同研究一下! 5、这种想法别具一格,令人耳目一新,请再说一遍好吗? 6、多么好的想法啊,你真是一个会想的孩子! 7、猜测是科学发现的前奏,你们已经迈出了精彩的一步! 8、没关系,大声地把自己的想法说出来,我知道你能行! 9、你真聪明!想出了这么妙的方法,真是个爱动脑筋的小朋友! 10、你又想出新方法了,真会动脑筋,能不能讲给大家听一听? 11、你的想法很独特,老师都佩服你! 12、你特别爱动脑筋,常常一鸣惊人,让大家禁不住要为你鼓掌喝彩! 13、你的发言给了我很大的启发,真谢谢你! 14、瞧瞧,谁是火眼金睛,发现得最多、最快? 15、你发现了这么重要的方法,老师为你感到骄傲! 16、你真爱动脑筋,老师就喜欢你思考的样子! 17、你的回答真是与众不同啊,很有创造性,老师特欣赏你这点! 18、××同学真聪明!想出了这么妙的方法,真是个爱动脑筋的同学! 19、你的思维很独特,你能具体说说自己的想法吗? 20、这么好的想法,为什么不大声地、自信地表达出来呢? 21、你有自己独特想法,真了不起! 22、你的办法真好!考虑的真全面! 23、你很会思考,真像一个小科学家! 24、老师很欣赏你实事求是的态度! 25、你的记录很有特色,可以获得“牛津奖”!

华师大版数学九年级下册同步课件:27. 点与圆的位置关系

华师大版数学九年级下册同步课件:27. 点与圆的位置关系
(2)锐角三角形的外心在三角形的内部;直角三角形的外 心在斜边中点处;钝角三角形的外心在三角形的外部.
(3)三角形的外心是三角形三条边的垂直平分线的交点, 它到三角形三个顶点的距离相等.
例题讲授
例1 如图,在△ABC中,∠C=90°,AB=5cm,
BC=4cm,以点A为圆心、3cm为半径画圆,并判断:
随堂演练
1.圆心为O的两个同心圆,半径分别为1和2,若OP= 3 ,则点P
在(D )
A.大圆内 B.小圆内
C.小圆外 D.大圆内,小圆外
o
2.三角形的外心具有的性质是( B )
A.到三边的距离相等. B.到三个顶点的距离相等. C.外心在三角形的外. D.外心在三角形内.
3.等腰三角形底边上的高与一腰的垂直平分线的交点是( C )
线段AB的垂直平分线l1上,又在线段BC的垂直 平分线l2上,即点P为l1与l2的交点,而l1⊥l,
C l2⊥l这与我们以前学过的“过一点有且只有一 条直线与已知直线垂直”相矛盾,所以过同一
条直线上的三点不能作圆.
定理:不在同一直线上的三个点确定一个圆.
位置关系
有且只有
已知:不在同一直线上的三点A、B、C. 求作: ⊙O,使它经过点A、B、C.
A.重心 B.垂心 C.外心 D.无法确定.
4.已知AB=4 cm,则过点A,B且半径为3 cm的圆有( B )
A.1个
B.2个
C.3个 D.4个
5.如图,在△ABC中,点O在边AB上,且点O为△ABC的外心,求 ∠ACB的度数. 解:∵点O为△ABC的外心, ∴OA=OB=OC, ∴∠OAC=∠OCA,∠OCB=∠OBC. ∵∠OAC+∠OCA+∠OCB+∠OBC=180°, ∴∠OCA+∠OCB=90°, 即∠ACB=90°.

