北京师范大学附中2013届高三数学一轮复习 圆锥曲线与方程单元训练

合集下载

北京师范大学附中高三数学一轮复习 圆锥曲线与方程单

北京师范大学附中高三数学一轮复习 圆锥曲线与方程单

北京师范大学附中2013届高三数学一轮复习单元训练:圆锥曲线与方程本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆()222210x y a a b +=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )A .(0,22)B .(0,12) C .[21-,1]D .[12,1]【答案】D2.已知双曲线E 的中心为原点,(3,0)F 是E 的焦点,过F 的直线l 与E 相交于,A B 两点,且AB 的中点为(12,15)N --,则双曲线E 的方程为( )A .22136x y -= B . 22163x y -= C .22145x y -= D .22154x y -= 【答案】C3.抛物线22 y p x = 的焦点为F ,点ABC 在此抛物线上,点A 坐标为(1,2).若点F 恰为△ABC 的重心,则直线BC 的方程为( ) A . 0x y +=B . 210x y +-=C . 0x y -=D . 210x y --=【答案】B4.已知抛物线的焦点为F,过F 的直线与该抛物线相交于两点,则的最小值是( ) A . 4 B . 8 C . 12 D . 16 【答案】B5.已知圆O 的半径为定长r ,A 是圆O 外一定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相较于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A .圆 B .椭圆 C .抛物线 D .双曲线一支 【答案】D6.若直线mx- ny = 4与⊙O: x 2+y 2= 4没有交点,则过点P(m,n)的直线与椭圆22194x y +=的交点个数是( ) A .至多为1 B .2 C .1 D .0【答案】B7.已知F 是椭圆12222=+by a x (a >b>0)的左焦点, P 是椭圆上的一点, PF ⊥x 轴, OP ∥AB(O为原点), 则该椭圆的离心率是( )A .22 B .42 C .21 D .23 【答案】A8.抛物线 22y x -=的准线方程是( )A .21=y B .81=y C .41=x D .81=x 【答案】D9.方程0)1lg(122=-+-y x x 所表示的曲线图形是( )【答案】D10.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( )A .221169x y += B .2211612x y += C .22143x y += D .22134x y += 【答案】C11.我们把离心率为黄金比215-的椭圆称为“优美椭圆”.设12222=+b y a x (a>b>0)为“优美椭圆”,F 、A 分别是它的左焦点和右顶点,B 是它短轴的一个端点,则∠ABF 等于( )A .60°B .75°C .90°D .120° 【答案】C12.设双曲线222:1,(0,1),10x M y C x y a-=-+=点若直线交双曲线的两渐近线于点A 、B ,且2BC AC =u u u r u u u r,则双曲线的离心率为( )A .5 B .10 C .5 D .10【答案】B第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知过点P (1,0)且倾斜角为60°的直线l 与抛物线24y x =交于A 、B 两点,则弦长|AB|= . 【答案】16314.设F 为抛物线241x y -=的焦点,与抛物线相切于点)4,4(--P 的直线l 与x 轴的交点为Q ,则PQF ∠的值是 . 【答案】2π 15.已知P 为椭圆221259x y += 上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=900,则△F 1PF 2的面积为___________; 【答案】916.已知椭圆1162522=+y x 的焦点为F 1、F 2,直线CD 过焦点F 1,则∆F 2CD 的周长为_______【答案】20三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知直线L :1y kx =-与抛物线C :2y x =,相交于两点,A B ,设点(0,2)M ,MAB∆的面积为S .(Ⅰ)若直线L 上与M 连线距离为1的点至多存在一个,求S 的范围。

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》检测卷(含答案解析)(2)

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》检测卷(含答案解析)(2)

一、选择题1.已知点12,F F 是椭圆()222210x y a b a b+=>>的左右焦点,椭圆上存在不同两点,A B 使得122F A F B =,则椭圆的离心率的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭2.抛物线:24y x =的过焦点的弦的中点的轨迹方程为( ) A .21y x =-B .212y x =-C .22(1)y x =-D .221y x =-3.过抛物线26y x =的焦点作一条直线与抛物线交于()()1122,,,A x y B x y 两点,若123x x +=,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条4.已知M 是抛物线2:C x y =上一点,记点M 到抛物线C 的准线的距离为1d ,到直线:3490l x y ++=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .45.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .126.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF 为等边三角形,则该双曲线的渐近线的斜率为( ) A .2±B 3C .6D .77.顶点在原点,经过点()3,6-,且以坐标轴为轴的抛物线的标准方程是( ) A .23y x =或212=-x y B .2123y x =-或212=-x y C .23y x =或212x y =D .2123y x =-或212x y =8.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为1F ,若直线:l y kx =,3,33k ⎡⎤∈⎢⎥⎣与双曲线C 交于M 、N 两点,且11MF NF ⊥,则双曲线C 的离心率的取值范围是( ) A .()1,2B .)2,2⎡⎣C .2,31⎡⎤+⎣⎦D .(2,31⎤+⎦9.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( ) A .(1,2]B .5(1,]3C .[2,)+∞D .4[,)3+∞10.过抛物线24y x =的焦点的直线与抛物线交于A ,B 两点,若AB 的中点的纵坐标为2,则AB 等于( ) A .4B .6C .8D .1011.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在y 轴上,抛物线顶点在坐标原点,已知抛物线方程是24x y =,圆的半径为r ,若圆的大小变化时,圆上的点无法触及抛物线的顶点O ,则圆的半径r 的取值范围是( )A .()2,+∞B .()1,+∞C .[)2,+∞D .[)1,+∞二、填空题13.设F 是抛物线2:2C y x =的焦点,A 、B 是抛物线C 上两个不同的点,若直线AB 恰好经过焦点F ,则4AF BF +的最小值为_______.14.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.15.已知椭圆C 的两个焦点分别为1(2,0)F -,2(2,0)F ,离心率为12e =,点P 在椭圆C 上,且1230F PF ∠=,则12F PF △的面积为__________.16.F 是抛物线24y x =的焦点,过F 的直线l 交抛物线于A 、B 两点,O 为坐标原点,若10AF =,则OAB 的面积为__________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.如图,椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 为椭圆C 的上顶点,若12BF F △的外接圆的半径为23b,则椭圆C 的离心率为________.19.在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b+=>>的焦距为46,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,过O 作⊥OD AB 交AB 于点D ,点D 的坐标为()2,1,则椭圆C 的方程为_________.20.如图,两个离心率相等的椭圆1Γ与椭圆2Γ,焦点均在x 轴上A ,B 分别为椭圆2Γ的右顶点和上顶点,过A ,B 分别作椭圆1Γ的切线AC ,BD ,若AC 与BD 的斜率之积为57-,则椭圆1Γ的离心率为__________.三、解答题21.已知椭圆2222:1(0)x y E a b a b +=>>过点P ⎛ ⎝⎭,离心率2e =. (1)求椭圆E 的方程;(2)过点(0,3)M 的直线l 与椭圆E 相交于A ,B 两点. ①当直线OA ,OB 的斜率之和为34时(其中O 为坐标原点),求直线l 的斜率k ; ②求MA MB ⋅的取值范围.22.已知椭圆2222:1(0)x y E a b a b +=>>的左,右顶点分别为,A B ,离心率2e =,椭圆E 上任意一点M 到两个焦点1F ,2F 的距离之积的最大值为4.(1)求椭圆E 的方程;(2)已知点P 为直线l :4x =上的任意一点,直线PA 、PB 与椭圆E 分别交于两点C 、D (不同于A 、B 两点),求证:直线CD 经过定点,并求出该定点的坐标,23.已知椭圆()2222:10x y C a b a b+=>>左、右焦点分别为1F 、2F ,上顶点为M ,离心,12MF F△. (1)求椭圆C 的标准方程;(2)过点2F ,的直线l 交椭圆于A 、B 两点,当1ABF 面积最大时,求直线l 的方程.24.已知椭圆2222:1(0)x y C a b a b +=>>(2,1),,A P Q --在椭圆C 上,且,P Q 异于点A .(1)求椭圆C 的方程;(2)若||||,||||OP OQ AP AQ ==,求直线PQ 的方程.25.已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ∆的面积为92. (1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.26.设抛物线2:2(0)C y px p =>的焦点为F ,(1,2)M 是抛物线C 上的点. (1)求抛物线C 的方程;(2)若过点(2,0)的直线l 与抛物线C 交于不同的两点,A B ,且13AF BF ⋅=,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先设点,利用向量关系得到两点坐标之间的关系121223,2x x c y y =-=,再结合点在椭圆上,代入方程,消去222a y 即得2229312c a x c+=,根据题意2x a <,构建,a c 的齐次式,解不等式即得结果. 【详解】设()()1122,,,A x y B x y ,由()()12,0,,0F c F c -得()()112212,,,F A F x c y x c y B -==+,122F A F B =,()()11222,,x c y x c y =∴+-,即121223,2x x c y y =-=,由,A B 在椭圆上,故2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,即()()2222222222222222232b x c a y a b b x a y a b⎧-+=⎪⎨+=⎪⎩, 消去222a y 得,2229312c a x c+=,根据椭圆上点满足a x a -≤≤,又,A B 两点不同,可知2229312c a x a c+=<,整理得22340c ac a -+<,故23410e e -+<,故113e <<.故选:C. 【点睛】 关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到,,a b c 一组等量关系(齐次式),进而求解离心率或范围.2.C解析:C 【分析】设出过焦点的直线方程,与抛物线方程联立求出两根之和,可得中点的坐标,消去参数可得中点的轨迹方程. 【详解】由抛物线的方程可得焦点(1,0)F ,可得过焦点的直线的斜率不为0, 设直线方程为:1x my =+,设直线与抛物线的交点1(A x ,1)y ,2(B x ,2)y ,设AB 的中点(,)P x y ,联立直线与抛物线的方程可得:2440y my --=,124y y m +=,21212()242x x m y y m +=++=+,所以可得2212x m y m⎧=+⎨=⎩,消去m 可得P 的轨迹方程:222y x =-,故选:C . 【点睛】方法点睛:求轨迹方程的常见方法有:1、定义法;2、待定系数法;3、直接求轨迹法;4、反求法;5、参数方程法等等.3.A解析:A 【分析】由抛物线方程求得焦点F 的坐标,分直线AB 斜率不存在和直线斜率存在,存在时设直线AB 方程与抛物线方程联立,由韦达定理表示出A 、B 两点的横坐标之和,求得k ,即可得结论. 【详解】抛物线26y x =的焦点为3,02F ⎛⎫⎪⎝⎭, 当过焦点的直线斜率不存在时,即为32x =, 1232x x ==,符合123x x +=, 当过焦点的直线斜率存在时设为32y k x ⎛⎫=- ⎪⎝⎭, 与抛物线交于()()1122,,,A x y B x y 两点,由2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得()222293604k k x k x -++=, 所以2122363k x x k++==,即22363k k +=,所以无解, 则这样的直线有且只有一条. 故选:A. 【点睛】本题考查直线与抛物线的位置关系,解题的时候要注意讨论直线斜率不存在时的情况,以免遗漏,是中档题.4.B解析:B 【分析】作出图形,过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A ,由抛物线的定义得出1d MB MF ==,可得出12d d MF MA +=+,利用FM 与直线3490x y ++=垂直时,12d d +取最小值,然后计算出点F 到直线3490x y ++=的距离,即为所求.【详解】 如下图所示:过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A , 由抛物线的定义可得1d MB MF ==,则12d d MF MA +=+, 当且仅当FM 与直线3490x y ++=垂直时,12d d +取最小值, 点F 到直线3490x y ++=的距离为22130494234d ⨯+⨯+==+,因此,12d d +的最小值为2. 故答案为:2. 【点睛】关键点点睛:本题求出抛物线上一点到准线和定直线的距离之和最小值问题,解题的关键就是利用F 、A 、M 三点共线取最小值,结合抛物线的定义转化求解.5.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=,由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△10===.故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.6.C解析:C 【分析】利用双曲线的定义可求得12AF a =,24AF a =,利用余弦定理可求得ca的值,利用公式=b a . 【详解】2ABF 为等边三角形,22AB AF BF ∴==,且260ABF ∠=︒,由双曲线的定义可得121212||BF AB AF a B AF F BF =+-==-,212AF AF a -=,24AF a ∴=,在12AF F △中12AF a =,24AF a =,12120F AF ∠=,由余弦定理可得2212121222cos12027F F c AF AF AF AF a ==+-⋅︒=,即7c a =,所以22222216b b c a c a a a a -⎛⎫===-= ⎪⎝⎭. 因此,该双曲线的渐近线的斜率为6±. 故选:C.【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)定义法:直接利用a ,b ,求得比值,则焦点在x 轴时渐近线by x a=±,焦点在y 轴时渐近线ay x b=±; (2)构造齐次式,利用已知条件,结合222+=a b c ,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写渐近线即可.7.D解析:D 【分析】设出抛物线方程为22y mx =或22x ny =,代入点的坐标求出参数值可得.【详解】设抛物线方程为22y mx =,则262(3)m =⋅-,3m =-23y x =-, 或设方程为22x ny =,则2(3)26n =⨯,14n =,方程为212x y =.所以抛物线方程为2y =-或212x y =. 故选:D . 【点睛】关键点点睛:抛物线的标准方程有四种形式,在不确定焦点位置(或开口方向时),需要分类讨论.象本题在抛物线过一点的坐标,则需要考虑焦点在x 轴和y 轴两种情况,焦点在x 轴上时可以直接设方程为2y mx =,代入点的坐标求出参数值,不必考虑焦点是在x轴正半轴还是在负半轴,焦点在y 轴也类似求解.8.C解析:C 【分析】根据题意,得到()1,0F c -,设(),M x y ,则(),N x y --,由11MF NF ⊥,求出2220x y c +-=与双曲线联立,求出()2222242242222a c a x c c a c a y c ⎧-⎪=⎪⎨-+⎪=⎪⎩,再由2221,33y k x ⎡⎤=∈⎢⎥⎣⎦,列出不等式求解,即可得出结果 【详解】因为点1F 为双曲线()2222:10,0x yC a b a b-=>>的左焦点,则()1,0F c -,设(),M x y ,由题意有(),N x y --,则()1,MF c x y =---,()1,NF c x y =-+,又11MF NF ⊥,所以()()2110MF NF c x c x y ⋅=---+-=,则2220x y c +-=, 又(),M x y 在双曲线上,所以22221x y a b-=,由22222222221x y a b x y c c a b ⎧-=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得()2222242242222a c a x c c a c ay c ⎧-⎪=⎪⎨-+⎪=⎪⎩,又M 在直线y kx =上,k ∈⎣, 所以()4224424222222222212111,33212c a c a e e e e e a c a y k x -+-+---⎡⎤====-∈⎢⎥⎣⎦,即42424213421e e e e ⎧≥⎪⎪-⎨⎪≤⎪-⎩,整理得42423840840e e e e ⎧-+≥⎨-+≤⎩,解得224e ≤≤+2243e -≤(舍,因为双曲线离心率大于1),1e ≤, 故选:C 【点睛】关键点点睛:本题考查双曲线的性质,考查双曲线的标准方程,解决本题的关键点是把11MF NF ⊥转化为向量数量积的坐标表示,求出点M 的轨迹方程,结合点在双曲线上,求出点的坐标,代入斜率公式求出离心率的范围,考查学生逻辑思维能力和计算能力,属于中档题.9.A解析:A 【分析】根据题中条件,由双曲线的定义,得到2PF a =,13PF a =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又213PF PF =,所以222PF a =,即2PF a =,则13PF a =, 因为双曲线中,1212+≥PF PF F F ,即42a c ≥,则2ca≤,即2e ≤, 又双曲线的离心率大于1,所以12e <≤. 故选:A. 【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可.10.C解析:C 【分析】先根据抛物线的定义将焦点弦长问题转化为中点到准线距离的两倍,进而用中点横坐标表示,设直线AB 的方程为:1x my =+(m 为常数),与抛物线方程联立消去x ,得到关于y 的一元二次方程,利用中点公式和韦达定理求得m 的值,进而得到中点的横坐标,从而求得线段AB 的长度. 【详解】抛物线24y x =的焦点坐标F (1,0),准线方程:1l x =-,设AB 的中点为M ,过A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,则MN 为梯形ABDC 的中位线,()02|21AB AF BF AC BD MN x ∴=+=+==+,∵直线AB 过抛物线的焦点F ,∴可设直线AB 的方程为:1x my =+(m 为常数), 代入抛物线的方程消去x 并整理得:2440y my --=, 设A ,B 的纵坐标分别为12,y y ,线段AB 中点()00,M x y , 则120222y y y m +===,1m ∴=, ∴直线AB 的方程为1x y =+,001213x y ∴=+=+=,()2318AB ∴=+=,故选:C.【点睛】本题考查抛物线的焦点弦长问题,涉及抛物线的定义,方程,线段中点坐标公式,直线与抛物线的交点问题,属中档题,关键是灵活使用抛物线的定义,将焦点弦长问题转化为中点坐标问题,注意直线方程的设法:过点(a ,0),斜率不为零的直线方程可以设为x =my +a 的形式,不仅避免了讨论,而且方程组消元化简时更为简洁.11.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<, 记为{}02,24A a a a =<<<<或,又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.12.A解析:A 【分析】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,求出2PQ ,当2PQ 的最小值在原点处取得时,圆P 过原点,可得此时圆半径的范围,半径不在这个范围内的圆不过原点. 【详解】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,22222()4()(2)44PQ x y a y y a y a a =+-=+-=-++-,若2PQ 的最小值不在(0,0)O 处取得,则圆P 不过原点,所以20a ->,即2a >,此时圆半径为2r ==>.因此当2r >时,圆无法触及抛物线的顶点O .故选:A . 【点睛】关键点点睛:本题考查圆与抛物线的位置关系,题中圆不过原点,说明抛物线上的点到圆心距离的最小值不是在原点处取得,由此得到解法,即设圆心为(0,)P a ,抛物线上点的坐标为(,)Q x y ,求出PQ ,然后确定其最小值,由最小值点不是原点可得结论.二、填空题13.【分析】设点设直线的方程为联立直线与抛物线的方程列出韦达定理推导出利用基本不等式可求得的最小值【详解】若直线与轴重合则直线与抛物线只有一个交点不合乎题意易知抛物线的焦点为准线方程为设点设直线的方程为解析:92【分析】设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立直线AB 与抛物线C 的方程,列出韦达定理,推导出112AF BF+=,利用基本不等式可求得4AF BF +的最小值. 【详解】若直线AB 与x 轴重合,则直线AB 与抛物线C 只有一个交点,不合乎题意. 易知抛物线C 的焦点为1,02F ⎛⎫⎪⎝⎭,准线方程为12x =-,设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+, 联立2122x my y x⎧=+⎪⎨⎪=⎩,整理可得2210y my --=,2440m ∆=+>,由韦达定理可得122y y m +=,121y y =-,()()()12121212211111*********m y y AF BF my my my my x x +++=+=+=++++++()()21222212122222121m y y m m y y m y y m m +++===+++-++, ()4111144522AF BF AF BF AF BF AF BF BF AF ⎛⎫⎛⎫∴+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭19522⎛≥+= ⎝, 当且仅当2AF BF =时,等号成立,因此,4AF BF +的最小值为92. 故答案为:92. 【点睛】结论点睛:过抛物线的焦点F 的直线与抛物线交于A 、B 两点,则112AF BF p+=. 14.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解解析:7【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值. 【详解】解:因为双曲线22:143x y C -=,所以2a =,227c a b =+= 依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN ,所以12172MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ 中223NQ MN MQ =-=,因为//NQ BA ,所以MNQ ∠为12,AB F F 的夹角,所以12321cos ,77QN AB F F MN <>===故答案为:217【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.15.【分析】由椭圆定义得由余弦定理得结合可得的值从而得答案【详解】由已知得所以由椭圆定义得由余弦定理得即则的面积为故答案为:【点睛】本题考查了椭圆的简单的性质关键点是利用余弦定理和三角形的面积公式解题考 解析:243-【分析】由椭圆定义得128F P PF +=,由余弦定理得22212121212cos 2F P PF F F F PF F P PF +-∠=⨯,结合可得12F P PF ⨯的值,从而得答案. 【详解】 由已知得12,2c e ==,所以4a =, 由椭圆定义得12248F P PF +=⨯=, 由余弦定理得222121212123cos cos3022F P PF F F F PF F P PF +-∠===⨯, 即()2121212216F PPF F P PF P PF +-⨯-=⨯,12F P PF⨯=,则12F PF △的面积为12111sin 3024222S F P PF =⨯⨯=⨯=- 故答案为:24- 【点睛】本题考查了椭圆的简单的性质,关键点是利用余弦定理和三角形的面积公式解题,考查了学生分析问题、解决问题的能力.16.【分析】设点为第一象限内的点设点利用抛物线的定义可求得点的坐标可得出直线的方程将直线的方程与抛物线的方程联立列出韦达定理求出的值由此可求得的面积【详解】设点为第一象限内的点设点抛物线的准线方程为由抛 解析:103【分析】设点A 为第一象限内的点,设点()11,A x y 、()22,B x y ,利用抛物线的定义可求得点A 的坐标,可得出直线AB 的方程,将直线AB 的方程与抛物线的方程联立,列出韦达定理,求出12y y -的值,由此可求得OAB 的面积. 【详解】设点A 为第一象限内的点,设点()11,A x y 、()22,B x y ,抛物线24y x =的准线方程为1x =-,由抛物线的定义可得1110AF x =+=,解得19x =,由于点A 为第一象限内的点,则10y >,可得16y ==,即点()9,6A ,直线AF 的斜率为63914AF k ==-,所以,直线AB 的方程为()314y x =-,即413x y =+, 联立24134x y y x⎧=+⎪⎨⎪=⎩,消去x 并整理可得216403y y --=, 由韦达定理可得12163y y +=,21161626333y y ∴=-=-=-, 因此,1211210162233OAB S OF y y =⋅-=⨯⨯+=△. 故答案为:103. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】由题意可得的外接圆的圆心在线段上可得在中由勾股定理可得:即结合即可求解【详解】由题意可得:的外接圆的圆心在线段上设圆心为则在中由勾股定理可得:即所以即所以所以故答案为:【点睛】方法点睛:求椭 解析:12【分析】由题意可得12BF F △的外接圆的圆心在线段OB 上,1OF c =,123bMF BM ==,可得 13OM b =,在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,结合222b ac =-即可求解. 【详解】由题意可得:12BF F △的外接圆的圆心在线段OB 上,1OF c =, 设圆心为M ,则2133OM OB BM b b b =-=-=, 在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 所以223b c =,即2223a c c -=,所以2a c =,所以12c e a ==, 故答案为:12. 【点睛】方法点睛:求椭圆离心率的方法: (1)直接利用公式c e a=; (2)利用变形公式221b e a=-; (3)根据条件列出关于,a c 的齐次式,两边同时除以2a ,化为关于离心率的方程即可求解.19.【分析】先利用点坐标和垂直关系求得直线的斜率并写出直线方程联立直线与椭圆利用韦达定理和垂直的向量关系得到的关系式再结合焦距的关系式解出即得方程【详解】依题意椭圆的焦距为即即由点的坐标为知直线OD的斜解析:221 306xy+=【分析】先利用点D坐标和垂直关系求得直线l的斜率,并写出直线方程,联立直线与椭圆,利用韦达定理和垂直的向量关系得到22,a b的关系式,再结合焦距的关系式解出22,a b,即得方程.【详解】依题意,椭圆的焦距为46,即246c=,26c=,即2224a b-=,由点D的坐标为()2,1,知直线OD的斜率101202ODk-==-,又⊥OD AB,知直线l的斜率为2-,即直线l的方程为12(2)y x-=--,即52y x=-.设()()1122,,,A x yB x y联立方程2222152x ya by x⎧+=⎪⎨⎪=-⎩得()2222222420250a b x a x a a b+-+-=,故2222121222222025,44a a a bx x x xa b a b-+==++,即()()()12121212525225104y y x x x x x x=--=-++2222222222222202525425104444a a ab b a ba b a b a b--=-⨯+⨯=+++,由OA OB⊥知,1212OA OB x x y y⋅=+=,即22222222222525444a ab b a ba b a b--+=++,所以222255a b a b+=,又2224a b-=,消去2a得,42141200b b+-=,解得26b=或220b=-(舍去),故2230,6a b==,椭圆C的方程为221306x y+=.故答案为:221306x y +=.【点睛】 思路点睛:求解椭圆中的直线垂直问题时,一般利用直线的斜率之积为-1,或者直线上的向量的数量积为0来处理,再联立直线与椭圆方程,结合韦达定理,即可求出结果.20.【分析】由已知设圆的方程为椭圆的方程为再设出直线AC 的方程为直线BD 的方程为分别与椭圆的方程为联立整理由直线与椭圆相切的条件求得斜率再由已知得由此可求得椭圆的离心率【详解】因为两个椭圆与椭圆的离心率解析:7【分析】由已知设圆1Γ的方程为()()2222+1x y ma mb =,椭圆2Γ的方程为2222+1x y a b =,再设出直线AC 的方程为()1y k x ma =-,直线BD 的方程为2+y k x mb =,分别与椭圆2Γ的方程为2222+1x y a b =联立整理,由直线与椭圆相切的条件0∆=,求得斜率,再由已知得2257b a =,由此可求得椭圆的离心率. 【详解】因为两个椭圆1Γ与椭圆2Γ的离心率相等,所以设椭圆1Γ的方程为()()2222+1x y ma mb =,椭圆2Γ的方程为2222+1x y a b=,设直线AC 的方程为()1y k x ma =-,与椭圆2Γ的方程为2222+1x y a b=联立整理得:()()23422212222211+2+0b mk a x a k xm a a k b --=,因为直线AC 与椭圆2Γ相切,则()()()2222222213241142+0a k m m a a k b a b k --=-=∆,整理化简得()212221k a m b =-,设直线BD 的方程为2+y k x mb =,与椭圆2Γ的方程为2222+1x y a b=联立整理得:()()222222222222+2+0b mk a b a k xm a a x b b --=,因为直线BD 与椭圆2Γ相切,则()()()22222222222242+0a k mk a bm a a b b b -=--=∆,整理化简得()222221m kab -=,又AC 与BD 的斜率之积为57-,所以()()222212222221571mk k a b b a m -⎛⎫⋅=⋅=- ⎪-⎝⎭,整理得2257b a =,所以22222521177c b e a a ==-=-=, 所以椭圆1Γ的离心率为7,故答案为:7. 【点睛】关键点点睛:解决直线与椭圆的位置关系的问题,关键在于联立直线与椭圆的方程,运用方程的根的判别式的正负,满足直线与椭圆相交,相切,相离.三、解答题21.(1)2212x y +=;(2)①3k =-;②808,9⎡⎫⎪⎢⎣⎭.【分析】(1)把点代入方程结合离心率列方程组求解即可;(2)①设直线l 方程为,代入椭圆E 的方程可得,结合判别式与韦达定理,利用直线OA ,OB 的斜率之和为34进而求出直线斜率即可;②当直线l 的斜率不存在时,直线l 的方程为0x =,求得8MA MA ⋅=,当直线l 的斜率存在时,由(2)①得28821MA MB k ⋅=++,从而求得范围.【详解】解:(1)由题意得222221,2c a a b c ⎧=⎪⎨⎪=+⎩,解得222a c =,22b c =.设椭圆E 的方程为222212x y c c +=,又因为点P ⎛ ⎝⎭在椭圆E 上, 所以222211122c c+=,22222,1c a b ===,所以椭圆E 的方程为2212x y +=;(2)①设直线l 方程为:3y kx =+,代入椭圆E 的方程可得,()222112160kx kx +++=因为直线l 与椭圆E 有两个交点,所以216640∆=->k ,即24k >. 设()11,A x y ,()22,B x y ,则1221221k x x k +=-+,1221621x x k ⋅=+, 11223,3y kx y kx =+=+.又()1212121233244OA OB x x y y k k k k x x x x ++=+=+=-=⋅ 解得3k =-,经检验成立.所以,直线l 的斜率3k =-; ②当直线l 的斜率不存在时,直线l 的方程为0x =,将0x =代入2212x y +=,解得1y =±,则(0,1)A ,(0,1)B -,8MA MA ⋅=当直线l 的斜率存在时,由(2)①得()()()()22121212216133121k MA MA x x y y k x x k +⋅=⋅+--=+⋅=+()2228211882121k k k ⎡⎤++⎣⎦==+++因为24k >,所以MA MA ⋅的范围为808,9⎛⎫⎪⎝⎭. 综上,得MA MB ⋅的取值范围是808,9⎡⎫⎪⎢⎣⎭. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22.(1)2214x y +=;(2)证明见解析,()1,0.【分析】(1)利用椭圆的定义可得12|||2|MF MF a =+,根据基本不等式求出2a =,再由离心率求出c =222a b c =+即可求解.(2)当点C 是椭圆上顶点时,求出()4,3P ,进而求出点83,55D ⎛⎫- ⎪⎝⎭,写出直线CD 的方程,得出直线CD 经过定点()1,0N ,设l 上任意点()4,P m ,设(),C C C x y ,(),y D D D x ,写出直线PA 的方程,将直线与椭圆联立,求出2221826,99m m C m m ⎛⎫- ⎪++⎝⎭,同理求出222222,11m m D m m ⎛⎫-- ⎪++⎝⎭,若直线CD 经过定点()1,0N ,只需,,N C D 三点共线,利用向量共线的坐标表示即可求解. 【详解】(1)由椭圆的定义知12|||2|MF MF a =+,所以2122122MF MF MF MF a ⎛+⎫≤= ⎪⎝⎭,已知12||||4MF MF ≤,所以24a =,2a =.因为e =c = 因为222a b c =+,所以1b =,所以椭圆E 的方程为2214x y +=.(2)当点C 是椭圆上顶点时,直线AC 的方程为()122y x =+,可得()4,3P ,则()3:22PB l y x =-与2214x y +=联立解得83,55D ⎛⎫- ⎪⎝⎭,所以直线CD 的方程为:10x y +-=,由椭圆的对称性可知,直线CD 经过x 轴上的定点, 所以直线CD 经过定点()1,0N . 以下证明一般性:设l 上任意点()4,P m ,设(),C C C x y ,(),y D D D x 则直线PA 的方程为()26my x =+ 联立22(2)614m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得()2222944360m x m x m +++-=由韦达定理得2243629C m x m --=+,解得2221826,99m m C m m ⎛⎫- ⎪++⎝⎭因为直线PB 的方程为()22my x =- 联立22(2)214m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩消去y 得()222214440m x m x m +-+-=由韦达定理得224421D m x m -=+,解得222222,11m m D m m ⎛⎫-- ⎪++⎝⎭ 直线CD 经过定点()1,0N ,即,,N C D 三点共线因为222936,99m m NC m m ⎛⎫-= ⎪++⎝⎭,22232,11m m ND m m ⎛⎫--= ⎪++⎝⎭ 因为222222932639191m m m m m m m m ---⨯-⨯++++ ()()()332218661891m m m m mm -+--=++0=所以//NC ND ,那么,,N C D 三点共线 所以直线CD 经过定点()1,0N , 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是利用点C 是椭圆上顶点时,求出定点()1,0N ,再证明一般性,借助,,N C D 三点共线求解,考查了运算求解能力.23.(1)2213x y +=;(2)0x y -=或0x y +=.【分析】(1)由离心率、面积和222a b c =+可得答案;(2)设()11,A x y ,()22,B x y,:l x ty =+11212AF BF F AF F BSSS=+,结合基本不等式,可得答案.【详解】 (1)∵3c e a ==,12MF F S bc ==△222a b c =+,解得a =1b =,c =C 的方程为:2213x y +=.(2)()1F,)2F ,设()11,A x y ,()22,B x y ,已知直线l 的斜率不为0,设直线l:x ty =+2213x ty x y ⎧=+⎪⎨+=⎪⎩,得()22310t y ++-=,故12y y +=,12213y y t =-+,1212121212F F A F F BSSF F y y+=-=23t+,12=≤=,即1t =±时等号成立,所以直线l 的方程为0x y --=或0x y +=. 【点睛】本题考查了椭圆的定义,考查了三角形的面积公式,关键点是利用韦达定理表示1212F F AF F BSS+并利用基本不等式求最值,考查了直线与椭圆的位置关系和计算能力.24.(1)22182x y +=;(2)20x y +=.【分析】(1)由离心率,点的坐标代入椭圆方程及222a b c =+列方程组解得,,a b c 得椭圆方程; (2)已知条件说明直线AO 为线段PQ 的垂直平分线,直线OA 方程为12y x =,这样可设直线PQ 方程为2y x m =-+,代入椭圆方程,应用韦达定理得12x x +,12,x x 即为,P Q的横坐标,求出中点横坐标1202x x x +=,由直线PA 得中点纵坐标0y ,中点坐标代入直线AO 方程可得参数m ,即直线PQ 方程.【详解】(1)依题意,22222411a b a b c c a⎧+=⎪⎪⎪=+⎨⎪⎪=⎪⎩,,解得2282a b ⎧=⎨=⎩,,.故椭圆C 的方程为22182x y +=;(2)∵||||,||||OP OQ AP AQ ==,∴直线AO 为线段PQ 的垂直平分线,则直线OA 的方程为12y x =,设直线PQ 的方程为2y x m =-+, 由221822x y y x m ⎧+=⎪⎨⎪=-+⎩,得:221716480x mx m -+-=, ()22(16)417480m m =-⨯->,解得m <()()1122,,,P x y Q x y ,由韦达定理得121617mx x +=,设PQ 的中点为()00,H x y , 所以120008,221717x x m m x y x m +===-+=;所以8,1717m m H ⎛⎫⎪⎝⎭. 又8,1717m m H ⎛⎫⎪⎝⎭在直线OA 上,代入得1817217m m =⋅,解得0m =,综上所述,直线PQ 的方程为20x y +=. 【点睛】关键点点睛:本题考查由离心率和一点坐标求椭圆方程,考查直线与椭圆相交问题.在直线与椭圆相交问题时,解题关键是由平面几何知识由条件||||,||||OP OQ AP AQ ==得直线AO 为线段PQ 的垂直平分线,这样用设而不求思想可求得直线PQ 方程.即求出AO 方程,由垂直设出直线PQ 方程,代入椭圆方程应用韦达定理求得PQ 中点坐标,再代入直线AO 方程可得参数值.25.(1)22143x y +=;(2)证明见解析.【分析】(1)根据椭圆离心率和椭圆的性质可知b =,再根据PQ x ⊥轴时,APQ 的面积为 92,由面积公式可知()212922b ac a +⋅=,由此即可求出椭圆方程; (2)设直线PQ 的方程为1x my =+,联立椭圆方程,设1122(,),(,)P x y Q x y ,由韦达定理,可知 12122269,3434m y y y y m m +=-=-++,将直线AP 的方程()112+2y y x x =+与直线 BQ 的方程()2222y y x x =--联立,利用韦达定理,化简计算,即可证明结果. 【详解】 解:(1)由题意知12c a =,所以2a c =,又222a b c =+,所以b =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅=解得21,c = 所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.。

北师大版高中数学选修圆锥曲线与方程综合同步练习(1)

北师大版高中数学选修圆锥曲线与方程综合同步练习(1)

圆锥曲线综合练习(选学)Ⅰ 学习目标1.能熟练地解决直线和圆锥曲线的位置关系问题.2.能应用数形结合思想、方程思想等数学思想解决圆锥曲线综合问题.Ⅱ 基础性训练一、选择题1.过点P (2,4)作直线l ,使l 与抛物线y 2=8x 只有一个公共点,这样的直线l 有( ) (A )1条 (B )2条 (C )3条 (D )4条2.一个正三角形的顶点都在抛物线y 2=4x 上,其中一个顶点在坐标原点,则这个三角形的面积是( ) (A )348(B )324(C )3916(D )3463.过双曲线1222=-y x 的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则这样的直线有( ) (A )1条(B )2条(C )3条(D )4条4.已知椭圆12222=+by a x (a >b >0)上总存在点P ,使021=⋅PF PF ,其中F 1,F 2是椭圆的焦点,那么该椭圆的离心率的取值范围是( )(A )]21,12[-(B ))12,0(-(C )]22,21[(D ))1,22[5.已知双曲线)0,0(12222>>=-b a by a x 的左焦点F 1,左、右顶点分别为A 1,A 2,P 为双曲线上任意一点,则分别以线段PF 1,A 1A 2为直径的两个圆的位置关系为( )(A )相切 (B )相交 (C )相离 (D )以上情况都有可能 二、填空题6.直线y =x +1与抛物线y 2=4x 的公共点坐标为____________.7.若直线y =kx +1与椭圆1522=+my x 恒有公共点,则m 的取值范围是____________.8.设P 是等轴双曲线x 2-y 2=a 2(a >0)右支上一点,F 1,F 2是左右焦点,若21;F F PF ⋅ =0, |PF 1|=6,则该双曲线的方程是____________.9.过椭圆192522=+y x 的焦点,倾斜角为45°的弦AB 的长是____________.10.若过双曲线12222=-b y a x (a >0,b >0)的右焦点F ,作渐近线x aby =的垂线与双曲线左、右两支都相交,则此双曲线的离心率e 的取值范围是____________.三、解答题11.中心在原点,一个焦点为)50,0(F 的椭圆C ,被直线y =3x -2截得的弦的中点的横坐标为0.5,求椭圆C 的方程.12.已知双曲线C :3x 2-y 2=1,过点M (0,-1)的直线l 与双曲线C 交于A ,B 两点.(1)若|AB |=10,求直线l 的方程;(2)若点A ,B 在y 轴的同一侧,求直线l 的斜率的取值范围.13.正方形ABCD 在坐标平面内,已知其一边AB 在直线y =x +4上,另外两点C ,D 在抛物线y 2=x 上,求正方形ABCD 的面积.Ⅲ 拓展性训练14.设点M 在x 轴上,若对过椭圆)0(1:2222>>=+b a by a x C 左焦点F 的任一条与两坐标轴都不垂直的弦AB ,都有MF 为△AMB 的一条内角平分线,则称点M 为该椭圆的“左特征点”.(1)有人说:“点)0,(2c a M -是椭圆的‘左特征点’'”.请指出这个观点是否正确,并给出证明过程;(2)参考椭圆的“左特征点”定义,给出双曲线)0,0(12222>>=-b a by a x 的“左特征点”定义,并指出该点坐标.答案一、选择题1.B 2.A 3.C 4.D 5.A 二、填空题6.(1,2) 7.m ≥1且m ≠5 8.x 2-y 2=4 9.179010.2>e 三、解答题11.由题意,设椭圆150:2222=-+a x a y C ,把直线y =3x -2代入椭圆方程150+2222=-a x a y .得(a 2-50)(3x -2)2+a 2x 2=a 2(a 2-50),整理得(10a 2-450)x 2-12(a 2-50)x -a 4+54a 2-200=0, 设直线与椭圆的两个交点A (x 1,y 1),B (x 2,y 2),则有45010)50(122221--=+a a x x ,∆=144(a 2-50)2-4(10a 2-450)(-a 4+54a 2-200)>0, 由题意,得2145010)50(622221=--=+a a x x ,解得a 2=75, 所以椭圆方程为1257522=+x y .12.(1)设直线l :y =kx -1或x =0(舍去),A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧-==-11322kx y y x消去y ,得(3-k 2)x 2+2kx -2=0.由题意,得3-k 2≠0,∆=(2k )2-4·(3-k 2)·(-2)=24-4k 2>0, 且3222-=+k k x x I ,32221-=⋅k x x . ∴||1)()(||212221221x x k y y x x AB -⋅+=-+-=2122124)(1x x x x k -+⋅+=.∴10324)32(·12222=-⨯--+k k k k , 解得k =±1,或733±=k . 验证知3-k 2≠0且∆>0,∴直线l 的方程为:y =±x -1,或1733-±=x y ;(2)由A 、B 在y 轴的同一侧,得⎪⎪⎩⎪⎪⎨⎧>-=∆>-==/-0424032·0322212k k x x k解得:)3,6(--∈k ∪)6,3(.13.因为AB ∥CD ,所以设直线CD 方程为y =x +t ,把y =x +t 代入y 2=x ,消去y ,得x 2+(2t -1)x +t 2=0, 设C (x 1,y 1),D (x 2,y 2),所以x 1+x 2=1-2t ,x 1·x 2=t 2,∆=(2t -1)2-4t 2>0,所以)41(2]4)21[(2)()(||22221221t t t y y x x CD -=--=-+-=,又AB 与CD 间的距离为2|4|||-=t AD , 由正方形ABCD ,得|AD |=|CD |,即2|4|)41(2-=-t t , 解得t =-2,或t =-6,从而,边长23||=AD ,或52,所以正方形面积为18)23(21==S ,或50)25(22==S . 14.(1)判断:这个观点是正确的,具体证明如下.设点)0,(),0,(2c F c a M --,其中c 2=a 2-b 2(c >0).方法1:设过F 与两坐标轴都不垂直的直线AB :y =k (x +c )(k ≠0),A (x 1,y 1), B (x 2,y 2).以下只要证明:对任意的实数k ,∠AMF =∠BMF .联立方程⎪⎩⎪⎨⎧+==+)(12222c x k y b y a x ,消去y ,得:(b 2+a 2k )x 2+2a 2k 2cx +a 2k 2c 2-a 2b 2=0,∴22222222212222221,2k a b b a c k a x x k a b c k a x x +-=+-=+⋅,∆=(2a 2k 2c )2-4(b 2+a 2k 2)(a 2k 2c 2-a 2b 2)>0. 又∵直线AM 的斜率为:ca x c x k c a x y k AM 211211)(0++=+-=,直线BM 的斜率为:ca x c x k c a x y k BM 222222)(0++=+-=. ))(())(())(()()(2221212221222211c a x c a x c a x c x k c a x c x k c a x c x k c a x c x k k k BMAM +++++++=+++++=+∴, 上式中的分子:))(())((212221c a x c x k c a x c x k +++++ ]2)()(·2[22122121a x x c a x x c x x k +++++=]2222[22222222222222222222a ka b c k a c a k a b c k a c k a b b a c k a k ++-⨯++-⨯++-⨯= ]222222[22224222222422222222222222k a b k a b a k a b k a k a b c k a k a b b a c k a k ++++-++-++-==0.∴对任意实数k 都有k AM +k BM =0.即k AM =-k BM ,∴∠AMF =∠BMF .故对过F 与两坐标轴都不垂直的任意弦AB ,MF 都为△AMB 的一条内角平分线,所以,点)0,(2c a M -是椭圆的“左特征点”.方法2:如图,过A 作AP 垂直左准线于P ,过B 作BQ 垂直左准线于Q , 由椭圆第二定义,得e AP AF BQ BF ==||||||||,(其中e 为椭圆离心率)∴||||||||BF AF BQ AP =. 又∵AP ∥BQ ∥x 轴,∴||||||||BF AF MQ MP =,∴||||||||BQ AP MQ MP =.∵∠APM =∠BQM =90°, ∴△APM ∽△BQM . ∴∠PAM =∠QBM .∵∠PAM =∠AMF ,∠QBM =∠BMF ,∴∠AMF =∠BMF .故对过F 与两坐标轴都不垂直的任意弦AB ,MF 都为∆AMB 的一条内角平分线, 所以,椭圆的左准线与x 轴的交点M 是椭圆的“左特征点”. (2)双曲线左特征点定义:设点M 在x 轴上,若对过双曲线)0,0(1:2222>>=-b a by a x C 左焦点F 的任一条与两坐标轴都不垂直的弦AB ,且A 、B 在双曲线左支上,都有MF 为∆AMB 的一条内角平分线,则称点M 为该双曲线的“左特征点”.)0,(2c a M -是双曲线的左特征点(其中22b a c +=).(注:此题(1)中,没有提到“椭圆的‘左特征点’一定是点)0,(2c a M -”,即无需证明左特征点的唯一性;(2)答案中,要注意“A 、B 在双曲线左支上”不可少)。