圆与圆有关的位置关系点与圆的位置关系课件

圆与圆有关的位置关系点与圆的位置关系课件
两圆的圆心距离减去两圆的半径之差等于零
两圆内切
总结词:两圆之间的距离等于两圆的半径之差 两圆有且仅有一个公共点
两圆心之间的距离等于两圆的半径之差 两圆的圆心距离减去两圆的半径之差等于零
两圆外切
总结词:两圆之间的距离大于两圆的半径之和 两圆有且仅有一个公共点
两圆心之间的距离大于两圆的半径之和 两圆的圆心距离减去两圆的半径之和大于零
利用平面几何知识,如三角形中 位线、圆心角和弧长等,计算两 圆心之间的距离,从而、计算方法 圆的面积公式为S=πr²,其中π取3.14。
计算方法为将半径分为小段,每段小扇形的面积为πr²/4,再相加得到圆的面积。
圆的周长计算
总结词:公式、计算方法
圆的周长公式为C=2πr,其中π取3.14。
02
圆的定义与性质
圆的定义
平面内,一个动点到一个定点( 圆心)的距离等于定长(半径)的
运动轨迹形成的图形叫圆。
圆心决定圆的位置,半径决定 圆的大小。
圆是轴对称图形,任何一条直 径所在的直线都是它的对称轴

圆的性质
圆的任意两条直径必定相交于圆心。 圆内两条不平行弦的垂直平分线必定通过圆心。
圆的半径是直径的一半,且直径是半径的两倍。
在圆上,点与圆心的距离等于半径。
详细描述
当一个点在圆上时,它与圆心的距离等于该圆的半径。这意味着该点位于圆 的边缘,与圆相切,并且在该点的切线与圆相切。
点在圆外
总结词
在圆外,点与圆心的距离大于半径。
详细描述
当一个点在圆外时,它与圆心的距离大于该圆的半径。这意味着该点位于圆的外 部,与圆不相交、不切也不相离。
性质2
在同一直线上,任意三点确定一个圆
性质3

点与圆的位置关系

点与圆的位置关系
这种证明方法叫做反证法.
试试看!
用反证法证明(填空):在三角形的内角中, 至少有一个角大于或等于60° 已知:如图, ∠A,∠B,∠C是△ABC的内角
求证: ∠A,∠B,∠C中至少有一个角大 于或等于60度
假设所求证的结论不成立,即 B 证明 ∠A__60°, ∠B__60°,∠C__60° < < < 则 ∠A+∠B+∠C < 180度
圆外的点
圆上的点
圆内的点
平面上的一个圆,把平面上的点分成三类:圆上的 点,圆内的点和圆外的点。 圆的内部可以看成是到圆心的距离小于半径的的点的集 合 ; 圆 的 外 部 可 以 看 成 是 到圆心的距离大于半径的点的集合 。
典型例题
例:如图已知矩形ABCD的边AB=3厘米,AD=4厘 米
(1)以点A为圆心,3厘米为半径作 圆A,则点B、C、D与圆A的位置关系 如何? (B在圆上,D在圆外,C在圆外)
问:⊙O的半径6cm,当OP=6时, 点P在圆上 ;当OP <6 时点P 在圆内;当OP ≤6 时,点P不在 圆外。
画出由所有到已知点O的距离大于 或等于2CM并且小于或等于3CM的 点组成的图形。
O
O
问题:多少个点可以确定一个圆呢? 解决: 步骤1:过一点,可以画多少个圆?
步骤2:过两点,可以画多少个圆? 步骤3:过三个点,可以做多少个圆?
A
D
(2)以点A为圆心,4厘米为半径作圆A, 则点B、C、D与圆A的位置关系如何?
(B在圆内,D在圆上,C在圆外)
B
C
(3)以点A为圆心,5厘米为半径作圆A,则点B、C、 D与圆A的位置关系如何? (B在圆内,D在圆内,C在圆上)
问1:⊙O的半径10cm,A、B、C三点 到圆心的距离分别为8cm、10cm、 12cm,则点A、B、C与⊙O的位置关 系是: 点A在 圆内 ∵OA=8<10 ∴点A在圆内 点B在 圆上 ∵OB=10=10 ∴点B在圆上 点C在 圆外 ∵OC=12>10 ∴点C在圆外