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》检测卷(含答案解析)(1)

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》检测卷(含答案解析)(1)

一、选择题1.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( )A .13B C .12D .22.已知抛物线2:2C y px =的焦点为F ,过抛物线上两点A ,B 分别向抛物线C 的准线作垂线,垂足为M ,N ,且()95OBN OAM ABNM S S S +=梯形△△,当直线AB 经过点F 且点F 到抛物线C 准线的距离为4时,直线l 的斜率为( )A .2±B .±C .8±D .±3.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .54.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与圆()2239x y -+=相交于A 、B 两点,若2AB =,则该双曲线的离心率为( )A .5B .2C .3D .45.在正方体1111ABCD A B C D -中,点P 是侧面11BCC B 内一点,且点P 满足到平面11ABB A 的距离等于到点1C 的距离,则点P 的轨迹是( )A .一条线段B .圆的一部分C .椭圆的一部分D .抛物线的一部分6.若椭圆22221(0)x y a b a b +=>>的离心率为3,则213a b +的最小值为( )A B C .2D7.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( )A B C D8.设F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,P 是双曲线C 右支上一点,若|PF 1|+|PF 2|=4a ,且∠F 1PF 2=60°,则双曲线C 的渐近线方程是( ) A .30x y ±= B .270x y ±= C .320x y ±=D .230x y ±=9.已知圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,动圆M 与圆1C ,圆2C 均相切,P 是12MC C 的内心,且12123PMC PMC PC C S SS+=,则a 的值为( )A .9B .11C .17D .1910.在平面直角坐标系中,双曲线C 的标准方程为2221(0)4x y t t t-=>+,则双曲线的离心率取得最大值时,双曲线的渐近线方程为( )A .2y x =±B .3y x =±C .12y x =±D .13y x =±11.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A .273+ B .273+ C .53D .212.斜率为14的直线l 与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,且l 过C 的左焦点,线段AB 的中点为()2,1M -,C 的右焦点为F ,则AFB △的周长为( ) A 487 B 247C .147D .147二、填空题13.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.14.设1F ,2F 为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,过2F 的直线l 交双曲线C 的右支于A 、B 两点,且120AF AF ⋅=,2212AF BF =,则双曲线C 的离心率为___________.15.已知双曲线()2222:10,0x y C a b a b-=>>的左、焦点为1F 、2F ,点P 为双曲线C 的渐近线上一点,120PF PF ⋅=,若直线1PF 与圆222x y a +=相切,则双曲线C 的离心率为___________.16.已知椭圆22:143x y C +=的左、右焦点分别为12F F 、,过2F 且倾斜角为π4的直线l交椭圆C 于A B 、两点,则1F AB 的面积为___________.17.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,3)M -是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________. 18.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分,过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1163F B =,124F F =,则截口BAC 所在椭圆的离心率为______.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.直线AB 过抛物线24y x =的焦点F ,且与抛物线交于A 、B 两点,且线段AB 的中点的横坐标是3,则直线AB 的斜率是_____________.三、解答题21.椭圆2212516x y +=上一点P 到左焦点F 的距离为6,若点M 满足1()2OM OP OF =+(O 为坐标原点),则||OM =________.22.如图,已知椭圆22221(0)x y a b a b+=>>的离心率为12,过椭圆右焦点2F 作两条互相垂直的弦AB 与CD ,当直线AB 的斜率为0时,||||7AB CD +=.(Ⅰ)求椭圆的方程;(Ⅱ)求||||AB CD +的取值范围.23.已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点与短轴的一个端点恰好围成面积为3的等边三角形.(1)求C 的方程;(2)如图,设C 的左,右顶点分别为,A B ,右焦点为F ,P 是C 上异于,A B 的动点,直线AP 与直线x a =交于点D ,当点P 运动时,试判断以BD 为直径的圆与直线PF 的位置关系,并加以证明.24.已知抛物线C :()220y px p =>过点()2,4T -.(1)求抛物线C 的焦点到准线的距离;(2)已知点()4,0A ,过点()4,0B -的直线l 交抛物线C 于点M 、N ,直线MA ,NA分别交直线4x =-于点P 、Q .求PBBQ的值.25.(1)已知椭圆2222:1(0)x y E a b a b+=>>的焦距为1F 、2F 为左、右焦点,M 为椭圆E 上一点,且123F MF π∠=,123F MF S =△,求椭圆E 的方程. (2)过点()()00P m m a <<,的直线交椭圆E 于A 、B 两点,交直线4x m=于点M ,设MA AP λ=,MB BP μ=,求λμ+的值.26.在平面直角坐标系xOy 中,设动点P 到定点(1,0)F 的距离与到定直线:1l x =-的距离相等,记P 的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点F 的直线交曲线Γ于点A 、B (其中点A 在第一象限),交直线l 于点C ,且点F 是AC 的中点,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =,在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得3c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.2.B解析:B 【分析】根据题意,求得4p =,可得抛物线的方程,因为()95OBN OAM ABNM S S S +=梯形△△,所以49OMN OAB ABMN S S S +=梯形△△,根据面积公式,结合抛物线定义,即可求得AB ,不妨设AB 的斜率为k ,可得直线AB 的方程,与抛物线联立,根据韦达定理,可求得A B x x +的值,代入弦长公式,即可求得答案. 【详解】因为点F 到抛物线C 准线的距离为4,所以4p =,所以28y x =,设抛物线C 的准线与x 轴交于点H ,因为()95OBN OAM ABNM S S S +=梯形△△,所以()()11422192M N A BOMN OABABMNM N OH y y OF y y S S S AM BN y y ⋅-+⋅-+==+⋅-梯形△△,因为2OH OF ==,M N A B y y y y -=-,AM BN AB +=, 所以449OMN OAB ABMN S S S AB +==梯形△△,则9AB =,显然直线AB 的斜率存在,不妨设为k ,则():2AB y k x =-, 与抛物线联立可得:()22224840k x k x k -++=, 从而284A B x x k+=+, 所以28489A B A kB x x =++=+=,解得k =±. 故选:B【点睛】解题的关键是根据面积的关系,得到49OMN OAB ABMN S S S +=梯形△△,结合图象,可求得9AB =,再利用抛物线的弦长公式求解,考查分析计算,化简求值的能力,属中档题.3.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=.设()()1122,,,A x y B x y ,由韦达定理得124y y =-. 由AF mFB =,得12y my =-.解得212y y m m ==-212y y m m==121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.4.C解析:C 【分析】设双曲线的渐近线方程为y kx =,其中bk a=±,利用勾股定理可求得k 的值,即可求得b a ,再由双曲线的离心率公式21bea⎛⎫=+ ⎪⎝⎭即可求得双曲线的离心率.【详解】设双曲线的渐近线方程为y kx=,其中bka=±,圆()2239x y-+=的圆心为()3,0C,半径为3r=,圆心C到直线y kx=的距离为231kdk=+,2AB=,由勾股定理可得2222ABr d⎛⎫=+⎪⎝⎭,即2223191kk⎛⎫+=⎪+⎝⎭,解得22k=±,22ba∴=,因此,该双曲线的离心率为22222213c c a b bea a a a+⎛⎫====+=⎪⎝⎭.故选:C.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.D解析:D【分析】由题意画出图形,可知点P到直线BC的距离与点P到点1C的距离相等,所以点P的轨迹为以1C为焦点,以1BB为准线的抛物线.【详解】如图,点P是侧面11BCC B内的一动点,点P到直线1BB的距离即为点P到面11ABB A的距离,因为点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线, 故选:D . 【点睛】方法点睛:求动点的轨迹方法之定义法:将动点轨迹化归为某一基本轨迹(圆,椭圆,双曲线,抛物线等),然后利用基本轨迹的定义,直接写出方程.6.C解析:C 【分析】由椭圆的离心率为3和222a b c =+,求得3a b =,化简2219113333a b b b b b ++==+,结合基本不等式,即可求解. 【详解】由题意,椭圆22221(0)x y a b a b +=>>的离心率为3,即3c a =,即3c =,又由222a b c =+,可得2219b a =,即3a b =所以22191132333a b b b b b ++==+≥=,当且仅当133b b=,即13b =时,“=”成立.故选:C. 【点睛】 关键点睛:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.7.B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y . 4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,00433m c x n y =-⎧⎨=-⎩. 以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=,即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③.②-③整理得()()2000222--=-c x x c y a b ,将22200=-y c x 代入,整理得()22220223-=ca x c,于是()2222220233-=-=b ac y c x c ,最后将20x ,20y 代入双曲线方程,整理得22410c a =,所以e ==. 故选:B. 【点睛】本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF 和AF BF ⋅得到点之间的关系,考查了学生分析问题、解决问题的能力.8.C解析:C 【分析】利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理找出a,c 的等量关系,从而可求a,b 的比值,即可得出双曲线C 的渐近线方程. 【详解】解:因为F 1、F 2是双曲线的左、右焦点,点P 在双曲线右支上, 所以由双曲线定义可得|PF 1|-|PF 2|=2a , 又知|PF 1|+|PF 2|=4a ,所以|PF 1|=3a ,|PF 2|=a .在△PF 1F 2中,由余弦定理可得222121212||||||cos60=2||||PF PF F F PF PF +-⋅,即222(3)41=232a a c a a +-⨯⨯,所以3a 2=10a 2-4c 2,即4c 2=7a 2,又知b 2+a 2=c 2,所以223=4b a ,所以双曲线C 的渐近线方程为y x =20y ±=.故选:C. 【点睛】关键点点睛:利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理解三角形是解答本题的关键.9.C解析:C 【分析】先判断出圆1C 与2C 内含,根据条件可得动圆M 与圆1C ,圆2C 均相切,从而得出121216MC MC a C C +=+>=,即动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,又设12MC C 的内切圆的半径为r ' ,由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯,从而得出答案. 【详解】由圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,可得圆1C 的圆心()13,0C -,半径为1r a =,圆2C 的圆心()23,0C ,半径为21r = 由121261C C a r r =<-=-所以圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切. 所以动圆M 与圆1C 内切,与圆2C 外切,设动圆M 的半径为R 则11MC r R a R =-=-,221MC r R R =+=+ 所以121216MC MC a C C +=+>=所以动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,设其方程为22221(0)x y m n m n+=>> 所以12a m +=,设22c m n =-,则3c = 由P 是12MC C 的内心,设12MC C 的内切圆的半径为r ' 由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯ 即1212318MC MC C C +==,又由椭圆的定义可得121MC MC a +=+ 所以118a +=,则17a = 故选:C 【点睛】本题考查圆与圆的位置关系,考查根据圆与圆的相切求动圆圆心的轨迹,考查椭圆的定义的应用,解答本题的关键的由条件得出圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切,进一步由条件得出121216MC MC a C C +=+>=,即得出动点M 的轨迹,属于中档题.10.C解析:C 【分析】依题意可得c e a ==t ,从而求出双曲线方程,即可求出渐近线; 【详解】解:因为0t >,依题意可得双曲线2221(0)4x y t t t-=>+的离心率2c e a ====≤=当且仅当4t t=即2t =时,等号成立,此时离心率最大, 故双曲线的标准方程为22182y x -=,所以双曲线的渐近线方程为y x =,即12y x =±故选:C 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.11.A解析:A 【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54P x a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54b y xc a c =++,化简得3(54)30bx a c y bc -++=, 又直线FP 与圆222x y a +=相切,a=,345bcaa c=+人,变形为4293440160e e e---=,22(342)(348)0e e e e++--=,因为1e>,所以23420e e++>,所以23480e e--=,23e+=去).故选:A.【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c的齐次等式,本题中由点P到x轴的距离恰好为34b,得出P点坐标,从而可得直线FP方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e的方程,解之可得.12.C解析:C【分析】由已知得直线l的方程可得c,设()11,A x y()22,B x y代入椭圆的方程做差可得22ba18=,然后利用222b c a=-可得2a,再利用椭圆定义可得答案.【详解】易得直线l的方程为113(2)1442y x x=++=+,当0y=时,6x=-,所以6c=,设()11,A x y,()22,B x y,则22112222222211x ya bx ya b⎧+=⎪⎪⎨⎪+=⎪⎩,则2222212122x x y ya b--+=,整理得222212121222212121y y y y y yba x x x x x x-+-=-=-⋅-+-2221136448aa--=-⨯==,解得a=,则FAB的周长为4a=.故选:C.【点睛】本题考查了椭圆的定义、直线和椭圆的位置关系,在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程,这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.二、填空题13.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解解析:7【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值. 【详解】解:因为双曲线22:143x y C -=,所以2a =,c ==依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN ,所以1212MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ 中NQ =, 因为//NQ BA ,所以MNQ ∠为12,AB F F 的夹角,所以12cos ,7QN AB F F MN <>===故答案为:7【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.14.【分析】利用双曲线的定义分别表示再利用勾股定义和双曲线的定义建立等量关系求双曲线的离心率【详解】设根据双曲线的定义可知即得得中即得根据双曲线的定义即得所以得故答案为:【点睛】方法点睛:本题考查直线与 解析:173【分析】利用双曲线的定义分别表示1212,,,AF AF BF BF ,再利用勾股定义和双曲线的定义建立等量关系,求双曲线的离心率. 【详解】设2AF x =,22BF x =,1AF y =,根据双曲线的定义可知1212AF AF BF BF -=-, 即12y x BF x -=-,得1BF y x =+,120AF AF ⋅=,12AF AF ∴⊥,()()2223y x y x ∴+=+,得4y x =,12Rt AF F △中,222124AF AF c +=,即22174x c =,得217x =,根据双曲线的定义122AF AF a -=,即32x a =,得23x a =,所以2172173a c =,得173c e a ==. 故答案为:17【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.15.【分析】作出图形设与圆相切于点分析出可求得的值进而可得出双曲线的离心率为即可得解【详解】如下图所示设与圆相切于点则则则为的中点则为的中点由直角三角形的性质可得因为为的中点则由于双曲线的两渐近线关于轴 解析:2【分析】作出图形,设1PF 与圆222x y a +=相切于点E ,分析出23POF π∠=,可求得ba的值,进而可得出双曲线C 的离心率为21b e a ⎛⎫=+ ⎪⎝⎭,即可得解. 【详解】如下图所示,设1PF 与圆222x y a +=相切于点E ,则OE a =,120PF PF ⋅=,则12PF PF ⊥,1OE PF ⊥,则2//OE PF , O 为12F F 的中点,则E 为1PF 的中点,222PF OE a ∴==,由直角三角形的性质可得1OF OP =,因为E 为1PF 的中点,则1EOF POE ∠=∠, 由于双曲线的两渐近线关于y 轴对称,可得21POF EOF ∠=∠,所以,12EOF POE POF ∠=∠=∠,则1223EOF POE POF POF π∠+∠+∠=∠=,所以,23POF π∠=,则tan 3b a π==,因此,双曲线C 的离心率为2c e a =====. 故答案为:2. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.16.【分析】先求出直线的方程与椭圆方程联立消去x 求出|y1-y2|利用即可求出的面积【详解】由题意得:直线:设则有:消去x 得:7y2+6y-9=0∴即的面积为【点睛】求椭圆(双曲线)的焦点弦三角形的面积解析:7【分析】先求出直线l 的方程,与椭圆方程联立,消去x ,求出| y 1- y 2|,利用11212|1|||2F AB S F F y y =-△即可求出1F AB 的面积. 【详解】由题意得: 直线l :1y x =-, 设1122(,),(,)A x y B x y ,则有:2213412y x x y =-⎧⎨+=⎩消去x 得:7y 2+6y -9=0, ∴121269,77y y y y +=-=-12211111|||22|222F AB S F F y y -∴=⨯=⨯==△即1F AB 的面积为7【点睛】求椭圆(双曲线)的焦点弦三角形的面积: (1)直接求出弦长|AB |,利用11||2F AB AB d S =△; (2)利用11212|1|||2F AB S F F y y =-△. 17.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性解析:2212015x y +=【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,M 解得25c =代回方程即可.【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列所以2121224MF a MF F F c ===+,所以2a c =,b =故椭圆方程可设为2222143x y c c +=代(4,M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.18.【分析】取焦点在轴建立平面直角坐标系由题意及椭圆性质有为椭圆通径得结合及解出代入离心率公式计算即可【详解】解:取焦点在轴建立平面直角坐标系由及椭圆性质可得为椭圆通径所以又解得所以截口所在椭圆的离心率解析:13【分析】取焦点在x 轴建立平面直角坐标系,由题意及椭圆性质有BC 为椭圆通径,得2163b a =,结合24c =及222a b c =+解出,,a b c 代入离心率公式计算即可.【详解】解:取焦点在x 轴建立平面直角坐标系,由12BC F F ⊥及椭圆性质可得,BC 为椭圆通径,所以21163b F B a ==,1224F Fc ==又222a b c =+,解得6,2,a c b ===所以截口BAC 所在椭圆的离心率为13故答案为:13【点睛】求椭圆的离心率或其范围的方法:(1)求,,a b c 的值,由22222221c a b b a a a-==-直接求e ; (2)列出含有,,a b c 的齐次方程(或不等式),借助于222a b c =+消去b ,然后转化成关于e 的方程(或不等式)求解.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440y ky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x =,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-,所以111,y A x ⎛⎫--⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫--⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.1或【分析】根据抛物线方程得到设直线方程为与抛物线方程联立得:再根据线段的中点的横坐标为3求得即可得到直线斜率【详解】因为直线AB 过抛物线的焦点F 且与抛物线交于AB 两点所以斜率不为0设直线AB 方程为解析:1或1- 【分析】根据抛物线方程,得到()1,0F ,设直线方程为1x my =+,与抛物线方程联立得:2440y my --=,再根据线段AB 的中点的横坐标为3,126x x +=,求得m ,即可得到直线斜率. 【详解】因为直线AB 过抛物线24y x =的焦点F (1,0)且与抛物线交于A 、B 两点,所以斜率不为0,设直线AB 方程为1x my =+,与抛物线方程联立得:2440y my --=, 由韦达定理得:12124,4y y m y y +=⋅=-, 所以()21212424223x x m y y m +=++=+=⨯,解得1m =±所以直线的方程为1x y =±+, 所以1AB k =±. 故答案为:1或1-三、解答题21.2 【分析】根据222a c b -=求出左焦点F 的坐标,然后设P 的坐标00(,)P x y ,根据两点间的距离公式求出P 到左焦点的距离以及代入椭圆方程中解得P 的坐标,由1()2OM OP OF =+得到M 为PF 的中点,根据中点坐标公式求出M 的坐标,利用两点间的距离公式求出||OM 即可.【详解】由椭圆2212516x y +=得5a =,4b =, 左焦点(3,0)F -,设00(,)P x y ,则()2200336x y ++=又220012516x y +=解得053x =或0553x =-(舍去);又P 在椭圆上,则将053x =代入到椭圆方程中求出0y =所以点5(3P ,;由点M 满足1()2OM OP OF =+,则得M 为PF 中点,根据中点坐标公式求得2,3M ⎛- ⎝⎭,所以||(2OM =-=故答案为:2. 【点睛】本题考查椭圆的简单几何性质,会利用两点间的距离公式及中点坐标公式、点到直线的距离公式化简求值,同时也考查学生掌握向量的运用法则及向量模的求法,属于中档题.22.(Ⅰ)22143x y +=;(Ⅱ)48,77⎡⎤⎢⎥⎣⎦;【分析】(Ⅰ)通过当直线AB 的斜率为0时可知||2AB a =,22||b CD a =,结合12c e a ==,计算即得结论;(Ⅱ)分别对两条弦的斜率进行讨论,当两条弦中一条斜率为0时、另一条弦的斜率不存在时易得结论;当两条弦斜率均存在且不为0时,通过设直线AB 、CD 的方程并分别与椭圆方程联立,利用韦达定理及两点间距离公式,可得||||AB CD +的表达式,利用换元法及二次函数的性质计算即得结论. 【详解】解:(Ⅰ)当直线AB 的斜率为0时,直线CD 垂直于x 轴,||2AB a ∴=,22||b CD a =,即22||||27b AB CD a a+=+=, 12c e a ==,且222a b c =+,解得:2,a b ==, 所以椭圆方程为22143x y +=;(Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在, 由题意可知,||||7AB CD +=;②当两条弦斜率均存在且不为0时,设1(A x ,1)y ,2(B x ,2)y , 设直线AB 的方程为(1)y k x =-,则直线CD 的方程为1(1)y x k=--,将直线AB 的方程代入椭圆方程中,并整理得:2222(34)84120k x k x k +-+-=, ∴221212228412,3434k k x x x x k k-+==++,∴212212(1)|||34k AB x x k +=-=+,同理,2222112(1)12(1)||4343k k CD k k++==++, ∴2222222212(1)12(1)84(1)||||3434(34)(34)k k k AB CD k k k k ++++=+=++++,令21t k =+,则1t >,∴2222848484||||1149(41)(31)121()24t t AB CD t t t t t +===-++---+,1t >,∴101t<<,∴211494912()244t <--+,∴241111494912()24t <--+, ∴24884711497()24t <--+,∴48||||77AB CD +<, 综合①②可知,||||AB CD +的取值范围为:48,77⎡⎤⎢⎥⎣⎦. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.23.(1)22143x y +=;(2)相切,证明见解析.【分析】(1)待定系数法求C 的方程;(2)设出直线AP ,求出D 的坐标,表示出以BD 为直径的圆E 的方程,由“设而不求法”表示出E 到直线PF的距离,判断出圆与直线PF 相切.【详解】解:(1)设椭圆半焦距为c ,依题意有122c ⋅=∴1c =,22a c ==,b =故C 的方程为22143x y +=.(2)以BD 为直径的圆与直线PF 相切, 证明如下:易知()2,0A -,()2,0B ,()1,0F . 由题意可设直线AP 的方程为()()20y k x k =+≠. 则点D 坐标为()2,4k ,BD 中点E 的坐标为()2,2k .由()222143y k x x y ⎧=+⎪⎨+=⎪⎩得()2222341616120k x k x k +++-=.设点P 的坐标为()00,x y ,则2021612234k x k--=+.所以2026834k x k -=+,()00212234k y k x k =+=+. ①当12k =±时,点P 的坐标为31,2⎛⎫± ⎪⎝⎭,点D 的坐标为()2,2±.直线PF x ⊥轴,此时以BD 为直径的圆()()22211x y -+±=与直线PF 相切.②当12k ≠时,则直线PF 的斜率0204114PF y k k x k ==--,所以直线PF 的方程为()24114ky x k =--. 点E 到直线PF 的距离322228142||1414k k k d k k k +-===+-. 又因为||4||2BD k d ==,故以BD 为直径的圆与直线PF 相切. 综上,当点P 运动时,以BD 为直径的圆与直线PF 相切. 【点睛】(1)待定系数法、代入法可以求二次曲线的标准方程;(2)“设而不求”是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.24.(1)4p =;(2)1. 【分析】(1)求出p 后可得焦点到准线的距离.(2)设直线l 的方程为4x my =-,()11,M x y ,()22,N x y ,可用,M N 的坐标表示PB BQ ,再联立直线l 的方程和抛物线的方程,利用韦达定理化简PB BQ可得所求的值. 【详解】(1)因为()2,4T -在抛物线上,164p =即4p =,抛物线C 的焦点到准线的距离为4p =.(2)显然直线l 的斜率不为0,故设直线l 的方程为4x my =-,由248x my y x=-⎧⎨=⎩得28320y my -+=, 由()228320m ∆=->得216m >,设()11,M x y ,()22,N x y ,则128y y m +=,1232y y =,所以()12124my y y y =+.又114MA y k x =-,224NA y k x =-, 所以直线MA :()1144y y x x =--,NA :()2244yy x x =--, 令4x =-,得1184P y y x -=-,2284Q y y x -=-,所以121212124848P QPB y y x y my BQx y my y y --==⋅=⋅-- ()()121121211221221248844184844y y y my y y y y my y y y y y y y +---====-+--.【点睛】思路点睛:直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.25.(1)22:142x y E +=;(2)0.【分析】(1)首先根据题意得到c =11MF r =,22MF r =,得到122r r a +=,再根据12F MF S =△和余弦定理即可得到24a =,22b =,从而得到椭圆的标准方程. (2)首先设直线x ky m =+,与椭圆联立得到222(2)240k y kmy m +++-=,从而得到1221224y y km y y m +=--,联立4x m x ky m⎧=⎪⎨⎪=+⎩,得到244m M m km ⎛⎫- ⎪⎝⎭,.再根据MA AP λ=,MB BP μ=,得到2141m kmy λ-=-和2241m kmy μ-=-,计算λμ+即可. 【详解】(1)由已知得2c =,即c =设11MF r =,22MF r =,得到122r r a +=. 在12F MF △中,12121sin 23F MF r r S π==△,解得1283r r =. (22212122cos3r r r r π=+-,化简得:()2121283r r r r =+-,288433a =-⨯,解得24a =.。

北大附中2013届高三数学一轮复习单元训练:圆锥曲线与方程

北大附中2013届高三数学一轮复习单元训练:圆锥曲线与方程

北大附中2013届高三数学一轮复习单元训练:圆锥曲线与方程本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.过椭圆22221x y ab+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F P F ∠=,则椭圆的离心率为( )A .2B .3C .12D .13【答案】B 2. 过双曲线22221(0,0)x y a b ab-=>>的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B,C.若12A B B C =,则双曲线的离心率是 ( )A .B C D 【答案】C3.已知两直线x +ay +1=0与ax -y -3=0互相垂直,则a 的取值集合是( )A .{-1,1}B .{x |x ≠0}C .RD . 【答案】C4.过抛物线y =2x 2的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则x 1x 2=( )A .-2B .-12C .-4D .-116【答案】D5.若直线mx +ny =4与圆O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x29+y24=1的交点个数为( )A .至多一个B .2C .1D .0 【答案】B6.设P 为双曲线x 2-y212=1上的一点,F 1,F 2是该双曲线的左、右焦点,若△PF 1F 2的面积为12,则∠F 1PF 2等于( )A .π4B .π3C .π2D .2π3【答案】C7.方程为x 2a +y2b=1(a >b >0)的椭圆左顶点为A ,左、右焦点分别为F 1、F 2,D 是它短轴上的一个顶点,若3=+2,则该椭圆的离心率为( )A .12B .13C .14D .15【答案】D8.已知两点P (-1,1),Q (2,2),若直线l :x +my +m =0与线段PQ 的延长线相交.如图14-2,则m 的取值范围是( )A .⎝⎛⎭⎫13,32B .⎝⎛⎭⎫-3,-23C .(-∞,-3)D .⎝⎛⎭⎫-23,+∞【答案】B9.已知椭圆x24+y2b2=1(0<b <2)与y 轴交于A 、B 两点,点F 为该椭圆的一个焦点,则△ABF 面积的最大值为( )A .1B .2C .4D .8 【答案】B10.设F 为抛物线y 2=2px (p >0)的焦点,A ,B ,C 为该抛物线上三点,当++=0,且||+||+||=3时,此抛物线的方程为( )A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x 【答案】A 11.已知双曲线22122xy-=的准线过椭圆22214xy b+=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是( )A . 11,22K ⎡⎤∈-⎢⎥⎣⎦B . 11,,22K ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭C . ,22K ⎡∈-⎢⎣⎦D . ,22K ⎛⎡⎫∈-∞-+∞ ⎪⎢ ⎪⎝⎦⎣⎭【答案】A 12.若双曲线()222213x y a o a-=>的离心率为2,则a 等于( )A . 2B .C . 32D . 1【答案】B第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则|AF||FB|=________.【答案】1 314.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,线段F1F2被抛物线y2=2bx的焦点F分成5∶3的两段,则此椭圆的离心率为________.【答案】25515.已知F1(-c,0),F2(c,0)为椭圆2222x y1a b+=的两个焦点,P为椭圆上一点,且12PF PF·=c2,则此椭圆离心率的取值范围是______.【答案】[3216.设双曲线C:2222x y1a b-=(a>0,b>0)的右焦点为F,O为坐标原点,若以F为圆心,FO为半径的圆与双曲线C的一条渐近线交于点A(不同于O点).则△OAF的面积为______. 【答案】ab三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知椭圆方程为22yx 12+=,斜率为k(k ≠0)的直线l 过椭圆的上焦点且与椭圆相交于P ,Q 两点,线段PQ 的垂直平分线与y 轴相交于点M(0,m). (1)求m 的取值范围; (2)求△MPQ 面积的最大值.【答案】(1)设直线l 的方程为y=kx+1,由22y kx 1y x 12=+⎧⎪⎨+=⎪⎩,可得(k 2+2)x 2+2kx-1=0. 设P(x 1,y 1),Q(x 2,y 2),则1212222k 1x x x x .k 2k 2-+==-++,可得()121224y y k x x 2.k 2+=++=+ 设线段PQ 中点为N ,则点N 的坐标为(22k2k 2k 2-++,), 由题意有k MN ·k=-1,可得222m k 2k 1kk 2-+=-+ , 可得21m k 2=+,又k ≠0,所以0<m<1.2(2)设椭圆上焦点为F , 则S △MPQ =12·|FM|·|x 1-x 2所以△MPQ的面积为1m ).2<<设f(m)=m(1-m)3,则f ′(m)=(1-m)2(1-4m). 可知f(m)在区间(0,14)上单调递增,在区间(1142,)上单调递减. 所以,当m=14时,f(m)有最大值f(14)=27.256即当m=14时,△MPQ 的面积有最大值1618.已知点P 是⊙O :x 2+y 2=9上的任意一点,过P 作PD 垂直x 轴于D ,动点Q 满足D Q =23D P.(1)求动点Q 的轨迹方程;(2)若点G (1,1),则在动点Q 的轨迹上是否存在不重合的两点M 、N ,使O G =12(O M +O N)(O 是坐标原点).若存在,求出直线MN 的方程;若不存在,请说明理由. 【答案】(1)设P (x 0,y 0),Q (x ,y ), 依题意,则点D 的坐标为(x 0,0), 你的首选资源互助社区∴D Q =(x -x 0,y ),D P=(0,y 0).又D Q =23D P ,∴⎩⎪⎨⎪⎧x -x 0=0y =23y 0,即⎩⎪⎨⎪⎧x 0=x y 0=32y .∵点P 在⊙O 上,∴x 20+y 20=9,∴x29+y24=1, ∴点Q 的轨迹方程为x29+y24=1.(2)假设x29+y24=1上存在不重合的两点M (x 1,y 1),N (x 2,y 2)使O G =12(O M +O N),则G (1,1)是线段MN 的中点,有⎩⎨⎧x 1+x 22=1y 1+y22=1,即⎩⎨⎧x 1+x 2=2y 1+y 2=2.又M (x 1,y 1),N (x 2,y 2)在椭圆x29+y24=1上,∴⎩⎨⎧x 219+y 214=1 ①x 229+y224=1 ②,①-②,得(x 1-x 2)(x 1+x 2)9+(y 1-y 2)(y 1+y 2)4=0,∴k MN =y 1-y 2x 1-x 2=-49,∴直线MN 的方程为4x +9y -13=0,∴椭圆上存在不重合的两点M 、N ,使O G =12(O M +O N),此时直线MN 的方程为4x +9y -13=0.19.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,其中F 2也是抛物线C 2:y 2=4x 的焦点,M是C 1与C 2在第一象限的交点,且|MF 2|=53.(1)求椭圆C 1的方程;(2)已知菱形ABCD 的顶点A ,C 在椭圆C 1上,顶点B 、D 在直线7x -7y +1=0上,求直线AC 的方程. 【答案】(1)设M (x 1,y 1),∵F 2(1,0),|MF 2|=53.由抛物线定义,x 1+1=53,∴x 1=23,∵y 21=4x 1,∴y 1=263.∴M ⎝ ⎛⎭⎪⎫23,263,∵M 点在C 1上, ∴49a 2+83b 2=1,又b 2=a 2-1,∴9a 4-37a 2+4=0,∴a 2=4或a 2=19<c 2(舍去). ∴a 2=4,b 2=3,∴椭圆C 1的方程为x24+y23=1.(2)∵直线BD 的方程为7x -7y +1=0,四边形ABCD 为菱形,∴AC ⊥BD ,设直线AC 的方程为y =-x +m ,则⎩⎪⎨⎪⎧y =-x +m ,x 24+y23=1⇒7x 2-8mx +4m 2-12=0,∵A ,C 在椭圆C 1上,∴Δ>0,∴m 2<7.∴-7<m <7.设A (x 1,y 1),C (x 2,y 2),则x 1+x 2=8m7.y 1+y 2=(-x 1+m )+(-x 2+m )=-(x 1+x 2)+2m =-8m 7+2m =6m 7.∴AC 的中点坐标为⎝⎛⎫4m 7,3m7,由ABCD 为菱形可知点⎝⎛⎭⎫4m 7,3m7在直线BD :7x -7y +1=0上,∴7·4m 7-7·3m7+1=0,m =-1,∵m =-1∈(-7,7), ∴直线AC 的方程为y =-x -1,即x +y +1=0. 20.已知曲线C: 22yx 1a+=,直线l:kx-y-k=0,O 为坐标原点. (1)若该曲线的离心率为2求该曲线C 的方程; (2)当a=-1时,直线l 过定点M 且与曲线C 相交于两点M ,N ,试问在曲线C 上是否存在点Q 使得O M O N O Q ?+=λ若存在,求实数λ的取值范围;若不存在,请说明理由. 【答案】(1)若焦点在x 轴上,C:x 2+4y 2=1; 若焦点在y 轴上,C: 22yx 1.4+=(2)由题可知:直线l 与曲线C 都恒过定点(1,0),M(1,0);()22y k x 1x y 1⎧=-⎪⎨-=⎪⎩⇒(k 2-1)x 2-2k 2x+k 2+1=0, 可得222k 12k x y k 1k 1+==--,,即N(222k 12kk 1k 1+--,). 假设存在满足条件的Q ,O M O N O Q +=λ ⇒N QN Q1x x y y +=λ⎧⎪⎨=λ⎪⎩,则由22Q Qxy 1-=得()2222222QQ N Nx y 1x yλ-λ=+-=λ⇒λ2=22222222k2k 4k()()k 1k 1k 1-=---,∴k 2=224λλ-≥0且224λλ-≠1,∴λ2-4>0,∴k >2或λ<-2. 所以λ<-2或λ>2满足条件.21.如图,在x 轴上方有一段曲线弧Γ,其端点A 、B 在x 轴上(但不属于Γ),对Γ上任一点P 及点F 1(-1,0),F 2(1,0),满足|PF 1|+|PF 2|=直线AP ,BP 分别交直线l:x=2于R ,T 两点.(1)求曲线弧Γ的方程;(2)设R ,T 两点的纵坐标分别为y 1,y 2, 求证:y 1y 2=-1; (3)求|RT|的最小值.【答案】(1)由椭圆的定义,曲线Γ是以F 1(-1,0),F 2(1,0)为焦点的半椭圆, c=1,b 2=a 2-c 2=1.∴Γ的方程为22xy 12+= (y >0)(2)方法一:由(1)知,曲线Γ的方程为22xy 12+=(y >0),设P(x 0,y 0),则有2200x 2y 2+=,即220y 1x 22=--①又A(-0),0),从而直线AP ,BP 的方程为AP: y y y x BP :y x =+=-;,令x=2得R ,T 的纵坐标分别为12y y =+=-,∴21222y y y x 2=- ②将①代入②,得y 1y 2=-1.方法二:设P(m ,n),R(2,y 1),T(2,y 2),则由A ,P ,R 三点共线,得=①同理,由B ,P ,T三点共线得2=②由①×②得:2122y y n.2m 2=-由2222mm n 1n 122+=⇒=-,代入上式,2122m1y y 122m 22-==--, 即y 1y 2=-1.(3)由(2)得|RT|=|y 1-y 22=,当且仅当|y 1|=|y 2|,即y 1=-y 2时,取等号. 即|RT|的最小值是2. 22.过椭圆2212xy +=的左焦点F 作斜率为(0)k k ≠的直线交椭圆于A ,B 两点,使得AB 的中点M 在直线20x y +=上。

高三北师大版数学(理)一轮复习小题专项集训(15)圆锥曲线 含解析

高三北师大版数学(理)一轮复习小题专项集训(15)圆锥曲线 含解析

小题专项集训(十五)圆锥曲线(时间:40分钟满分:75分)一、选择题(每小题5分,共50分)1.设椭圆错误!+错误!=1(m〉n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为错误!,则此椭圆的方程为().A。

错误!+错误!=1 B.错误!+错误!=1C.x248+错误!=1 D.错误!+错误!=1解析依题意知:错误!=错误!,得m=4.由n2=m2-22=12,所以所求椭圆方程是错误!+错误!=1.答案B2.已知中心在原点的双曲线的顶点与焦点分别是椭圆错误!+错误!=1(a>b>0)的焦点与顶点,若双曲线的离心率为2,则椭圆离心率为( ).A.错误!B。

错误!C。

错误!D。

错误!解析依题意知双曲线的顶点(c,0),(-c,0),焦点为(a,0),(-a,0),则错误!=2,故椭圆的离心率e=错误!=错误!.答案B3.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F 重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( ).A.椭圆 B.双曲线 C.抛物线 D.圆解析由条件知|PM|=|PF|.∴|PO|+|PF|=|PO|+|PM|=|OM|=R〉|OF|.∴P点的轨迹是以O、F为焦点的椭圆.答案A4.P为椭圆错误!+错误!=1上一点,F1,F2为该椭圆的两个焦点,若∠F1PF2=60°,则错误!·错误!=( ).A.3 B. 3 C.2错误!D.2解析∵S△PF1F2=b2tan 错误!=3×tan 30°=错误!=错误!|错误!|·|错误!|·sin 60°,∴|错误!|·|错误!|=4,∴错误!·错误!=4×错误!=2.答案D5.已知中心在原点,焦点在x轴上的双曲线的离心率为错误!,其焦点到渐近线的距离为1,则此双曲线的方程为().A。

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》检测题(含答案解析)

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》检测题(含答案解析)

一、选择题1.已知抛物线2:2C y px =的焦点为F ,过抛物线上两点A ,B 分别向抛物线C 的准线作垂线,垂足为M ,N ,且()95OBN OAM ABNM S S S +=梯形△△,当直线AB 经过点F 且点F 到抛物线C 准线的距离为4时,直线l 的斜率为( )A .2±B .±C .8±D .±2.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .63.设1F 、2F 分别是椭圆22:1259x yC +=的左、右焦点,O 为坐标原点,点P 在椭圆C上且满足4OP =,则12PF F △的面积为( )A .3B .C .6D .94.已知F 是抛物线2:4E y x =的焦点,若直线l 过点F ,且与抛物线E 交于B ,C 两点,以BC 为直径作圆,圆心为A ,设圆A 与y 轴交于点M ,N ,则MAN ∠的取值范围是( )A .20,3π⎛⎫ ⎪⎝⎭B .20,3π⎛⎤ ⎥⎝⎦C .2,33ππ⎛⎤⎥⎝⎦D .2,33ππ⎡⎤⎢⎥⎣⎦5.已知椭圆222:14x y C b +=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足||||OF FP =,则b =( )A .3BC .5D 6.已知直线:(1)(2)230l a x a y a +++--=经过定点P ,与抛物线24x y =交于,A B 两点,且点P 为弦AB 的中点,则直线l 的方程为( ) A .230x y +-= B .210x y -+= C .210x y -+=D .20x y +-=7.已知椭圆22:11612x y C +=的左焦点为F ,点P 是椭圆C 上的动点,点Q 是圆()22:21T x y -+=上的动点,则PF PQ的最小值是( )A .12B .27C .23D8.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( ) A .(1,2]B .5(1,]3C .[2,)+∞D .4[,)3+∞9.设1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共点,且1PF <2PF ,线段1PF 垂直平分线经过2F ,若1C 和2C 的离心率分别为1e 、2e ,则129e e +的最小值( )A .2B .4C .6D .810.已知动点(),P x y 5a a=+(a 为大于零的常数)﹐则动点P 的轨迹是( ) A .线段B .圆C .椭圆D .双曲线11.已知抛物线1C 的顶点在坐标原点,焦点F 在y 轴正半轴上.若点F 到双曲线222:126x y C -=的一条渐近线的距离为2,则1C 的标准方程是( )A .2y x =B .2y x =C .28x y =D .216x y =12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.已知中心在原点,对称轴为坐标轴的椭圆,其中一个焦点坐标为()2,0F ,椭圆被直线:3l y x =+所截得的弦的中点横坐标为2-,则此椭圆的标准方程为______.14.F 是抛物线24y x =的焦点,过F 的直线l 交抛物线于A 、B 两点,O 为坐标原点,若10AF =,则OAB 的面积为__________.15.已知双曲线()2222:10,0x y C a b a b-=>>的离心率为e ,直线:l y x =与双曲线C 交于,M N 两点,若MN =,则e 的值是___________.16.如图,椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 为椭圆C 的上顶点,若12BF F △的外接圆的半径为23b,则椭圆C 的离心率为________.17.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,3)M -是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________.18.设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,点P 在C 的右支上,O 为坐标原点,若存在点P ,使PF OF =,且1cos 4OFP ∠=,则双曲线的离心率为___________.19.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.20.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________. 三、解答题21.如图,已知椭圆22221(0)x y a b a b+=>>的离心率为12,过椭圆右焦点2F 作两条互相垂直的弦AB 与CD ,当直线AB 的斜率为0时,||||7AB CD +=.(Ⅰ)求椭圆的方程;(Ⅱ)求||||AB CD +的取值范围.22.在平面直角坐标系xOy 中,已知A ,B 两点是椭圆22:19x E y +=的左、右顶点,P 为直线6x =上的动点,PA 与椭圆E 的另一交点为Q ,当点P 不为点()6,0时,过P作直线PH QB ⊥,垂足为H . (1)证明:直线PH 过定点M ;(2)过(1)中的定点M 作斜率为k 的直线与椭圆E 交于C ,D 两点,设直线AC ,AD 的斜率分别为1k ,2k ,试判断()12k k k ⋅+是否为定值?如果是定值,求出定值. 23.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 24.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.25.已知椭圆2222:1(0)x y C a b a b +=>>的焦点在圆223x y +=上,且离心率为32.(1)求椭圆C 的方程;(2)过原点O 的直线l 与椭圆C 交于,A B 两点,F 为右焦点,若FA 垂直于AB ,求直线l 的斜率.26.已知抛物线()2:20E y px p =>的焦点F ,抛物线E 上一点()3,t 到焦点的距离为4.(1)求抛物线E 的方程;(2)过点F 作直线l ,交抛物线E 于,A B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】根据题意,求得4p =,可得抛物线的方程,因为()95OBN OAM ABNM S S S +=梯形△△,所以49OMN OAB ABMN S S S +=梯形△△,根据面积公式,结合抛物线定义,即可求得AB ,不妨设AB 的斜率为k ,可得直线AB 的方程,与抛物线联立,根据韦达定理,可求得A B x x +的值,代入弦长公式,即可求得答案. 【详解】因为点F 到抛物线C 准线的距离为4,所以4p =,所以28y x =,设抛物线C 的准线与x 轴交于点H ,因为()95OBN OAM ABNM S S S +=梯形△△,所以()()11422192M N A BOMN OABABMNM N OH y y OF y y S S S AM BN y y ⋅-+⋅-+==+⋅-梯形△△,因为2OH OF ==,M N A B y y y y -=-,AM BN AB +=,所以449OMN OAB ABMN S S S AB +==梯形△△,则9AB =,显然直线AB 的斜率存在,不妨设为k ,则():2AB y k x =-, 与抛物线联立可得:()22224840k x k x k -++=, 从而284A B x x k+=+, 所以28489A B A kB x x =++=+=,解得22k =±. 故选:B【点睛】解题的关键是根据面积的关系,得到49 OMN OABABMNS SS+=梯形△△,结合图象,可求得9AB=,再利用抛物线的弦长公式求解,考查分析计算,化简求值的能力,属中档题.2.D解析:D【分析】先把抛物线214y x=-化为标准方程,求出焦点F(0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n+++-++的几何意义,数形结合求最值.【详解】由214y x=-,得24x y=-.则214y x=-的焦点为()0,1F-.准线为:1l y=.2222(1)(4)(5)m n m n+++-++几何意义是点()P m n,到()0,1F-与点()4,5A-的距离之和,如图示:根据抛物线的定义点()P m n,到()0,1F-的距离等于点()P m n,到l的距离,2222(1)(4)(5)m n m n++-++|PF|+|PA|=|PP1|+|PA|,所以当P运动到Q时,能够取得最小值.最小值为:|AQ1|=()156--=.故选:D.【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.3.D解析:D 【分析】设点()00,P x y ,求出20y 的值,由此可求得12PF F △的面积.【详解】在椭圆22:1259x y C +=中,5a =,3b =,则4c ==,所以,1228F F c ==,设点()00,P x y ,则22001259x y +=,可得220025259x y =-,4OP ===,解得208116y =,094y ∴=,因此,12PF F △的面积为1212011989224PF F S F F y =⋅=⨯⨯=△. 故选:D. 【点睛】方法点睛:本题考查椭圆中焦点三角形面积的计算,常用以下两种方法求解: (1)求出顶点P 的坐标,利用三角形面积公式求解;(2)利用余弦定理和椭圆的定义求得12PF PF ⋅的值,利用三角形面积公式求解.4.B解析:B 【分析】设设()11,B x y ,()22,C x y BC 的中点()00,A x y ,直线l :()1y k x =-与 2:4E y x =联立可得()2222240k x k x k -++=,由韦达定理计算12x x +,12x x ,再求以BC 为直径作圆的半径12r BC =,求出圆心A 点横坐标,设MN 的中点为D ,则12MAD MAN ∠=∠,由圆的性质可得0cos x MAD r∠=并求出其范围,进而可得MAD ∠的范围,再讨论斜率不存在时MAD ∠的值,即可求解. 【详解】由抛物线2:4E y x =可知,焦点()1,0F ,设()11,B x y ,()22,C x y BC 的中点()00,A x y 设直线l :()1y k x =-代入2:4E y x =可得()2222240k x k x k -++=,所以212224k x x k++= ,121=x x()()22222121212241612444k k x x x x x x k k +⎛⎫+-=+-=-= ⎪⎝⎭, ()()()2222212416111k BC k x x k k+=+-=+⨯,所以()2241k BC k +=,以BC 为直径作圆的半径()222112k r BC k+==,圆心为BC 的中点()20122122k x x x k+=+=, 设MN 的中点为D ,则12MAD MAN ∠=∠, 则()()()22202222221111cos 1222212121k x k k MAD r k k k k ++∠====+<+=+++ 且1cos 2MAD ∠>,所以03MAD π<∠<, 当k 不存在时,1,2x y ==±,此时2r ,01x =,1cos 2MAD ∠=,3MAD π∠=,所以03MAD π<∠≤可得203MAN π<∠≤, 所以MAN ∠的取值范围是20,3π⎛⎤⎥⎝⎦故选:B 【点睛】关键点点睛:本题解题的关键点是联立直线与抛物线的方程,求出圆的半径和圆心坐标,由圆的性质知圆心与弦中点的连线与弦垂直可求出12MAN ∠的范围,进而可计算MAN ∠的范围.5.B解析:B 【分析】首先由椭圆的对称性得到点P 的位置,再求解,c b 的值. 【详解】根据椭圆的对称性可知,若椭圆上只有一个点满足OF FP =,这个点只能是右顶点,即2a c c a c -=⇒=,由条件可知242a a =⇒=,则1c =,那么b ==故选:B 【点睛】关键点点睛:本题的关键是确定点P 的位置,从而得到2a c =这个关键条件.6.B解析:B 【分析】利用点差法求出直线斜率,即可得出直线方程. 【详解】由直线:(1)(2)230l a x a y a +++--=得(2)(23)0a x y x y +-++-= 所以20230x y x y +-=⎧⎨+-=⎩ 解得11x y =⎧⎨=⎩ 则()1,1P设1122(,),(,)A x y B x y ,则21122244x y x y ⎧=⎨=⎩,两式相减得121212()()4()x x x x y y -+=-, 即121212142AB y y x x k x x -+===-, 则直线方程为11(x 1)2y -=-,即210x y -+=. 故选:B. 【点睛】方法点晴:点差法是求解中点弦有关问题的常用方法.7.B解析:B 【分析】作出图形,利用椭圆的定义以及圆的几何性质可求得PF PQ的最小值.【详解】 如下图所示:在椭圆22:11612x y C +=中,4a =,23b =222c a b -,圆心()2,0T 为椭圆C 的右焦点,由椭圆定义可得28PF PT a +==,8PF PT ∴=-,由椭圆的几何性质可得a c PT a c -≤≤+,即26PT ≤≤,由圆的几何性质可得1PQ PT QT PT ≤+=+, 所以,899211111617PF PF PT PQPT PT PT -≥==-≥-=++++. 故选:B. 【点睛】关键点点睛:解本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应圆锥曲线的定义,本题中注意到2PF PT a +=,进而可将PF 用PT 表示;(2)利用圆的几何性质得出PT r PQ PT r -≤≤+,可求得PQ 的取值范围; (3)利用椭圆的几何性质得出焦半径的取值范围:a c PT a c -≤≤+.8.A解析:A 【分析】根据题中条件,由双曲线的定义,得到2PF a =,13PF a =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又213PF PF =,所以222PF a =,即2PF a =,则13PF a =, 因为双曲线中,1212+≥PF PF F F ,即42a c ≥,则2ca≤,即2e ≤, 又双曲线的离心率大于1,所以12e <≤. 故选:A. 【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可.9.D解析:D 【分析】设椭圆和双曲线的方程,由题意可得2122PF F F c ==,再利用椭圆和双曲线的定义分别求出1PF ,即可得122a a c +=,计算12112e e +=,()121212111992e e e e e e ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可求最值. 【详解】设椭圆1C 的方程为2222111x y a b +=,则222111c a b =-,设双曲线2C 的方程为2222221x y a b -=,则222222c a b =+,因为椭圆1C 和双曲线2C 的焦点相同,所以2212c c =,设12c c c ==即22221122a b a b -=+,因为P 是椭圆1C 和双曲线2C 的一个公共点, 所以1212+=PF PF a ,2122PF PF a -=,因为线段1PF 垂直平分线经过2F ,所以2122PF F F c ==,所以1122PF a c =-,且1222PF c a =-, 所以122222a c c a -=-,可得122a a c +=, 所以11c e a =,22c e a =,所以1212121122a a a a ce e c c c c++=+===, 所以()211212121291111991022e e e e e e e e e e ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭()11101023822⎛≥+=+⨯= ⎝, 当且仅当21129e e e e =,即213e e =时等号成立, 故选:D.【点睛】关键点点睛:本题解题的关键点是利用已知条件得出122a a c +=,进而可得12112e e +=, 再利用基本不等式可求最值.10.C解析:C 【分析】由a 为大于零的常数,可知5a a+的最小值,再根据两点间距离公式得几何意义以及椭圆定义判断轨迹. 【详解】的几何意义为点(),P x y 与点(0,2)A 间的距离,的几何意义为点(),P x y 与点(0,2)B -间的距离,且4AB =又由a为大于零的常数,可知54a a +≥=>, 当且仅当5aa=,即a =54a a=+>, 即动点P 到点A 与到点B 的距离之和为定值,且大于AB , 所以动点P 的轨迹为椭圆, 故选:C. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. 椭圆的定义揭示了椭圆的本质属性,正确理解掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.11.D解析:D 【分析】先根据双曲线的方程求解出双曲线的渐近线方程,再根据点到直线的距离公式求解出抛物线方程中的p ,则抛物线方程可求. 【详解】双曲线2C 的渐近线方程是22026x y -=,即y =.因为抛物线的焦点()0,02p F p ⎛⎫> ⎪⎝⎭0y -=的距离为2,2=,即8p =,所以1C 的标准方程是216x y =,故选:D . 【点睛】方法点睛:求解双曲线方程的渐近线方程的技巧:已知双曲线方程22221x y a b-=或22221y x a b -=,求解其渐近线方程只需要将方程中的“1”变为“0”,由此得到的y 关于x 的一次方程即为渐近线方程. 12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y ,由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=,所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】设椭圆方程为代入直线方程整理就后应用韦达定理结合弦中点横坐标求得关系再由可得得椭圆方程【详解】设椭圆方程为由得所以由题意又所以椭圆方程为故答案为:【点睛】方法点睛:本题考查求椭圆的标准方程解解析:22184x y +=【分析】设椭圆方程为22221(0)x y a b a b+=>>,代入直线方程整理就后应用韦达定理结合弦中点横坐标求得,a b 关系,再由2c =可得,a b 得椭圆方程.【详解】设椭圆方程为22221(0)x ya b a b +=>>,由222213x y a b y x ⎧+=⎪⎨⎪=+⎩,得2222222()690a b x a x a a b +++-=,所以212226a x x a b +=-+,由题意222622a a b-=-⨯+,222a b =, 又2c =,所以22224a b b c -===,28a =,椭圆方程为22184x y +=.故答案为:22184x y +=.【点睛】方法点睛:本题考查求椭圆的标准方程.解题方法是韦达定理.由直线方程与椭圆方程联立方程组,消元后应用韦达定理可得出弦中点坐标,从而得出,a b 的关系.然后结论半焦距c 可求解.14.【分析】设点为第一象限内的点设点利用抛物线的定义可求得点的坐标可得出直线的方程将直线的方程与抛物线的方程联立列出韦达定理求出的值由此可求得的面积【详解】设点为第一象限内的点设点抛物线的准线方程为由抛解析:103【分析】设点A 为第一象限内的点,设点()11,A x y 、()22,B x y ,利用抛物线的定义可求得点A 的坐标,可得出直线AB 的方程,将直线AB 的方程与抛物线的方程联立,列出韦达定理,求出12y y -的值,由此可求得OAB 的面积. 【详解】设点A 为第一象限内的点,设点()11,A x y 、()22,B x y ,抛物线24y x =的准线方程为1x =-,由抛物线的定义可得1110AF x =+=,解得19x =,由于点A 为第一象限内的点,则10y >,可得16y ==,即点()9,6A ,直线AF 的斜率为63914AF k ==-,所以,直线AB 的方程为()314y x =-,即413x y =+, 联立24134x y y x⎧=+⎪⎨⎪=⎩,消去x 并整理可得216403y y --=, 由韦达定理可得12163y y +=,21161626333y y ∴=-=-=-, 因此,1211210162233OAB S OF y y =⋅-=⨯⨯+=△. 故答案为:103. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.15.【分析】联立方程组求出M 的坐标利用整理得求出离心率【详解】不妨设点在第一象限联立得又∴则整理得所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件找到abc 的关系消去b 构造离心率e【分析】联立方程组求出M的坐标,利用MN =,整理得225b a =,求出离心率.【详解】不妨设点(),M x y 在第一象限,联立22221x y a b y x⎧-=⎪⎨⎪=⎩,得222222a b x y b a ==-,又MN =,∴2222b x y +=,则2222222a b b b a =-,整理得225b a =,所以==e故答案为:6 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.16.【分析】由题意可得的外接圆的圆心在线段上可得在中由勾股定理可得:即结合即可求解【详解】由题意可得:的外接圆的圆心在线段上设圆心为则在中由勾股定理可得:即所以即所以所以故答案为:【点睛】方法点睛:求椭 解析:12【分析】由题意可得12BF F △的外接圆的圆心在线段OB 上,1OF c =,123bMF BM ==,可得 13OM b =,在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,结合222b ac =-即可求解. 【详解】由题意可得:12BF F △的外接圆的圆心在线段OB 上,1OF c =, 设圆心为M ,则2133OM OB BM b b b =-=-=, 在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以223b c =,即2223a c c -=,所以2a c =,所以12c e a ==, 故答案为:12. 【点睛】方法点睛:求椭圆离心率的方法: (1)直接利用公式c e a=; (2)利用变形公式221be a=-;(3)根据条件列出关于,a c 的齐次式,两边同时除以2a ,化为关于离心率的方程即可求解.17.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性解析:2212015x y +=【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,M 解得25c =代回方程即可.【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列所以2121224MF a MF F F c ===+,所以2a c =,b =故椭圆方程可设为2222143x y c c +=代(4,M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.18.2【分析】在焦点三角形中由余弦定理求得关系再求离心率【详解】设双曲线的左焦点为在中由余弦定理得故答案为:2【点晴】求离心率的关键是得的关系本题是由余弦定理得出解析:2 【分析】在焦点三角形中由余弦定理求得,a c 关系,再求离心率. 【详解】设双曲线的左焦点为E ,在EFP △中,2EF c =,2PF c PE a c ==+,,1cos 4EFP ∠=. 由余弦定理()222421cos 224c c c a EFP c c+-+∠==⋅⋅ ,得2c e a ==. 故答案为:2 【点晴】求离心率的关键是得,,a b c 的关系,本题是由余弦定理得出.19.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:825-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan b b BAO CFO a c ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFOa c BDC BAO CFOb bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:82-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.20.4【分析】设出的坐标写出坐标满足的关系式根据题意写出直线的方程求出的横坐标计算得出的值【详解】解:设则则所以直线的方程为令可得同理有直线的方程为令可得则故答案为:【点睛】圆锥曲线中求定值问题常见的方解析:4 【分析】设出,,M N P 的坐标,写出坐标满足的关系式.根据题意,写出直线PM ,PN 的方程,求出,A B 的横坐标,计算得出mn 的值. 【详解】解:设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=-直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()2222414a c a c -==-故答案为:4 【点睛】圆锥曲线中求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.三、解答题21.(Ⅰ)22143x y +=;(Ⅱ)48,77⎡⎤⎢⎥⎣⎦;【分析】(Ⅰ)通过当直线AB 的斜率为0时可知||2AB a =,22||b CD a =,结合12c e a ==,计算即得结论;(Ⅱ)分别对两条弦的斜率进行讨论,当两条弦中一条斜率为0时、另一条弦的斜率不存在时易得结论;当两条弦斜率均存在且不为0时,通过设直线AB 、CD 的方程并分别与椭圆方程联立,利用韦达定理及两点间距离公式,可得||||AB CD +的表达式,利用换元法及二次函数的性质计算即得结论. 【详解】解:(Ⅰ)当直线AB 的斜率为0时,直线CD 垂直于x 轴,||2AB a ∴=,22||b CD a =,即22||||27b AB CD a a+=+=, 12c e a ==,且222a b c =+,解得:2,a b ==, 所以椭圆方程为22143x y +=;(Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在,由题意可知,||||7AB CD +=;②当两条弦斜率均存在且不为0时,设1(A x ,1)y ,2(B x ,2)y , 设直线AB 的方程为(1)y k x =-,则直线CD 的方程为1(1)y x k=--,将直线AB 的方程代入椭圆方程中,并整理得:2222(34)84120k x k x k +-+-=, ∴221212228412,3434k k x x x x k k-+==++,∴212212(1)|||34k AB x x k +=-=+,同理,2222112(1)12(1)||4343k k CD k k++==++, ∴2222222212(1)12(1)84(1)||||3434(34)(34)k k k AB CD k k k k ++++=+=++++,令21t k =+,则1t >,∴2222848484||||1149(41)(31)121()24t t AB CD t t t t t +===-++---+,1t >,∴101t<<,∴211494912()244t <--+,∴241111494912()24t <--+, ∴24884711497()24t <--+,∴48||||77AB CD +<, 综合①②可知,||||AB CD +的取值范围为:48,77⎡⎤⎢⎥⎣⎦. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.22.(1)证明见解析;(2)是,定值为112-. 【分析】(1)设()00 ,Q x y ,()()6,0P t t ≠,法一:根据椭圆方程求得19QA QB k k ⋅=-,根据9QA PA tk k ==,即可求得QB k ,根据PH QB ⊥,可求得PH k ,可得直线PH 的方程,即可得答案;法二:根据9AP QA tk k ==,可得直线AP 的方程,与椭圆联立,根据韦达定理,可得Q 点坐标,根据PH QB ⊥,可求得PH k ,可得直线PH 的方程,即可得答案; (2)设()11,C x y ,()22,D x y ,则直线CD 的方程为()5y k x =-,与椭圆联立,根据韦达定理,可得1212,x x x x +⋅表达式,即可得()12k k k ⋅+的表达式,化简整理,即可得答案. 【详解】(1)法一:由题意得:(3,0),(3,0)A B -,设()00 ,Q x y ,()()6,0P t t ≠,则220019x y += ∴00001339QA QB y y k k x x ⋅=⋅=-+-,9QA PA t k k == ∴1QB k t=-∵PH QB ⊥,∴1PH QB k k ⋅=-,∴PH k t =,直线PH 的方程为()6y t t x -=-, 即()5y t x =-,所以过定点()5,0M ,法二:由题意得:(3,0),(3,0)A B -,设()00,Q x y ,()()6,0P t t ≠,9AP QA tk k ==∴直线AP 的方程为()39ty x =+, 由()223919t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得()2222969810t x t x t +++-=. ∴20298139t x t--⋅=+,∴2022739t x t -=+,()0023699t y t t x +=+=, ∴2222736,99t t Q tt ⎛⎫-⎪++⎝⎭,∴222619 27339QBtt k t tt+==---+. ∵PH QB ⊥,∴1PH QB k k ⋅=-, ∴PH k t =,∴PH 的方程为()6y t t x -=-,即()5y t x =-,所以过定点()5,0M(2)设()11,C x y ,()22,D x y ,则直线CD 的方程为()5y k x =-由()22519y k x x y ⎧=-⎪⎨+=⎪⎩.得()2222199022590k x k x k +-+-=, ∴22221222122(90)4(19)(2259)0901*******k k k k x x k k x x k ⎧⎪∆=--+->⎪⎪+=⎨+⎪⎪-=⎪+⎩∴()()()()()()()122121121222153533333x x x x y y k k k k k x x x x -++-+⎛⎫⋅+=⋅+= ⎪+⎭⋅+++⎝ ()()1212222121222304813957612x x x x k k x x x x k -⋅+--++⋅===-+为定值 【点睛】解题的技巧为:根据椭圆方程可得19QA QB k k ⋅=-,根据QA PA k k =,可直接求得QB k ,简化计算,提高正确率,考查计算化简的能力,属中档题.23.(1)22194x y +=;(2)最大值为.【分析】(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取M ⎛ ⎝⎭,1,N ⎛ ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题24.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>* 且124y y m +=,124y y b =-.2OA OB k k =,所以12122y y x x =, 又2114y x =,2224y x =,因此可得128y y =即48b -=,2b =- 代入()*得220m ->,m ∴<m >所以直线AB 方程为2x my =-,由此可知直线AB 过定点(2,0)-.【点睛】方法点睛:本题考查主要考查抛物线中直线过定点问题,解题方法是设而不求的思想方程,即设直线方程为x my b =+,设交点坐标为11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程后应用韦达定理得1212,y y y y +,代入已知求出参数值,然后由直线方程得定点坐标.25.(1) 2214x y +=;(2) 【分析】(1)由焦点在圆上解得c=2a=,2221b a c=-=,方程可求;(2)因为FA垂直于AB可知点A为椭圆与圆的交点,联立方程求得坐标,则直线斜率可求.【详解】解:(1)椭圆2222:1(0)x yC a ba b+=>>的焦点在圆223x y+=上,所以203c+=,即c=,因为2cea==得2a=,2221b a c=-=,故椭圆方程为2214xy+=(2)因为FA垂直于AB ,即点A既在椭圆上又在以OF为直径的圆上,所以22221434xyx y⎧+=⎪⎪⎨⎛⎪-+=⎪⎝⎭⎩解得xy⎧=⎪⎪⎨⎪=⎪⎩所以A⎝⎭故AlAykx==所以直线l的斜率为【点睛】关键点点晴:本题的关键在于求出点A的坐标点.26.(1)24y x=;(2)220x y+-=.【分析】(1)抛物线的定义可得342p⎛⎫--=⎪⎝⎭,即可求出p得值,进而可得抛物线E的方程;(2)设()11,A x y、()22,B x y,则21122244y xy x⎧=⎨=⎩,利用点差法可求直线l的斜率,再求出点()1,0F,利用点斜式即可求出直线l的方程.【详解】(1)由抛物线()2:20E y px p=>可得准线方程为:2px=-,由抛物线的定义可得:342p⎛⎫--=⎪⎝⎭,解得:2p=,所以抛物线E的方程为24y x=,(2)设()11,A x y、()22,B x y,则21122244y xy x⎧=⎨=⎩,两式相减可得()2212124y y x x-=-,所以()()()1212124y y y y x x-+=-,因为线段AB中点的纵坐标为1-,所以122y y+=-,所以直线l 的斜率1212124422y y k x x y y -====--+-, 因为()1,0F ,所以直线l 的方程为:()21y x =--, 即220x y +-=. 【点睛】思路点睛:对于中点弦问题,多采用设而不求的方法,利用整体代入的思想求出直线的斜率,再结合直线所过的点即可得直线的方程.。

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》测试(有答案解析)(4)

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》测试(有答案解析)(4)

一、选择题1.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出,如图①,一个光学装置由有公共焦点1F 、2F 的椭圆Γ与双曲线Ω构成,现一光线从左焦点1F 发出,依次经Ω与Γ反射,又回到了点1F ,历时1t 秒;若将装置中的Ω去掉,如图②,此光线从点1F 发出,经Γ两次反射后又回到了点1F ,历时2t 秒;若218t t =,则Γ与Ω的离心率之比为( )A .3:4B .2:3C .1:2D .22.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( ) A .13B 3C .12D .223.已知双曲线22221x y a b -=的两个焦点分别为21(,0)(,0)(0)F c F c c ->,过点2,0a P c ⎛⎫ ⎪⎝⎭的直线与双曲线的左右两支分别交于,A B 两点,且122F A F B =-,求双曲线的离心率( ) A 2B 3C 5D 64.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与圆()2239x y -+=相交于A 、B 两点,若2AB =,则该双曲线的离心率为( )A .5B .2C .3D .45.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,上顶点为A ,右顶点为B ,若FAB 为直角三角形,则椭圆C 的离心率为( )A .22B .312- C .51- D .326.若1F ,2F 是双曲线22221(0,0)y xa b a b-=>>与椭圆2251162x y +=的共同焦点,点P 是两曲线的一个交点,且12PF F △为等腰三角形,则该双曲线的渐近线方程是( ) A .22y x =±B .24y x =±C .7y x =±D .37y x =±7.已知M 是抛物线2:C x y =上一点,记点M 到抛物线C 的准线的距离为1d ,到直线:3490l x y ++=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .48.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .129.设F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,P 是双曲线C 右支上一点,若|PF 1|+|PF 2|=4a ,且∠F 1PF 2=60°,则双曲线C 的渐近线方程是( )A 30x y ±=B .270x =C 320x y ±=D .230x ±=10.在平面直角坐标系中,双曲线C 的标准方程为2221(0)4x y t t t-=>+,则双曲线的离心率取得最大值时,双曲线的渐近线方程为( )A .2y x =±B .3y x =±C .12y x =±D .13y x =±11.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( )A .(1,2]B .5(1,]3C .[2,)+∞D .4[,)3+∞12.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( ) A.B .(6,8)C.D .(6,10)二、填空题13.设P 是抛物线28y x =上的一个动点,若点B 为()3,2,则PB PF +的最小值为________________.14.已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,点()4,4M ,若点P 为椭圆C 上的一个动点,则1PM PF -的最小值为____________.15.设1F ,2F 为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,过2F 的直线l 交双曲线C 的右支于A 、B 两点,且120AF AF ⋅=,2212AF BF =,则双曲线C 的离心率为___________.16.已知双曲线()2222:10,0x y C a b a b-=>>的左、焦点为1F 、2F ,点P 为双曲线C 的渐近线上一点,120PF PF ⋅=,若直线1PF 与圆222x y a +=相切,则双曲线C 的离心率为___________.17.在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b+=>>的焦距为,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,过O 作⊥OD AB 交AB 于点D ,点D 的坐标为()2,1,则椭圆C 的方程为_________.18.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.19.已知椭圆2212x y +=上存在相异两点关于直线y x t =+对称,则实数t 的取值范围是______.20.已知抛物线C : y 2=2px (p >0),直线l :y = 2x + b 经过抛物线C 的焦点,且与C 相交于A 、B 两点.若|AB | = 5,则p = ___.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为22,且经过点21,2A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.椭圆2222:1(0)x y E a b a b +=>>的左焦点为1F ,右焦点为2F ,离心率2e =,过1F 的直线交椭圆于A ,B 两点,且2ABF 的周长为2. (1)求椭圆E 的方程;(2)若直线AB 3,求2ABF 的面积.23.已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上. (1)求C 的方程;(2)若椭圆C 的左右焦点分别为12,F F ,过点1F 的直线l 与C 交于A 、B 两点,12AF F △与12BF F △的面积分别为12,S S ,122S S =,求直线l 的斜率.24.如图,已知抛物线2:2(0)M x py p =>的焦点为(0,1)F ,过焦点F 作直线交抛物线于A ,B 两点,在A ,B 两点处的切线相交于N ,再分别过A ,B 两点作准线的垂线,垂足分别为C ,D .(1)求证:点N 在定直线上;(2)是否存在点N ,使得BDN 的面积是ACN △的面积和ABN 的面积的等差中项,若存在,请求出点N 的坐标,若不存在,请说明理由.25.设抛物线2:4C y x =,点()4,0A ,()4,0B -,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.26.已知抛物线()2:20E y px p =>的焦点F ,抛物线E 上一点()3,t 到焦点的距离为4.(1)求抛物线E 的方程;(2)过点F 作直线l ,交抛物线E 于,A B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设122F F c =,设椭圆Γ的长轴长为12a ,双曲线Ω的实轴长为22a ,设光速为v ,推导出112a vt =,利用椭圆和双曲线的定义可得出1243a a =,由此可计算得出Γ与Ω的离心率之比. 【详解】设122F F c =,设椭圆Γ的长轴长为12a ,双曲线Ω的实轴长为22a , 在图②中,1CDF 的周长为111212124CF DF CD CF CF DF DF a vt ++=+++==,所以,1148a vt =,可得112a vt =,在图①中,由双曲线的定义可得2122AF AF a -=,由椭圆的定义可得1212BF BF a +=, 22AF BF AB =-,则2121111222AF AF BF AB AF a BF AB AF a -=--=---=,即()111222a AB AF BF a -++=,由题意可知,1ABF 的周长为111AB AF BF vt ++=,即112111322222a a a a vt a =-=-=, 所以,1243a a =. 因此,Γ与Ω的离心率之比为122112:::3:4c ce e a a a a ===. 故选:A. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.2.B解析:B 【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.3.B解析:B 【分析】先根据题意画出图形,再根据122F A F B=-,得到21F AF B B P ∽,根据相似比得到222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭,即可求出离心率. 【详解】 解:如图所示:122F A F B =-,12//F A F B ∴,12AF B BF P ∴∽,且122F PF P=, 即222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭, 两边同时除以a 得2a c c a c a a c ⎛⎫+=⨯- ⎪⎝⎭, 即122e e e e+=-, 又1e >,解得:3e = 故选:B. 【点睛】关键点点睛:本题解题的关键是利用三角形相似比得到,a c 的关系式,进而求得离心率.4.C解析:C 【分析】设双曲线的渐近线方程为y kx =,其中bk a=±,利用勾股定理可求得k 的值,即可求得b a,再由双曲线的离心率公式e =即可求得双曲线的离心率. 【详解】设双曲线的渐近线方程为y kx =,其中bk a=±, 圆()2239x y -+=的圆心为()3,0C ,半径为3r =,圆心C 到直线y kx =的距离为d =,2AB =,由勾股定理可得2222AB r d ⎛⎫=+ ⎪⎝⎭,即2219+=,解得k =±ba∴=,因此,该双曲线的离心率为3c e a =====. 故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.C解析:C 【分析】作出图形,可知FAB 是以FAB ∠为直角的直角三角形,可得出0AF AB ⋅=,可得出a 、b 、c 的齐次等式,进而可求得椭圆C 的离心率.【详解】如下图所示,可知AFB ∠、ABF ∠均为锐角, 所以,FAB 是以FAB ∠为直角的直角三角形,由题意可知,点(),0F c -、()0,A b 、(),0B a ,则(),AF c b =--,(),AB a b =-,20AF AB ac b ⋅=-+=,可得220a c ac --=,即220c ac a +-=,在等式220c ac a +-=的两边同时除以2a 可得210e e +-=,01e <<,解得512e =. 故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.6.B解析:B 【分析】由题意可得双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,由12PF F △为等腰三角形,所以2126PF F F ==,从而可求得1221064PF a PF =-=-=,再利用双曲线的定义可求得在双曲线中1a =,22b =,进而可求出双曲线的渐近线方程 【详解】解:因为椭圆2251162x y +=的焦点坐标为(0,3),所以双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,设点P 为两曲线在第一象限的交点,由于在椭圆中,12PF F △为等腰三角形,所以2126PF F F ==, 所以1221064PF a PF =-=-=,在双曲线中,212642a PF PF =-=-=,所以1a =,代入229a b +=,得22b =,所以该双曲线的渐近线方程为2422ay x x x b=±=±=±,故选:B【点睛】关键点点睛:此题考查椭圆、双曲线的定义的应用,解题的关键由12PF F△为等腰三角形和椭圆的定义求出21,PF PF的值,属于中档题7.B解析:B【分析】作出图形,过点M分别作抛物线C的准线l和直线3490x y++=的垂线,垂足分别为点B、A,由抛物线的定义得出1d MB MF==,可得出12d d MF MA+=+,利用FM与直线3490x y++=垂直时,12d d+取最小值,然后计算出点F到直线3490x y++=的距离,即为所求.【详解】如下图所示:过点M分别作抛物线C的准线l和直线3490x y++=的垂线,垂足分别为点B、A,由抛物线的定义可得1d MB MF==,则12d d MF MA+=+,当且仅当FM与直线3490x y++=垂直时,12d d+取最小值,点F到直线3490x y++=的距离为22130494234d⨯+⨯+==+,因此,12d d+的最小值为2.故答案为:2. 【点睛】关键点点睛:本题求出抛物线上一点到准线和定直线的距离之和最小值问题,解题的关键就是利用F 、A 、M 三点共线取最小值,结合抛物线的定义转化求解.8.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=,由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =, 所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△10===.故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.9.C解析:C 【分析】利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理找出a,c 的等量关系,从而可求a,b 的比值,即可得出双曲线C 的渐近线方程. 【详解】解:因为F 1、F 2是双曲线的左、右焦点,点P 在双曲线右支上, 所以由双曲线定义可得|PF 1|-|PF 2|=2a , 又知|PF 1|+|PF 2|=4a ,所以|PF 1|=3a ,|PF 2|=a .在△PF 1F 2中,由余弦定理可得222121212||||||cos60=2||||PF PF F F PF PF +-⋅,即222(3)41=232a a c a a +-⨯⨯,所以3a 2=10a 2-4c 2,即4c 2=7a 2,又知b 2+a 2=c 2,所以223=4b a ,所以双曲线C 的渐近线方程为2y x =±20y ±=.故选:C.【点睛】关键点点睛:利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理解三角形是解答本题的关键.10.C解析:C 【分析】依题意可得c e a ==t ,从而求出双曲线方程,即可求出渐近线; 【详解】解:因为0t >,依题意可得双曲线2221(0)4xy t t t-=>+的离心率c e a ====≤=当且仅当4t t=即2t =时,等号成立,此时离心率最大, 故双曲线的标准方程为22182y x -=,所以双曲线的渐近线方程为y x =,即12y x =±故选:C 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.11.A解析:A 【分析】根据题中条件,由双曲线的定义,得到2PF a =,13PF a =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又213PF PF =,所以222PF a =,即2PF a =,则13PF a =, 因为双曲线中,1212+≥PF PF F F ,即42a c ≥,则2ca≤,即2e ≤, 又双曲线的离心率大于1,所以12e <≤. 故选:A. 【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可.12.D解析:D 【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围. 【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290F PF∠=,又1,2,5a b c ===由222111212|||||20|PF PF F F =+=,1112||||2PFPF -=, 可得1112||||8PF PF ⋅=, 此时 1112||||6PF PF +=;当P 在2P 处,12290F F P ∠=,25P x = 易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10, 故选:D . 【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值.二、填空题13.5【分析】求出抛物线的准线方程把到焦点距离转化为它到准线的距离然后利用三点共线得最小值【详解】如图过作与准线垂直垂足为则∴易知当三点共线时最小最小值为∴的最小值为5故答案为:5【点睛】本题考查抛物线解析:5 【分析】求出抛物线的准线方程,把P 到焦点F 距离转化为它到准线的距离,然后利用三点共线得最小值. 【详解】如图,过P 作PM 与准线2x =-垂直,垂足为M ,则PF PM =,∴PF PB PM PB +=+,易知当,,B P M 三点共线时,PM PB +最小,最小值为3(2)5--=.∴PB PF +的最小值为5.故答案为:5.【点睛】本题考查抛物线的定义,考查抛物线上的点到焦点和到定点距离之和的最小值,解题方法是利用抛物线的定义把点到焦点的距离转化为点到准线距离.14.1【分析】根据已知可以转化为然后由三点共线即两点之间线段最短可得答案【详解】由已知得因为所以所以所以当三点共线时最小即故答案为:1【点睛】本题考查了椭圆上的点到焦点和定点距离和的问题解题关键是利用定解析:1 【分析】根据已知可以转化为124PM PF PM PF -=+-,然后由三点共线即两点之间线段最短可得答案. 【详解】由已知得222224,3,1a b c a b ===-=,2(1,0)F , 因为2124PF PF a +==,所以124PF PF =-, 所以()12244PM PF PM PF PM PF -=--=+-, 所以当三点2M P F 、、共线时,24PM PF +-最小, 即2222443441PM PF MF +-=-=+=. 故答案为:1. 【点睛】本题考查了椭圆上的点到焦点和定点距离和的问题,解题关键是利用定义转化为两点之间线段最短的问题,考查了学生分析问题、解决问题的能力.15.【分析】利用双曲线的定义分别表示再利用勾股定义和双曲线的定义建立等量关系求双曲线的离心率【详解】设根据双曲线的定义可知即得得中即得根据双曲线的定义即得所以得故答案为:【点睛】方法点睛:本题考查直线与 解析:173【分析】利用双曲线的定义分别表示1212,,,AF AF BF BF ,再利用勾股定义和双曲线的定义建立等量关系,求双曲线的离心率. 【详解】设2AF x =,22BF x =,1AF y =,根据双曲线的定义可知1212AF AF BF BF -=-, 即12y x BF x -=-,得1BF y x =+,120AF AF ⋅=,12AF AF ∴⊥,()()2223y x y x ∴+=+,得4y x =,12Rt AF F △中,222124AF AF c +=,即22174x c =,得17x =,根据双曲线的定义122AF AF a -=,即32x a =,得23x a =,23a =,得c e a ==.故答案为:3【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.16.【分析】作出图形设与圆相切于点分析出可求得的值进而可得出双曲线的离心率为即可得解【详解】如下图所示设与圆相切于点则则则为的中点则为的中点由直角三角形的性质可得因为为的中点则由于双曲线的两渐近线关于轴 解析:2【分析】作出图形,设1PF 与圆222x y a +=相切于点E ,分析出23POF π∠=,可求得ba的值,进而可得出双曲线C 的离心率为e =,即可得解. 【详解】如下图所示,设1PF 与圆222x y a +=相切于点E ,则OE a =,120PF PF ⋅=,则12PF PF ⊥,1OE PF ⊥,则2//OE PF , O 为12F F 的中点,则E 为1PF 的中点,222PF OE a ∴==,由直角三角形的性质可得1OF OP =,因为E 为1PF 的中点,则1EOF POE ∠=∠, 由于双曲线的两渐近线关于y 轴对称,可得21POF EOF ∠=∠,所以,12EOF POE POF ∠=∠=∠,则1223EOF POE POF POF π∠+∠+∠=∠=, 所以,23POF π∠=,则tan 33b a π==, 因此,双曲线C 的离心率为22222212c c a b b e a a a a +⎛⎫====+= ⎪⎝⎭. 故答案为:2. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.17.【分析】先利用点坐标和垂直关系求得直线的斜率并写出直线方程联立直线与椭圆利用韦达定理和垂直的向量关系得到的关系式再结合焦距的关系式解出即得方程【详解】依题意椭圆的焦距为即即由点的坐标为知直线OD 的斜解析:221306x y += 【分析】先利用点D 坐标和垂直关系求得直线l 的斜率,并写出直线方程,联立直线与椭圆,利用韦达定理和垂直的向量关系得到22,a b 的关系式,再结合焦距的关系式解出22,a b ,即得方程. 【详解】依题意,椭圆的焦距为46,即246c =,26c =,即2224a b -=,由点D 的坐标为()2,1,知直线OD 的斜率101202OD k -==-,又⊥OD AB ,知直线l 的斜率为2-,即直线l 的方程为12(2)y x -=--,即52y x =-.设()()1122,,,A x y B x y 联立方程2222152x y a by x ⎧+=⎪⎨⎪=-⎩得()2222222420250ab x a x a a b +-+-=,故2222121222222025,44a a a b x x x x a b a b -+==++, 即()()()12121212525225104y y x x x x x x =--=-++2222222222222202525425104444a a a b b a b a b a b a b --=-⨯+⨯=+++, 由OA OB ⊥知,12120OA OB x x y y ⋅=+=,即222222222225254044a a b b a b a b a b --+=++,所以222255a b a b +=,又2224a b -=,消去2a 得,42141200b b +-=,解得26b =或220b =-(舍去),故2230,6a b ==,椭圆C 的方程为221306x y +=.故答案为:221306x y +=.【点睛】 思路点睛:求解椭圆中的直线垂直问题时,一般利用直线的斜率之积为-1,或者直线上的向量的数量积为0来处理,再联立直线与椭圆方程,结合韦达定理,即可求出结果.18.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =, ∴3e = 3【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.19.【分析】设对称的两点为直线的方程为与联立可得利用根与系数的关系以及中点坐标公式可求的中点利用判别式以及在直线上即可求解【详解】设椭圆存在关于直线对称的两点为根据对称性可知线段被直线直平分且的中点在直解析:33⎛ ⎝⎭【分析】设对称的两点为()11,A x y ,()22,B x y ,直线AB 的方程为y x b =-+与2212x y +=联立可得利用根与系数的关系以及中点坐标公式可求AB 的中点()00,M x y ,利用判别式0∆>以及()00,M x y 在直线y x t =+上即可求解.【详解】设椭圆2212x y +=存在关于直线y x t =+对称的两点为()11,A x y ,()22,B x y ,根据对称性可知线段AB 被直线y x t =+直平分, 且AB 的中点()00,M x y 在直线y x t =+上,且1AB k =-, 故可设直线AB 的方程为y x b =-+, 联立方程2222y x bx y =-+⎧⎨+=⎩,整理可得2234220x bx b -+-=, ∴1243b x x +=,()1212223b y y b x x +=-+=,由()221612220b b ∆=-->,可得b <<, ∴120223x x b x +==,12023y y b y +==, ∵AB 的中点2,33b b M ⎛⎫⎪⎝⎭在直线y x t =+上,∴233b b t =+,可得3b t =-,33t -<<.故答案为:⎛ ⎝⎭. 【点睛】关键点点睛:本题的关键点是利用直线AB 与直线y x t =+垂直可得直线AB 的斜率为1-,可设直线AB 的方程为y x b =-+,代入2212x y +=可得关于x 的一元二次方程,利用判别式0∆>,可以求出b 的范围,利用韦达定理可得AB 的中点()00,M x y 再代入y x t =+即可t 与b 的关系,即可求解.20.2【分析】法1:首先利用直线过焦点得再利用直线与抛物线方程联立利用根与系数的关系表示计算求得;法2:由已知求得的值再利用弦长公式求的值【详解】法1:由题意知直线即直线经过抛物线的焦点即直线的方程为设解析:2 【分析】法1:首先利用直线过焦点,得b p =-,再利用直线与抛物线方程联立,利用根与系数的关系表示12AB x x p =++,计算求得p ;法2:由已知tan 2θ=,求得sin θ的值,再利用弦长公式22sin pAB θ=,求p 的值. 【详解】法1:由题意知,直线:2l y x b =+,即22b y x ⎛⎫=+⎪⎝⎭.直线l 经过抛物线()2:20C y px p =>的焦点,22b p∴-=,即b p =-.∴直线l 的方程为2y x p =-. 设()11,A x y 、()22,B x y ,联立222y x p y px=-⎧⎨=⎩,消去y 整理可得22460x px p -+=,由韦达定理得1232p x x +=,又5AB =,12552x p p x ∴++==,则2p =.法2:设直线的切斜角为θ,则tan 2k θ==,得sin θ=,∴22225sin p pAB θ===,得2p =.故答案为:2 【点睛】结论点睛:当直线过抛物线的焦点时,与抛物线交于,A B 两点,AB 称为焦点弦长,有如下的性质:直线与抛物线交于()()1122,,,A x y B x y ,①221212,4p y y p x x =-=;②12AB x x p =++;③11AF BF +为定值2p ;④弦长22sin p AB θ= (θ为直线AB 的倾斜角);⑤以AB 为直径的圆与准线相切;⑥焦点F 对,A B 在准线上射影的张角为90.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知2222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)2212x y +=;(2)7.【分析】(1)根据椭圆的定义,由2ABF 的周长为a ,再根据离心率求出c ,进而可求出2b,从而可得椭圆方程;(2)先直线AB 的方程为1)y x =+,()11,A x y ,()22,B x y ,联立直线与椭圆方程,根据韦达定理,结合三角形面积公式,即可求出结果. 【详解】(1)因为过1F 的直线交椭圆于A ,B 两点,且2ABF的周长为得2211224AB AF BF AF BF AF BF a ++=+++==a =又2e =,所以2c a =,1c =, 所以21b =,所以椭圆E 的方程为2212x y +=;(2)设直线AB的方程为1)y x =+,()11,A x y ,()22,B x y由221)12y x x y ⎧=+⎪⎨+=⎪⎩消去y ,整理得271240x x ++=, 所以12127x x +=-,1247x x ⋅=,所以12127y y x -=-==.所以212177ABF Sc y y =⋅-=⨯=. 【点睛】 思路点睛:求解圆锥曲线中的面积问题时,一般需要联立直线与曲线方程,结合韦达定理,弦长公式,以及三角形面积公式,(有时也需要点到直线距离公式),即可求解.23.(1)22143x y +=;(2)2±. 【分析】(1)由已知条件可得12c e a ==,将点31,2P ⎛⎫⎪⎝⎭代入椭圆的方程结合222a b c =+即可求得,,a b c 的值,进而可得椭圆C 的方程;(2)设:1l x ty =-,设11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得关于y 的一元二次方程,由韦达定理可得12y y +,12y y ,利用122S S =可得122y y =-,即可解出k 的值,进而可求出直线l 的斜率. 【详解】(1)由题意可得:22222121914c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩得2243a b ⎧=⎨=⎩,故C 的方程为22143x y +=.(2)1(1,0)F -,显然l 与y 轴不垂直,故可设:1l x ty =-,设11(,)A x y ,22(,)B x y ,由221143x ty x y =-⎧⎪⎨+=⎪⎩消去x 得22(34)690t y ty +--=,则122634t y y t +=+,122934y y t -=+, 由122S S =得122y y =-, 所以122262034ty y y t +=+=+,可得22634t y t -=+, 由122934y y t -=+可得2229234y t --=+, 消去2y 可得()222236923434t t t--⨯=++ ,整理可得:245t =t =:1l x y =-,所以直线l:)1y x =+, 所以直线l的斜率为. 【点睛】关键点点睛:本题解题的关键是由面积之比得出纵坐标122y y =-,联立直线与椭圆的方程消去x 可得关于y 的一元二次方程,由韦达定理可得12y y +,12y y ,可求t 的值,注意求直线的斜率.24.(1)证明见解析;(2)存在,12N ⎛⎫±- ⎪ ⎪⎝⎭. 【分析】(1)由题意设直线:1AB y kx =+,()11,A x y ,()22,B x y ,将直线与抛物线方程联立求出两根之和、两根之积,求出直线121:24x x AN y x =-以及直线222:24x x BN y x =-,将两直线联立求出交点即证.(2)由(1)知点N 为CD 的中点,取AB 的中点E ,则2AC BDEN +=,利用抛物线的定义可得2AB EN =,ABNAENBENSSS=+,2ACNAF CNS⋅=,2BDNBF CNS ⋅=,根据2BDN ACN ABN S S S =+△△△,可得2BF AF AB =+,即212x x =-,结合韦达定理即可求解. 【详解】解(1)由题知2p =所以2:4M x y =设直线:1AB y kx =+,()11,A x y ,()22,B x y联立214y kx x y=+⎧⎨=⎩得2440x kx --=所以121244x x k x x +=⎧⎨=-⎩对24x y =求导得2x y '=所以直线AN 的斜率为12AN x k =所以直线()111:2x AN y y x x -=-即121:24x x AN y x =-① 同理直线222:24x x BN y x =-② 联立①和②得12122214x x x k x x y +⎧==⎪⎪⎨⎪==-⎪⎩所以点N 的坐标为(2,1)k -,即点N 在定直线1y =-上 (2)由(1)知点N 为CD 的中点 取AB 的中点E ,则2AC BDEN += 由题知AC BD AB += 所以2AB EN =所以22222ABN AEN BEN EN CN EN DN EN CN AB CNS S S ⋅⋅⋅⋅=+=+=⨯=△△△ 而22ACN AC CN AF CN S ⋅⋅==△,22BDN BD DN BF CNS ⋅⋅==△ 若存在点N 满足题意则2BDN ACN ABN S S S =+△△△ 即2BF AF AB =+所以()2121200x x x x -=-+-即212x x =-③ 又因为121244x x kx x +=⎧⎨=-⎩④将③代入④解得=k ±由(1)知(2,1)N k -即1N ⎛⎫- ⎪ ⎪⎝⎭经检验,存在12N ⎛⎫±- ⎪ ⎪⎝⎭满足题意. 【点睛】关键点点睛:本题考查了直线与抛物线的位置关系,解题的关键是由()11,A x y ,()22,B x y ,求出点N 的坐标为(2,1)k -以及212x x =-,考查了计算能力、推理能力.25.(1)122y x =+或122y x =--;(2)见解析. 【分析】(1)首先根据l 与x 轴垂直,且过点A ,求得直线l 的方程为4x =,代入抛物线方程求得点M 的坐标为()4,4或()4,4-,利用两点式求得直线BM 的方程;(2)设直线l 的方程为4x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线BM 、BN 的斜率之和为零,从而得出所证结论成立. 【详解】(1)当l 与x 轴垂直时,l 的方程为4x =,可得M 的坐标为()4,4或()4,4-, 所以直线BM 的方程为122y x =+或122y x =--; (2)设l 的方程为4x ty =+,()11,M x y 、()22,N x y ,由244x ty y x=+⎧⎨=⎩,得24160y ty --=,可知124y y t +=,1216y y =-, 直线BM 、BN 的斜率之和为 ()()()()()()()()21122112121212124488444444BM BN x y x y ty y ty y y yk k x x x x x x +++++++=+==++++++()()()()()()12121212282168404444ty y y y t tx x x x ++⨯-+⨯===++++,所以0BM BN k k +=,可知BM 、BN 的倾斜角互补, 所以ABM ABN ∠=∠. 【点睛】该题考查的是有关直线与抛物线的问题,涉及到的知识点有直线方程的两点式、直线与抛物线相交的综合问题、关于角的大小用斜率来衡量;在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.。