点与圆、直线与圆位置关系

点与圆、直线与圆位置关系

一、点与圆的位置关系1.确定圆的条件(1)圆心(定点),确定圆的位置;(2)半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定.2.点与圆的位置关系(3)点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.(4)设O=;⊙的半径为r,点P到圆心O的距离为d,则有:点在圆外⇔d r>;点在圆上⇔d r 点在圆内⇔d r<.如下表所示:二、过已知点的圆1.过已知点的圆(1)经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.(2)经过两点A B、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B、的圆,这样的圆也有无数个.(3)过三点的圆:若这三点A B C、、三点不共线时,圆心、、共线时,过三点的圆不存在;若A B C是线段AB与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.(4)过n()4n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.2.定理:不在同一直线上的三点确定一个圆(1)“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;(2)“确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1.三角形的外接圆(1)经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.(2)锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.2. 三角形外心的性质(1) 三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; (2) 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.一、点与圆的位置关系【例1】 已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .7【巩固】1、一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.2、若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( )DA .2b a + B .2ba - C .22ba b a -+或 D .b a b a -+或3、定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.【例2】 已知ABC ∆中,90C ∠=︒,2AC =,3BC =,AB 的中点为M ,⑴以C 为圆心,2为半径作C ⊙,则点A ,B ,M 与C ⊙的位置关系如何? ⑵若以C 为圆心作C ⊙,使A ,B ,M 三点至少有一点在C ⊙内,且至少有一点在C ⊙外,求C⊙半径r 的取值范围.M CBA【巩固】1、Rt ABC ∆的两条直角边3BC =,4AC =,斜边AB 上的高为CD ,若以C 为圆心,分别以12r =,2 2.4r =,33r =为半径作圆,试判断D 点与这三个圆的位置关系.DCBA2、在ABC ∆中,90C ∠=︒,4AC =,5AB =,以点C 为圆心,以r 为半径作圆,请回答下列问题,并说明理由.⑴当r 取何值时,点A 在C ⊙上,且点B 在C ⊙内部?⑵当r 在什么范围内取值时,点A 在C ⊙外部,且点B 在C ⊙的内部? ⑶是否存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部?CBA二、过三点的圆【例3】 如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【例4】 如图,在平面直角坐标系中,O '与两坐标轴分别交于A B C D ,,,四点,已知:()60A ,,()03B -,,()20C -,,则点D 的坐标是( ) A .()02,B .()03,C .()04,D .()05,三、三角形的外接圆及外心【例5】 如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC =.【巩固】等边三角形的外接圆的半径等于边长的( )倍.ABCD .12【例6】 设Rt ABC ∆的两条直角边长分别为3,4,则此直角三角形的内切圆半径为 ,外接圆半径为 .【巩固】1、如图,直角坐标系中一条圆弧经过网格点A B C ,,,其中B 点的坐标为()44,,则该圆弧所在圆的圆心的坐标为 .2、ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【例7】 在等腰ABC ∆中,AB BC =,BH 是高,点M 是边AB 的中点,而经过点B ,M 于C 的圆同BH的交点是K ,求证32BK R =,其中R 是ABC ∆的外接圆半径.【巩固】1、已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E .⑴求证:AD的延长线平分∠CDE;⑵若30∠=︒BAC,∆ABC中BC边上的高为2∆ABC外接圆的面积.AB CD E2、已知如图,ACD∆的外角平分线CB交其外接圆于B,连接BA、BD,求证:BA BD=.N一、直线与圆的位置关系设O⊙的半径为r,圆心O到直线l的距离为d,则直线和圆的位置关系如下表:切线的性质定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点⇒垂直于切线.AB过圆心,AB过切点M,则AB l⊥.②过圆心,垂直于切线⇒过切点.AB过圆心,AB l⊥,则AB过切点M.③过切点,垂直于切线⇒过圆心.AB l⊥,AB过切点M,则AB过圆心.l3.切线的判定(1)定义法:和圆只有一个公共点的直线是圆的切线;(2)距离法:和圆心距离等于半径的直线是圆的切线;(3)定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.l4.切线长和切线长定理(1)切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三、三角形的内切圆1.三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3. 直角三角形内切圆的半径与三边的关系cb acbaO F ED CACBAC B A设a 、b 、c 分别为ABC △中A ∠、B ∠、C ∠的对边,面积为S ,则内切圆半径为sr p=,其中()12p a b c =++.若90C ∠=︒,则()12r a b c =+-. 一、直线与圆位置关系的确定【例1】 如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点,设OP x =,则x 的取值范围是A .0≤x B.≤x C .-1≤x ≤1D .x【例2】 Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,给出下列三个结论: ①以点C 为圆心,3 cm长为半径的圆与AB 相离;②以点C 为圆心,4cm 长为半径的圆与AB 相切;③以点C 为圆心,5cm 长为半径的圆与AB 相交.上述结论中正确的个数是( ) A .0个 B .l 个 C .2个 D .3个【巩固】在Rt ABC ∆中,90C ∠=︒,12cm AC =,16cm BC =,以点C 为圆心,r 为半径的圆和AB 有怎样的位置关系?为什么?⑴ 9cm r =;⑵10cm r =;⑶9.6cm r =.DCBA【例3】 如下左图,在直角梯形ABCD 中,AD BC ∥,90C =︒∠,且AB AD BC >+,AB 是O 的直径,则直线CD 与O 的位置关系为( ) A .相离 B .相切 C .相交 D .无法确定【巩固】如图,BC是半圆O的直径,点D是半圆上的一点,过点D作O的切线AD,BA DA⊥,10BC=,4AD=,那么直线CE与以点O为圆心,52为半径的圆的位置关系是.二、切线的性质及判定【例4】已知:O为BAC∠平分线上一点,OD AB⊥于D,以O为圆心.以OD为半径作圆O.求证:O⊙与AC相切.【巩固】如图,ABC∆为等腰三角形,AB AC=,O是底边BC的中点,O⊙与腰AB相切于点D,求证AC 与O⊙相切.【例5】已知:如图,ABC∆内接于O,AD是过A的一条射线,且B CAD∠=∠.求证:AD是O的切线.【巩固】已知:如图,AB是O⊙的直径,C为O⊙上一点,MN过C点,AD MN⊥于D,AC平分DAB∠.求证:MN为O⊙的切线.【例6】如图,已知OA是O⊙的半径,B是OA中点,BC OA⊥,P是OA延长线上一点,且PA AC=.求证:PC是O⊙的切线.【巩固】如图,AB是O⊙的直径,C点在圆上,CD AB⊥于D.P在BA延长线上,且PCA ACD∠=∠.求证:PC是O⊙的切线.BP【例7】如图,O⊙是Rt ABC∆的外接圆,90ABC∠=︒,点P是圆外一点,PA切O⊙于点A,且PA PB=.(1)求证:PB是O⊙的切线.(2)已知1PA BC=,求O⊙的半径.【巩固】1、如图,AB 为O ⊙的直径,D 是BC 的中点,DE AC ⊥交AC 的延长线于E ,O ⊙的切线BF 交AD 的延长线于点F .求证:DE 是O ⊙的切线;FAB2、如图,已知O 是正方形ABCD 对角线上一点,以O 为圆心、OA 长为半径的O ⊙与BC 相切于M ,与AB 、AD 分别相交于E 、F .(1)求证:CD 与O ⊙相切.(2)若正方形ABCD 的边长为1,求O ⊙的半径.【例8】 如图,AB BC =,以AB 为直径的O ⊙交AC 于点D ,过D 作DE BC ⊥,垂足为E .(1)求证:DE 是O ⊙的切线;(2)作DG AB ⊥交O ⊙于G ,垂足为F ,若308A AB ∠=︒=,,求弦DG 的长.【巩固】如图,AC 为O ⊙的直径,B 是O ⊙外一点,AB 交O ⊙于E 点,过E 点作O ⊙的切线,交BC 于D 点,DE DC =,作EF AC ⊥于F 点,交AD 于M 点.求证:BC 是O ⊙的切线;D CB A【例9】 如图,AB 是O 的直径,30BAC ∠=︒,M 是OA 上一点,过M 作AB 的垂线交AC 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且ECF E ∠=∠. (1)证明CF 是O 的切线;(2)设O 的半径为1,且AC CE =,求MO 的长.A1. 已知60ABC ∠=︒,点O 在ABC ∠的平分线上,5cm OB =,以O 为圆心3cm 为半径作圆,则O 与BC 的位置关系是________.2.如图,半径为3cm 的O ⊙切直线AC 于B ,3cm AB BC =,,则AOC ∠的度数是 .3.如图所示在Rt ABC ∆中,90B ∠=︒,A ∠的平分线交BC 于D ,E 为AB 上一点,DE DC =,以D 为圆心,以DB 的长为半径画圆.求证:(1)AC 是D ⊙的切线;(2)AB EB AC +=.E B4.如图,四边形ABCD 内接于O ,BD 是O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠.(1)求证:AE 是O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长.5.如图,在以O 为圆心的两个同心圆中,AB 经过圆心O ,且与小圆相交于点A 、与大圆相交于点B .小圆的切线AC 与大圆相交于点D ,且CO 平分ACB ∠. ⑴ 试判断BC 所在直线与小圆的位置关系,并说明理由; ⑵ 试判断线段AC AD BC 、、之间的数量关系,并说明理由;⑶ 若8cm 10cm AB BC ==,,求大圆与小圆围成的圆环的面积.。