圆锥曲线与方程练习题(2013北师大版有答案)

圆锥曲线与方程练习题(2013北师大版有答案)

圆锥曲线与方程练习题(2013北师大版有答案)一、选择题1.(2012•绥德高二检测)椭圆4x2+y2=1的焦点坐标为()A.(±3,0)B.(±32,0)C.(0,±32)D.(0,±3)【解析】∵y21+x214=1,∴椭圆的焦点在y轴上,并且a2=1,b2=14,∴c2=34.即焦点坐标为(0,±32).【答案】C2.椭圆x225+y216=1上的一点P,到椭圆一个焦点的距离为3,则P 到另一个焦点的距离为()A.2B.3C.5D.7【解析】P到两焦点的距离和为2a=10,∴另一距离为7.【答案】D3.已知B、C是两个定点,且BC=8,则到这两个定点的距离的和是8的点的轨迹是()A.椭圆B.圆C.线段D.射线【解析】由于动点到这两个定点的距离的和是8,恰好等于这两个定点间的距离,故其轨迹是一条线段.【答案】C4.椭圆5x2+ky2=5的一个焦点是(0,2),那么k=()A.-1B.1C.5D.-5【解析】化椭圆方程为标准形式x2+y25k=1,因为点(0,2)是椭圆的一个焦点,所以5k-1=4,∴k=1.【答案】B5.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】把椭圆方程化成x21m+y21n=1.若m>n>0,则1n>1m>0,所以焦点在y轴上;反之,亦成立.【答案】C二、填空题6.已知△ABC的顶点B、C在椭圆x23+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是________.【解析】由椭圆的定义知椭圆上一点到两焦点的距离之和等于2a,可得△ABC的周长为4a=43.【答案】437.已知焦点在x轴上的椭圆,焦距为4,且过点A(3,0),则该椭圆的标准方程为________.【解析】由c=2可设椭圆的标准方程为x2a2+y2a2-4=1,将点A(3,0)代入,得a2=9,所以标准方程为x29+y25=1.【答案】x29+y25=18.已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为椭圆C上一点,且PF1→⊥PF2→.若△PF1F2的面积为9,则b=________.【解析】由题意,得12|PF1||PF2|=9,①|PF1|2+|PF2|2=(2c)2,②|PF1|+|PF2|=2a,③解得a2-c2=9,即b2=9,所以b=3.【答案】3三、解答题9.求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,且经过点(2,0)和点(0,1);(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到它较近的一个焦点的距离等于2.【解】(1)∵椭圆的焦点在x轴上,∴可设它的标准方程为x2a2+y2b2=1(a>b>0).∵椭圆经过点(2,0)和(0,1),∴a=2,b=1.故所求椭圆的标准方程为x24+y2=1.(2)∵椭圆的焦点在y轴上,∴可设它的标准方程为y2a2+x2b2=1(a>b>0).∵点P(0,-10)在椭圆上,∴a=10.又∵P到它较近的一个焦点的距离等于2,∴-c-(-10)=2,故c=8.从而b2=a2-c2=36.∴所求椭圆的标准方程是y2100+x236=1.10.求焦点在坐标轴上,且经过A(3,-2)和B(-23,1)两点的椭圆的标准方程.【解】设所求椭圆的方程为mx2+ny2=1(m>0,n>0).依题意有3m+4n=1,12m+n=1,解得m=115,n=15.所以所求椭圆的方程为x215+y25=1.11.如图所示,已知定点A(-2,0),动点B是圆F:(x-2)2+y2=64(F为圆心)上的一点,线段AB的垂直平分线交BF于P,求动点P的轨迹方程.【解】连接PA,圆F:(x-2)2+y2=64的圆心F(2,0),半径R=8. ∵线段AB的垂直平分线交BF于点P,∴PA=PB.∴|PA|+|PF|=|PB|+|PF|=|BF|=R=8>|AF|=4.图2-1-1由定义知点P的轨迹是一椭圆.则依题意有2a=8,c=2,∴a=4,b2=12.∴动点P的轨迹方程为x216+y212=1.。

北京市首都师范大学附属中学选修一第三单元《圆锥曲线的方程》检测卷(包含答案解析)

北京市首都师范大学附属中学选修一第三单元《圆锥曲线的方程》检测卷(包含答案解析)

一、填空题1.设点P 为椭圆22:14924x y C +=上一点,1F 、2F 分别是椭圆C 的左、右焦点,且12PF F △的重心为G ,如果1212||,||,||PF PF F F 成等差数列,那么12GF F △的面积为___.2.已知椭圆22221x y a b+=(0a b >>)的左焦点为()1,0F c -,右顶点为A ,上顶点为B ,现过A 点作直线1F B 的垂线,垂足为T ,若直线OT (O 为坐标原点)的斜率为3bc-,则该椭圆的离心率为______.3.已知F 是双曲线22145x y -=的右焦点,若点P 是双曲线的左支上一点,(0,66)A ,则APF 周长的最小值为______.4.早在一千多年之前,我国已经把溢流孔技术用于造桥,以减轻桥身重量和水流对桥身的冲击,现设桥拱上有如图所示的4个溢流孔,桥拱和溢流孔轮廓线均为抛物线的一部分,且四个溢流孔轮廓线相同,建立如图所示的平面直角坐标系xoy ,根据图上尺寸, 溢流孔ABC 所在抛物线的方程为_________, 溢流孔与桥拱交点A 的横坐标...为 ___________ .5.椭圆2214x y +=的右焦点为F ,以点F 为焦点的抛物线的标准方程是___________.6.设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过F 作C 的一条渐近线的垂线垂足为A ,且||2||OA AF =,O 为坐标原点,则C 的离心率为_________.7.已知O 为坐标原点,点(1,2)P 在抛物线C :24y x =上,过点P 作两直线分别交抛物线C 于点A ,B ,若0PA PB k k +=,则AB OP k k ⋅的值为______.8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,直线l 过点2F 交双曲线右支于P ,Q 两点,若123PF PF =,23PQ PF =,则双曲线 C 的离心率为__________.9.已知椭圆()2222:10x y C a b a b+=>>的右焦点为()3,0F ,且离心率为35,ABC 的三个顶点都在椭圆C 上,设ABC 三条边AB BC AC 、、的中点分别为D E M 、、,且三条边所在直线的斜率分别为123k k k 、、,且123k k k 、、均不为0.O 为坐标原点,若直线OD OE OM 、、的斜率之和为1.则123111k k k ++=________. 10.设M ,N 是抛物线2y x =上的两个不同点,O 是坐标原点,若直线OM 与ON 的斜率之积为12-,则下列结论①42OM ON +;②O 到直线MN 的距离不大于2;③直线MN 过抛物线2y x =的焦点;④MN 为直径的圆的面积大于4π,不正确的有__11.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为____.12.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 且与x 轴垂直的直线交椭圆于A 、B 两点,直线2AF 与椭圆的另一个交点为C ,若222AF F C =,则椭圆的离心率为__________.13.已知点P 是椭圆221259x y +=上任意一点,则当点P 到直线45400x y -+=的距离达到最小值时,此时P 点的坐标为______.参考答案二、解答题14.如图,在平面直角坐标系xoy 中,已知椭圆C :22221x ya b+=(0)a b >>的离心率1,2e =左顶点为(2,0)A -,过点A 作斜率为(0)k k ≠的直线l 交椭圆C 于点D ,交y 轴于点E .(Ⅰ)求椭圆C 的方程;(Ⅱ)已知P 为AD 的中点,是否存在定点Q ,对于任意的(0)k k ≠都有OP EQ ⊥,若存在,求出点Q 的坐标;若不存在说明理由;(III )若过O 点作直线l 的平行线交椭圆C 于点M ,求AD AEOM+的最小值. 15.已知椭圆()2222:10x y E a b a b+=>>的焦距为23,点()0,2P 关于直线y x =-的对称点在椭圆E 上.(1)求椭圆E 的方程.(2)如图,过点P 的直线l 与椭圆E 交于两个不同的点C ,D (点C 在点D 的上方),试求COD △面积的最大值.16.已知椭圆2222:1(0)x y C a b a b +=>>3M 到直线340x y ++=距离为3.(1)求椭圆C 的方程;(2)设直线l 过点()4,2-且与椭圆C 相交于,A B 两点,l 不经过点M .证明:直线MA 的斜率与直线MB 的斜率之和为定值.17.已知12,F F 分别是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,点P 是双曲线上一点,满足12PF PF ⊥且128,6PF PF ==. (1)求双曲线C 的标准方程;(2)若直线l 交双曲线于A ,B 两点,若AB 的中点恰为点(2,6)M ,求直线l 的方程. 18.已知椭圆的左焦点为()3,0F ,右顶点为()2,0D ,设点A 的坐标是11,2⎛⎫⎪⎝⎭. (1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.19.已知椭圆()222210y x a b a b +=>>的离心率22e =,且过点(0,2.(1)求椭圆方程;(2)已知1F 、2F 为椭圆的上、下两个焦点,AB 是过焦点1F 的一条动弦,求2ABF 面积的最大值.20.已知椭圆M :22213x y a +=()0a >的一个焦点为()1,0F -,左右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆M 方程;(Ⅱ)当直线l 的倾斜角为45时,求线段CD 的长;(Ⅲ)记△ABD 与△ABC 的面积分别为1S 和2S ,求12S S -的最大值.21.已知椭圆()2222:10x y C a b a b +=>>过点(0,A ,且椭圆C 的右顶点B 到直线0x y ++=的距离为4.(1)求椭圆C 的标准方程;(2)若过点()20P ,且与直线AB 平行的直线l 与椭圆C 交于,M N 两点,求OMN 的面积(O 为坐标原点).22.已知命题p :方程22112x y m m +=-+表示双曲线;命题q :方程22212x ym m+=表示焦点在x 轴上的椭圆.若,p q 有且只有一个为真命题,求实数m 的取值范围.23.求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,椭圆上的点31,2A ⎛⎫⎪⎝⎭到两焦点的距离之和为4; (2)离心率为35,短轴长为8 24.抛物线2:4C x y =与直线:(0)=+≠l y kx m k 有唯一公共点,且C 的焦点为F . (1)用含k 的式子表示m .(2)若点E 与F 关于直线l 对称,证明E 的纵坐标为定值.25.已知命题p :()()22210t a t a a t --+-<∈R ,命题q :方程()22113x y t t t+=∈+-R 表示焦点在x 轴上的椭圆. (1)若10,2t ⎛⎫∈ ⎪⎝⎭时,命题p 为真命题,求实数a 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.26.已知椭圆222:1(1)x E y a a +=>的离心率为2.(1)求椭圆E 的方程;(2)若直线:0l x y m -+=与椭圆交于E F 、两点,且线段EF 的中点在圆22+1x y =,求m 的值.【参考答案】***试卷处理标记,请不要删除一、填空题1.8【分析】根据条件计算出可以判断△PF1F2是直角三角形即可计算出△PF1F2的面积由△PF1F2的重心为点G 可知△PF1F2的面积是的面积的3倍即可求解【详解】∵P 为椭圆C :上一点且又且又∴易知△ 解析:8 【分析】根据条件计算出1212,,PF PF F F ,可以判断△PF 1F 2是直角三角形,即可计算出△PF 1F 2的面积,由△PF 1F 2的重心为点G 可知△PF 1F 2的面积是12GF F △的面积的3倍,即可求解. 【详解】∵P 为椭圆C :2214924x y +=上一点,且1212||,||,||PF PF F F1122||||2||PF F F PF ∴+=,又210c ==,12||102||PF PF ∴+=且12214PF PF a +==126,8PF PF ∴==,又1210F F =,∴易知△PF 1F 2是直角三角形,12121242PF F S PF PF =⋅=, ∵△PF 1F 2的重心为点G , ∴12123PF F GF F S S =△△, ∴12GF F △的面积为8. 故答案为:8 【点睛】关键点点睛:该题主要根据条件及椭圆的定义联立方程求出12,PF PF ,证明△PF 1F 2是直角三角形,求出面积后利用重心的性质可求12GF F △的面积,属于中档题.2.【分析】由已知先求出直线与直线的方程联立得到T 的坐标再利用建立abc 的方程即可得到答案【详解】由题意得直线的方程为:又所以直线的方程为:由得所以又所以即化简得所以故答案为:【点睛】关键点睛本题解题关 解析:12【分析】由已知先求出直线1F B 与直线OT 的方程,联立得到T 的坐标,再利用1AT BF ⊥,11AT BF k k ⋅=-,建立a ,b ,c 的方程即可得到答案.【详解】由题意,得(,0)A a ,(0,)B b ,1BF b k c =,直线1F B 的方程为:by x b c=+又3OT b k c =-,所以直线OT 的方程为:3by x c=-由3b y x b c b y x c ⎧=+⎪⎪⎨⎪=-⎪⎩,得434c x b y ⎧=-⎪⎪⎨⎪=⎪⎩,所以3(,)44c b T -,303444AT b b k c c a a-==-+-- 又1AT BF ⊥,所以1314AT BF b bk k c a c⋅=-⋅=-+,即2222433()c ac b a c +==- 化简,得(32)(2)0a c a c +-=, 所以2a c =,12c e a == 故答案为:12【点睛】关键点睛,本题解题关键是先联立直线1F B 与直线OT 的方程得到T 的坐标,再利用1AT BF ⊥得到11AT BF k k ⋅=-从而使问题获解.3.34【分析】把到右焦点的距离转化为到左焦点的距离后易得最小值【详解】双曲线中即设是双曲线的左焦点则∵在双曲线的左支上∴即∴周长为显然当且仅当是线段与双曲线的交点时等号成立∴周长的最小值为故答案为:3解析:34 【分析】把P 到右焦点F 的距离转化为P 到左焦点的距离后易得最小值. 【详解】双曲线22145x y -=中,2,5a b ==,453c =+=,即(3,0)F ,设F '是双曲线的左焦点,(3,0)F '-,则15AF AF ==='∵P 在双曲线的左支上,∴24PF PF a '-==,即4PF PF '=+, ∴APF 周长为41519l PF PA AF PF PA PA PF ''=++=+++=++,显然15PA PF AF ''+≥==,当且仅当P 是线段AF '与双曲线的交点时等号成立.∴APF 周长l 的最小值为151934+=. 故答案为:34. 【点睛】方法点睛:本题考查双曲线上的点到定点和双曲线一个焦点距离和(或差)的最值问题.解题关键是掌握转化思想,根据双曲线的定义,如果涉及的是PF ,则把PF 转化为到另一焦点的距离,如果涉及的是1PF e,则转化为到相应准线的距离. 4.【分析】根据题意设桥拱所在抛物线的方程为溢流孔ABC 所在方程为运用待定系数法求得可得右边第二个溢流孔所在方程联立抛物线方程可得所求【详解】设桥拱所在抛物线方程由图可知曲线经过代入方程解得:所以桥拱所 解析:()236145x y -=-14013【分析】根据题意,设桥拱所在抛物线的方程为22x py =-,溢流孔ABC 所在方程为()21:142(0)C x p y p ''-=->,运用待定系数法,求得p ,p ',可得右边第二个溢流孔所在方程,联立抛物线方程,可得所求. 【详解】设桥拱所在抛物线方程22x py =-,由图可知,曲线经过()20,5-,代入方程()22025p =-⨯-,解得:40p =,所以桥拱所在抛物线方程280x y =-; 四个溢流孔轮廓线相同,所以从右往左看, 设第一个抛物线()21:142C x p y '-=-,由图抛物线1C 经过点()20,5A -,则()()2201425p '-=-⨯-,解得185p '=, 所以()2136:145C x y -=-, 点A 即桥拱所在抛物线280x y =-与()2136:145C x y -=-的交点坐标, 设(),,714A x y x <<由()228036145714x y x y x ⎧=-⎪⎪-=-⎨⎪<<⎪⎩,解得:14013x = 所以点A 的横坐标为14013. 故答案为:()236145x y -=-;14013【点睛】关键点点睛:此题考查根据实际意义求抛物线方程和交点坐标,关键在于合理建立模型正确求解,根据待定系数法,及平移抛物线后方程的形式即可.5.【分析】根据椭圆的方程求得焦点的坐标得到抛物线的焦点坐标求得的值即可求得抛物线的标准方程【详解】由题意椭圆可得则所以椭圆的右焦点为即抛物线的焦点坐标为设抛物线的标准方程为可得即所以抛物线的标准方程为解析:2y =【分析】根据椭圆的方程求得焦点F 的坐标,得到抛物线的焦点坐标,求得p 的值,即可求得抛物线的标准方程. 【详解】由题意,椭圆2214x y +=,可得224,1a b ==,则c ==所以椭圆的右焦点为F,即抛物线的焦点坐标为F , 设抛物线的标准方程为22(0)y px p =>,可得2p=,即p =所以抛物线的标准方程为2y =.故答案为:2y =. 【点睛】本题主要考查了椭圆的标准方程及几何性质的应用,以及抛物线的标准方程的求解,其中解答中熟记椭圆的几何性质,以及抛物线的标准方程的形式是解答的关键,着重考查运算与求解能力.6.【分析】由已知求出渐近线的斜率得结合转化后可求得离心率【详解】由题意可得渐近线方程为∴故故答案为:【点睛】本题考查求双曲线的离心率解题关键是列出关于的一个等式本题中利用直角三角形中正切函数定义可得【分析】由已知求出渐近线的斜率,得ba,结合222c a b -=转化后可求得离心率. 【详解】由题意可得||||1tan ||2||2AF AF AOF OA AF ∠===, 渐近线方程为by x a=, ∴12b a =,222222222544a a c ab e a a a ++====,故e =. 【点睛】本题考查求双曲线的离心率,解题关键是列出关于,,a b c 的一个等式,本题中利用直角三角形中正切函数定义可得.7.-2【分析】可先设由斜率的定义表示出结合抛物线方程进行坐标代换全部代换成关于纵坐标的表达式通过即可求解【详解】设则同理∵∴得∴又∴故答案为-2【点睛】本题考查抛物线的几何性质设而不求方法的具体应用运解析:-2 【分析】可先设()11,A x y ,()22,B x y ,由斜率的定义表示出AB k ,PA k ,PB k ,结合抛物线方程进行坐标代换,全部代换成关于纵坐标的表达式,通过0PA PB k k +=即可求解 【详解】设()11,A x y ,()22,B x y ,则212122212112444AB y y y y k y y x x y y --===-+-.1121112241214PA y y k y x y --===-+-,同理242PBk y =+. ∵0PA PB k k +=,∴1244022y y +=++,得124y y +=-. ∴414AB k ==--. 又221OP k ==,∴122AB OP k k ⋅=-⨯=-.故答案为-2 【点睛】本题考查抛物线的几何性质,设而不求方法的具体应用,运算能力,属于中档题8.【分析】设则推出由双曲线的定义得再在和应用余弦定理得进而得答案【详解】解:设则∴由双曲线的定义得此时在和应用余弦定理得:;所以即故所以故答案为:【点睛】本题考查双曲线的简单性质的应用是基本知识的考查解析:3【分析】设2||PF m =,则1||3PF m =,3PQ m =,推出22QF m =,由双曲线的定义得14QF a m a ⎧=⎨=⎩,再在1PQF △和12QF F 应用余弦定理得2225243a c a -=,进而得答案. 【详解】解:设2||PF m =,则1||3PF m =,3PQ m =,∴22QF m =,由双曲线的定义,得12112122422PF PF m a QF a m a QF QF QF m a ⎧-==⎧=⎪⇒⎨⎨=-=-=⎩⎪⎩, 此时,在1PQF △和12QF F 应用余弦定理得:2222221112116992cos 22433QF PQ PF a a a FQF QF PQa a +-+-∠===⨯⨯2222222212121221216445cos 22424QF QF F F a a c a c FQF QF QF a a a +-+--∠===⨯⨯; 所以2225243a c a -=,即2237c a =,故2273c a =,所以3c e a ==.. 【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.9.【分析】求出椭圆标准方程设用点差法求出同理有利用直线的斜率之和为1可得结论【详解】由得∴椭圆标准方程为设在椭圆上椭圆方程为则两式相减得∴即同理已知∴故答案为:【点睛】本题考查求椭圆标准方程考查圆锥曲 解析:2516-【分析】求出椭圆标准方程,设112233(,),(,),(,)A x y B x y C x y ,112233(,),(,),(,)D s t E s t M s t ,用点差法求出116125ODk k =-⋅,同理有23,k k ,利用直线OD OE OM 、、的斜率之和为1可得结论. 【详解】3c =,由35c a =得5a =,∴4b =,椭圆标准方程为2212516x y +=,设112233(,),(,),(,)A x y B x y C x y ,112233(,),(,),(,)D s t E s t M s t ,,A B 在椭圆上,椭圆方程为221625400x y +=.则22111625400x y +=,22221625400x y +=,两式相减得,121212121625y y x xx x y y -+=-⋅-+, ∴1212111212116162525y y x x sk x x y y t -+==-⋅=-⋅-+,即111125251616OD t k k s =-⋅=-,同理212516OE k k =-,312516OM k k =-, 已知1OD OE OM k k k ++=,∴1231112516k k k ++=-. 故答案为:2516-. 【点睛】本题考查求椭圆标准方程,考查圆锥曲线中的点差法,利用点差法可圆锥曲线弦所在直线斜率与弦中点坐标建立关系.10.①③④【分析】当直线的斜率不存在时根据斜率公式即可求得的方程当斜率存在时设直线的方程代入抛物线方程利用韦达定理及直线的斜率公式即可求得直线恒过定点然后判断出以为直径的圆的面积再根据抛物线几何性质求得解析:①③④ 【分析】当直线MN 的斜率不存在时,根据斜率公式,即可求得MN 的方程,当斜率存在时,设直线MN 的方程,代入抛物线方程,利用韦达定理及直线的斜率公式即可求得直线MN 恒过定点,然后判断出OM ON +=<||MN =,以MN 为直径的圆的面积2π,再根据抛物线几何性质求得焦点坐标求得答案. 【详解】当直线MN 的斜率不存在时,设200(,)M y y ,200(,)N y y -,因为斜率之积为12-,所以20112y -=-,即202y =, 所以MN 的直线方程为2x =;当直线的斜率存在时,设直线方程为y kx m =+,联立2y kx my x =+⎧⎨=⎩, 可得20ky y m -+=.设1(M x ,1)y ,2(N x ,2)y ,则12m y y k =,2122m x x k=,所以12121·2OM ON y y k k k x x m ===-,即2m k =-. 所以直线方程为2(2)y kx k k x =-=-.则直线MN 过定点(2,0).则O 到直线MN 的距离不大于2.故②正确. 当MN 的直线方程为2x =时,(2,M N,此时OM ON +=<①错误;当MN 的直线方程为2x =时,(2,M N,此时||MN =MN 为直径的圆的面积2π,故④错误;抛物线2y x =的焦点是1(,0)4,故③错误; 故答案为:①③④. 【点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系,直线的斜率公式的应用以及直线恒过定点问题,还考查了转化化归的思想和运算求解的能力,属于中档题.11.6【解析】因为双曲线的右焦点为所以解析:6 【解析】因为双曲线22145x y -=的右焦点为(3,0) ,所以3,62p p ==12.【分析】过点作轴垂直为由三角形相似得到点的坐标代入椭圆方程变形求椭圆的离心率【详解】设过点作轴垂直为代入椭圆方程得解得:故答案为:【点睛】本题考查椭圆的性质重点考查数形结合分析问题的能力本题的关键是【分析】过点C 作CD x ⊥轴,垂直为D ,由三角形相似得到点C 的坐标,代入椭圆方程,变形求椭圆的离心率. 【详解】()1,0F c -,()2,0F c 设2,b A c a ⎛⎫- ⎪⎝⎭,过点C 作CD x ⊥轴,垂直为D ,122Rt AF F Rt CDF ,22112212DF F CCD AF F F AF ∴===, 22,2b C c a ⎛⎫∴- ⎪⎝⎭,代入椭圆方程得222222222441144c b c a c a a a a -+=⇒+=, 解得:55c e a ==.5【点睛】本题考查椭圆的性质,重点考查数形结合分析问题的能力,本题的关键是利用三角形相似求得点C 的坐标,属于中档题型.13.【分析】首先求出与椭圆相切的直线的方程根据直线方程与椭圆方程联立求出点坐标即可【详解】设直线:当直线与椭圆相切时其中一个切点到直线的距离最小故联立整理得相切时易知当时点到直线的距离最小代入中解得代入解析:94,5⎛⎫- ⎪⎝⎭【分析】首先求出与椭圆相切的直线的方程,根据直线方程与椭圆方程联立求出P 点坐标即可. 【详解】设直线1l :()450x y m m R -+=∈, 当直线1l 与椭圆相切时,其中一个切点到直线45400x y -+=的距离最小,故联立224501259x y m x y -+=⎧⎪⎨+=⎪⎩,整理得222582250x mx m ++-=, 相切时24025b ac m ∆=-=⇒=±,易知当25m =时点到直线45400x y -+=的距离最小,25m =代入222582250x mx m ++-=中,解得4x =-,4x =-代入45250x y -+=中,解得95y =, 故P 点坐标为94,5⎛⎫- ⎪⎝⎭. 故答案为:94,5⎛⎫- ⎪⎝⎭. 【点睛】本题主要考查了直线与椭圆的位置关系,属于一般题.二、解答题14.(Ⅰ)22143x y +=;(Ⅱ)存在,3(,0)2-;(III)【分析】(Ⅰ)根据离心率和顶点求出,a c ,再求出b 即可得出方程;(Ⅱ)联立直线与椭圆方程求出点D 坐标,进而得出点P 坐标,再利用1OP EQ k k ⋅=-即可求出定点;(III )设OM 的方程为y kx =,与椭圆联立,得出M 横坐标,利用D AE AMx x x x AD AE OM x -+-+=表示出,即可求出最值.【详解】解:(Ⅰ)因为椭圆C :22221x y a b+=0a b >>()的离心率1,2e =左顶点为(2,0)A -, 所以2a =,又12e =,所以1c =,可得2223b a c =-=, 所以椭圆C 的标准方程为22143x y +=;(Ⅱ)直线l 的方程为(2)y k x =+,由22143(2)x y y k x ⎧+=⎪⎨⎪=+⎩,可得:22(2)(43)860x k x k ⎡⎤+++-=⎣⎦,所以12x =-,2228643k x k -+=+,当 228643k x k -+=+时,2228612(2)4343k ky k k k -+=+=++,所以2228612(,)4343k kD k k -+++,因为点P 为AD 的中点,所以P 点坐标为22286(,)4343k kk k -++,则3(0)4OP k k k-=≠, 直线l 的方程为(2)y k x =+,令0x =,得E 点坐标为(0,2)k , 假设存在定点(,)(0)Q m n m ≠使得OP EQ ⊥, 则1OP EQ k k ⋅=-,即3214n kk m -⎛⎫-⋅=- ⎪⎝⎭恒成立, 所以(46)30m k n +-=,所以46030m n +=⎧⎨-=⎩,即320m n ⎧=-⎪⎨⎪=⎩,所以定点Q 的坐标为3(,0)2-.(III )因为//OM l ,所以OM 的方程可设为y kx =,和22143x y +=联立可得M点的横坐标为x =, 由//OM l可得:22D A E A D A M M x x x x x x AD AE OM x x -+--+===≥,即k =时取等号,所以当k =AD AE OM +的最小值为.【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.15.(1)2214x y +=;(2)1.【分析】(1)根据椭圆的焦距为c =()0,2P 关于直线y x =-的对称点在椭圆E 上,得到()2,0-在椭圆E 上,进而得到a 即可.(2)设过点()0,2P 的直线方程为2y mx =+,与椭圆方程联立,求得弦长CD 以及点O 到直线CD 的距离,代入面积公式求解. 【详解】(1)因为椭圆()2222:10x y E a b a b +=>>的焦距为2c ∴=c =()0,2P 关于直线y x =-的对称点在椭圆E 上,()2,0∴-在椭圆E 上,2a ∴=, 2221b a c ∴=-=,2214x y ∴+=. (2)设过点()0,2P 的直线方程为2y mx =+,联立方程组可得22214y mx x y =+⎧⎪⎨+=⎪⎩, 消y 可得()221416120mxmx +++=,2430m =->△,设(),C C C x y ,(),y D D D x ,21614C D m x x m ∴+=-+,21214C Dx x m =+,CD ∴== ∴点O 到直线CD 的距离d =142CODS CD d ∴=⋅=△, 设214m t +=,则4t >,CODS ∴===△当8t =时,取得最大值,即为1. 【点睛】方法点睛:圆锥曲线中的三角形最值问题的求法:一般由直线与曲线联立求得弦长及相应点的直线的距离,得到含参数的△OMN 的面积的表达式,再应用基本不等式或函数法求最值.16.(1)221164x y +=;(2)证明见解析.【分析】(1)由题可得,列出不等式组,求解4,2a b ==,即可求解椭圆的标准方程; (2)设直线l 方程:()24y k x +=-,直线的方程和椭圆的方程联立,利用根与系数的关系得到1212,x x x x +,在利用斜率公式和韦达定理化简,即可得到定值. 【详解】(1)解:由题可得,222432c e a b a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得4a =,2b =,故椭圆C 的方程为221164x y +=.(2)证明:易知直线l 斜率小于0,设直线l 方程为()24y k x +=-,0k <且1k ≠-, 设()11,A x y ,()22,B x y ,联立222(4)1164y k x x y +=-⎧⎪⎨+=⎪⎩,得()221416(21)64(1)0kxk k x k k +-+++=,则12216(21)14k k x x k ++=+,12264(1)14k k x x k+=+, 因为()()1221121212444422MA MB kx k x kx k x y y k k x x x x --+----+=+=, 所以121216(21)2(44)24(1)2(21)164(1)MA MB x x k k k k k k k k k k x x k k +++=-+=-+=-+=-+(为定值). 【点睛】关键点睛:本题主要考查了直线与圆锥曲线的综合问题,其中解答中涉及到椭圆的标准方程的求解,直线与椭圆的位置关系的综合应用求解定值问题,解答中把直线与圆锥曲线的位置关系的应用转化为一元二次方程的根和系数的关系是解答此类问题的关键.17.(1)22124y x -=;(2)810y x .【分析】(1)由双曲线定义求a ,结合12PF PF ⊥求2b ,写出双曲线C 的标准方程;(2)设()()1122,,,A x y B x y ,结合双曲线方程得1212121224y y y y x x x x -+⋅=-+,根据中点M 、直线斜率的坐标表示得324AB k ⋅=,即可写出直线方程. 【详解】(1)1222a PF PF =-=,得1a =,在△12PF F 中2221212100F F PF PF =+=,∴24100c =,22225c a b ==+,则224b =,故双曲线的标准方程为:22124y x -=(2)设()()1122,,,A x y B x y ,有221221221212222212424124y x y y x x y x ⎧-=⎪-⎪⇒-=⎨⎪-=⎪⎩,所以221212122112122224y y y y y y x x x x x x --+=⋅=--+,又1212AB y y k x x -=-,1212632y y x x +==+, ∴324AB k ⋅=,得8AB k =, ∴直线AB 方程为:810y x ,满足0∆>,符合题意 .【点睛】 关键点点睛:由双曲线定义:曲线上的点到两焦点距离差为定值m ,有2a m =,结合勾股定理求c .()()1122,,,A x y B x y ,利用中点1212(,)22x x y y ++、直线斜率1212y y k x x -=-,结合所得方程1212121224y y y y x x x x -+⋅=-+,求斜率并写出直线方程. 18.(1)2214x y +=;(2)22114124x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)设椭圆的标准方程为()222210x y a b a b+=>>,根据题意可求得a 、c 的值,进而可求得b 的值,由此可得出椭圆的标准方程;(2)设点()00,P x y 、(),M x y ,利用重点坐标公式可得0021122x x y y =-⎧⎪⎨=-⎪⎩,代入220014x y +=化简可得点M 的轨迹方程. 【详解】(1)设椭圆的标准方程为()222210x y a b a b +=>>,c由题意可得20c a b ⎧==⎪⎪=⎨⎪>⎪⎩,解得21a b =⎧⎨=⎩,因此,椭圆的标准方程为2214x y +=;(2)设点()00,P x y 、(),M x y ,则220014x y +=,由中点坐标公式可得0012122x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得0021122x x y y =-⎧⎪⎨=-⎪⎩, 代入220014x y +=得()222112142x y -⎛⎫+-= ⎪⎝⎭,即22114124x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 因此,线段PA 的中点M 的轨迹方程为22114124x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.19.(1)2212y x +=;(2【分析】(1)根据离心率的值,可列出a c ,的关系式,再根据经过()0,-2点,可得出a 的值和c 的值,最后再结合222a b c =+,可算出b 的值,直接写出椭圆方程即可.(2)根据题意设出直线的方程和椭圆方程联立方程组,由根和系数的关系,再结合三角形面积公式,可把三角形面积表示成含有参数的关系式,最后根据不等式,可求得面积的最大值. 【详解】 (1)由题意,a =2c e a ==得1c =,所以1b =,所以椭圆方程是2212y x +=.(2)由于直线AB 经过上焦点()0,1,设直线AB 方程为1y kx =+,联立方程组22112y kx y x =+⎧⎪⎨+=⎪⎩将1y kx =+代入椭圆方程2212y x +=,得()222210k x kx ++-=,则222A B k x x k +=-+,212A B x x k ⋅=-+, ∴A Bx x -==21212ABF A B S F F x x =⋅-△,可知122F F =则2211122ABF S k ===≤+△.=,即0k =时,2ABFS.【点睛】椭圆与直线相交时,三角形面积问题的关键点为:设直线方程、联立方程组、韦达定理、列出三角形面积的关系式,最后根据函数或不等式,可求出三角形面积的范围.20.(Ⅰ)22143x y +=;(Ⅱ)247;(Ⅲ)12||S S -【分析】(Ⅰ)根据椭圆的几何性质求出,a b 可得结果; (Ⅱ)联立直线与椭圆,根据弦长公式可求得结果;(Ⅲ)设直线l :1x ty =-(0)t ≠,11(,)C x y ,22(,)D x y ,联立直线l 与椭圆M 的方程,利用韦达定理求出12y y +,12||S S -=212||34t t +,变形后利用基本不等式可求得最大值.【详解】 (Ⅰ)因为椭圆的焦点为()1,0F -,所以1c =且23b =,所以222314a b c =+=+=,所以椭圆M 方程为22143x y +=. (Ⅱ)因为直线l 的倾斜角为45,所以斜率为1,直线l 的方程为1y x =+, 联立221143y x x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得27880x x +-=, 设11(,)C x y ,22(,)D x y , 则1287x x +=-,1287x x =-,所以||CD =247=. (Ⅲ)由(Ⅰ)知(2,0),(2,0)A B -,设直线l :1x ty =-(0)t ≠,11(,)C x y ,22(,)D x y , 联立221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 并整理得22(34)690t y ty +--=, 则122634t y y t +=+,123934y y t =-+0<,所以12,y y 异号, 所以121211|||4||4|||22S S y y -=⨯-⨯⨯122||||||y y =-122||y y =+212||34t t =+ 1243||||t t =+≤==当且仅当||3t =时,等号成立. 所以12||S S -.【点睛】关键点点睛:第(Ⅲ)问中将三角形面积用,C D 两点的纵坐标表示,并利用韦达定理和基本不等式解决是解题关键.21.(1)22182x y +=;(2【分析】(1)根据点(0,A得b =B到直线0x y ++=的距离为4得a =(2)求出直线l 的方程,与椭圆方程联立,设()11,M x y ,()22,N x y ,求出12||y y -,利用1212111222S OP y OP y OP y y =+=⨯⨯-可求出面积. 【详解】 (1)由题得b =因为椭圆C 的右顶点(,0)B a到直线0x y ++=的距离为4.4=,解得a =故椭圆C 的标准方程为22182x y +=. (2)由题意知1(0,2AB A B k ∴=所以直线l 的方程为220x y --= 联立22220182x y x y --=⎧⎪⎨+=⎪⎩,消去x 并整理得22210y y +-=, 设()11,M x y ,()22,N x y ,则121y y +=-,1212y y =-从而12y y -===故OMN的面积1212111122222S OP y OP y OP y y =+=⨯⨯-=⨯. 【点睛】 关键点点睛:将OMN 的面积化为OMP 和ONP △的面积之和,再利用12||y y -进行计算时解题关键.22.()2-∞-【分析】先根据方程为双曲线以及椭圆条件得,p q 为真命题时实数m 的取值范围,再根据,p q 有且只有一个为真命题,进而根据集合关系即可得答案. 【详解】由题设可知:命题p :方程22112x y m m +=-+表示双曲线, 则有()()120m m -+<,即解得2m <-或1m ,命题q :方程22212x y m m+=表示焦点在x 轴上的椭圆, 则22220m m m m ⎧>⇒>⎨>⎩, 由,p q 且只有一个真命题,则p 真q 假或p 假q 真,①当p 真q 假时,即2m <-或1m 且2m ≤,则2m <-;②当p 假q 真时,即212m m -≤≤⎧⎨>⎩, 无解,综上所述:实数m 的取值范围为(),2-∞-.【点睛】关键点睛:本题考查复合命题的真假求参数的取值范围,考查双曲线与椭圆的标准方程,分p 真q 假或p 假q 真两种情况讨论是解决本题的关键. 23.(1)22143x y +=;(2)2212516x y +=或2212516y x +=. 【分析】(1)由椭圆的定义求得2a =,再根据点在椭圆上可得23b =,从而可得答案; (2)根据离心率为35,短轴长为8,列方程组求得,a b 的值,注意讨论焦点的位置即可. 【详解】(1)因为椭圆上的点31,2A ⎛⎫ ⎪⎝⎭到两焦点的距离之和为4, 所以24,2a a ==,因为椭圆焦点在x 轴上, 所以可设椭圆方程为22214x y b+=,31,2A ⎛⎫ ⎪⎝⎭代入方程可得 22941134b b+=⇒=, 所以椭圆方程为22143x y +=; (2)因为椭圆离心率为35,短轴长为8所以2223528c a b a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,解得543a b c =⎧⎪=⎨⎪=⎩,若椭圆焦点在x 轴上,则方程为2212516x y +=; 若椭圆焦点在y 轴上,则方程为2212516y x +=. 【点睛】用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求.24.(1)2m k =-;(2)证明见解析.【分析】(1)联立直线方程与抛物线方程,利用0∆=得到k 和m 的关系式;(2)设(,)E x y ,EF 的中点为M ,利用1EF l k k ⋅=-及点M 在直线l 上,列出关于,x y 的方程组,解出点E 的纵坐标即可证明.【详解】解:(1)将y kx m =+代入24x y =,2440x kx m ⇒--=,∵l 与C 只有一个交点,故方程有两个相等的实数根,2216160k m m k ⇒∆=+=⇒=-.(2)设(,)E x y ,∵(0,1)F ,设M 为EF 中点,∴1,22x y M +⎛⎫ ⎪⎝⎭, M 在直线l 上,得122y k x m +=+①, EF 的斜率为1y k x'-=, 则由EF 与l 垂直可得1k k '=-, 故()111y x y k x k-=-⇒=-② 联立①②:21(1)22y k y m +=-+∵222112222k k m k y ⎛⎫=-⇒+=-- ⎪⎝⎭1y ⇒=- ∴E 点纵坐标为定值1-.【点睛】本题的难点在于(2)的证明,其核心是解决点关于线的对称点问题.一般地,设点(,)P x y 关于直线():00l Ax By C B ++=≠的对称点为()00',P x y ,则0x ,0y 满足: 00001022y y A x x B x x y y A B C ⎧-⎛⎫⋅-=- ⎪⎪-⎪⎝⎭⎨++⎪++=⎪⎩. 25.(1)1,12⎡⎤⎢⎥⎣⎦;(2)[]2,3【分析】(1)首先求命题p 为真命题时,求t 的取值范围,再根据题意转化为()10,1,2a a ⎛⎫⊆- ⎪⎝⎭,求实数a 的取值范围;(2)求命题q 为真命题时t 的取值范围,再转化为真命题时求a 的取值范围.【详解】(1)()()()2221010t a t a a t a t a --+-<⇔---<⎡⎤⎣⎦, 解得:1a t a -<< ,即不等式的解集是()1,a a -, 由题意可知()10,1,2a a ⎛⎫⊆- ⎪⎝⎭, 所以1012a a -≤⎧⎪⎨≥⎪⎩,解得:112a ≤≤, 所以实数a 的取值范围是1,12⎡⎤⎢⎥⎣⎦; (2)方程()22113x y t t t+=∈+-R 表示焦点在x 轴的椭圆, 103013t t t t +>⎧⎪∴->⎨⎪+>-⎩,解得:13t <<,即()1,3t ∈,若p 是q 的充分不必要条件,则()1,a a - ()1,3,113a a -≥⎧∴⎨≤⎩,解得23a ≤≤,∴实数a 的取值范围是[]2,3【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.26.(1)2212x y +=;(2). 【分析】(1)根据条件解关于,a c 的方程组即可得结果;(2)设()11,E x y ,()22,F x y ,联立直线方程与椭圆方程,根据韦达定理,可求得中点坐标,代入圆方程解得m 的值.【详解】(1)由题意,得221c a a c ⎧=⎪⎨⎪=+⎩,解得1a c ⎧=⎪⎨=⎪⎩ 故椭圆的标准方程为2212x y +=. (2)设()11,E x y ,()22,F x y ,线段EF 的中点为()00,M x y . 联立2212y x m x y =+⎧⎪⎨+=⎪⎩,消去y 得,2234220x mx m ++-= 120223x x m x +==-,003m y x m =+=,即2,33m m M ⎛⎫- ⎪⎝⎭,()()22443220m m m ∆=-⨯⨯->⇒<.又因为点M 在圆221x y +=上,所以222133m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得5m =±,满足题意. 【点睛】 关键点睛:本题考查弦中点问题以及椭圆标准方程,解题的关键是熟悉中点坐标公式,本题中直线方程代入椭圆方程整理后应用韦达定理求出12x x +,求出中点坐标,再将其代入圆中求解,考查了学生的基本分析转化求解能力,属中档题.。