《点和圆的位置关系》圆PPT课件

《点和圆的位置关系》圆PPT课件

C l2⊥l,这与我们以前学过的“过一点有且只有 一条直线与已知直线垂直”相矛盾,所以过同
一条直线上的三点不能作圆.
24.2.1 点和圆的位置关系
反证法的定义
要点归纳
先假设命题的结论不成立,然后由此经过推理得出矛盾(常 与公理、定理、定义或已知条件相矛盾),由矛盾判定假设 不正确,从而得到原命题成立,这种方法叫做反证法.
F
C M
24.2.1 点和圆的位置关系
位置关系
归纳总结
定理: 不在同一直线上的三个点确定一个圆.
有且只有
F
A
B

o
C
G
24.2.1 点和圆的位置关系
试一试:
已知△ABC,用直尺与圆规作出过A、B、C三点的圆.
A
O C
B
24.2.1 点和圆的位置关系
概念认知
经过三角形三个顶点的圆叫做三角形的外接圆,
BC=4cm,以点A为圆心、3cm为半径画圆,并判断:
B
(1)点C与⊙A的位置关系;
D●
(2)点B与⊙A的位置关系;
(3)AB的中点D与⊙A的位置关系.
A
C
解:已知⊙A的半径r=3 cm. (1) 因为AC AB2 BC2 52 42 3(cm) r ,所以点C在⊙A上. (2) 因为AB=5 cm>3 cm=r, 所以点B在⊙A外. (3)因为 DA 1 AB 2.5cm3cm r,所以点D在⊙A内.
解:(1)当0<r<3时,点A,B在⊙C外. (2)当3<r<4时,点A在⊙C内,点B在⊙C外.
24.2.1 点和圆的位置关系
课堂小结
点与圆的 位置关系
位置关系数量化

点和圆的位置关系ppt课件

点和圆的位置关系ppt课件

2cm O·
判一判: 下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( √ ) (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × ) (4)三角形的外心到三角形各顶点的距离相等( √ )
课随堂堂演小练结
注意:同一直线上的三个点不能作圆
第二十四章 圆
24.2.1 点和圆的位置关系(1)
新课导入
问题 我国射击运动员在伦敦奥运会上获金牌,为我国赢得 荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同, 半径不相同)构成的,你知道击中靶上不同位置的成绩是如何 计算的吗?
探究新课
问题1:观察下图中点和圆的位置关系有哪几种? 点与圆的位置关系有三种: 点在圆内,如点B. 点在圆上,如点C. 点在圆外,如点A.
问题2 :设点到圆心的距离为d,圆的半径为r,量一量 在点和圆三种不同位置关系时,d与r有怎样的数量关系?
反过来,由d与r的数量关系,怎样判定点与圆的位置关系 呢?
点P在⊙O内 点P在⊙O上 点P在⊙O外
要点归纳 点和圆的位置关系
点P在⊙O内 点P在⊙O上
点P在⊙O外
点P在圆环内 数形结合:
位置关系
问题2 :过两个点能不能确定一个圆? 能画出无数个圆,圆心都在线段AB的垂直平分线上.
问题3:过不在同一直线上的三点能不能确定一个圆?
经过A,B两点的圆的圆心在线段AB的 垂直平分线上.
经过B,C两点的圆的圆心在线段BC的 垂直平分线上.
经过A,B,C三点的圆的圆心应该在这两条 垂直平分线的交点O的位置.
典例解析 例:如图所示,已知在△ABC中,AB=13,
试判断A、D、B三点与⊙C的位置关系. 解:在Rt△ABC中,AC=12,AB=13, 由勾股定理,得

24.2.1 点和圆的位置关系(优秀经典公开课比赛课件)

24.2.1 点和圆的位置关系(优秀经典公开课比赛课件)
Hale Waihona Puke 个圆;圆心是的交点.
5.在平面直角坐标系中,作以原点 为圆心,半径为 4 的⊙O,试确定点(-2,-3),(4,
-2), C(2 3, 2) 与⊙O 的位置关系.
四.中考链接
1.下列说法不正确的是( ).
A.任何一个三角形都有外接圆
B.等边三角形的外心是这个三角形的中心
C.直角三角形的外心是其斜边的中点 D.一个三角形的外心不可能在三角形的外部
2.已知⊙ O 的半径为 1,点到圆心的距离为 d,若关于的方程 x2-2x+d=0 有实根,
则点 在⊙ O 的

三、课堂练习 1. 已知⊙ O 的半径为 10 厘米,根据下列点 P 到圆心的距离,判定点 P 与圆的位置 关系,并说明理由.
(1)8 厘米;(2)10 厘米;(3)12 厘米.
2.在△ ABC 中,∠ C=90°,AB=5cm,BC=4 cm,以点 A 为圆心,以 3 cm 为半径作圆,
请判断:(1)C、B、AB 的中点 D 与⊙A 的位置关系.
3.判断下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( ).
(2)任意一个圆有且只有一个内接三角形( )
(3)经过三点一定可以确定一个圆( )
(4)三角形的外心到三角形各顶点的距离相等( )
4.经过一 P 点可以做
个圆;经过两点 P、Q 可以作
个圆,圆心在
上;
经过不在同一直线上的三个点可以作
(3)作圆,使该圆经过已知点 A、B、C 三点 ①当 A、B、C 三点不在同一直线上时,你是如何做的?如何确定圆心?你能作出几个
这样的圆?(如图 1)
② 当 A、B、C 三点在同一直线上时又如何?

点与圆的位置关系PPT教学课件

点与圆的位置关系PPT教学课件

(2)若以点 C 为圆心作⊙C,使 A,B,M 三点中至少有一点在⊙
C 内,且至少有一点在⊙C 外,求⊙C 的半径 r 的取值范围.
解:∵ 241<4<5,∴以点 C 为圆心作⊙C,A,B,M 三点中至少
有一点在⊙C 内时,r>
41 2.
当至少有一点在⊙C 外时,r<5.
故⊙C 的半径 r 的取值范围为
设⊙O 的半径为 R cm,则RR+-OOPP==150,, 解得RO=P=7.25.,5.即⊙O 的半径为 7.5 cm. 当点 P 在圆外时,同理可得⊙O 的半径为 2.5 cm. 故⊙O 的半径为 7.5 cm 或 2.5 cm.
• 长江三角洲的位置及其优越性 • 长江三角洲的范围,地形和气候特点 • 长江三角洲的农业发展现状
EG
沪杭线
-------
9.(2020·河北沧州新华区月考)如图,在网格图中(每个小正方形
的边长均为 1)选取 9 个格点(格线的交点称为格点).如果以 A
为圆心,r 为半径画圆,选取的格点中除点 A 外恰好有 3 个
在圆内,则 r 的取值范围为( )
A.2 2<r< 17 B. 17<r<3 2
C. 17<r<5
D.5<r< 29
当第一次点 P 在⊙O 上时,(2+1)x=7-1,解得 x=2. 当第二次点 P 在⊙O 上时,(2+1)x=7+1,解得 x=83.
11.(教材改编题)如图,在矩形 ABCD 中,AB=3,AD=4. (1)以点 A 为圆心,4 为半径画⊙A,并说出点 B,C,D 与⊙A
的位置关系;
解:点B在⊙A内,点C在⊙A外,点D在⊙A上.画图略.
冀教版 九年级下
第二十九章 点与圆的位置关系

中学公开课教学优质课件推选点与圆的位置关系

中学公开课教学优质课件推选点与圆的位置关系

()
3、任意一个圆有一个内接三角形,并且只有一个内接三角形
()
错 4、三角形的外心就是这个三角形任意两边垂直平分线的交点 ()
5、三角形的外心到三边的距离相等 ( )