北京师范大学附中2013届高三数学一轮复习单元训练:导数及其应用

北京师范大学附中2013届高三数学一轮复习单元训练:导数及其应用

北京师范大学附中2013届高三数学一轮复习单元训练:导数及其应用本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.由曲线3,y x y x ==围成的封闭图形面积为( )A .112 B .14C .13D .712【答案】A2.设()f x 在[]a b ,上连续,则()f x 在[]a b ,上的平均值是( )A .()()2f a f b + B .()baf x dx ⎰C .1()2baf x dx ⎰ D .1()baf x dx b a -⎰【答案】C3.已知函数()f x 的定义域为(2,2),-导函数为(0)0()2cos ,f f x x ='=+且,则满足2(1)()0f x f x x ++->的实数x 的取值范围为( )A . (1,1)-B . (11)-,C . (1D . (1,1+【答案】C 4.曲线y P x y 处的切线与在点)12,1(113+=轴交点的纵坐标是( )A .-9B .-3C . 9D .15【答案】C5.曲线3sin (0)2y x x π=≤≤与两坐标轴所围成图形的面积为( ) A . 1B . 2C . 52D . 3【答案】A6.设a ∈R ,函数f(x)=e x +a ·e -x的导函数f ′(x),且f ′(x)是奇函数.若曲线y =f(x)的一条切线的斜率是32,则切点的横坐标为( )A .- ln22B .-ln2C .ln22 D .ln2【答案】D 7.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( )A .18B .38/3C .16/3D .16【答案】A8.设函数)(x f 在区间],[b a 上连续,用分点b x x x x x a n i i =<<<<<=- 110,把区间],[b a等分成n 个小区间,在每个小区间],[1i i x x -上任取一点),,2,1(n i i =ξ,作和式∑=∆=n i i nxf S 1)(ξ(其中x ∆为小区间的长度),那么n S 的大小( )A .与)(x f 和区间],[b a 有关,与分点的个数n 和i ξ的取法无关B . 与)(x f 和区间],[b a 和分点的个数n 有关,与i ξ的取法无关C . 与)(x f 和区间],[b a 和分点的个数n,i ξ的取法都有关。

【走向高考】2013高三数学一轮总复习 9-8曲线与方程同步练习 理 北师大版

【走向高考】2013高三数学一轮总复习 9-8曲线与方程同步练习 理 北师大版

9-8曲线与方程(理)基 础 巩 固一、选择题1.到点F (0,4)的距离比它到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2B .y =-16x 2C .x 2=16y D .x 2=-16y [答案] C[解析]∵动点M 到点F (0,4)的距离比它到直线y =-5的距离小1,∴动点M 到点F (0,4)的距离与它到直线y =-4的距离相等.根据抛物线的定义可得点M 的轨迹是以F (0,4)为焦点,以直线y =-4为准线的抛物线,其标准方程为x 2=16y ,故选C.2.已知两点M (-2,0),N (2,0),点P 满足PM →·PN →=0,则点P 的轨迹方程为( ) A.x 216+y 2=1 B .x 2+y 2=4 C .y 2-x 2=8 D .x 2+y 2=8 [答案] B[解析] 设点P 的坐标为(x ,y ),即PM →·PN →=(-2-x ,-y )·(2-x ,-y )=-4+x 2+y 2=0,即得点P 的轨迹为x 2+y 2=4.3.(2012·某某模拟)方程(x +y -1)x 2+y 2-4=0,表示的曲线是( ) A .一直线与一圆 B .一直线与一半圆 C .两射线与一圆 D .两射线与一半圆 [答案] C[解析] 由式可知⎩⎪⎨⎪⎧x +y -1=0x 2+y 2-4≥0,或x 2+y 2-4=0,前者表示直线x +y -1=0在圆x 2+y 2=4上及圆外的部分,后者表示圆x 2+y 2=4,所以选C.4.(2012·某某调研)已知圆x 2+y 2=4,过点A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( )A .(x -1)2+y 2=4(-1≤x <12)B .(x -1)2+y 2=4(0≤x <1) C .(x -2)2+y 2=4(-1≤x <12)D .(x -2)2+y 2=4(0≤x <1) [答案] D[解析] 由圆的几何性质知,BC 的中点到A 与圆心连线的中点的距离为2,即方程为(x -2)2+y 2=4,又中点在圆内,∴0≤x <1.5.(2012·某某调研)一圆形纸片的圆心为O ,点Q 是圆内异于O 的一个定点,点A 是圆周上一动点,把纸片折叠使点A 与点Q 重合,然后展开纸片,折痕CD 与OA 交于点P ,当点A 运动时,点P 轨迹为( )A .椭圆B .双曲线C .抛物线D .圆 [答案] A[解析]∵折痕所在的直线是AQ 的垂直平分线, ∴|PA |=|PQ |,又∵|PA |+|OP |=r ,∴|PQ |+|OP |=r >|OQ |. 由椭圆的定义知点P 的轨迹是椭圆.6.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1 D.x 25-y 24=1 [答案] B[解析]∵k AB =0+153+12=1,∴直线AB 的方程为y =x -3.由于双曲线的焦点为F (3,0),∴c =3,c 2=9.设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则x 2a 2-x -32b 2=1.整理,得(b 2-a 2)x 2+6a 2x -9a 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=6a 2a 2-b 2=2×(-12).∴a 2=-4a 2+4b 2,∴5a 2=4b 2. 又a 2+b 2=9,∴a 2=4,b 2=5. ∴双曲线E 的方程为x 24-y 25=1.二、填空题7.(2012·某某理,13)椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为________.[答案]55[解析] 本题考查了椭圆的定义与离心率的求法,由已知|F 1F 2|=2c ,|AF 1|=a -c ,|BF 1|=a +c ,因|F 1F 2|2=|AF 1||BF 1|,所以(2c )2=(a -c )(a +c ),∴5c 2=a 2,∴e =55. 8.长为3的线段AB 的端点A ,B 分别在x ,y 轴上移动,动点C (x ,y )满足AC →=2CB →,则动点C 的轨迹方程是________.[答案]x 2+y 24=1[解析] 由题意设A (x A,0),B (0,y B ),AC →=(x -x A ,y ),CB →=(-x ,y B -y ), ∵AC →=2CB →,∴⎩⎪⎨⎪⎧x -x A =-2x ,y =2y B -y ⇒⎩⎪⎨⎪⎧x A =3x ,y B =32y .由x 2A +y 2B =9⇒9x 2+94y 2=9⇒x 2+y 24=1.三、解答题9.(2012·某某文,20)如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程.[解析] (1)设A (x 0,y 0),则矩形ABCD 的面积S =4|x 0|·|y 0|. 由x 209+y 20=1得y 20=1-x 209,从而 x 20y 20=x 20(1-x 209)=-19(x 20-92)2+94. 当x 20=92,y 20=12时,S max =6,从而t =5时,矩形ABCD 的面积最大,最大面积为6.(2)由A (x 0,y 0),B (x 0,-y 0),A 1(-3,0),A 2(3,0)知直线AA 1的方程为y =y 0x 0+3(x +3). ①直线A 2B 的方程为y =-y 0x 0-3(x -3). ② 由①②得y 2=-y 20x 20-9(x 2-9). ③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209. ④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).能 力 提 升一、选择题1.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( )A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3) D.x 216-y 29=1(x >4) [答案] C[解析] 如图|AD |=|AE |=8,|BF |=|BE |=2, |CD |=|CF |,所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x >3). 2.|y |-1=1-x -12表示的曲线是( )A .抛物线B .一个圆C .两个圆D .两个半圆 [答案] D[解析] 原方程等价于⎩⎪⎨⎪⎧|y |-1≥01-x -12≥0|y |-12=1-x -12⇔⎩⎪⎨⎪⎧|y |-1≥0x -12+|y |-12=1⇔⎩⎪⎨⎪⎧y ≥1x -12+y -12=1或⎩⎪⎨⎪⎧y ≤-1x -12+y +12=1.二、填空题3.点P 在以F 1、F 2为焦点的椭圆x 23+y 24=1上运动,则△PF 1F 2的重心G 的轨迹方程是________.[答案]x 213+y 249=1(x ≠0) [解析]F 1(0,-1)、F 2(0,1),设P (x 0,y 0),G (x ,y ), ∵G 为△PF 1F 2的重心,∴⎩⎪⎨⎪⎧x =x 03y =y3,∴⎩⎪⎨⎪⎧x 0=3xy 0=3y,代入x 23+y 24=1中得x 213+y 249=1构成三角形时,三点P 、F 1、F 2不共线,∴x ≠0.4.(2011·理,14)曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论:①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________. [答案] ②③[解析] 设曲线C 上任一点P (x ,y ),由|PF 1|·|PF 2|=a 2,可得x +12+y 2·x -12+y 2=a 2(a >1),将原点(0,0)代入等式不成立,故①不正确.∵点P (x ,y )在曲线C 上,点P 关于原点的对称点P ′(-x ,-y ),将P ′代入曲线C 的方程等式成立,故②正确.设∠F 1PF 2=θ,则S △F 1PF 2=12|PF 1||PF 2|·sin θ=12a 2sin θ≤12a 2,故③正确.[点评] 本题考查曲线的轨迹方程的求法,考查考生运用所学知识分析问题、解决问题的能力,难度适中.三、解答题5.(2011·某某理,20)平面内与两定点A 1(-a,0)、A 2(a,0)(a >0)连线的斜率之积等于非零常数m 的点的轨迹,加上A 1、A 2两点所成的曲线C 可以是圆、椭圆或双曲线.求曲线C 的方程,并讨论C 的形状与m 值的关系.[解析] 设动点为M ,其坐标为(x ,y ), 当x ≠±a 时,由条件可得kMA 1·kMA 2=y x -a·y x +a=y 2x 2-a2=m ,即mx 2-y 2=ma 2(x ≠±a ),又A 1(-a,0)、A 2(a,0)的坐标满足mx 2-y 2=ma 2, 故依题意,曲线C 的方程为mx 2-y 2=ma 2.当m <-1时,曲线C 的方程为x 2a 2-y 2ma2=1,C 是焦点在y 轴上的椭圆;当m =-1时,曲线C 的方程为x 2+y 2=a 2,C 是圆心在原点的圆;当-1<m <0时,曲线C 的方程为x 2a 2+y 2-ma 2=1,C 是焦点在x 轴上的椭圆;当m >0时,曲线C 的方程为x 2a 2-y 2ma2=1,C 是焦点在x 轴上的双曲线.6.如图,在平面直角坐标系xOy 中,已知椭圆x 29+y 25=1的左、右顶点为A 、B ,右焦点为F .设过点T (t ,m )的直线TA ,TB 与此椭圆分别交于点M (x 1,y 1),N (x 2,y 2),其中m >0,y 1>0,y 2<0.(1)设动点P 满足PF 2→-PB 2→=4,求点P 的轨迹; (2)设x 1=2,x 2=13,求点T 的坐标.[解析] 本主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.由题设得A (-3,0),B (3,0),F (2,0).(1)设点P (x ,y ),则PF 2→=(x -2)2+y 2,PB 2→=(x -3)2+y 2.由PF 2→-PB 2→=4,得(x -2)2+y 2-(x -3)2-y 2=4,化简得x =92.故所点P 的轨迹为直线x =92.(2)由x 1=2,x 219+y 215=1及y 1>0,得y 1=53,则点M (2,53),从而直线AM 的方程为y =13x+1;由x 2=13,x 229+y 225=1,及y 2<0,得y 2=-209,则点N (13,-209),从而直线BN 的方程为y =56x -52.由⎩⎪⎨⎪⎧y =13x +1,y =56x -52,解得⎩⎪⎨⎪⎧x =7,y =103.所以点T 的坐标为(7,103).7.设椭圆方程为x 2+y 24=1,过点M (0,1)的直线l 交椭圆于A ,B 两点,O 为坐标原点,点P 满足OP →=12(OA →+OB →),点N 的坐标为(12,12),当直线l 绕点M 旋转时,求:(1)动点P 的轨迹方程;(2)|NP →|的最大值,最小值.[解析] (1)直线l 过定点M (0,1),设其斜率为k , 则l 的方程为y =kx +1.设A (x 1,y 1),B (x 2,y 2),由题意知,A 、B 的坐标满足方程组⎩⎪⎨⎪⎧y =kx +1,x 2+y 24=1.消去y得(4+k 2)x 2+2kx -3=0.则Δ=4k 2+12(4+k 2)>0. ∴x 1+x 2=-2k 4+k 2,x 1x 2=-34+k 2.设P (x ,y )是AB 的中点,则 OP →=12(OA →+OB →),得⎩⎪⎨⎪⎧x =12x 1+x 2=-k4+k2,y =12y 1+y 2=44+k2;消去k 得4x 2+y 2-y =0.当斜率k 不存在时,AB 的中点是坐标原点,也满足这个方程, 故P 点的轨迹方程为4x 2+y 2-y =0. (2)由(1)知4x 2+(y -12)2=14,∴-14≤x ≤14.而|NP |2=(x -12)2+(y -12)2=(x -12)2+1-16x24=-3(x +16)2+712,∴当x =-16时,|NP →|取得最大值216,当x =14时,|NP →|取得最小值14.。

北京师范大学附属中学选修一第三单元《圆锥曲线的方程》测试题(答案解析)

北京师范大学附属中学选修一第三单元《圆锥曲线的方程》测试题(答案解析)

一、填空题1.已知动圆M 过定点()30A -,,并且内切于定圆()22:364B x y -+=,则动圆圆心M 的轨迹方程._______2.已知F 是双曲线221412x y -=的左焦点,()1,4A ,P 是双曲线右支上的动点,则PF PA +的最小值为________.3.若椭圆C :22184x y +=的右焦点为F ,且与直线l :320x y -+=交于P ,Q 两点,则PQF △的周长为_______________.4.已知双曲线M :()222210,0x y a b a b-=>>的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆()22x c y a -+=的两条切线互相垂直,则双曲线M 的离心率的取值范围是________.5.如图,过椭圆2222:1(0)x y E a b a b+=>>的左焦点1F 作直线l 交椭圆E 于A ,B 两点,O为坐标原点,连接BO 并延长交椭圆E 于C 点,若1CF AB ⊥,且113CF AF =,则该椭圆E 的离心率e 为____________.6.已知A B 、为椭圆2214x y +=和双曲线2214x y -=的公共顶点, P Q 、分别为双曲线和椭圆上不同于两点A B 、的动点,且有()(),||1PA PB QA QBR λλλ+=+∈>,设直线AP 、BP 、AQ 、BQ 的斜率分别为1234,,,k k k k ,则1234 k k k k +++=______.7.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若||3||PF QF =,且120PFQ ∠=,则椭圆E 的离心率为__.8.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,O 为坐标原点.过点F 的直线240x y +-=与椭圆的交点为Q (点Q 在x 轴上方),且||||OF OQ =,则椭圆C 的离心率为_____.9.设12,F F 是双曲线22154x y -=的两个焦点,P 是该双曲线上一点,且12:2:1PF PF =,则12PF F ∆的面积等于__________.10.已知双曲线22221(0,0)x y a b a b-=>>与方向向量为(6,6)k =的直线交于A ,B 两点,线段AB 的中点为(4,1),则该双曲线的渐近线方程是_______.11.设12,F F 分别是椭圆22=1169x y +的两个焦点,点P 在椭圆上,若线段1PF 的中点在y轴上,则12||||PF PF =______. 12.已知P 是椭圆2214x y +=上的一点,1F ,2F 是椭圆的两个焦点,当123F PF π∠=时,则12PF F △的面积为________.13.设D 为椭圆2215y x +=上任意一点,()0,2A -,()0,2B ,延长AD 至点P ,使得PD BD =,则点P 的轨迹方程为______. 二、解答题14.已知()()()22:3400,q :112x y p m a m a a m m--<>+=--.(1)若q 表示双曲线,求实数m 的取值范围;(2)若q 表示焦点在y 轴上的椭圆,且q ⌝是p ⌝中的充分不必要条件,求实数a 的取值范围.15.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的四个顶点围成的四边形的面积为e = (1)求椭圆C 的方程;(2)是否存在斜率为1-的直线l 与椭圆C 相交于两点M ,N 使得11FM F N =(1F 为椭圆的左焦点)?若存在,求出直线l 的方程;若不存在,说明理由.16.已知双曲线1C 的方程为22143x y -=,椭圆2C 与双曲线有相同的焦距,1F ,2F 是椭圆的上、下两个焦点,已知P 为椭圆上一点,且满足12PF PF ⊥,若12PF F △的面积为9. (1)求椭圆2C 的标准方程;(2)点A 为椭圆的上顶点,点B 是双曲线1C 右支上任意一点,点M 是线段AB 的中点,求点M 的轨迹方程.17.已知椭圆C :22221x y a b+=(a >b >0), 直线330x y +-=经过椭圆的上顶点和右焦点.(1)求椭圆C 的方程;(2)过右焦点2F 的直线l 与椭圆C 相交于A , B 两点.若OAB 的面积为26,求直线l 的方程.18.如图,椭圆22221(0)x y a b a b+=>>的左、右焦点为12,F F ,过1F 的直线l 与椭圆相交于A 、B 两点.(1)若01260AF F ∠=,且 120AF AF ⋅=求椭圆的离心率. (2)若2,1a b ==,求22F A F B ⋅的最大值和最小值.19.已知椭圆()2222:10x y C a b a b +=>>过点(0,2)A -,且椭圆C 的右顶点B 到直线20x y ++=的距离为4.(1)求椭圆C 的标准方程;(2)若过点()20P ,且与直线AB 平行的直线l 与椭圆C 交于,M N 两点,求OMN 的面积(O 为坐标原点).20.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,且椭圆上的点到焦点的最长距离为12+(1)求椭圆C 的方程;(2)过点(0,2)P 的直线l (不过原点O )与椭圆C 交于两点A 、B ,M 为线段AB 的中点. (i )证明:直线OM 与l 的斜率乘积为定值; (ii )求OAB 面积的最大值及此时l 的斜率.21.已知椭圆()2222:10x y C a b a b +=>>3C 过点322⎛ ⎝⎭.(1)求椭圆C 的标准方程;(2)已知O 为原点,过椭圆C 的右焦点的直线l 与椭圆C 交于A 、B 两点,求OAB 的面积的最大值.22.已知椭圆22221x y a b+=(0a b >>)长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线l 过点(,0)A a -,且与椭圆相交于另一点B .(1)求椭圆的方程; (2)若线段AB 长为425,求直线l 的倾斜角. 23.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知112BF F F ⊥,153F B =,124F F =.(1)试建立适当的坐标系,求截口BAC 所在的椭圆的方程;(2)如图,若透明窗DE 所在的直线与截口BAC 所在的椭圆交于一点P ,若1260F PF ∠=︒求12F PF △的面积.24.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为,A B ,||4AB =.过右焦点F 且垂直于x 轴的直线交椭圆C 于,D E 两点,且||1DE =.(1)求椭圆C 的方程;(2)斜率大于0的直线l 经过点(4,0)P -,且交椭圆C 于不同的两点,M N (M 在点,P N 之间).记PNA 与PMB △的面积之比为λ,求实数λ的取值范围.25.求符合下列条件的双曲线的标准方程:(1)焦点在x 轴上,中心为坐标原点焦距为6,实轴长为4;(2)焦点在x 轴上,中心为坐标原点,渐近线方程为y x =±,且过点(1)-.26.已知曲线()()222240.a x by b a b R Γ--+-=∈:,下面给出的三个问题,从中任选出一个问题,然后对选择的问题进行求解.①若42a b ==,,写出曲线的方程,指出曲线的名称,并求出该曲线的对称轴方程、顶点坐标、焦点坐标、及x y 、的取值范围;②若32a b ==,,写出曲线的方程,并求经过点(-1,0)且与曲线Γ只有一个公共点的直线方程;③若3a =,请在直角坐标平面内找出纵坐标不同的两个点,此两点满足条件:无论b 如何变化,这两点都不在曲线Γ上.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】由圆的标准方程有圆心为半径为8根据圆内切于定圆且过定点即有即知轨迹为椭圆写出轨迹方程即可【详解】由圆方程知:圆的圆心为半径为8∵圆过定点且内切于圆若设圆的圆心为∴由题意知:而故可知在以为焦点解析:221167x y += 【分析】由圆的标准方程有圆心为(3,0)B ,半径为8,根据圆M 内切于定圆B 且过定点()30A -,,即有||||8AM BM +=,||6AB =即知M 轨迹为椭圆,写出轨迹方程即可.【详解】由圆方程知:圆B 的圆心为(3,0)B ,半径为8,∵圆M 过定点()30A -,且内切于圆B ,若设圆M 的圆心为(,)M x y , ∴由题意知:||||8AM BM +=,而||6AB =,故可知M 在以,A B 为焦点的椭圆上,∴2224,c 3,b 7a a c ===-=,即圆心M 的轨迹方程:221167x y +=.【点睛】关键点点睛:根据动圆过定点且与另一圆内切,即两圆圆心的距离加上动圆到定点的距离为定值,又两圆心距离为定值,即可知动圆圆心轨迹.2.【分析】作出图形设双曲线的右焦点为根据双曲线的定义可得可得出利用三点共线时取得最小值即可得解【详解】对于双曲线则如下图所示:设双曲线的右焦点为则由双曲线的定义可得则所以当且仅当三点共线时等号成立因此解析:9【分析】作出图形,设双曲线的右焦点为M ,根据双曲线的定义可得4PF PM =+,可得出4PF PA PM PA +=++,利用A 、P 、M 三点共线时PF PA +取得最小值即可得解. 【详解】对于双曲线221412x y -=,则2a =,23b =,4c =,如下图所示:设双曲线的右焦点为M ,则()4,0M ,由双曲线的定义可得4PF PM -=,则4PF PM =+, 所以,()()2244144049PF PA PM PA AM +=++≥+=-+-=,当且仅当A 、P 、M 三点共线时,等号成立. 因此,PF PA +的最小值为9. 故答案为:9. 【点睛】关键点点睛:利用双曲线的定义求解线段和的最小值,有如下方法:(1)求解椭圆、双曲线有关的线段长度和、差的最值,都可以通过相应的圆锥曲线的定义分析问题;(2)圆外一点到圆上的点的距离的最值,可通过连接圆外的点与圆心来分析求解.3.【分析】求出左焦点坐标利用直线经过椭圆的左焦点结合椭圆的定义求三角形的周长即可【详解】由题得椭圆的左焦点所以直线经过左焦点的周长故答案为:【点睛】方法点睛:解答圆锥曲线的问题时如果遇到了焦半径要联想 解析:2【分析】求出左焦点坐标,利用直线经过椭圆的左焦点,结合椭圆的定义求三角形的周长即可. 【详解】由题得椭圆C 的左焦点(2,0)F '-, 所以直线:320l x -+=经过左焦点F ',PQF ∴的周长||||||PQ PF QF ++||||||||PF PF QF QF ''=+++482a ==,故答案为:2 【点睛】方法点睛:解答圆锥曲线的问题时,如果遇到了焦半径,要联想到圆锥曲线的定义,利用定义优化解题.4.【分析】要使得经过点所作的圆的两条切线互相垂直必有而焦点到双曲线渐近线的距离为故利用双曲线的离心率的计算公式解答【详解】解:∵所以离心率圆是以为圆心半径的圆要使得经过点所作的圆的两条切线互相垂直必有 解析:(3【分析】要使得经过点T 所作的圆的两条切线互相垂直,必有2TF a =,而焦点(),0F c 到双曲线渐近线的距离为b ,故2TF a b =≥,利用双曲线的离心率的计算公式解答.【详解】解:∵0b >,0a >,所以离心率211c b e a a ⎛⎫==+> ⎪⎝⎭,圆()22x c y a -+=是以(),0F c 为圆心,半径r a =的圆,要使得经过点T 所作的圆的两条切线互相垂直, 必有2TF a =,而焦点(),0F c 到双曲线渐近线的距离为b , 所以2TF a b =≥,即2b a 213c b e a a ⎛⎫==+ ⎪⎝⎭,所以双曲线M 的离心率的取值范围是(3.故答案为:(3.【点睛】本题考查双曲线的离心率的取值范围的求法,是中档题,解题时要认真审题,注意双曲线性质的灵活运用.5.【分析】设椭圆的右焦点为连根据点的对称性和推出四边形为矩形所以设利用椭圆定义得到和根据勾股定理可得从而可得离心率【详解】设椭圆的右焦点为连如图:因为关于原点对称关于原点对称所以四边形为平行四边形又所 解析:2 【分析】设椭圆的右焦点为2F ,连2BF ,2CF ,2AF ,根据点的对称性和1CF AB ⊥推出四边形12BF CF 为矩形,所以2AB BF ⊥,设1||AF m =,利用椭圆定义得到2||AF 和1||BF ,根据勾股定理可得2a c =,从而可得离心率.【详解】设椭圆的右焦点为2F ,连2BF ,2CF ,2AF ,如图:因为,B C 关于原点对称,12,F F 关于原点对称,所以四边形12BF CF 为平行四边形, 又1CF AB ⊥,所以四边形12BF CF 为矩形,所以2AB BF ⊥, 设1||AF m =,因为113CF AF =,所以1||3CFm =,所以2||3BF m =,22||AF a m =-,1||23BF a m =-,在直角三角形2ABF 中,由22222||||||AB BF AF +=得222(23)(3)(2)a m m m a m -++=-,化简得3a m =,所以1||BF a =, 2||BF a =,在直角三角形12BF F 中,由2221212||||||BF BF F F +=得2224a a c +=,即2a c =,所以椭圆E 的离心率e 22c a ==. 故答案为:22【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到关于,,a b c 的等量关系.本题中利用椭圆定义以及勾股定理得到所要求的等量关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题.6.0【分析】可根据题的已知条件设利用斜率公式得到;同理可得结合三点共线即可得出的值【详解】由题意可知三点共线设点在双曲线上则所以①又由点在椭圆上则同理可得②三点共线由①②得故答案为:0【点睛】本题考查解析:0 【分析】可根据题的已知条件,设()11,P x y 、()22,Q x y ,利用斜率公式得到11212x k k y +=; 同理可得23422x k k y +=-, 结合O P Q 、、三点共线即可得出1234k k k k +++的值. 【详解】由题意,()(),||1PA PB QA QB R λλλ+=+∈>可知O P Q 、、三点共线.()2,0A -、()2,0B设()11,P x y 、()22,Q x y ,点P 在双曲线2214x y -=上,则221144x y -=. 所以11111111222111112222442y y x y x y xk k x x x y y +=+===+--① 又由点Q 在椭圆2214x y +=上,则222242x y -=-. 同理可得23422x k k y +=-②O P Q 、、三点共线.1212x x y y ∴=. 由①、②得12340k k k k +++=. 故答案为:0 【点睛】本题考查运算求解能力、数形结合思想、化归与转化思想.主要思路为结合曲线与点的位置关系、向量关系式,根据斜率公式,列相关关系式化简求解.7.【分析】取椭圆的右焦点由直线过原点及椭圆的对称性可得四边形为平行四边形由及椭圆的性质可得余弦定理可得离心率的值【详解】取椭圆的右焦点连接由椭圆的对称性可得四边形为平行四边形则而所以所以在中解得:故答解析:7 4【分析】取椭圆的右焦点F',由直线l过原点及椭圆的对称性可得四边形PFQF'为平行四边形,由||3||PF QF=及椭圆的性质可得2aPF'=,32aPF=,120PFQ∠=︒余弦定理可得离心率的值.【详解】取椭圆的右焦点F',连接QF',PF',由椭圆的对称性,可得四边形PFQF'为平行四边形,则PF QF'=,180********FPF PFQ∠='=-∠-=,||3||PF QF=3||PF'=,而||||2PF PF a'+=,所以2aPF'=,所以32aPF=,在PFF'中,2222222914||||58144cos32332222a a cPF PF FFFPF eaPF PF a+-+-∠===-''''=⨯⨯,解得:74e=,故答案为:74.【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到关于,,a b c的等量关系.本题中,由椭圆的对称性以及椭圆的定义得到2aPF'=,所以32aPF=,然后在PFF'中,根据余弦定理得到所要求的等量关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题.8.【分析】转化条件为设点列方程可得点结合椭圆定义可得再由离心率的公式即可得解【详解】因为点在直线上所以椭圆左焦点设点则解得或(舍去)所以点所以即所以椭圆的离心率故答案为:【点睛】关键点点睛:解决本题的解析:3【分析】转化条件为()2,0F ,设点(),24Q x x -+,列方程可得点68,55Q ⎛⎫⎪⎝⎭,结合椭圆定义可得a ,再由离心率的公式即可得解.【详解】因为点F 在直线240x y +-=上,所以()2,0F ,椭圆左焦点()12,0F -, 设点(),24Q x x -+,则2OQ OF ===,解得65x =或2x =(舍去),所以点68,55Q ⎛⎫ ⎪⎝⎭,所以125a QF QF =+==,即a =,所以椭圆的离心率5c e a ===【点睛】关键点点睛:解决本题的关键是求出点Q 的坐标,再结合椭圆的定义、离心率公式即可得解.9.12【分析】通过双曲线的定义可先求出的长度从而利用余弦定理求得于是可利用面积公式求得答案【详解】由于因此故由于即而所以所以因此【点睛】本题主要考查双曲线定义余弦定理面积公式的综合应用意在考查学生的分解析:12 【分析】通过双曲线的定义可先求出12PF PF ,的长度,从而利用余弦定理求得12cos F PF ∠,于是可利用面积公式求得答案. 【详解】由于22154x y -=,因此a =3c =,故12|26|=F F c =,由于12:2:1PF PF =即12=2PF PF,而122PF PF a -==1PF,2PF ,222121212124cos 25PF PF F F F PF PF PF +-∠==⋅,所以123sin 5F PF ∠=,因此1212121||||sin 122PF F S PF PF F PF ∆=∠=. 【点睛】 本题主要考查双曲线定义,余弦定理,面积公式的综合应用,意在考查学生的分析能力,计算能力及转化能力,难度中等.10.【分析】设代入到双曲线的方程中运用点差法可求得可得答案【详解】设则且因为线段的中点为所以由题意可得直线的斜率为1所以即故双曲线的渐近线方程为故答案为:【点睛】本题考查点差法的运用之得双曲线的渐近线方解析:12y x =±【分析】设()()1122,,,A x y B x y ,代入到双曲线的方程中,运用点差法可求得12b a =,可得答案. 【详解】设()()1122,,,A x y B x y ,则2211221x y a b -=且2222221x y a b-=,因为线段AB 的中点为(4,1),所以()()2221212221214b x x y y b x x a y y a+-==-+, 由题意可得直线AB 的斜率为1,所以2241b a=,即12b a =,故双曲线的渐近线方程为12y x =±. 故答案为:12y x =±. 【点睛】本题考查点差法的运用之得双曲线的渐近线方程,属于中档题.11.【分析】先设P 点中点再求焦点再根据线段的中点在轴上求出P 点坐标再利用焦半径公式即可得的长则可解【详解】设中点由题意得由线段的中点在轴上则有代入中得P 点坐标为或根据焦半径公式可得∴故答案为:【点睛】考 解析:239【分析】先设P 点,中点,再求焦点12,F F ,再根据线段1PF 的中点在y 轴上,求出P 点坐标,再利用焦半径公式即可得12||,||PF PF 的长,则12||||PF PF 可解. 【详解】设(,)p p P x y,中点(0,)m n .由题意得12(7,0),(7,0)F F -,4a =,74e =由线段1PF 的中点在y 轴上, 则有702p x +=,7p x =-,代入22=1169x y +中得P 点坐标为9(7,)4-或9(7,)4--根据焦半径公式可得,12239||,||44PF PF ==, ∴12||23||9PF PF =. 故答案为:239. 【点睛】考查椭圆的焦半径公式, 解题关键要求出P 点坐标.12.【分析】由题意画出图形利用椭圆定义及余弦定理求得的值代入三角形面积公式得答案【详解】解:如图由椭圆得则由余弦定理可得:即的面积故答案为:【点睛】本题考查椭圆的简单性质考查椭圆定义的应用是中档题 解析:33【分析】由题意画出图形,利用椭圆定义及余弦定理求得12PF PF 的值,代入三角形面积公式得答案. 【详解】 解:如图,由椭圆2214x y +=,得2a =,1b =,则24a =,223c a b =-=1224PF PF a ∴+==,由余弦定理可得:2221212122cos60F F PF PF PF PF =+-︒,()22121243c PF PF PF PF ∴=+-,即1243PF PF =. 12F PF ∴的面积1211433sin 6022323S PF PF =︒=⨯⨯=.故答案为:33. 【点睛】本题考查椭圆的简单性质,考查椭圆定义的应用,是中档题,13.【分析】由已知可得为椭圆两焦点再由已知结合椭圆定义可得点的轨迹是以为圆心以为半径的圆写出圆的标准方程得答案【详解】如图由椭圆方程得所以则为椭圆两焦点所以由于则所以点的轨迹是以为圆心以为半径的圆其方程 解析:()22220x y ++=【分析】由已知可得,(0,2)A -,(0,2)B 为椭圆两焦点,再由已知结合椭圆定义可得点P 的轨迹是以A 为圆心,以25为半径的圆,写出圆的标准方程得答案. 【详解】 如图,由椭圆方程2215y x +=,得25a =,21b =,所以222c a b =-=,则(0,2)A -,(0,2)B 为椭圆两焦点, 所以||||25DA DB a +== 由于||||PD BD =,则||||||||||5PA PD DA BD DA =+=+=所以点P 的轨迹是以A为圆心,以22(2)20x y ++=. 故答案为:22(2)20x y ++=. 【点睛】本题考查轨迹方程的求法,运用了椭圆的标准方程、椭圆定义和焦点坐标,同时考查数学转化思想方法,是中档题.二、解答题14.(1)()()–,12,∞+∞;(2)13,38⎡⎤⎢⎥⎣⎦.【分析】(1)根据曲线方程,列式()()120m m --<,求m 的取值范围;(2)分别求两个命题为真命题时,m 的取值范围,根据命题的等价性转化为p 是q 的充分不必要条件,转化为真子集关系,求实数a 的取值范围. 【详解】(1)由()()120m m --<,得1m <或2m >,即()()–,12,m ∈∞⋃+∞(2)命题p ∶由()()()3400m a m a a --<>,得34a m a <<.命题q ∶22112x y m m+=--表示焦点在y 轴上的椭圆, 则102021m m m m ->⎧⎪->⎨⎪->-⎩,解得312m <<,因为q ⌝是p ⌝的充分不必要条件,所以p 是q 的充分不必要条件,则31342a a ≥⎧⎪⎨≤⎪⎩,解得1338a ≤≤,故实数a 的取值范围为:13,38⎡⎤⎢⎥⎣⎦.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.15.(1)22162x y +=;(2)不存在,理由见解析.【分析】(1)由离心率得2223c a =,由面积可得2ab =,结合222a b c =+即可求出,a b ,得出椭圆方程;(2)设出直线方程y x t =-+,联立直线与椭圆,利用判别式可得t -<<由11FM F N =可求得4t =-,即可判断. 【详解】 (1)由ce a ==2223c a =,又因为四个顶点围成的四边形的面积为2ab =, 由222a b c =+,得a =b =故椭圆C 的方程为:22162x y +=(2)不存在符合题意的直线.假设存在满足条件的直线l ,设直线l 的方程为y x t =-+,由22162x y y x t ⎧+=⎪⎨⎪=-+⎩,得223()60x x t +-+-=, 即2246360x tx t -+-=,由()222(6)163612960t t t ∆=---=-+>,解得t -<<设11(,)M x y ,22(,)N x y ,则1232t x x +=,212364t x x -=,由于11||||F M F N =,设线段MN 的中点为E , 则1F E MN ⊥,故111F E MNk k =-=,又1(2,0)F -,1212,22x x y y E ++⎛⎫⎪⎝⎭,即3,44t t E ⎛⎫ ⎪⎝⎭,所以141324F E t k t==+,解得4t =-.当4t =-时,不满足t -<, 所以不存在满足条件的直线l . 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.16.(1)221169y x +=;(2)()222413y x --=(1≥x ). 【分析】(1)根据条件先求解出双曲线的半焦距c ,然后结合三角形的面积、勾股定理、椭圆的定义求解出椭圆方程中2a 的值,从而椭圆方程可求;(2)设(),M x y ,()00,B x y ,根据条件用M 点的坐标表示出B 点的坐标,再根据B 在双曲线上求解出,x y 满足的等式即为轨迹方程. 【详解】(1)设双曲线的半焦距为c ,由题2437c =+=,设椭圆方程22221y xa b+=(0a b >>).∴1222212121924282PF PF PF PF c PF PF a⎧=⎪⎪⎪+==⎨⎪+=⎪⎪⎩,∴2221212142+4=64a PF PF PF PF ⎛⎫ ⎪⎝⎭=+∴216a =,∴2221679b a c =-=-=,∴2:C 221169y x +=;(2)由题点()0,4A .设双曲线右支上任意一点B 的坐标为()00,x y ,AB 中点M 的坐标为(),x y ,则00242x x y y ⎧=⎪⎪⎨+⎪=⎪⎩,∴00224x xy y =⎧⎨=-⎩, 又点B 在双曲线上,∴2200143x y -=∴()222413y x --=(1≥x ).【点睛】结论点睛:椭圆或双曲线的焦点三角形的顶点为P ,焦点为12,F F ,且12F PF θ∠=,则有:(1)椭圆的焦点三角形的面积为:2tan2b θ(b 为短轴长度一半);(2)双曲线的焦点三角形的面积为:2tan2bθ(b为虚轴长度一半).17.(1)2214xy+=;(2)0x y--=或0x y+=或20x--=或20x-=.【分析】(1)由直线方程,求出椭圆的上顶点和右焦点,可得出a、b的值,进而可求出椭圆C的方程;(2)设直线l的方程为x my=,设点()11,A x y、()22,B x y,于是得出OAB的面积为1212OABS OF y y=⋅-,将直线l的方程与椭圆C的方程联立,将韦达定理代入OAB的面积表达式可求出m的值,从而可得出直线l的方程.【详解】(1)由0x-=,令0x=可得1y=;令0y=可得x=因为直线0x+-=经过椭圆的上顶点和右焦点,所以半焦距为c=1b=,因此2a==,所以,椭圆C的方程为2214xy+=;(2)由(1)可得)2F,设过)2F的直线方程为x my=,由2214x myxy⎧=⎪⎨+=⎪⎩消去x,整理得()22410m y++-=,显然22124164280m m∆=++=+>.设12(,)A x x,12(,)B x x,则12y y+=,12214y ym-=+,从而1224y ym-=+.所以121122OABS OF y y=⋅-==,解得1m=±或2m=±所以直线l的方程为0x y-=或0x y+=,20x--=或20x-=.【点睛】思路点睛:求解椭圆中三角形(或四边形)面积相关问题时,一般需要联立直线与椭圆方程,结合韦达定理,以及弦长公式等,表示出三角形(或)四边形的面积,结合题中条件列出方程求解即可.18.(11;(2)最大值72;最小值1-. 【分析】(1)因为在焦点三角形12AF F 中,120AF AF ⋅=,则12AF AF ⊥,又因为01260AF F ∠=,所以12,AF c AF ==,所以1212212F F c c e a a AF AF =====+, (2)若1a b ==,则1c =,12(1,0),(1,0)F F -,当AB 垂直于x 轴时,可求出,A B两点的坐标,从而可得22F A F B ⋅的值,当AB 与x 轴不垂直,设直线AB 的斜率为k ,则直线AB 的方程为(1)y k x =+,与椭圆方程联立成方程组,消去y 后,整理再利用韦达定理得2122412k x x k+=-+, 21222(1)12k x x k -⋅=+,从而可得22F A F B ⋅=22271791222(12)k k k -=-++,进而可求出其取值范围 【详解】 (1)120AF AF ⋅=,12AF AF ∴⊥因为1260AF F ∠=。

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》测试卷(答案解析)(1)

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》测试卷(答案解析)(1)

一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线30x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.设1F ,2F 是双曲线C :22111y x -=的两个焦点,O 为坐标原点,点M 在C 上且23OM =,则12MF F △的面积是( )A .10B .11C .12D .133.过抛物线()2:20C y px p =>的焦点F 且倾斜角为锐角的直线l 与C 交于,A B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若3AB MN =,则直线l 的倾斜角为( ) A .15︒B .30C .45︒D .60︒4.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若16MF OM =,则E 的离心率为( )A 3B .2C 5D 25.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( ) A .12y x =±B .y x =±C .3y x =D .5y x =6.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该双曲线的离心率为( )A B .3C .2D 7.设抛物线2:4C y x =的焦点为F ,M 为抛物线上异于顶点的一点,且M 在直线1x =-上的射影为N ,若MNF 的垂心在抛物线C 上,则MNF 的面积为( ) A .1 B .2 C .3 D .48.已知两定点()0,1M -,()0,1N ,直线l :y x =+,在l 上满足PM PN +=P 的个数为( )A .0B .1C .2D .0或1或29.设F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,P 是双曲线C 右支上一点,若|PF 1|+|PF 2|=4a ,且∠F 1PF 2=60°,则双曲线C 的渐近线方程是( )A 0y ±=B .20x =C 20y ±=D .20x ±=10.已知圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,动圆M 与圆1C ,圆2C 均相切,P 是12MC C 的内心,且12123PMC PMC PC C SSS+=,则a 的值为( )A .9B .11C .17D .1911.顶点在原点,经过点(),且以坐标轴为轴的抛物线的标准方程是( )A .2y =或212=-x y B .2y =-或212=-x yC .2y =或212x y =D .2y =-或212x y =12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.在平面直角坐标系xOy 中,1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的焦点.若椭圆C 上存在点P ,使得12|1|||2PO F F =,则椭圆C 的离心率的取值范围为________. 14.设F 是抛物线2:2C y x =的焦点,A 、B 是抛物线C 上两个不同的点,若直线AB恰好经过焦点F ,则4AF BF +的最小值为_______.15.直线l 与抛物线24y x =交于A 、B 两点,O 为坐标原点,直线OA 、OB 的斜率之积为1-,以线段AB 的中点为圆心,2为半径的圆与直线l 交于P 、Q 两点,()6,0M ,则22MP MQ +的最小值为______.16.已知椭圆22:12x C y +=的左焦点为F ,椭圆外一点(0,)(1)P t t >,直线PF 交椭圆于A 、B 两点,过P 作椭圆C 的切线,切点为E ,若23||4||||PE PA PB =⋅,则t =____________.17.已知圆22:68210C x y x y ++++=,点A 是圆C 上任一点,抛物线28y x =的准线为l ,设抛物线上任意一点Р到直线l 的距离为m ,则m PA +的最小值为_______ 18.已知1F 、2F 为椭圆1C 和双曲线2C 的公共焦点,P 为1C 和2C 的一个公共点,且1213F PF π∠=,椭圆1C 和双曲线2C 的离心率分别为1e ,2e ,则1211e e +的最大值为________________.19.已知椭圆2212x y +=上存在相异两点关于直线y x t =+对称,则实数t 的取值范围是______.20.已知抛物线C : y 2=2px (p >0),直线l :y = 2x + b 经过抛物线C 的焦点,且与C 相交于A 、B 两点.若|AB | = 5,则p = ___.三、解答题21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.22.过点()2,0D 的任一直线l 与抛物线C :22y px =(0p >)交于两点A ,B ,且4OA OB ⋅=-.(1)求p 的值;(2)若点E 的坐标为()2,1-,当EA EB ⋅最小时,求直线l 的方程.23.已知椭圆22:143x y E +=,其右焦点为F ,直线l 与圆22:3O x y +=相切于点Q ,设直线l 与椭圆E 相交于不同的两点A 、B .(1)若M 点是椭圆E 上任意一点,求出MF 的最大值;(2)已知过椭圆E 上的动点P 引圆О的两条切线PC 、PD (C 、D 为切点),探究在椭圆E 上是否存在点P ,使得由点P 向圆O 引的切线互相垂直; (3)当点Q 在y 轴右侧时,求证:AF AQ BF BQ +=+.24.已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点与短轴的一个端点恰好围成面积为3的等边三角形.(1)求C 的方程;(2)如图,设C 的左,右顶点分别为,A B ,右焦点为F ,P 是C 上异于,A B 的动点,直线AP 与直线x a =交于点D ,当点P 运动时,试判断以BD 为直径的圆与直线PF 的位置关系,并加以证明.25.已知抛物线()2:20C y px p =>,直线()0y kx k =>与C 交于点A (与坐标原点O不重合),过OA 的中点P 作与x 轴平行的直线l ,直线l 与C 交于点,Q 与y 轴交于点.R (1)求PR QR;(2)证明:直线AR 与抛物线C 只有一个公共点.26.如图,点(1,0)F 为椭圆2222:1(0)x y E a b a b+=>>的右焦点,过F 且垂直于x 轴的直线与椭圆E 相交于C 、D 两点(C 在D 的上方),||3CD =.(1)求椭圆E 的方程;(2)设点A 、B 是椭圆E 上位于直线CD 两侧的动点,且满足ACD BCD ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-, 所以221222122(2)ABy y b b k x x a a-==-⋅-=-, 又,A B 在直线30x y -+=上,所以1AB k =,所以2221b a=,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】由12F F M △是以M 为直角直角三角形得到2212||||48MF MF +=,再利用双曲线的定义得到12||||2MF MF -=,联立即可得到12||||MFMF ,代入12F F M S =△121||||2MF MF 中计算即可. 【详解】由22111y x -=可知1,a c ==不妨设12(F F -,因为1212OM F F ==, 所以点M 在以12F F 为直径的圆上,即12F F M △是以M 为直角顶点的直角三角形,故2221212||||||MF MF F F +=,即2212||||48MF MF +=,又12||||22MF MF a -==,所以2124||||MF MF =-=2212||||2MF MF +-12||||482MF MF =-12||||MF MF ,解得12||||22MF MF =, 所以12F F M S =△121||||112MF MF = 故选:B 【点晴】关键点点睛:根据OM =12MF F △为直角三角形是解题的关键,再结合双曲线的定义及勾股定理,即可计算焦点三角形面积,是一道中档题.3.D解析:D设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,代入抛物线方程应用韦达定理得12x x +,12AB x x p =++, 求出AB 中点N 的坐标,写出MN的方程,由MN =MN ,然后由己知条件可求得斜率k ,得倾斜角.【详解】 由题意(,0)2p F ,设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,由22()2y pxp y k x ⎧=⎪⎨=-⎪⎩得22222(2)04k p k x p k x -++=, 2122(2)p k x x k++=,2124p x x =, 221222(2)2(1)++=++=+=p k p k AB x x p p k k, 2122(2)22N x x p k x k ++==,22()22N N p p y k x k =-=,即222(2)2,22p k p N k k ⎛⎫+ ⎪⎝⎭, 直线MN 的方程为1()N N y y x x k-=--,MN ===,∵AB =,∴22232(1)(12p k p k k k++=, 整理得23k =,∵0k >,∴k =∴倾斜角为60︒.故选:D . 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,设交点坐标,设直线方程代入抛物线方程应用韦达定理,求得中点坐标及焦点弦长,写出直线l 垂线方程,求得MN ,然后由已知条件求得结论.4.A解析:A由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.5.D解析:D 【分析】设设()0,4E ,由12224PF PF a PF =+=+,可得124P PF PQ PQ F +++=,当且仅当,P Q ,()0,4E 和2F 四点共线时取得最小值,进而可得25EF =,设()2,0F c 即可求出c 的值,进而可求出b 的值,由by x a=±可得渐近线方程. 【详解】设()0,4E ,由双曲线的定义可知:12224PF PF a PF =+=+, 所以124P PF PQ PQ F +++=,当,P Q 在圆心()0,4E 和2F 连线上时,1PF PQ +最小,()2mi 2n 1PFPQ EF =-+,所以2418EF +-=,解得25EF =, 设()2,0F c ()0c >,则()()220045c -+-=,解得3c =,因为2a =,所以22945b c a =-=-=, 所以双曲线的渐进线为:52b y x x a =±=±, 故选:D 【点睛】关键点点睛:本题解题的关键点是由双曲线的定义可得124P PF PQ PQ F +++=,利用2,,,P Q E F 共线时()2mi 2n1PF PQEF =-+求出25EF =.6.B解析:B 【分析】延长2F A 交1PF 于点Q ,可得1223QF OA b ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =, 又O 是12F F 中点,所以1//QF AO ,且1223QF OA b ==, 又11122QF PF PQ PF PF a =-=-=,∴223a b =,222233()a b c a ==-,∴233c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.7.B解析:B 【分析】设点200,4y M y ⎛⎫⎪⎝⎭,则点()01,N y -,求出MNF 的垂心H 的坐标,再由MH FN ⊥可求得0y 的值,进而可求得MNF 的面积. 【详解】设点200,4y M y ⎛⎫ ⎪⎝⎭,则点()01,N y -,设点M 在第一象限,抛物线C 的焦点为()1,0F ,设MNF 的垂心为H , 由于FHMN ⊥,则点H 的横坐标为1,可得点()1,2H ,MH FN ⊥,则0HM FN ⋅=,2001,24y HM y ⎛⎫=-- ⎪⎝⎭,()02,FN y =-, ()()22200000012122220422y y HM FN y y y y ⎛⎫⋅=--+-=-+=-= ⎪⎝⎭,解得02y =,所以,点M 的坐标为()1,2,所以,2MN =,12222MNF S =⨯⨯=△. 故选:B. 【点睛】关键点点睛:解决本题的关键在于利用已知条件求出点M 的坐标,本题特殊的地方在于MN y ⊥轴,可得出垂心与焦点的连线垂直于x 轴,再结合垂心在抛物线求出垂心的坐标.8.B解析:B 【分析】求出P 点所在轨迹方程,与直线方程联立方程组,方程组解的个数就是满足题意的P 点的个数. 【详解】∵PM PN +=2MN =,∴P 在以,M N为焦点,由于2a =,a =1c =,因此1b ==,椭圆方程为2212x y +=,由2212y x x y ⎧=+⎪⎨+=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P 点只有一个.故选:B . 【点睛】关键点点睛:本题考查求平面满足题意的的个数,方法是求出满足动点P 的一个条件的轨迹方程,由方程组的解的个数确定曲线交点个数,从而得出结论,这也是解析几何的基本思想.9.C解析:C 【分析】利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理找出a,c 的等量关系,从而可求a,b 的比值,即可得出双曲线C 的渐近线方程. 【详解】解:因为F 1、F 2是双曲线的左、右焦点,点P 在双曲线右支上, 所以由双曲线定义可得|PF 1|-|PF 2|=2a , 又知|PF 1|+|PF 2|=4a ,所以|PF 1|=3a ,|PF 2|=a .在△PF 1F 2中,由余弦定理可得222121212||||||cos60=2||||PF PF F F PF PF +-⋅,即222(3)41=232a a c a a +-⨯⨯,所以3a 2=10a 2-4c 2,即4c 2=7a 2,又知b 2+a 2=c 2,所以223=4b a ,所以双曲线C 的渐近线方程为2y x =±20y ±=.故选:C. 【点睛】关键点点睛:利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理解三角形是解答本题的关键.10.C解析:C 【分析】先判断出圆1C 与2C 内含,根据条件可得动圆M 与圆1C ,圆2C 均相切,从而得出121216MC MC a C C +=+>=,即动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,又设12MC C 的内切圆的半径为r ' ,由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯,从而得出答案. 【详解】由圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,可得圆1C 的圆心()13,0C -,半径为1r a =,圆2C 的圆心()23,0C ,半径为21r = 由121261C C a r r =<-=-所以圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切. 所以动圆M 与圆1C 内切,与圆2C 外切,设动圆M 的半径为R 则11MC r R a R =-=-,221MC r R R =+=+ 所以121216MC MC a C C +=+>=所以动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,设其方程为22221(0)x y m n m n+=>> 所以12a m +=,设22c m n =-,则3c = 由P 是12MC C 的内心,设12MC C 的内切圆的半径为r ' 由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯ 即1212318MC MC C C +==,又由椭圆的定义可得121MC MC a +=+ 所以118a +=,则17a = 故选:C 【点睛】本题考查圆与圆的位置关系,考查根据圆与圆的相切求动圆圆心的轨迹,考查椭圆的定义的应用,解答本题的关键的由条件得出圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切,进一步由条件得出121216MC MC a C C +=+>=,即得出动点M 的轨迹,属于中档题.11.D解析:D 【分析】设出抛物线方程为22y mx =或22x ny =,代入点的坐标求出参数值可得.【详解】设抛物线方程为22y mx =,则262(m =⋅,m =-2y =-,或设方程为22x ny =,则2(26n =⨯,14n =,方程为212x y =.所以抛物线方程为2y =-或212x y =. 故选:D . 【点睛】关键点点睛:抛物线的标准方程有四种形式,在不确定焦点位置(或开口方向时),需要分类讨论.象本题在抛物线过一点的坐标,则需要考虑焦点在x 轴和y 轴两种情况,焦点在x 轴上时可以直接设方程为2y mx =,代入点的坐标求出参数值,不必考虑焦点是在x轴正半轴还是在负半轴,焦点在y 轴也类似求解.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y ,由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=,所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】先分析出得到消去b 整理出ac 的齐次式求出离心率的范围【详解】由落在椭圆上则又得:∴由得:即解得:又∴故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件找到abc 的关系消去b 构解析:,12⎫⎪⎪⎣⎭【分析】先分析出||b PO a ≤≤,得到b c a ≤<,消去b ,整理出a 、c 的齐次式,求出离心率的范围. 【详解】由P 落在椭圆2222:1(0)x y C a b a b+=>>上,则||b PO a ≤≤.又12|1|||2PO F F =得:||PO c = ∴b c a ≤<由b c ≤得:22b c ≤,即222a c c -≤,解得:c e a =≥又1e <,∴12e ≤<故答案为:⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.14.【分析】设点设直线的方程为联立直线与抛物线的方程列出韦达定理推导出利用基本不等式可求得的最小值【详解】若直线与轴重合则直线与抛物线只有一个交点不合乎题意易知抛物线的焦点为准线方程为设点设直线的方程为解析:92【分析】设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立直线AB 与抛物线C 的方程,列出韦达定理,推导出112AF BF+=,利用基本不等式可求得4AF BF +的最小值. 【详解】若直线AB 与x 轴重合,则直线AB 与抛物线C 只有一个交点,不合乎题意. 易知抛物线C 的焦点为1,02F ⎛⎫⎪⎝⎭,准线方程为12x =-,设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+, 联立2122x my y x⎧=+⎪⎨⎪=⎩,整理可得2210y my --=,2440m ∆=+>,由韦达定理可得122y y m +=,121y y =-,()()()12121212211111*********m y y AF BF my my my my x x +++=+=+=++++++()()21222212122222121m y y m m y y m y y m m +++===+++-++, ()4111144522AF BF AF BF AF BF AF BF BF AF ⎛⎫⎛⎫∴+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭19522⎛≥+= ⎝, 当且仅当2AF BF =时,等号成立,因此,4AF BF +的最小值为92. 故答案为:92. 【点睛】结论点睛:过抛物线的焦点F 的直线与抛物线交于A 、B 两点,则112AF BF p+=. 15.【分析】设直线与抛物线联立方程得韦达定理与代入直线与抛物线表示出与然后根据利用数量积代入求解出从而表示出圆心的坐标根据平行四边形的四边平方和等于对角线平方和代入列式利用二次函数的性质求解最小值【详解 解析:10【分析】设直线AB ,与抛物线联立方程,得韦达定理12y y +与12y y ⋅,代入直线与抛物线表示出12x x +与12x x ⋅,然后根据OA OB ⊥,利用数量积代入求解出4t =,从而表示出圆心的坐标,根据平行四边形的四边平方和等于对角线平方和,代入列式,利用二次函数的性质求解最小值. 【详解】设直线AB 的方程为x my t =+,()11,A x y ,()22,B x y ,由24y x x my t⎧=⎨=+⎩得2440y my t --=,所以()()()22444160m t t m ∆=--=+>, 得124y y m +=,124y y t ,所以()21212242x x m y y t m t +=++=+,222121216y y x x t ⋅==,因为直线OA 、OB 的斜率之积为1-,所以OA OB ⊥,即0OA OB ⋅=,所以2121240x x y y t t +=-=,所以4t =,所以直线AB 的方程为4x my =+,21248x x m +=+,从而圆心为()224,2O m m +',由平行四边形的四边平方和等于对角线平方和(用向量法易证),得()(222222244MP MQMO PQ MO ''+=+=+()()2222422144148161816202m m m m m ⎛⎫⎡⎤=-++=-++=-+ ⎪⎢⎥⎣⎦⎝⎭, 所以222218102MP MQ m ⎛⎫+=-+ ⎪⎝⎭,所以当2m =±时,22MP MQ +的最小值为10. 故答案为:10 【点睛】解决直线与抛物线的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、向量的数量积、三角形的面积等问题.16.【分析】设交点由两点得直线方程由直线方程与椭圆方程联立消去后应用韦达定理得可计算代入在上半椭圆用函数解析式表示出上半椭圆并求导数设切点为求出切线方程切点坐标可用表示从而求得代入已知等式后求得值【详解【分析】设交点1122(,),(,)A x y B x y ,由两点得直线PF 方程,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,可计算PA PB ,代入1212,x x x x +,P 在上半椭圆,用函数解析式表示出上半椭圆,并求导数,设切点为11(,)x y ,求出切线方程,切点坐标可用t 表示,从而求得2PE ,代入已知等式后求得t 值. 【详解】由题意(1,0)F -,直线AB 方程为00(1)t y x t tx t -=+=+--,设1122(,),(,)A x y B x y ,由2212y tx t x y =+⎧⎪⎨+=⎪⎩,得2222(12)4220t x t x t +++-=,2122412t x x t +=-+,21222212t x x t-=+, ∵,PA PB 同向,∴11221212(,)(,)()()PA PB PA PB x y t x y t x x y t y t =⋅=-⋅-=+--22211221222(1)(1)(,)(,)(1)21t t x tx x tx t x x t +-⋅=+=+,设11(,)E x y ,过E 点的切线方程为11()y y k x x -=-,1t >,切点E 在x轴上方,由y =2xy y '==-,∴112PE x k y =-,切线方程为1111()2x y y x x y -=--,化简得1122x x y y +=, 直线过(0,)P t ,则122y t =,11y t =,由椭圆方程得21222x t =-, 222211221()2()PE x y t t t t=+-=-+-, ∵23||4||||PE PA PB =⋅,∴22222218(1)(1)32()21t t t t t t +-⎡⎤-+-=⎢⎥+⎣⎦,化简得223t =,∵1t >,∴2t =.【点睛】 关键点点睛:本题考查直线与椭圆相交、相切问题,解题方法是设而不求的思想方程,即设交点1122(,),(,)x y x y ,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,然后计算PA PB ,设切点坐标,用导数求出切线斜率,得切线方程,代入坐标(0,)t 可求得切点坐标(用t 表示),求出2PE ,再结合已知条件求出结果.17.【分析】由抛物线的定义可知结合圆的性质当且仅当三点共线时等号成立取得最值【详解】由圆可得圆心设的焦点为则抛物线上任意一点Р到直线l 的距离为过点作于点则由抛物线的定义可知所以当且仅当三点共线时等号成立2【分析】由抛物线的定义可知m PF =,m PA PF PA +=+结合圆的性质,当且仅当,,P F C 三点共线时等号成立取得最值. 【详解】由圆22:68210C x y x y ++++=可得圆心()3,4C --,2r,设28y x =的焦点为F ,则()2,0F ,:2l x =-,抛物线上任意一点Р到直线l 的距离为m , 过点P 作PH l ⊥于点H ,则PH m =, 由抛物线的定义可知PH PF =,所以2m PA PH PA PF PA FC r FC +=+=+≥-=-()()223242412=--+-=,当且仅当,,P F C 三点共线时等号成立, 所以m PA +412, 412. 【点睛】关键点点睛:本题解题的关键点是利用抛物线的定义转化为抛物线上一点到焦点的距离与到圆上一点的距离之和的最小值,利用三点共线即可求解.18.【分析】设椭圆的长轴为双曲线的实轴为公共焦距为设不放设则有所以在中结合余弦定理可得带入可得所以再利用柯西不等式即可得解【详解】设椭圆的长轴为双曲线的实轴为公共焦距为设不放设则有由所以在中有代入可得所 433【分析】设椭圆1C 的长轴为12a ,双曲线2C 的实轴为22a ,公共焦距为2c ,设1122,PF r PF r ==,不放设12r r >,则有1211222,2r r a r r a +=-=,112r a a =+,212r a a =-,所以在12PF F △中,结合余弦定理可得带入可得22222221212124223c a a a a a a =+-+=+,所以2212134e e += ,再利用柯西不等式,即可得解. 【详解】设椭圆1C 的长轴为12a ,双曲线2C 的实轴为22a ,公共焦距为2c ,设1122,PF r PF r ==,不放设12r r >, 则有1211222,2r r a r r a +=-=,112r a a =+,212r a a =-,由1213F PF π∠=,所以在12PF F △中, 有22212121212=2cos F F r r rr F PF +-∠, 代入可得2221212121214()()2()()2c a a a a a a a a =++--+-⨯222222*********a a a a a a =+-+=+,所以2212134e e += ,2222221212121111()(()1e e e e ⎡⎤⎡⎤+=⨯≤++⎢⎥⎢⎥⎣⎦⎣⎦221213416()33e e =+⨯=,所以1211e e +≤.【点睛】本题考查了椭圆和双曲线的定义,考查了离心率公式,以及利用柯西不等式求最值,有一定的计算量,属于中档题.本题关键点有:(1)椭圆和双曲线的定义,圆锥曲线的定义是解析几何常考考点; (2)柯西不等式的应用,柯西不等式是求最值得重要方法.19.【分析】设对称的两点为直线的方程为与联立可得利用根与系数的关系以及中点坐标公式可求的中点利用判别式以及在直线上即可求解【详解】设椭圆存在关于直线对称的两点为根据对称性可知线段被直线直平分且的中点在直解析:⎛ ⎝⎭【分析】设对称的两点为()11,A x y ,()22,B x y ,直线AB 的方程为y x b =-+与2212x y +=联立可得利用根与系数的关系以及中点坐标公式可求AB 的中点()00,M x y ,利用判别式0∆>以及()00,M x y 在直线y x t =+上即可求解.【详解】设椭圆2212x y +=存在关于直线y x t =+对称的两点为()11,A x y ,()22,B x y ,根据对称性可知线段AB 被直线y x t =+直平分, 且AB 的中点()00,M x y 在直线y x t =+上,且1AB k =-, 故可设直线AB 的方程为y x b =-+,联立方程2222y x bx y =-+⎧⎨+=⎩,整理可得2234220x bx b -+-=, ∴1243b x x +=,()1212223by y b x x +=-+=,由()221612220b b ∆=-->,可得b <<, ∴120223x x b x +==,12023y y b y +==, ∵AB 的中点2,33b b M ⎛⎫⎪⎝⎭在直线y x t =+上,∴233b b t =+,可得3b t =-,33t -<<.故答案为:⎛ ⎝⎭. 【点睛】关键点点睛:本题的关键点是利用直线AB 与直线y x t =+垂直可得直线AB 的斜率为1-,可设直线AB 的方程为y x b =-+,代入2212x y +=可得关于x 的一元二次方程,利用判别式0∆>,可以求出b 的范围,利用韦达定理可得AB 的中点()00,M x y 再代入y x t =+即可t 与b 的关系,即可求解.20.2【分析】法1:首先利用直线过焦点得再利用直线与抛物线方程联立利用根与系数的关系表示计算求得;法2:由已知求得的值再利用弦长公式求的值【详解】法1:由题意知直线即直线经过抛物线的焦点即直线的方程为设解析:2 【分析】法1:首先利用直线过焦点,得b p =-,再利用直线与抛物线方程联立,利用根与系数的关系表示12AB x x p =++,计算求得p ;法2:由已知tan 2θ=,求得sin θ的值,再利用弦长公式22sin pAB θ=,求p 的值. 【详解】法1:由题意知,直线:2l y x b =+,即22b y x ⎛⎫=+⎪⎝⎭.直线l 经过抛物线()2:20C y px p =>的焦点,22b p∴-=,即b p =-.∴直线l 的方程为2y x p =-. 设()11,A x y 、()22,B x y ,联立222y x p y px=-⎧⎨=⎩,消去y 整理可得22460x px p -+=,由韦达定理得1232p x x +=,又5AB =,12552x p p x ∴++==,则2p =. 法2:设直线的切斜角为θ,则tan 2k θ==,得sin θ=,∴22225sin p pAB θ===,得2p =.故答案为:2 【点睛】结论点睛:当直线过抛物线的焦点时,与抛物线交于,A B 两点,AB 称为焦点弦长,有如下的性质:直线与抛物线交于()()1122,,,A x y B x y ,①221212,4p y y p x x =-=;②12AB x x p =++;③11AF BF +为定值2p ;④弦长22sin p AB θ= (θ为直线AB 的倾斜角);⑤以AB 为直径的圆与准线相切;⑥焦点F 对,A B 在准线上射影的张角为90.三、解答题21.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案.【详解】解:(1)根据题意可得F (2p,0), 当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =,所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法. 22.(1)2;(2)480x y --=. 【分析】(1)设()11,A x y ,()22,B x y ,直线l 的方程为2x ny =+,联立方程结合韦达定理可得12y y +,12y y ,再由平面向量数量积的坐标表示即可得解;(2)由韦达定理及平面向量数量积的坐标表示可得2849EA EB n n ⋅=-+,即可得解. 【详解】(1)设()11,A x y ,()22,B x y ,直线l 的方程为2x ny =+,则222y p y xx n ⎧⎨==+⎩,整理得2240y pny p --=, 所以122y y pn +=,124y y p =-,所以221212121224444y y OA OB x x y y y y p p⋅=+=+=-=- 所以2p =;(2)由(1)得124y y n +=,128y y =-.则()21212444x x n y y n +=++=+,221212416y y x x ==,所以()()()()12122211EA EB x x y y ⋅=+++--()()12121212241x x x x y y y y =++++-++24884841n n =+++--+2849n n =-+2117178422n ⎛⎫=-+≥ ⎪⎝⎭,当且仅当14n =时,取最小值, 此时直线l 的方程为124x y =+,即480x y --=. 【点睛】 关键点点睛:解决本题的关键是是联立方程组,将平面向量数量积的运算转化为两根的和与积,结合韦达定理即可得解.23.(1)3;(2)不存在;(3)证明见解析. 【分析】(1)设出()00,M x y ,把MF 表示出来,利用函数求最值;(2)假设存在点P ,作出切线PC 、PD ,由OCPD 为正方形推出||OP =||2OP ≤,矛盾,所以判断点 P 不存在;(3)用坐标法分别求出AF AQ BF BQ 、、、,证明AF AQ BF BQ +=+ 【详解】由椭圆22:143x y E +=,知右焦点为()1,0F ,(1)设()00,M x y ,则()220001,2243x y x +=-≤≤,所以MF ===因为()()220000124444x f x x x =-+=-在 []02,2x ∈-上单减,所以当02x =-时,()422434MF =-⨯-+=最大, 即MF 的最大值为3. (2)假设存在点P 符合题意,如图示,,,OC OD PC PD ⊥⊥又有,PC PD ⊥ 所以OCPD 为矩形;因为|OC |=|OD |,所以OCPD 为正方形,所以||2||236OP OC ==⨯=;又P 在椭圆22:143x y E +=上,所以3||26OP ≤≤≠,故这样的点P 不存在;(3)设()()1122,,,A x y B x y ,连结 OQ ,OA ,OB ,则△AOQ 为直角三角形,所以222211||3AQ OA OQ x y =-=+-又A 在椭圆22:143x y E +=上,所以 2211143x y +=,得1||2xAQ===而11||22AF x==-所以11112222AF AQ x x+=-+=;同理可证:2BF BQ+=.所以AF AQ BF BQ+=+,即证【点睛】解析几何问题常见处理方法:(1)正确画出图形,利用平面几何知识简化运算;(2)坐标化,把几何关系转化为坐标运算.24.(1)22143x y+=;(2)相切,证明见解析.【分析】(1)待定系数法求C的方程;(2)设出直线AP,求出D的坐标,表示出以BD为直径的圆E的方程,由“设而不求法”表示出E到直线PF的距离,判断出圆与直线PF相切.【详解】解:(1)设椭圆半焦距为c,依题意有122c⋅=∴1c=,22a c==,b=故C的方程为22143x y+=.(2)以BD为直径的圆与直线PF相切,证明如下:易知()2,0A-,()2,0B,()1,0F.由题意可设直线AP的方程为()()20y k x k=+≠.则点D坐标为()2,4k,BD中点E的坐标为()2,2k.由()222143y k xx y⎧=+⎪⎨+=⎪⎩得()2222341616120k x k x k+++-=.设点P的坐标为()00,x y,则2021612234kxk--=+.所以2026834kxk-=+,()00212234ky k xk=+=+.①当12k =±时,点P 的坐标为31,2⎛⎫± ⎪⎝⎭,点D 的坐标为()2,2±.直线PF x ⊥轴,此时以BD 为直径的圆()()22211x y -+±=与直线PF 相切.②当12k ≠时,则直线PF 的斜率0204114PF y k k x k ==--,所以直线PF 的方程为()24114ky x k =--. 点E 到直线PF 的距离322228142||1414k k k d k k k +-===+-. 又因为||4||2BD k d ==,故以BD 为直径的圆与直线PF 相切. 综上,当点P 运动时,以BD 为直径的圆与直线PF 相切. 【点睛】(1)待定系数法、代入法可以求二次曲线的标准方程;(2)“设而不求”是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.25.(1)2 ;(2)证明见解析. 【分析】(1)联立直线()0y kx k =>与抛物线方程可得点A 坐标,由中点坐标公式可得点P 坐标,进而可得直线l 的方程与抛物线联立可得Q 点坐标,计算PQPR x QR x =即可求解; (2)利用A 和R 两点坐标求出直线AR 的方程,与抛物线方程联立消去x 得到关于y 的一元二次方程,由0∆=即可求证. 【详解】(1)联立方程22,y kx y px =⎧⎨=⎩,可得:2220k x px -=,解得222p x k py k ⎧=⎪⎪⎨⎪=⎪⎩所以222,p p A kk ⎛⎫⎪⎝⎭, 因为P 是OA 的中点,所以2,.p p P k k ⎛⎫⎪⎝⎭直线:p l y k =,点0,R p k ⎛⎫ ⎪⎝⎭将p y k =代入22y px =,得2,.2p p Q k k ⎛⎫ ⎪⎝⎭所以2222PQpPR x k p QR x k ===. ()2因为222,p p A k k ⎛⎫⎪⎝⎭,0,R p k ⎛⎫⎪⎝⎭所以直线AR 的方程为2k py x k=+, 与22y px =联立消去x 得222440k y pky p -+=, 因为222216440p k p k ∆=-⨯⨯=, 所以直线AR 与抛物线C 只有一个公共点. 【点睛】方法点睛:判断直线与曲线的位置关系可联立直线与曲线的方程消去y 得关于x 的一元二次方程,由判别式0∆>可得直线与曲线相交,由判别式0∆=可得直线与曲线相切,判别式∆<0可得直线与曲线相离.26.(1)22143x y +=;(2)是定值,理由见解析.【分析】(1)由焦点及通经长,用待定系数法求椭圆的标准方程;(2)设出直线AB :y kx m =+,与椭圆联立,用“设而不求法”表示ACD BCD ∠=∠,整理得12k =. 【详解】(1)由2321b a c ⎧=⎪⎨⎪=⎩得:24a =,23b =∴椭圆E 的方程:22143x y +=(2)依题意知直线AB 的斜率存在,设AB 方程:y kx m =+()11,A x y ,()22,B x y代入椭圆方程22143x y +=得:()2224384120k x kmx m +++-=(*)。