思考: 如图,CD所在的直线垂直平分线
段AB,怎样用这样的工具找到圆形工件的
圆心.
∵A、B两点在圆上,所以
圆心必与A、B两点的距离
过两点能作几个圆?
过A、B两点的圆的圆心有何特点?
A
●O
●O
B
经过两点A,B的圆的圆心在线段AB的垂直平分线上.
以线段AB的垂直平分线上的任意一点为圆心,这点 到A或B的距离为半径作圆.
1、三点不共线
已知:不在同一直线上的三点
F
A、B、C
A
求作:⊙O,使它经过A、B、C
B
作法:
O
1、连结AB,作线段AB的
过三点
AB
1、若三点共线,则过这三点只能 作一条直线.
2、若三点不共线,则过这三点不 能作直线,但过任意其中两点一共 可作三条直线.
A
C
B
C
直线公理:两点确定一条直线
对于一个圆来说,过几 个点能作一个圆,并且 只能作一个圆?
过一点能作几个圆?
A
无数个 过A点的圆的圆心有何特点? 平面上除A点外的任意一点
OA < r, OB = r, OC > r.
问题3:反过来,已知点到圆心的距离和圆的半径, 能否 判断点和圆的位置关系?
设⊙O的半径为r,点P到圆心的距离OP = d,则有:
点P在圆内
d<r;
点P在圆上 d = r;
点P在圆外
d>r .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心为P,那么点P既在线段AB的垂直 平分线l1上,又在线段BC的垂直平 分线l2上,即点P为l1与l2的交点,而
l1⊥l,l2⊥l,这与我们以前学过的
“过一点有且只有一条直线与已知
直线垂直”相矛盾,所以过同一条
直线上的三点不能作圆.
什么叫反证法?
先假设命题的结论不成立,然后由此经过推理得出 矛盾(常与公理、定理、定义或已知条件相矛盾), 由矛盾判定假设不正确,从而得到原命题成立,这 种方法叫做反证法.
一个三角形的外接圆有几个? 一个圆的内接三角形有几个?
分别画一个锐角三角形、直角三角形和钝角三
角形,再画出它们的外接圆,观察并叙述各三角形
与它的外心的位置关系.
A
A
A
●O
●O
B

CB
C
●O
B
C
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外.
1、判断下列说法是否正确
我国射击运动员在奥运 会上屡获金牌,为我国赢得 荣誉,右图是射击靶的示意 图,它是由许多同心圆(圆 心相同,半径不等的圆)构 成的,你知道击中靶上不同 位置的成绩是如何计算的吗?
学习目标
• 1、了解点与圆的三种位置关心,会根据 圆心距和半径的大小关系来判断改点在 圆的什么位置;
• 2、理解三角形外心和外接圆的意义。 • 3、明确反证法是证明题的一种方法,了
(1)任意的一个三角形一定有一个外接圆( √ ). (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × ) (4)三角形的外心到三角形各顶点的距离相等( √ )
2、若一个三角形的外心在一边上,则此三角形的
形状为( B )
A、锐角三角形
B、直角三角形
C、钝角三角形 D、等腰三角形
2、已知AB为⊙O的直径,P为⊙O 上任意一点,则
点关于AB的对称点P′与⊙O的位置为( c )
(A)在⊙O内 (B)在⊙O 外 (C)在⊙O 上 (D)不能确定
典型例题
例:如图已知矩形ABCD的边AB=3厘米,AD=4厘米
(1)以点A为圆心,3厘米为半径作
圆A,则点B、C、D与圆A的位置关系
如何?(B在圆上,D在圆外,C在圆外)
A
D
(2)以点A为圆心,4厘米为半径作圆A,
则点B、C、D与圆A的位置关系如何?
B
C
(B在圆内,D在圆上,C在圆外)
(3)以点A为圆心,5厘米为半径作圆A,则点B、C、 D与圆A的位置关系如何?
(B在圆内,D在圆内,C在圆上)
1、平面上有一点A,经过已知A点的圆有几 个?圆心在哪里?