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》测试卷(答案解析)(3)

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》测试卷(答案解析)(3)

一、选择题1.已知点12,F F 是椭圆()222210x y a b a b+=>>的左右焦点,椭圆上存在不同两点,A B 使得122F A F B =,则椭圆的离心率的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭2.双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2223x y -+=截得的弦长为2,则C 的离心率为( )A .3B .2C D3.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 4.直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点,则k 的取值有( )个A .1B .2C .3D .45.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别是F 1,F 2,过右焦点F 2且斜率为的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C .2D 6.过抛物线26y x =的焦点作一条直线与抛物线交于()()1122,,,A x y B x y 两点,若123x x +=,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条7.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1168.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该双曲线的离心率为( )A B .3C .2D 9.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF 为等边三角形,则该双曲线的渐近线的斜率为( )A .BC .D .10.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .13e <<B .eC .e >D .1e <<11.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为1F ,若直线:l y kx =,k ∈⎣与双曲线C 交于M 、N 两点,且11MF NF ⊥,则双曲线C 的离心率的取值范围是( )A .()1,2B .)2C .1⎤⎦D .(1⎤⎦12.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆上,则双曲线的离心率的值为( )A .1BC .1+D 二、填空题13.F 是抛物线22y px =(0p >)的焦点,过点F 的直线与抛物线的一个交点为A ,交抛物线的准线于B ,若2BA AF =,且4BA =,则P =______.14.F 是抛物线24y x =的焦点,过F 的直线l 交抛物线于A 、B 两点,O 为坐标原点,若10AF =,则OAB 的面积为__________.15.设P 是双曲线22:13y x Γ-=上任意一点,Q 与P 关于x 轴对称,1F 、2F 分别为双曲线的左、右焦点,若有121PF PF ⋅≥,则1F P 与2F Q 夹角的取值范围是__________. 16.已知双曲线()2222:10,0x y C a b a b-=>>的左、焦点为1F 、2F ,点P 为双曲线C 的渐近线上一点,120PF PF ⋅=,若直线1PF 与圆222x y a +=相切,则双曲线C 的离心率为___________.17.在“中国花灯之乡”——广东省兴宁市,流传600多年的兴宁花灯历史文化积淀浓厚,集艺术性、观赏性、民俗性于一体,扎花灯是中国一门传统手艺,逢年过节时常常在大街小巷看到各式各样的美丽花灯,一大批中小学生花灯爱好者积极参与制作花灯.现有一个花灯,它外围轮廓是由两个形状完全相同的抛物线绕着其对称轴旋转而来(如图),花灯的下顶点为A ,上顶点为B ,8AB =分米,在它的内部放有一个半径为1分米的球形灯泡,球心C 在轴AB 上,且2AC =分米.已知球形灯泡的球心C 到四周轮廓上的点的最短距离是在下顶点A 处取到,建立适当的坐标系可得其中一支抛物线的方程为2(0)y ax a =>,则实数a 的取值范围是_______18.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,3)M -是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________. 19.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分,过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1163F B =,124F F =,则截口BAC 所在椭圆的离心率为______.20.在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b+=>>的焦距为46,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,过O 作⊥OD AB 交AB 于点D ,点D 的坐标为()2,1,则椭圆C 的方程为_________.三、解答题21.(1)已知等轴双曲线22221(0,0)y x a b a b-=>>的上顶点到一条渐近线的距离为1,求此双曲线的方程;(2)已知抛物线24y x =的焦点为F ,设过焦点F 且倾斜角为45︒的直线l 交抛物线于A ,B 两点,求线段AB 的长.22.已知椭圆2222:1(0)x y E a b a b +=>>的左,右顶点分别为,A B ,离心率3e =,椭圆E 上任意一点M 到两个焦点1F ,2F 的距离之积的最大值为4.(1)求椭圆E 的方程;(2)已知点P 为直线l :4x =上的任意一点,直线PA 、PB 与椭圆E 分别交于两点C 、D (不同于A 、B 两点),求证:直线CD 经过定点,并求出该定点的坐标,23.已知圆22:4C x y +=,点P 为圆C 上的动点,过点P 作x 轴的垂线,垂足为Q ,设D 为PQ 的中点,且D 的轨迹为曲线E (PQD 三点可重合). (1)求曲线E 的方程;(2)不过原点的直线l 与曲线E 交于M 、N 两点,已知OM ,直线l ,ON 的斜率1k 、k 、2k 成等比数列,记以OM ,ON 为直径的圆的面积分别为S 1,S 2,试探究12S S +是否为定值,若是,求出此值;若不是,说明理由.24.如图,点(1,0)F 为椭圆2222:1(0)x y E a b a b+=>>的右焦点,过F 且垂直于x 轴的直线与椭圆E 相交于C 、D 两点(C 在D 的上方),||3CD =.(1)求椭圆E 的方程;(2)设点A 、B 是椭圆E 上位于直线CD 两侧的动点,且满足ACD BCD ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.25.已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ∆的面积为92. (1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.26.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别是12(1,0),(1,0)F F -,过点1F 的直线l 与椭圆相交于A B 、两点,且2ABF的周长为 (1)求椭圆C 的标准方程;(2)在椭圆中有这样一个结论“已知000(,)P x y 在椭圆22221x y a b+=外 ,过0P 作椭圆的两条切线,切点分别为12,P P ,则直线12PP 的方程为00221x x y ya b+=”.现已知M 是圆223x y +=上的任意点,,MA MB 分别与椭圆C 相切于,A B ,求OAB 面积的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先设点,利用向量关系得到两点坐标之间的关系121223,2x x c y y =-=,再结合点在椭圆上,代入方程,消去222a y 即得2229312c a x c+=,根据题意2x a <,构建,a c 的齐次式,解不等式即得结果. 【详解】设()()1122,,,A x y B x y ,由()()12,0,,0F c F c -得()()112212,,,F A F x c y x c y B -==+,122F A F B =,()()11222,,x c y x c y =∴+-,即121223,2x x c y y =-=,由,A B 在椭圆上,故2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,即()()2222222222222222232b x c a y a b b x a y a b⎧-+=⎪⎨+=⎪⎩, 消去222a y 得,2229312c a x c+=,根据椭圆上点满足a x a -≤≤,又,A B 两点不同,可知2229312c a x a c+=<,整理得22340c ac a -+<,故23410e e -+<,故113e <<.故选:C. 【点睛】 关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到,,a b c 一组等量关系(齐次式),进而求解离心率或范围.2.D解析:D 【分析】设双曲线C 的渐近线方程为y kx =,其中bk a=±,利用圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理可求得k的值,再利用e =可求得双曲线C 的离心率e 的值. 【详解】设双曲线C 的渐近线方程为y kx =,其中b k a=±, 圆()2223x y -+=的圆心坐标为()2,0,半径为r =圆心到直线y kx =的距离为d =另一方面,由于圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理,可得d ===,解得1k =±,1ba∴=, 因此,双曲线C的离心率为c e a ===== 故选:D. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.3.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -+=过点F,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PF F F +== 故()2222220a ++=. 可得1a =ce a== 故选:D 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).4.D解析:D 【分析】将直线方程与双曲线的方程联立,得出关于x 的方程,根据直线与双曲线只有一个公共点,求出对应的k 值,即可得解. 【详解】联立22341169y kx k x y =-+⎧⎪⎨-=⎪⎩,消去y 并整理得()()()2221693243164390k x k k x k ⎡⎤-+-+-+=⎣⎦,由于直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点, 所以,21690k -=或()()()222216903243641694390k k k k k ⎧-≠⎪⎨⎡⎤⎡⎤∆=----+=⎪⎣⎦⎣⎦⎩, 解得34k =±或2724250k k +-=, 对于方程2724250k k +-=,判别式为22447250'∆=+⨯⨯>,方程2724250k k +-=有两个不等的实数解.显然34k =±不满足方程2724250k k +-=. 综上所述,k 的取值有4个. 故选:D. 【点睛】方法点睛:将直线与圆锥曲线的两个方程联立成方程组,然后判断方程组是否有解,有几个解,这是直线与圆锥曲线位置关系的判断方法中最常用的方法,注意:在没有给出直线方程时,要对是否有斜率不存在的直线的情况进行讨论,避免漏解.5.D解析:D 【分析】首先设直线2x y c =+,与椭圆方程联立,得到根与系数的关系,同时由条件可得123y y =-,与根与系数的关系联立消元可得22213242a b c +=,求得椭圆的离心率. 【详解】设直线方程为2x y c =+,设()11,A x y ,()22,B x y ,与椭圆方程联立得22224102a b y cy b ⎛⎫++-= ⎪⎝⎭,2122212cy y a b +=-+,4122212b y y a b =-+ ① 223AF F B =,()()1122,3,c x y x c y ∴--=-, 得123y y =- ②,由①②联立可得,22213242a bc +=即22222323c a b a c =+=-,得2243c a =,椭圆的离心率2c e a ==. 故选:D 【点睛】方法点睛:本题考查直线与椭圆的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.6.A解析:A 【分析】由抛物线方程求得焦点F 的坐标,分直线AB 斜率不存在和直线斜率存在,存在时设直线AB 方程与抛物线方程联立,由韦达定理表示出A 、B 两点的横坐标之和,求得k ,即可得结论. 【详解】抛物线26y x =的焦点为3,02F ⎛⎫⎪⎝⎭, 当过焦点的直线斜率不存在时,即为32x =, 1232x x ==,符合123x x +=, 当过焦点的直线斜率存在时设为32y k x ⎛⎫=- ⎪⎝⎭, 与抛物线交于()()1122,,,A x y B x y 两点,由2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得()222293604k k x k x -++=, 所以2122363k x x k++==,即22363k k +=,所以无解, 则这样的直线有且只有一条. 故选:A. 【点睛】本题考查直线与抛物线的位置关系,解题的时候要注意讨论直线斜率不存在时的情况,以免遗漏,是中档题.7.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,则()241AB t ==+,同理2141CD t ⎛⎫=+ ⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭,故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 8.B解析:B 【分析】延长2F A 交1PF 于点Q ,可得12QF OA ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =,又O 是12F F 中点,所以1//QF AO ,且12QF OA ==,又11122QF PF PQ PF PF a =-=-=,∴2a =,222233()a b c a ==-,∴c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.9.C解析:C 【分析】利用双曲线的定义可求得12AF a =,24AF a =,利用余弦定理可求得ca的值,利用公式21⎛⎫=- ⎪⎝⎭b c a a . 【详解】2ABF 为等边三角形,22AB AF BF ∴==,且260ABF ∠=︒,由双曲线的定义可得121212||BF AB AF a B AF F BF =+-==-,212AF AF a -=,24AF a ∴=,在12AF F △中12AF a =,24AF a =,12120F AF ∠=,由余弦定理可得2212121222cos12027F F c AF AF AF AF a ==+-⋅︒=,即7c a =22222216b b c a c a a a a -⎛⎫===-= ⎪⎝⎭. 因此,该双曲线的渐近线的斜率为6. 故选:C.【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)定义法:直接利用a ,b ,求得比值,则焦点在x 轴时渐近线by x a=±,焦点在y 轴时渐近线ay x b=±; (2)构造齐次式,利用已知条件,结合222+=a b c ,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写渐近线即可.10.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,MO ==,所以,1260MF F ∠=,则1230PF F ∠=, 所以,双曲线的渐近线b y x a =的倾斜角α满足30α>,则12tan 3b PF F a >∠=因此,该双曲线的离心率为c e a ====>. 故选:B. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.11.C解析:C 【分析】根据题意,得到()1,0F c -,设(),M x y ,则(),N x y --,由11MF NF ⊥,求出2220x y c +-=与双曲线联立,求出()2222242242222a c a x c c a c a y c ⎧-⎪=⎪⎨-+⎪=⎪⎩,再由2221,33y k x ⎡⎤=∈⎢⎥⎣⎦,列出不等式求解,即可得出结果 【详解】因为点1F 为双曲线()2222:10,0x yC a b a b-=>>的左焦点,则()1,0F c -,设(),M x y ,由题意有(),N x y --,则()1,MF c x y =---,()1,NF c x y =-+,又11MF NF ⊥,所以()()2110MF NF c x c x y ⋅=---+-=,则2220x y c +-=, 又(),M x y 在双曲线上,所以22221x y a b-=,由22222222221x y a b x y c c a b ⎧-=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得()2222242242222a c a x c c a c ay c ⎧-⎪=⎪⎨-+⎪=⎪⎩,又M 在直线y kx =上,k ∈⎣, 所以()4224424222222222212111,33212c a c a e e e e e a c a y k x -+-+---⎡⎤====-∈⎢⎥⎣⎦, 即42424213421e e e e ⎧≥⎪⎪-⎨⎪≤⎪-⎩,整理得42423840840e e e e ⎧-+≥⎨-+≤⎩,解得224e ≤≤+2243e -≤(舍,因为双曲线离心率大于1),1e ≤, 故选:C 【点睛】关键点点睛:本题考查双曲线的性质,考查双曲线的标准方程,解决本题的关键点是把11MF NF ⊥转化为向量数量积的坐标表示,求出点M 的轨迹方程,结合点在双曲线上,求出点的坐标,代入斜率公式求出离心率的范围,考查学生逻辑思维能力和计算能力,属于中档题.12.A解析:A 【分析】先由题意求出以AB 为直径的圆的半径为2b r a=和圆心坐标得到圆的方程,然后代入左焦点坐标,利用222c a b =+化简后可得答案. 【详解】将x c =代入22221x y a b-=可得2by a =±,所以以AB 为直径的圆的半径为2b r a=,圆心为(),0c ,圆的方程为()4222ab xc y -+=,左焦点为(),0c -,因为双曲线的左焦点在圆上,所以()2240b c ac +--=,整理得242460a c c c +=-,即42610e e -+=,解得23e =+23e =-所以1e = 故选:A . 【点睛】关键点点睛:本题考查直线和双曲线的位置关系、点和圆的位置关系,关键点是先求出以AB 为直径的圆的半径,再根据双曲线的左焦点在圆上,得到所要求的,,a b c 等量关系即可,考查了学生的运算求解能力,逻辑推理能力. 二、填空题13.3【分析】设过的直线为与抛物线交于点过两点作垂直准线于点根据抛物线的定义可得即可求出再联立直线与抛物线方程消元列出韦达定理即可得到再由焦半径公式计算可得;【详解】解:因为是抛物线的焦点所以准线为设过解析:3 【分析】设过F 的直线为2p y k x ⎛⎫=- ⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN 垂直准线于M ,N 点,根据抛物线的定义可得CN CF =,AM AF =,即可求出30ABM ∠=︒,6CN CF ==,再联立直线与抛物线方程,消元、列出韦达定理即可得到2124p x x =,再由焦半径公式计算可得;【详解】解:因为F 是抛物线22y px =的焦点,所以,02p F ⎛⎫⎪⎝⎭,准线为2p x =-,设过F 的直线为2p y k x ⎛⎫=-⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN 垂直准线于M ,N 点,所以CN CF =,AM AF =,因为2BA AF =,所以2BA AF =,所以2BA AM =,所以30ABM ∠=︒,又因为4BA =,所以2AM AF ==,且2CN CB BA AF FC BA AM CN ==--=--,所以26CN CN =+,所以6CN CF ==,联立直线与抛物线222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去y 得22224p k x px px ⎛⎫ ⎪⎭=⎝-+,所以()22222204k p k x k p p x -++=,所以21222k p p x x k++=-,2124p x x =,又因为1>0x ,20x >,且122p x AM +==,262p x CN +==,所以2212261242244p p p p x x p ⎛⎫⎛⎫=--=-+= ⎪⎪⎝⎭⎝⎭,所以3p =故答案为:3【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.【分析】设点为第一象限内的点设点利用抛物线的定义可求得点的坐标可得出直线的方程将直线的方程与抛物线的方程联立列出韦达定理求出的值由此可求得的面积【详解】设点为第一象限内的点设点抛物线的准线方程为由抛 解析:103【分析】设点A 为第一象限内的点,设点()11,A x y 、()22,B x y ,利用抛物线的定义可求得点A 的坐标,可得出直线AB 的方程,将直线AB 的方程与抛物线的方程联立,列出韦达定理,求出12y y -的值,由此可求得OAB 的面积. 【详解】设点A 为第一象限内的点,设点()11,A x y 、()22,B x y ,抛物线24y x =的准线方程为1x =-,由抛物线的定义可得1110AF x =+=,解得19x =,由于点A 为第一象限内的点,则10y >,可得16y ==,即点()9,6A ,直线AF 的斜率为63914AF k ==-,所以,直线AB 的方程为()314y x =-,即413x y =+, 联立24134x y y x⎧=+⎪⎨⎪=⎩,消去x 并整理可得216403y y --=, 由韦达定理可得12163y y +=,21161626333y y ∴=-=-=-, 因此,1211210162233OAB S OF y y =⋅-=⨯⨯+=△. 故答案为:103. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.15.【分析】设由求出的取值范围再由平面向量的数量积计算出与夹角的余弦的取值范围从而得夹角的范围【详解】设则又双曲线中即∴又即代入上式得设与夹角为则∵∴∴∵∴故答案为:【点睛】关键点点睛:本题考查依托双曲解析:25,arccos 37ππ⎛⎤⎥⎝⎦- 【分析】设00(,)P x y ,由121PF PF ⋅≥求出20x 的取值范围,再由平面向量的数量积计算出1F P 与2F Q 夹角的余弦的取值范围,从而得夹角的范围.【详解】设00(,)P x y ,则00(,)Q x y -,又双曲线22:13y x Γ-=中2c ==,即12(2,0),(2,0)F F -,∴2212000000(2,)(2,)41PF PF x y x y x y ⋅=---⋅--=-+≥, 又220013y x -=,即220033=-y x ,代入上式得204341x --≥,202x ≥.100(2,)F P x y =+,200(2,)F Q x y =--,2212004F P F Q x y ⋅=--, 设1F P 与2F Q 夹角为θ,则2222221212cos (F P F Q F P F Qθ⋅====∵202x ≥,∴cos θ20202141x x +=--,2200222000132211322414122(41)x x x x x -++==+---, 20417x -≥,203302(41)14x <≤-,201135222(41)7x <+≤-, ∴51cos 72θ-≤<-,∵[0,]θπ∈,∴25arccos 37πθπ<≤-. 故答案为:25,arccos 37ππ⎛⎤ ⎥⎝⎦-.【点睛】关键点点睛:本题考查依托双曲线求平面向量夹角的取值范围.解题方法是设00(,)P x y ,利用P 点满足的条件求出0x 的范围,然后求出向量夹角的余弦值,余弦值的范围,从而得出角的范围.16.【分析】作出图形设与圆相切于点分析出可求得的值进而可得出双曲线的离心率为即可得解【详解】如下图所示设与圆相切于点则则则为的中点则为的中点由直角三角形的性质可得因为为的中点则由于双曲线的两渐近线关于轴 解析:2【分析】作出图形,设1PF 与圆222x y a +=相切于点E ,分析出23POF π∠=,可求得ba的值,进而可得出双曲线C 的离心率为e =,即可得解. 【详解】如下图所示,设1PF 与圆222x y a +=相切于点E ,则OE a =,120PF PF ⋅=,则12PF PF ⊥,1OE PF ⊥,则2//OE PF , O 为12F F 的中点,则E 为1PF 的中点,222PF OE a ∴==,由直角三角形的性质可得1OF OP =,因为E 为1PF 的中点,则1EOF POE ∠=∠, 由于双曲线的两渐近线关于y 轴对称,可得21POF EOF ∠=∠,所以,12EOF POE POF ∠=∠=∠,则1223EOF POE POF POF π∠+∠+∠=∠=, 所以,23POF π∠=,则tan 33b a π==, 因此,双曲线C 的离心率为22222212c c a b b e a a a a +⎛⎫====+= ⎪⎝⎭. 故答案为:2. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.17.【分析】设出抛物线上任意一点的坐标根据两点间的距离公式求得球心到四周轮廓上的点的距离根据最短距离是在下顶点处取到结合二次函数的性质求得的取值范围【详解】建立如图所示直角坐标系其中为坐标原点得抛物线方解析:10,4⎛⎤⎥⎝⎦【分析】设出抛物线上任意一点的坐标,根据两点间的距离公式求得球心C 到四周轮廓上的点的距离,根据最短距离是在下顶点A 处取到,结合二次函数的性质,求得a 的取值范围.【详解】建立如图所示直角坐标系,其中A 为坐标原点,得抛物线方程2(0)y axa =>,(0,2)C ,设抛物线上任一点的坐标为200(,)x ax ,由两点距离公式得()22224200002(14)4=+-=+-+d x ax a x a x ,令20(0)=≥t x t ,则22(14)4(0)=+-+≥y a t a t t 的开口向上,对称轴为2412-=a t a , 当对称轴24102a a -≤时,在0t =处取得最小值,此时d 的最小值为4=2=d , 当对称轴24102a a ->时,最小值在对称轴处取得,即d 的最小值小于2,不符合题意. 故由24102a a -≤,解得10,4a ⎛⎤∈ ⎥⎝⎦. 故答案为:10,4⎛⎤ ⎥⎝⎦【点睛】关于平面图形或者空间几何体中一些边长或者距离的最值计算一般转化为函数问题,可以通过二次函数、反比例函数的性质求解最值,或者有时可以利用基本不等式,较难的问题则需要通过导数判断单调性从而求出最值.18.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性解析:2212015x y += 【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,M 解得25c =代回方程即可.【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列所以2121224MF a MF F F c ===+,所以2a c =,b =故椭圆方程可设为2222143x y c c +=代(4,M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.19.【分析】取焦点在轴建立平面直角坐标系由题意及椭圆性质有为椭圆通径得结合及解出代入离心率公式计算即可【详解】解:取焦点在轴建立平面直角坐标系由及椭圆性质可得为椭圆通径所以又解得所以截口所在椭圆的离心率解析:13【分析】取焦点在x 轴建立平面直角坐标系,由题意及椭圆性质有BC 为椭圆通径,得2163b a =,结合24c =及222a b c =+解出,,a b c 代入离心率公式计算即可.【详解】解:取焦点在x 轴建立平面直角坐标系,由12BC F F ⊥及椭圆性质可得,BC 为椭圆通径,所以21163b F B a ==,1224F Fc ==又222a b c =+,解得6,2,a c b ===所以截口BAC 所在椭圆的离心率为13故答案为:13【点睛】求椭圆的离心率或其范围的方法:(1)求,,a b c 的值,由22222221c a b b a a a-==-直接求e ; (2)列出含有,,a b c 的齐次方程(或不等式),借助于222a b c =+消去b ,然后转化成关于e 的方程(或不等式)求解.20.【分析】先利用点坐标和垂直关系求得直线的斜率并写出直线方程联立直线与椭圆利用韦达定理和垂直的向量关系得到的关系式再结合焦距的关系式解出即得方程【详解】依题意椭圆的焦距为即即由点的坐标为知直线OD 的斜解析:221306x y +=【分析】先利用点D 坐标和垂直关系求得直线l 的斜率,并写出直线方程,联立直线与椭圆,利用韦达定理和垂直的向量关系得到22,a b 的关系式,再结合焦距的关系式解出22,a b ,即得方程. 【详解】依题意,椭圆的焦距为46,即246c =,26c =,即2224a b -=,由点D 的坐标为()2,1,知直线OD 的斜率101202OD k -==-,又⊥OD AB ,知直线l 的斜率为2-,即直线l 的方程为12(2)y x -=--,即52y x =-.设()()1122,,,A x y B x y 联立方程2222152x y a b y x ⎧+=⎪⎨⎪=-⎩得()2222222420250ab x a x a a b +-+-=,故2222121222222025,44a a a b x x x x a b a b -+==++, 即()()()12121212525225104y y x x x x x x =--=-++2222222222222202525425104444a a a b b a b a b a b a b --=-⨯+⨯=+++,由OA OB ⊥知,12120OA OB x x y y ⋅=+=,即222222222225254044a a b b a b a b a b--+=++, 所以222255a b a b +=,又2224a b -=,消去2a 得,42141200b b +-=,解得26b =或220b =-(舍去),故2230,6a b ==,椭圆C 的方程为221306x y +=.故答案为:221306x y +=.【点睛】 思路点睛:求解椭圆中的直线垂直问题时,一般利用直线的斜率之积为-1,或者直线上的向量的数量积为0来处理,再联立直线与椭圆方程,结合韦达定理,即可求出结果.三、解答题21.(1)22122y x -=;(2)8.【分析】(1)由等轴双曲线的一条渐近线方程为0y x +=,再由点到直线距离公式求解即可; (2)求得直线方程代入抛物线,结合焦点弦长求解即可. 【详解】(1)由等轴双曲线的一条渐近线方程为0y x +=,且顶点(0,)a 到渐近线的距离为1,可得1a b =⎧=,解得a b ⎧=⎪⎨=⎪⎩22122y x -=(2)抛物线24y x =的焦点为(1,0)F直线l 的方程为0tan 45(1)y x -=︒⋅-,即1y x =-. 与抛物线方程联立,得214y x y x =-⎧⎨=⎩, 消y ,整理得2610x x -+=,设其两根为1x ,2x ,且126x x +=. 由抛物线的定义可知,12||628AB x x p =++=+=. 所以,线段AB 的长是8. 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.22.(1)2214x y +=;(2)证明见解析,()1,0.【分析】(1)利用椭圆的定义可得12|||2|MF MF a =+,根据基本不等式求出2a =,再由离心率求出c =222a b c =+即可求解.(2)当点C 是椭圆上顶点时,求出()4,3P ,进而求出点83,55D ⎛⎫- ⎪⎝⎭,写出直线CD 的方程,得出直线CD 经过定点()1,0N ,设l 上任意点()4,P m ,设(),C C C x y ,(),y D D D x ,写出直线PA 的方程,将直线与椭圆联立,求出2221826,99m m C m m ⎛⎫- ⎪++⎝⎭,同理求出222222,11m m D m m ⎛⎫-- ⎪++⎝⎭,若直线CD 经过定点()1,0N ,只需,,N C D 三点共线,利用向量共线的坐标表示即可求解. 【详解】(1)由椭圆的定义知12|||2|MF MF a =+,所以2122122MF MF MF MF a ⎛+⎫≤= ⎪⎝⎭,已知12||||4MF MF ≤,所以24a =,2a =.因为2e =c = 因为222a b c =+,所以1b =,所以椭圆E 的方程为2214x y +=.(2)当点C 是椭圆上顶点时,直线AC 的方程为()122y x =+,可得()4,3P ,则()3:22PB l y x =-与2214x y +=联立解得83,55D ⎛⎫- ⎪⎝⎭,所以直线CD 的方程为:10x y +-=,由椭圆的对称性可知,直线CD 经过x 轴上的定点, 所以直线CD 经过定点()1,0N . 以下证明一般性:设l 上任意点()4,P m ,设(),C C C x y ,(),y D D D x 则直线PA 的方程为()26my x =+联立22(2)614m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得()2222944360m x m x m +++-=由韦达定理得2243629C m x m --=+,解得2221826,99m m C m m ⎛⎫- ⎪++⎝⎭因为直线PB 的方程为()22my x =- 联立22(2)214m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩消去y 得()222214440m x m x m +-+-=由韦达定理得224421D m x m -=+,解得222222,11m m D m m ⎛⎫-- ⎪++⎝⎭ 直线CD 经过定点()1,0N ,即,,N C D 三点共线因为222936,99m m NC m m ⎛⎫-= ⎪++⎝⎭,22232,11m m ND m m ⎛⎫--= ⎪++⎝⎭ 因为222222932639191m m m m m m m m ---⨯-⨯++++ ()()()332218661891m m m m m m -+--=++0=所以//NC ND ,那么,,N C D 三点共线 所以直线CD 经过定点()1,0N , 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是利用点C 是椭圆上顶点时,求出定点()1,0N ,再证明一般性,借助,,N C D 三点共线求解,考查了运算求解能力.23.(1)2214x y +=;(2)12S S +是否为定值,为54π.证明过程见解析. 【分析】(1)设(,)D x y ,用,x y 表示出P 点坐标,代入圆的方程即可得;(2)设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠,直线方程代入椭圆方程,。

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》测试题(包含答案解析)(1)

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》测试题(包含答案解析)(1)