●O
● ●A O O
(1)经过不在同一条直线上的三点作一个圆, 如何确定这个圆的圆心?
3、平面上有三点A、B、C,经过A、B、C 三点的圆有几个?圆心在哪里?
经过A,B两点的圆的圆心在线段AB的垂直平分线上.
●A
经过B,C两点的圆的圆心在线段AB
的垂直平分线上.
经过A,B,C三点的圆的圆心应该这两 ●B ┏●O
●C
条垂直平分线的交点O的位置.
求证:在一个三角形中,至少有一 个内角小于或等于60度。
反证法常用于解决用直接证法不易证明或不能证明 的命题,主要有:
(1)命题的结论是否定型的; (2)命题的结论是无限型的; (3)命题的结论是“至多”或“至少”型的.
爆破时,导火索燃烧的速度是每秒0.9cm, 点导火索的人需要跑到离爆破点120m以外的 的安全区域,已知这个导火索的长度为18cm, 如果点导火索的人以每秒6.5m的速度撤离, 那么是否安全?为什么?
●O

O
无数个,圆心为点A以外任意一点,半径为这 点与点A的距离
●O ●O ●O
2、平面上有两点A、B,经过已知点A、B 的圆有几个?它们的圆心分布有什么特点?
无数个。它们的圆心都在线段AB的垂直平分线上。 以线段AB的垂直平分线上的任意一点为圆心,以这点 到A或B的距离为半径作圆.
经过已知的三点作圆,这样的圆能作出多少个?
点P在圆上 d = r;
点P在圆外 d > r .
P
P
符号 读
作“等价于”,它
表示从符号
的左端可以得到右
P
O
r
端从右端也可以得
A
到左端.
练一练
1、⊙O的半径10cm,A、B、C三点到圆心的距离分别为 8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:
点A在 圆内 ;点B在 圆上 ;点C在 圆外 。
归纳结论:
不在同一条直线上的三个点确定一个圆。
经过三角形三个顶点可以画一个圆,并且只能画一个.
经过三角形三个顶点的圆叫做三
A
角形的外接圆。
三角形外接圆的圆心叫做这个
三角形的外心。
这个三角形叫做这个圆的 B 内接三角形。
●O C
三角形的外心就是三角形三条边的垂直平分 线的交点,它到三角形三个顶点的距离相等。
B
C
D
小结与归纳
◆用数量关系判断点和圆的位置关系。 ◆不在同一直线上的三点确定一个圆。 ◆求解特殊三角形直角三角形、等边三角形、 等腰三角形的外接圆半径。 ◆在求解等腰三角形外接圆半径时,运用了 方程的思想。
(2)经过同一条直线三个点能作出一个圆吗?
P
l1
l2
A
B
C
如图,假设过同一条直线l上三点A、 B、C可以作一个圆,设这个圆的圆
解其证明的方式和步骤,会用反证法证 明较简单的题。
自学指导
• 认真看课本ቤተ መጻሕፍቲ ባይዱ0-92页练习以上的内容 • 1、通过“问题”的分析总结出点与圆的
位置关系的性质和判定 • 2、通过“探究”学习,确定一个圆的条
件以及三角形外心的定义 • 3、通过P92页的“思考”明确反证法的
思路和证明格式。 • 8分钟后,比一比看谁能正确做出检测题。
典型例题
如图,已知等边三角形ABC中,边长为
6cm,求它的外接圆半径。
A
E
O
B
DC
1、如图,已知 Rt⊿ABC 中 ,C 90
若 AC=12cm,BC=5cm,
C
求它的外接圆半径。
B
O
A
如图,等腰⊿ABC中, AB AC 13c,m
BC 10cm ,求⊿ABC外接圆的半径。
A
O
问题探究
问题1:观察图中点A,点B,点C与圆的位置关系?
点A在圆内,
点B在圆上, 点C在圆外.
A
O
C
r B
问题2:设⊙O半径为 r , 说出来点A,点B, 点C与圆心O的距离与半径的关系:
OA < r, OB = r, OC > r.
设⊙O的半径为r,点P到圆心的距离OP = d,
则有:
点P在圆内 d < r ;
相关文档
最新文档