一、选择题1.已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为抛物线C 的焦点.若4FA FB =,则k =( )A .45B .15 C .23D .222.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( ) A .13B .3 C .12D .2 3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点()0,11A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( ) A .11B .5C .52D .64.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .55.直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点,则k 的取值有( )个A .1B .2C .3D .46.设抛物线C :24y x =的焦点为F ,过F 的直线与C 于,A B 两点,O 为坐标原点.若3AF =,则AOB 的面积为( )A .2BC .2D .7.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别是F 1,F 2,过右焦点F 2且斜率为的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C .2D 8.设1F 、2F 是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,P 是双曲线C 右支上一点.若126PF PF a +=,且122PF F S =△,则双曲线C 的渐近线方程是( )A 0y ±=B .0x ±=C 20y ±=D .20x =9.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12F F ,,点M 在双曲线C 的渐近线上,若212211221cos 12cos ,3MF F MF F F MF MF F ∠+=∠∠=∠,则双曲线C 的离心率为( )A .BC .D .210.已知圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,动圆M 与圆1C ,圆2C 均相切,P 是12MC C 的内心,且12123PMC PMC PC C SSS+=,则a 的值为( )A .9B .11C .17D .1911.斜率为14的直线l 与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,且l 过C 的左焦点,线段AB 的中点为()2,1M -,C 的右焦点为F ,则AFB △的周长为( )A .7B .7C .7D .712.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件二、填空题13.若A 、B 、C 是三个雷达观察哨,A 在B 的正东,两地相距6km ,C 在A 的北偏东30°,两地相距4km ,在某一时刻,B 观察哨发现某种信号,测得该信号的传播速度为1km /s ,4s 后A 、C 两个观察哨同时发现该信号,在如图所示的平面直角坐标系中,指出发出了这种信号的点P 的坐标___________.14.设F 是抛物线2:2C y x =的焦点,A 、B 是抛物线C 上两个不同的点,若直线AB 恰好经过焦点F ,则4AF BF +的最小值为_______.15.过双曲线22221(0,0)x y a b a b-=>>的右顶点且斜率为3的直线,与双曲线的左右两支分别相交,则此双曲线的离心率的取值范围是___________.(用区间表示)16.知直线m 过抛物线()220y px p =>的焦点F ,且交抛物线于A 、B 两点,交其准线l于点C .若6AF =,2CB BF =,则p =____________ 17.已知抛物线218y x =的焦点为F ,过F 的直线l 与抛物线交于A 、B 两点,抛物线的准线与y 轴交于点M ,当AMAF最大时,弦AB 长度是___________. 18.在“中国花灯之乡”——广东省兴宁市,流传600多年的兴宁花灯历史文化积淀浓厚,集艺术性、观赏性、民俗性于一体,扎花灯是中国一门传统手艺,逢年过节时常常在大街小巷看到各式各样的美丽花灯,一大批中小学生花灯爱好者积极参与制作花灯.现有一个花灯,它外围轮廓是由两个形状完全相同的抛物线绕着其对称轴旋转而来(如图),花灯的下顶点为A ,上顶点为B ,8AB =分米,在它的内部放有一个半径为1分米的球形灯泡,球心C 在轴AB 上,且2AC =分米.已知球形灯泡的球心C 到四周轮廓上的点的最短距离是在下顶点A 处取到,建立适当的坐标系可得其中一支抛物线的方程为2(0)y ax a =>,则实数a 的取值范围是_______19.设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,点P 在C 的右支上,O 为坐标原点,若存在点P ,使PF OF =,且1cos 4OFP ∠=,则双曲线的离心率为___________.20.如图,两个离心率相等的椭圆1Γ与椭圆2Γ,焦点均在x 轴上A ,B 分别为椭圆2Γ的右顶点和上顶点,过A ,B 分别作椭圆1Γ的切线AC ,BD ,若AC 与BD 的斜率之积为57-,则椭圆1Γ的离心率为__________.三、解答题21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.22.在平面直角坐标系xOy 中,已知直线y x =被抛物线2:2(0)C y px p =>截得的弦长为2l 与抛物线C 相交于点M ,N ,点()1,2A ,且直线AM ,AN 的斜率之和为4.(1)求抛物线C 的方程;(2)求证:直线l 过定点,并求出定点坐标.23.(1)已知等轴双曲线22221(0,0)y x a b a b-=>>的上顶点到一条渐近线的距离为1,求此双曲线的方程;(2)已知抛物线24y x =的焦点为F ,设过焦点F 且倾斜角为45︒的直线l 交抛物线于A ,B 两点,求线段AB 的长.24.已知椭圆2222:1(0)x y E a b a b +=>>的左,右顶点分别为,A B ,离心率e =E 上任意一点M 到两个焦点1F ,2F 的距离之积的最大值为4.(1)求椭圆E 的方程;(2)已知点P 为直线l :4x =上的任意一点,直线PA 、PB 与椭圆E 分别交于两点C 、D (不同于A 、B 两点),求证:直线CD 经过定点,并求出该定点的坐标,25.已知椭圆C :22221x y a b +=(0a b >>) 2.(1)求椭圆C 的标准方程;(2)过点(1,0)P 的直线l 与椭圆C 交于A ,B 两点若ABO 的面积为35(O 为坐标原点),求直线l 的方程.26.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,过左顶点与上顶点的直线与圆2243x y +=相切. (1)求椭圆C 的方程﹔ (2)已知斜率为k 的直线l 在y 轴上的截距为()0m m b <<,l 与椭圆交于,A B 两点,是否存在实数k 使得2OA OB k k k ⋅=成立?若存在,求出k 的值,若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,将直线AB 的方程与抛物线C 的方程联立,列出韦达定理,由4FA FB =可得出124y y =,代入韦达定理求出正数m 的值,即可求得k 的值.【详解】设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,联立228x my y x=-⎧⎨=⎩,整理得28160y my -+=,264640m ∆=->,0m >,解得1m .由韦达定理可得128y y m +=,1216y y =,由4FA FB =得()12242x x +=+,即124my my =,124y y ∴=,12258y y y m ∴+==,可得285m y =,则22122844165m y y y ⎛⎫==⨯= ⎪⎝⎭, 0m >,解得54m =,因此,145k m ==. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.2.B解析:B 【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =,因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得3c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.3.C解析:C 【分析】设E 是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.C解析:C由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=.设()()1122,,,A x y B x y ,由韦达定理得124y y =-. 由AF mFB =,得12y my =-.解得21y y ==-21y y ==121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.5.D解析:D 【分析】将直线方程与双曲线的方程联立,得出关于x 的方程,根据直线与双曲线只有一个公共点,求出对应的k 值,即可得解. 【详解】联立22341169y kx k x y =-+⎧⎪⎨-=⎪⎩,消去y 并整理得()()()2221693243164390k x k k x k ⎡⎤-+-+-+=⎣⎦,由于直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点, 所以,21690k -=或()()()222216903243641694390k k k k k ⎧-≠⎪⎨⎡⎤⎡⎤∆=----+=⎪⎣⎦⎣⎦⎩, 解得34k =±或2724250k k +-=, 对于方程2724250k k +-=,判别式为22447250'∆=+⨯⨯>,方程2724250k k +-=有两个不等的实数解.显然34k =±不满足方程2724250k k +-=. 综上所述,k 的取值有4个.【点睛】方法点睛:将直线与圆锥曲线的两个方程联立成方程组,然后判断方程组是否有解,有几个解,这是直线与圆锥曲线位置关系的判断方法中最常用的方法,注意:在没有给出直线方程时,要对是否有斜率不存在的直线的情况进行讨论,避免漏解.6.C解析:C 【分析】根据抛物线的定义和性质,可以求出A 的坐标,再求出直线AB 的方程,可求出点B 的坐标,最后利用三角形的面积公式加以计算,即可得到AOB 的面积. 【详解】抛物线24y x =的焦点为(1,0)F ,准线方程为1x =-, 不妨设A 在第一象限,设1(A x ,1)y 、2(B x ,2)y ,||3AF =,所以A 到准线1x =-的距离为3,113x ∴+=,解得12x =,1y ∴=,∴直线AB=∴直线AB的方程为1)y x =-,由241)y x y x ⎧=⎪⎨=-⎪⎩,整理可得22520x x -+=, 解得12x =,212x = 当212x =时,2y = 因此AOB 的面积为:121111||||||||112222AOBAOFBOFSSSOF y OFy =+=+=⨯⨯⨯. 故选:C. 【点睛】方法点睛:与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.7.D解析:D 【分析】 首先设直线2x y c =+,与椭圆方程联立,得到根与系数的关系,同时由条件可得123y y =-,与根与系数的关系联立消元可得22213242a b c +=,求得椭圆的离心率. 【详解】设直线方程为2x y c =+,设()11,A x y ,()22,B x y ,与椭圆方程联立得22224102a b y cy b ⎛⎫++-= ⎪⎝⎭,12222y y a b+=+4122212b y y a b =-+ ① 223AF F B =,()()1122,3,c x y x c y ∴--=-, 得123y y =- ②,由①②联立可得,22213242a bc +=即22222323c a b a c =+=-,得2243c a =,椭圆的离心率c e a ==. 故选:D 【点睛】方法点睛:本题考查直线与椭圆的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.8.A解析:A 【分析】利用双曲线的定义、余弦定理以及三角形的面积公式可求得123F PF π∠=,利用双曲线的定义以及126PF PF a +=可求得14PF a =,22PF a =,再利用余弦定理可得出ba的值,由此可求得双曲线C 的渐近线方程. 【详解】设12F PF θ∠=,由双曲线的定义可得122PF PF a -=, 在12PF F △中,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即()()()22212121212222cos 421cos c PF PF PF PF PF PF a PF PF θθ=-+⋅-⋅=+⋅-,所以,222122221cos 1cos c a b PF PF θθ-⋅==--,1222221222sin cos1sin 22sin 21cos tan112sin 22PF F b b b S PF PF θθθθθθθ⋅=⋅====-⎛⎫-- ⎪⎝⎭△,tan2θ∴=0θπ<<,可得022θπ<<,26θπ∴=,所以,3πθ=,由已知可得121226PF PF a PF PF a ⎧-=⎪⎨+=⎪⎩,解得1242PF aPF a ⎧=⎪⎨=⎪⎩,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即222221416416122c a a a a =+-⨯=,则223c a =,即2223a b a +=,b ∴=, 因此,双曲线C的渐近线方程为by x a=±=0y ±=. 故选:A. 【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)转化已知条件,得到a 、b 、c 中任意两个量的等量关系;(2)若得到a 、b 的等量关系,则渐近线方程可得;若已知a 、c 或b 、c 之间的等量关系,结合222+=a b c 可求得ba的值,则渐近线方程可求. 9.D解析:D 【分析】根据角的关系计算出12216030MF F MF F ∠=︒∠=︒,,从而求出渐近线方程为y =,得到ba=. 【详解】因为21221cos 12cos MF F MF F ∠+=∠,故1221cos cos 2MF F MF F ∠=∠,即12212MF F MF F ∠=∠,而12213F MF MF F ∠=∠,故12216030MF F MF F ∠=︒∠=︒,,则三角形1MF O 为等边三角形,故双曲线C的渐近线方程为y =,则2e ==,故选D .【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.10.C解析:C 【分析】先判断出圆1C 与2C 内含,根据条件可得动圆M 与圆1C ,圆2C 均相切,从而得出121216MC MC a C C +=+>=,即动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,又设12MC C 的内切圆的半径为r ' ,由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯,从而得出答案. 【详解】由圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,可得圆1C 的圆心()13,0C -,半径为1r a =,圆2C 的圆心()23,0C ,半径为21r = 由121261C C a r r =<-=-所以圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切. 所以动圆M 与圆1C 内切,与圆2C 外切,设动圆M 的半径为R 则11MC r R a R =-=-,221MC r R R =+=+ 所以121216MC MC a C C +=+>=所以动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,设其方程为22221(0)x y m n m n+=>> 所以12a m +=,设22c m n =-,则3c = 由P 是12MC C 的内心,设12MC C 的内切圆的半径为r ' 由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯ 即1212318MC MC C C +==,又由椭圆的定义可得121MC MC a +=+ 所以118a +=,则17a = 故选:C 【点睛】本题考查圆与圆的位置关系,考查根据圆与圆的相切求动圆圆心的轨迹,考查椭圆的定义的应用,解答本题的关键的由条件得出圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切,进一步由条件得出121216MC MC a C C +=+>=,即得出动点M 的轨迹,属于中档题.11.C解析:C 【分析】由已知得直线l 的方程可得c ,设()11,A x y ()22,B x y 代入椭圆的方程做差可得22ba18=,然后利用222b c a =-可得2a ,再利用椭圆定义可得答案. 【详解】易得直线l 的方程为113(2)1442y x x =++=+, 当0y =时,6x =-,所以6c =,设()11,A x y ,()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则22222121220x x y y a b --+=, 整理得222212121222212121y y y y y y b a x x x x x x -+-=-=-⋅-+-2221136448a a--=-⨯==,解得a =,则FAB的周长为4a =. 故选:C. 【点睛】本题考查了椭圆的定义、直线和椭圆的位置关系,在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程,这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.12.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<,记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.二、填空题13.【分析】转化条件为点在线段的垂直平分线上再结合双曲线的定义可得点在以、为焦点的双曲线的左支上联立方程即可得解【详解】由题意点即则线段的中点为直线的斜率所以线段的垂直平分线的斜率所以线段的垂直平分线的解析:(-【分析】转化条件为点P 在线段AC 的垂直平分线上,再结合双曲线的定义可得点P 在以A 、B 为焦点的双曲线的左支上,联立方程即可得解. 【详解】由题意,点()3,0A ,()3,0B -,()34cos60,4sin 60C +即(5,C , 则线段AC的中点为(,直线AC的斜率AC k ==, 所以线段AC的垂直平分线的斜率k =, 所以线段AC的垂直平分线的方程为)4y x =-即y x =+, 设(),P x y ,由PA PC =可得点P 在线段AC 的垂直平分线上,又46PA PB AB -=<=,所以点P 在以A 、B 为焦点的双曲线的左支上,该双曲线的方程为()221245x y x -=≤-,所以221452x y x y x ⎧-=⎪⎪⎪≤-⎨⎪⎪=+⎪⎩,解得8x y =-⎧⎪⎨=⎪⎩. 所以点P的坐标为(-.故答案为:(-. 【点睛】 关键点点睛:解决本题的关键是对条件的转化,转化条件为点P 为线段AC 的垂直平分线与双曲线左支的交点,运算即可得解.14.【分析】设点设直线的方程为联立直线与抛物线的方程列出韦达定理推导出利用基本不等式可求得的最小值【详解】若直线与轴重合则直线与抛物线只有一个交点不合乎题意易知抛物线的焦点为准线方程为设点设直线的方程为解析:92【分析】设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立直线AB 与抛物线C 的方程,列出韦达定理,推导出112AF BF+=,利用基本不等式可求得4AF BF +的最小值. 【详解】若直线AB 与x 轴重合,则直线AB 与抛物线C 只有一个交点,不合乎题意.易知抛物线C 的焦点为1,02F ⎛⎫ ⎪⎝⎭,准线方程为12x =-,设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+, 联立2122x my y x⎧=+⎪⎨⎪=⎩,整理可得2210y my --=,2440m ∆=+>,由韦达定理可得122y y m +=,121y y =-,()()()12121212211111*********m y y AF BF my my my my x x +++=+=+=++++++()()21222212122222121m y y m m y y m y y m m +++===+++-++, ()4111144522AF BF AF BF AF BF AF BF BF AF ⎛⎫⎛⎫∴+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭19522⎛≥+= ⎝,当且仅当2AF BF =时,等号成立,因此,4AF BF +的最小值为92. 故答案为:92. 【点睛】结论点睛:过抛物线的焦点F 的直线与抛物线交于A 、B 两点,则112AF BF p+=. 15.【分析】根据题意构建渐近线的斜率与3的不等关系再利用求得离心率范围即可【详解】过右焦点与渐近线平行的直线与双曲线有一个交点且一条渐近线的斜率为若斜率为的直线与双曲线的左右两支分别相交则则离心率故答案解析:)+∞【分析】根据题意构建渐近线的斜率与3的不等关系,再利用e =求得离心率范围即可. 【详解】过右焦点与渐近线平行的直线与双曲线有一个交点,且一条渐近线的斜率为b a, 若斜率为3的直线与双曲线的左右两支分别相交,则3ba>,则离心率c e a ===>.故答案为:)+∞.【点睛】求双曲线离心率常见方法:(1)直接法:由a ,c 直接计算离心率ce a=; (2)构建齐次式:利用已知条件和双曲线的几何关系构建关于a ,b ,c 的方程和不等式,利用222b c a =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.16.3【分析】过作准线的垂线垂足分别为过作的垂线垂足为根据结合抛物线的定义可得据此求出再根据抛物线的定义可求出【详解】如图:过作准线的垂线垂足分别为过作的垂线垂足为因为所以因为所以所以所以在直角三角形中解析:3 【分析】过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,根据2CB BF =结合抛物线的定义可得30DFA MCB ∠=∠=,据此求出||3AD =,再根据抛物线的定义可求出p . 【详解】如图:过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,因为2CB BF =,所以||2||CB BF =, 因为||||BF BM =,所以||2||CB BM =, 所以30MCB ∠=,所以30DFA ∠=,在直角三角形ADF 中,因为||6AF =,所以||3AD =, 因为||||6AN AF ==,且||||3AN AD p p =+=+, 所以63p =+,所以3p =. 故答案为:3 【点睛】关键点点睛:利用抛物线的定义求解是解题关键.17.【分析】作出图形过点作垂直于抛物线的准线于点可得出可知当取最小值时即直线与抛物线相切时最大可求出直线的斜率求出点的坐标利用对称性可求得点的坐标抛物线的焦点弦长公式进而可求得弦的长度【详解】设点为第一 解析:8【分析】作出图形,过点A 作AE 垂直于抛物线218y x =的准线于点E ,可得出1sin AM AF AME=∠,可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AM AF 最大,可求出直线AM 的斜率,求出点A 的坐标,利用对称性可求得点B 的坐标,抛物线的焦点弦长公式,进而可求得弦AB 的长度. 【详解】设点A 为第一象限内的点,过点A 作AE 垂直于抛物线218y x =的准线于点E ,如下图所示:由抛物线的定义可得AE AF =,则1sin AM AM AF AE AME==∠, 可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AMAF最大, 抛物线218y x =的焦点为()0,2F ,易知点()0,2M -. 当直线AM 与抛物线218y x =相切时,直线AM 的斜率存在, 设直线AM 的方程为2y kx =-,联立228y kx x y=-⎧⎨=⎩,消去y 得28160x kx -+=,264640k ∆=-=,因为点A 在第一象限,则0k >,解得1k =,方程为28160x x -+=,解得4x =,此时,228x y ==,即点()4,2A ,此时AB y ⊥轴,由对称性可得()4,2B -, 因此,448AB =+=. 故答案为:8 【点睛】方法点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++或12AB y y p =++,若不过焦点,则必须用一般弦长公式.18.【分析】设出抛物线上任意一点的坐标根据两点间的距离公式求得球心到四周轮廓上的点的距离根据最短距离是在下顶点处取到结合二次函数的性质求得的取值范围【详解】建立如图所示直角坐标系其中为坐标原点得抛物线方解析:10,4⎛⎤⎥⎝⎦【分析】设出抛物线上任意一点的坐标,根据两点间的距离公式求得球心C 到四周轮廓上的点的距离,根据最短距离是在下顶点A 处取到,结合二次函数的性质,求得a 的取值范围. 【详解】建立如图所示直角坐标系,其中A 为坐标原点,得抛物线方程2(0)y axa =>,(0,2)C ,设抛物线上任一点的坐标为200(,)x ax ,由两点距离公式得()22224200002(14)4=+-=+-+d x ax a x a x ,令20(0)=≥t x t ,则22(14)4(0)=+-+≥y a t a t t 的开口向上,对称轴为2412-=a t a, 当对称轴24102a a-≤时,在0t =处取得最小值,此时d 的最小值为4=2=d , 当对称轴24102a a->时,最小值在对称轴处取得,即d 的最小值小于2,不符合题意. 故由24102a a -≤,解得10,4a ⎛⎤∈ ⎥⎝⎦.故答案为:10,4⎛⎤ ⎥⎝⎦【点睛】关于平面图形或者空间几何体中一些边长或者距离的最值计算一般转化为函数问题,可以通过二次函数、反比例函数的性质求解最值,或者有时可以利用基本不等式,较难的问题则需要通过导数判断单调性从而求出最值.19.2【分析】在焦点三角形中由余弦定理求得关系再求离心率【详解】设双曲线的左焦点为在中由余弦定理得故答案为:2【点晴】求离心率的关键是得的关系本题是由余弦定理得出解析:2 【分析】在焦点三角形中由余弦定理求得,a c 关系,再求离心率.【详解】设双曲线的左焦点为E ,在EFP △中,2EF c =,2PF c PE a c ==+,,1cos 4EFP ∠=. 由余弦定理()222421cos 224c c c a EFP c c +-+∠==⋅⋅ ,得2c e a ==. 故答案为:2 【点晴】求离心率的关键是得,,a b c 的关系,本题是由余弦定理得出.20.【分析】由已知设圆的方程为椭圆的方程为再设出直线AC 的方程为直线BD 的方程为分别与椭圆的方程为联立整理由直线与椭圆相切的条件求得斜率再由已知得由此可求得椭圆的离心率【详解】因为两个椭圆与椭圆的离心率解析:7【分析】由已知设圆1Γ的方程为()()2222+1x y ma mb =,椭圆2Γ的方程为2222+1x y a b =,再设出直线AC 的方程为()1y k x ma =-,直线BD 的方程为2+y k x mb =,分别与椭圆2Γ的方程为2222+1x y a b =联立整理,由直线与椭圆相切的条件0∆=,求得斜率,再由已知得2257b a =,由此可求得椭圆的离心率. 【详解】因为两个椭圆1Γ与椭圆2Γ的离心率相等,所以设椭圆1Γ的方程为()()2222+1x y ma mb =,椭圆2Γ的方程为2222+1x y a b=,设直线AC 的方程为()1y k x ma =-,与椭圆2Γ的方程为2222+1x y a b=联立整理得:()()23422212222211+2+0b mk a x a k xm a a k b --=,因为直线AC 与椭圆2Γ相切,则()()()2222222213241142+0a k m m aa kb a b k --=-=∆,整理化简得()212221k a m b =-,设直线BD 的方程为2+y k x mb =,与椭圆2Γ的方程为2222+1x y a b=联立整理得:()()222222222222+2+0b mk a b a k xm a a x b b --=,因为直线BD 与椭圆2Γ相切,则()()()22222222222242+0a k mk a b m a a b b b -=--=∆,整理化简得()222221m kab -=,又AC 与BD 的斜率之积为57-,所以()()222212222221571mk k a b b a m -⎛⎫⋅=⋅=- ⎪-⎝⎭,整理得2257b a =,所以22222521177c b e a a ==-=-=, 所以椭圆1Γ的离心率为7,故答案为:7. 【点睛】关键点点睛:解决直线与椭圆的位置关系的问题,关键在于联立直线与椭圆的方程,运用方程的根的判别式的正负,满足直线与椭圆相交,相切,相离.三、解答题21.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0), 当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =,所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法. 22.(1)24y x =;(2)直线l 过定点,定点坐标为()0,1-,证明见解析. 【分析】(1)联立直线方程和抛物线方程,求出交点的坐标后利用弦长公式可求p 的值,从而可求抛物线的方程.(2)设直线l 的方程为x my b =+,联立直线方程和抛物线方程,消去x 后利用韦达定理化简斜率之和,从而可得b m =,故可求定点坐标.我们也可以设211,4y M y ⎛⎫⎪ ⎪⎝⎭,222,4y N y ⎛⎫⎪⎝⎭,用坐标表示斜率之和,再用该两点的坐标表示直线l ,化简后可得直线过定点. 【详解】 (1)由2,2,y x y px =⎧⎨=⎩解得10x =,22x p =,因为直线y x =被抛物线()2:20C y px p =>截得的弦长为0p -=,0p >,解得2p =, 所以抛物线C 的方程为24y x =.(2)法一: 设直线l 的方程为x my b =+,()11,M x y ,()22,N x y , 由2,4,x my b y x =+⎧⎨=⎩得2440y my b --=, 所以124y y m +=,124y y b =-,因为点()1,2A ,且直线AM ,AN 的斜率之和为4,所以121222411y y x x --+=--,而2114y x =,2224y x =,化简得12120y y y y ++=, 所以440m b -=,即b m =, 所以直线l 的方程为()1x m y =+, 所以直线l 过定点,定点坐标为()0,1-.法二: 设211,4y M y ⎛⎫ ⎪ ⎪⎝⎭,222,4y N y ⎛⎫ ⎪⎝⎭, 因为点()1,2A ,且直线AM ,AN 的斜率之和为4,所以1222122241144y y y y --+=--,即12120y y y y ++=, ①当210y y +≠时,直线l 的方程为221112221444y yy y y x y y ⎛⎫--=- ⎪⎝⎭-即2141y x y y =--, 所以直线l 过定点,定点坐标为()0,1-;②当210y y +=时,120y y =,所以120y y ==,不满足题意. 所以直线l 过定点,定点坐标为()0,1-. 【点睛】方法点睛:. 直线与抛物线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题,也可以设出交点坐标,用交点坐标表示目标代数式,从而解决定点、定值、最值问题.23.(1)22122y x -=;(2)8.【分析】(1)由等轴双曲线的一条渐近线方程为0y x +=,再由点到直线距离公式求解即可; (2)求得直线方程代入抛物线,结合焦点弦长求解即可. 【详解】(1)由等轴双曲线的一条渐近线方程为0y x +=,且顶点(0,)a 到渐近线的距离为1,可得1a b =⎧=,解得a b ⎧=⎪⎨=⎪⎩22122y x -=(2)抛物线24y x =的焦点为(1,0)F直线l 的方程为0tan 45(1)y x -=︒⋅-,即1y x =-. 与抛物线方程联立,得214y x y x =-⎧⎨=⎩, 消y ,整理得2610x x -+=,设其两根为1x ,2x ,且126x x +=. 由抛物线的定义可知,12||628AB x x p =++=+=. 所以,线段AB 的长是8. 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.24.(1)2214x y +=;(2)证明见解析,()1,0.【分析】(1)利用椭圆的定义可得12|||2|MF MF a =+,根据基本不等式求出2a =,再由离心率求出c =222a b c =+即可求解.(2)当点C 是椭圆上顶点时,求出()4,3P ,进而求出点83,55D ⎛⎫- ⎪⎝⎭,写出直线CD 的方程,得出直线CD 经过定点()1,0N ,设l 上任意点()4,P m ,设(),C C C x y ,(),y D D D x ,写出直线PA 的方程,将直线与椭圆联立,求出2221826,99m m C m m ⎛⎫- ⎪++⎝⎭,同。

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》检测(含答案解析)(1)

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》检测(含答案解析)(1)

一、选择题1.已知抛物线2:2C y px =的焦点为F ,过抛物线上两点A ,B 分别向抛物线C 的准线作垂线,垂足为M ,N ,且()95OBN OAM ABNM S S S +=梯形△△,当直线AB 经过点F 且点F 到抛物线C 准线的距离为4时,直线l 的斜率为( )A .2±B .±C .8±D .±2.已知双曲线22221x y a b -=的两个焦点分别为21(,0)(,0)(0)F c F c c ->,过点2,0a P c ⎛⎫⎪⎝⎭的直线与双曲线的左右两支分别交于,A B 两点,且122F A F B =-,求双曲线的离心率( )A BC D3.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .54.已知F 是双曲线2222:1(0)x y E a b a b-=>>的左焦点,过点F 的直线与双曲线E 的左支和两条渐近线依次交于,,A B C 三点,若||||||FA AB BC ==,则双曲线E 的离心率为( )A BC .2D 5.若1F ,2F 是双曲线22221(0,0)y xa b a b-=>>与椭圆2251162x y +=的共同焦点,点P 是两曲线的一个交点,且12PF F △为等腰三角形,则该双曲线的渐近线方程是( )A .y =±B .4y x =±C .3y x =±D .7y x =±6.抛物线:24y x =的过焦点的弦的中点的轨迹方程为( ) A .21y x =-B .212y x =-C .22(1)y x =-D .221y x =-7.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,()1221,2i i M F M F a i -==,且1M ,2F ,2M 三点共线,点D 在线段21M F 上,且1121F M D M M D ∠=∠1112122M F M F M D +=,则双曲线C 的渐近线方程为( )A .2y x =±B .y =C .2y x =±D .y =8.已知抛物线2:C x y =,点()2,0A ,()0,2B -,点P 在抛物线上,则满足PAB △为直角三角形的点P 的个数有( ) A .2B .4C .6D .89.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25410.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( ) A .(1,2]B .5(1,]3C .[2,)+∞D .4[,)3+∞11.过抛物线24y x =的焦点的直线与抛物线交于A ,B 两点,若AB 的中点的纵坐标为2,则AB 等于( ) A .4B .6C .8D .1012.设1F 、2F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,P 为直线2ax c=上一点,若21F PF 是底角为30的等腰三角形,则椭圆E 的离心率为( )A .12B .2C .34D .45二、填空题13.过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,且点A 为线段PB 的中点,则直线l 的斜率为___________.14.设1A 、2A 为椭圆()222210x y a b a b+=>>的左、右顶点,若在椭圆上存在异于1A 、2A 的点P ,使得10PO PA ⋅=,其中O 为坐标原点,则椭圆的离心率e 的取值范围是_____. 15.设椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线x m =与椭圆C 相交于A ,B两点.当ABF 的周长最大时,ABF 的面积为2b ,则椭圆C 的离心率e =________.16.若实数x ,y 10=,则+________.17.设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,点P 在C 的右支上,O 为坐标原点,若存在点P ,使PF OF =,且1cos 4OFP ∠=,则双曲线的离心率为___________.18.已知抛物线C :2y x =的焦点为F ,A ()00,x y 是C 上一点,054AF x =,则0x =________.19.在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b+=>>的焦距为,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,过O 作⊥OD AB 交AB 于点D ,点D 的坐标为()2,1,则椭圆C 的方程为_________.20.倾斜角为45的直线l 经过抛物线24y x =的焦点F ,且与抛物线交于A ,B 两点,则AB 的长为__________________.三、解答题21.椭圆2212516x y +=上一点P 到左焦点F 的距离为6,若点M 满足1()2OM OP OF =+(O 为坐标原点),则||OM =________.22.已知椭圆22:143x y E +=,其右焦点为F ,直线l 与圆22:3O x y +=相切于点Q ,设直线l 与椭圆E 相交于不同的两点A 、B .(1)若M 点是椭圆E 上任意一点,求出MF 的最大值;(2)已知过椭圆E 上的动点P 引圆О的两条切线PC 、PD (C 、D 为切点),探究在椭圆E 上是否存在点P ,使得由点P 向圆O 引的切线互相垂直; (3)当点Q 在y 轴右侧时,求证:AF AQ BF BQ +=+.23.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积. 24.已知抛物线C :()220y px p =>过点()2,4T -.(1)求抛物线C 的焦点到准线的距离;(2)已知点()4,0A ,过点()4,0B -的直线l 交抛物线C 于点M 、N ,直线MA ,NA 分别交直线4x =-于点P 、Q .求PBBQ的值. 25.已知抛物线()2:20C y px p =>,直线()0y kx k =>与C 交于点A (与坐标原点O 不重合),过OA 的中点P 作与x 轴平行的直线l ,直线l 与C 交于点,Q 与y 轴交于点.R (1)求PR QR;(2)证明:直线AR 与抛物线C 只有一个公共点.26.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,求得4p =,可得抛物线的方程,因为()95OBN OAM ABNM S S S +=梯形△△,所以49OMN OAB ABMN S S S +=梯形△△,根据面积公式,结合抛物线定义,即可求得AB ,不妨设AB 的斜率为k ,可得直线AB 的方程,与抛物线联立,根据韦达定理,可求得A B x x +的值,代入弦长公式,即可求得答案. 【详解】因为点F 到抛物线C 准线的距离为4,所以4p =,所以28y x =,设抛物线C 的准线与x 轴交于点H ,因为()95OBN OAM ABNM S S S +=梯形△△,所以()()11422192M N A BOMN OABABMNM N OH y y OF y y S S S AM BN y y ⋅-+⋅-+==+⋅-梯形△△,因为2OH OF ==,M N A B y y y y -=-,AM BN AB +=,所以449OMN OAB ABMN S S S AB +==梯形△△,则9AB =,显然直线AB 的斜率存在,不妨设为k ,则():2AB y k x =-, 与抛物线联立可得:()22224840k x k x k -++=, 从而284A B x x k +=+, 所以28489A B A k B x x =++=+=,解得k =±. 故选:B【点睛】解题的关键是根据面积的关系,得到49 OMN OABABMNS SS+=梯形△△,结合图象,可求得9AB=,再利用抛物线的弦长公式求解,考查分析计算,化简求值的能力,属中档题.2.B解析:B【分析】先根据题意画出图形,再根据122F A F B=-,得到21FAF B B P∽,根据相似比得到222a ac cc c⎛⎫+=⨯-⎪⎝⎭,即可求出离心率.【详解】解:如图所示:122F A F B=-,12//F A F B∴,12AF B BF P∴∽,且122F PF P=,即222a ac cc c⎛⎫+=⨯-⎪⎝⎭,两边同时除以a 得2a c c a c a a c ⎛⎫+=⨯- ⎪⎝⎭, 即122e e e e+=-, 又1e >,解得:e = 故选:B. 【点睛】关键点点睛:本题解题的关键是利用三角形相似比得到,a c 的关系式,进而求得离心率.3.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=.设()()1122,,,A x y B x y ,由韦达定理得124y y =-.由AF mFB =,得12y my =-.解得21y y ==-21y y ==121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.4.B解析:B 【分析】可设出直线AB ,与两渐近线方程联立,解出,B C y y ,利用两者的关系式求出直线的斜率.进而表示出A 的坐标,代入双曲线方程,得到,,a b c 的关系式,从而求得离心率. 【详解】||||||FA AB BC ==,故有1123A B C y y y == 故32B C y y =设过点F 的直线方程为:()y k x c =+联立()y k x c b y x a ⎧=+⎪⎨=-⎪⎩,解之得C C kc x bk a b kc a y b k a -⎧=⎪+⎪⎪⎨⎪=⎪⎪+⎩ 同理联立()y k x c by x a ⎧=+⎪⎨=⎪⎩解之得B B kc x bk a b kc a y b k a ⎧=⎪-⎪⎪⎨⎪=⎪⎪-⎩由32B C y y =有23b bkc kca ab b k k a a =+-,故3232b b k k a a +=- 解之得5bk a=-直线为:()5by x c a=-+ 则1212A B bc y y a -==,又()5A A b y x c a =-+ 故712A cx =-又A 在双曲线上可得:2222491144144c c a a -= 得2213c a =故ca =故选:B 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.B解析:B 【分析】由题意可得双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,由12PF F △为等腰三角形,所以2126PF F F ==,从而可求得1221064PF a PF =-=-=,再利用双曲线的定义可求得在双曲线中1a =,b =,进而可求出双曲线的渐近线方程 【详解】解:因为椭圆2251162x y +=的焦点坐标为(0,3),所以双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,设点P 为两曲线在第一象限的交点,由于在椭圆中,12PF F △为等腰三角形,所以2126PF F F ==, 所以1221064PF a PF =-=-=,在双曲线中,212642a PF PF =-=-=,所以1a =,代入229a b +=,得b =,所以该双曲线的渐近线方程为4a y x x b =±==±, 故选:B 【点睛】关键点点睛:此题考查椭圆、双曲线的定义的应用,解题的关键由12PF F △为等腰三角形和椭圆的定义求出21,PF PF 的值,属于中档题6.C解析:C 【分析】设出过焦点的直线方程,与抛物线方程联立求出两根之和,可得中点的坐标,消去参数可得中点的轨迹方程. 【详解】由抛物线的方程可得焦点(1,0)F ,可得过焦点的直线的斜率不为0, 设直线方程为:1x my =+,设直线与抛物线的交点1(A x ,1)y ,2(B x ,2)y ,设AB 的中点(,)P x y , 联立直线与抛物线的方程可得:2440y my --=,124y y m +=,21212()242x x m y y m +=++=+,所以可得2212x m y m⎧=+⎨=⎩,消去m 可得P 的轨迹方程:222y x =-,故选:C . 【点睛】方法点睛:求轨迹方程的常见方法有:1、定义法;2、待定系数法;3、直接求轨迹法;4、反求法;5、参数方程法等等.7.B解析:B 【分析】先取11M F 的中点E ,由题意分析12M F DE 为菱形,得到()()222442c a a =-,从而求出渐近线方程. 【详解】由()1221,2i i M F M F a i -==知:M 1、M 2在双曲线上. 取11M F 的中点E ,连接DE ,2DF ,由111211111222,22,M F M F M D M F M D M F +=∴=-, 即112122,M F F D F D E M =∴=,可知四边形12M F DE 为平行四边形; 又1M D 为112F M F 的角平分线,故四边形12M F DE 为菱形,1212M E F M F D DE ===又21//DE M M 故D 为线段21M F 的中点; 因为211//DF M F ,故2F 为线段12M M 的中点, 故1222M F F M =; 所以21112M F M F =由双曲线的定义:11122M F M F a -=,所以21114,2M F a M F a == 而12M M x ⊥轴,故222121112F F M F M F =-, 故()()222442c a a =-,故3==ce a,故双曲线C 的渐近线方程为2y x =±, 故选B . 【点睛】求双曲线的渐近线的方法:(1)直接令标准方程22221x y a b-=中的1变成0,得到22220x y a b -=,利用平方差公式得到渐近线方程: bxy a=±; (2)根据题意,找到找到a 、b 、c 的关系,消去c ,从而求出渐近线方程.8.B解析:B 【分析】分三个角为直角分别进行讨论,通过数形结合即得结果. 【详解】(1)若APB ∠为直角,如下图,即以AB 为直径的圆与抛物线的交点为P ,易见有O ,P 两个点符合题意;(2)若PAB ∠为直角,则过A 作直线垂直AB ,如下图,易见有P ,P '两个点符合题意;(3)若PBA ∠为直角,则过B 作直线垂直AB ,如上图,易见无交点,不存在点P 符合题意.综上,共有4个点符合题意. 故选:B. 【点睛】 关键点点睛:本题的解题关键在于对三个角为直角进行分类讨论,再结合数形结合思想即突破难点.9.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.10.A解析:A 【分析】根据题中条件,由双曲线的定义,得到2PF a =,13PF a =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又213PF PF =,所以222PF a =,即2PF a =,则13PF a =, 因为双曲线中,1212+≥PF PF F F ,即42a c ≥,则2ca≤,即2e ≤, 又双曲线的离心率大于1,所以12e <≤. 故选:A. 【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可.11.C解析:C 【分析】先根据抛物线的定义将焦点弦长问题转化为中点到准线距离的两倍,进而用中点横坐标表示,设直线AB 的方程为:1x my =+(m 为常数),与抛物线方程联立消去x ,得到关于y 的一元二次方程,利用中点公式和韦达定理求得m 的值,进而得到中点的横坐标,从而求得线段AB 的长度. 【详解】抛物线24y x =的焦点坐标F (1,0),准线方程:1l x =-,设AB 的中点为M ,过A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,则MN 为梯形ABDC 的中位线,()02|21AB AF BF AC BD MN x ∴=+=+==+,∵直线AB 过抛物线的焦点F ,∴可设直线AB 的方程为:1x my =+(m 为常数), 代入抛物线的方程消去x 并整理得:2440y my --=, 设A ,B 的纵坐标分别为12,y y ,线段AB 中点()00,M x y , 则120222y y y m +===,1m ∴=, ∴直线AB 的方程为1x y =+,001213x y ∴=+=+=,()2318AB ∴=+=,故选:C.【点睛】本题考查抛物线的焦点弦长问题,涉及抛物线的定义,方程,线段中点坐标公式,直线与抛物线的交点问题,属中档题,关键是灵活使用抛物线的定义,将焦点弦长问题转化为中点坐标问题,注意直线方程的设法:过点(a ,0),斜率不为零的直线方程可以设为x =my +a 的形式,不仅避免了讨论,而且方程组消元化简时更为简洁.12.B解析:B 【分析】设直线2a x c=交x轴于点M ,推导出222PF F M =,可得出关于a 、c 的等式,由此可解得该椭圆的离心率. 【详解】设直线2a x c=交x轴于点M ,21F PF △是底角为30的等腰三角形,260PF M ∠=,2122PF F F c ==,在2Rt PF M 中,290PMF ∠=,230MPF ∠=,222PF F M ∴=,P 为直线2a x c =上一点,222a c c c ⎛⎫∴-= ⎪⎝⎭,即222a c =,22c e a ∴==. 故选:B . 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.二、填空题13.【分析】由题意可知直线的斜率存在且为正数可设直线的方程为设点将直线的方程与抛物线的方程联立列出韦达定理可得出代入韦达定理求出的值即可得出直线的斜率为【详解】由于过点的直线与抛物线相交于两点若在第一象 22【分析】由题意可知,直线l 的斜率存在且为正数,可设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,可得出212y y =,代入韦达定理求出m 的值,即可得出直线l 的斜率为1m. 【详解】由于过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,所以,直线l 的斜率存在且为正数,设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y ,联立228x my y x=-⎧⎨=⎩,可得28160y my -+=,264640m ∆=->,0m >,解得1m .由韦达定理可得128y y m +=,1216y y =,由于点A 为线段PB 的中点,则212y y =,12183m y y y ∴=+=,183m y ∴=, 22121816223m y y y ⎛⎫===⨯ ⎪⎝⎭,可得298m =,0m >,解得m =,因此,直线l 的斜率为1k m ===故答案为:3. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.14.【分析】设点由可得出求出函数在区间上的零点为化简得出进而可解得的取值范围【详解】设点则可知点设则函数在区间上存在零点则为方程的一根设函数在区间内的零点为由韦达定理可得所以即整理可得即解得因此椭圆的离解析:2⎛⎫⎪ ⎪⎝⎭【分析】设点(),P x y ,由10PO PA ⋅=可得出2220e x ax b ++=,求出函数()f x 在区间(),0a -上的零点为22ab c-,化简得出2201b c <<,进而可解得e 的取值范围.【详解】设点(),P x y ,则22222b y b x a=-,可知点()1,0A a -,(),PO x y =--,()1,PA a x y =---,()()22222222221220b c PO PA x a x y x y ax x b x ax x ax b a a⋅=---+-=++=+-+=++=,设()222f x e x ax b =++,则函数()f x 在区间(),0a -上存在零点,()2220f a c a b -=-+=,则a -为方程2220e x ax b ++=的一根,设函数()f x 在区间(),0a -内的零点为1x ,由韦达定理可得222122b a b ax e c -==,212ab x c∴=-,所以,220ab a c -<-<,即2201b c<<,整理可得2222a c b c -=<,222a c ∴<,即221e >,01e <<,解得12e <<.因此,椭圆的离心率e 的取值范围是⎫⎪⎪⎝⎭.故答案为:⎫⎪⎪⎝⎭. 【点睛】方法点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a 、c ,代入公式c e a=; ②只需要根据一个条件得到关于a 、b 、c 的齐次式,结合222b a c =-转化为a 、c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(或不等式),解方程(或不等式)即可得e (e 的取值范围).15.【分析】首先根据椭圆定义分析分析当的周长最大时直线的位置再求的面积得到椭圆的离心率【详解】设椭圆的右焦点为当直线过右焦点时等号成立的周长此时直线过右焦点得故答案为:【点睛】关键点点睛:本题考查椭圆内 解析:12【分析】首先根据椭圆定义分析,分析当ABF 的周长最大时,直线AB 的位置,再求ABF 的面积,得到椭圆的离心率. 【详解】设椭圆的右焦点为F ',AF BF AB ''+≥,当直线AB 过右焦点F '时,等号成立,∴ABF 的周长4l AF BF AB AF BF AF BF a ''=++≤+++=,此时直线AB 过右焦点,22b AB a=,221222ABFb Sc b a=⨯⨯=,得12c e a ==.故答案为:12【点睛】关键点点睛:本题考查椭圆内的线段和的最值问题,关键是利用两边和大于第三边,只有三点共线时,两边和等于第三边,再结合椭圆的定义,求周长的最值.16.【分析】由已知条件得出点P 在以为焦点以为长轴长的椭圆上再由两点的距离公式得出表示点到点的距离之和再根据椭圆的定义将问题转化为求的范围根据两点的距离公式可求得范围【详解】设点则由椭圆的定义得点P 在以为解析:[10-+【分析】由已知条件得出点P 在以()()120303F F -,,,为焦点,以10为长轴长的椭圆上,再由两+(),P x y 到点()()11,00,3A F ,的距离之和,再根据椭圆的定义将问题转化为求210+d PA PF =-的范围,根据两点的距离公式可求得范围. 【详解】设点(),P x y ,则由椭圆的定义得点P 在以()()120303F F -,,,为焦点,以10为长轴长的椭圆上,所在椭圆的方程为:22+11625x y =,(),P x y 到点()()11,00,3A F ,的距离之和,即1+d PA PF =,由椭圆的定义得12+210PF PF a ==,所以1210PFPF =-,所以()122++1010+d PA PF PA PF PA PF ==-=-,而222AF PA PF AF -≤-≤,又2AF ==,所以21010+d PA PF ≤=-≤,[10-+,故答案为:[10-+. 【点睛】关键点点睛:本题考查根式的最值和范围求解问题,解决的关键在于利用椭圆的定义得出动点的轨迹,将问题转化为求两线段的距离之差的范围.17.2【分析】在焦点三角形中由余弦定理求得关系再求离心率【详解】设双曲线的左焦点为在中由余弦定理得故答案为:2【点晴】求离心率的关键是得的关系本题是由余弦定理得出解析:2 【分析】在焦点三角形中由余弦定理求得,a c 关系,再求离心率. 【详解】设双曲线的左焦点为E ,在EFP △中,2EF c =,2PF c PE a c ==+,,1cos 4EFP ∠=. 由余弦定理()222421cos 224c c c a EFP c c +-+∠==⋅⋅ ,得2c e a ==. 故答案为:2 【点晴】求离心率的关键是得,,a b c 的关系,本题是由余弦定理得出.18.【分析】根据焦半径公式可得:结合抛物线方程求解出的值【详解】由抛物线的焦半径公式可知:所以故答案为:【点睛】结论点睛:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴抛物线上任意一点则;(2 解析:1【分析】根据焦半径公式可得:00524x p x +=,结合抛物线方程求解出0x 的值. 【详解】由抛物线的焦半径公式可知:0015224AF x x =+=,所以01x =, 故答案为:1. 【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 19.【分析】先利用点坐标和垂直关系求得直线的斜率并写出直线方程联立直线与椭圆利用韦达定理和垂直的向量关系得到的关系式再结合焦距的关系式解出即得方程【详解】依题意椭圆的焦距为即即由点的坐标为知直线OD 的斜解析:221 306x y+=【分析】先利用点D坐标和垂直关系求得直线l的斜率,并写出直线方程,联立直线与椭圆,利用韦达定理和垂直的向量关系得到22,a b的关系式,再结合焦距的关系式解出22,a b,即得方程.【详解】依题意,椭圆的焦距为46,即246c=,26c=,即2224a b-=,由点D的坐标为()2,1,知直线OD的斜率101202ODk-==-,又⊥OD AB,知直线l的斜率为2-,即直线l的方程为12(2)y x-=--,即52y x=-.设()()1122,,,A x yB x y联立方程2222152x ya by x⎧+=⎪⎨⎪=-⎩得()2222222420250a b x a x a a b+-+-=,故2222121222222025,44a a a bx x x xa b a b-+==++,即()()()12121212525225104y y x x x x x x=--=-++2222222222222202525425104444a a ab b a ba b a b a b--=-⨯+⨯=+++,由OA OB⊥知,1212OA OB x x y y⋅=+=,即22222222222525444a ab b a ba b a b--+=++,所以222255a b a b+=,又2224a b-=,消去2a得,42141200b b+-=,解得26b=或220b=-(舍去),故2230,6a b==,椭圆C的方程为221306x y+=.故答案为:221306x y+=.【点睛】思路点睛:求解椭圆中的直线垂直问题时,一般利用直线的斜率之积为-1,或者直线上的向量的数量积为0来处理,再联立直线与椭圆方程,结合韦达定理,即可求出结果.20.【分析】直线的方程为与抛物线方程联立可得从而可得再根据抛物线的定义即可求出的长【详解】抛物线的焦点的坐标为所以直线的方程为即由得所以由抛物线的定义可知所以的长为故答案为:【点睛】本题主要考查直线与抛 解析:8【分析】直线l 的方程为1y x =-,与抛物线方程联立可得2610x x -+=,从而可得6A B x x +=,再根据抛物线的定义即可求出AB 的长.【详解】抛物线24y x =的焦点F 的坐标为(1,0),所以直线l 的方程为0tan 45(1)y x -=-,即1y x =-,由214y x y x=-⎧⎨=⎩,得2610x x -+=,所以6A B x x +=, 由抛物线的定义可知628A B AB x x p =++=+=,所以AB 的长为8. 故答案为:8 【点睛】本题主要考查直线与抛物线的位置关系,考查抛物线焦点弦长的求法,属于中档题.三、解答题21.2 【分析】根据222a c b -=求出左焦点F 的坐标,然后设P 的坐标00(,)P x y ,根据两点间的距离公式求出P 到左焦点的距离以及代入椭圆方程中解得P 的坐标,由1()2OM OP OF =+得到M 为PF 的中点,根据中点坐标公式求出M 的坐标,利用两点间的距离公式求出||OM 即可.【详解】由椭圆2212516x y +=得5a =,4b =, 左焦点(3,0)F -,设00(,)P x y ,则()2200336x y ++=又220012516x y +=解得053x =或0553x =-(舍去);又P 在椭圆上,则将053x =代入到椭圆方程中求出0y =所以点5(3P ,)3±;由点M 满足1()2OM OP OF =+,则得M 为PF 中点,根据中点坐标公式求得2,3M ⎛- ⎝⎭, 所以||(2OM =-=故答案为:2. 【点睛】本题考查椭圆的简单几何性质,会利用两点间的距离公式及中点坐标公式、点到直线的距离公式化简求值,同时也考查学生掌握向量的运用法则及向量模的求法,属于中档题. 22.(1)3;(2)不存在;(3)证明见解析. 【分析】(1)设出()00,M x y ,把MF 表示出来,利用函数求最值;(2)假设存在点P ,作出切线PC 、PD ,由OCPD 为正方形推出||OP =||2OP ≤,矛盾,所以判断点 P 不存在;(3)用坐标法分别求出AF AQ BF BQ 、、、,证明AF AQ BF BQ +=+ 【详解】由椭圆22:143x y E +=,知右焦点为()1,0F ,(1)设()00,M x y ,则()220001,2243x y x +=-≤≤,所以MF ===因为()()220000124444x f x x x =-+=-在 []02,2x ∈-上单减,所以当02x =-时,3MF ==最大, 即MF 的最大值为3. (2)假设存在点P 符合题意,如图示,,,OC OD PC PD ⊥⊥又有,PC PD ⊥所以OCPD 为矩形;因为|OC |=|OD |,所以OCPD 为正方形,所以||2||236OP OC ==⨯=;又P 在椭圆22:143x y E +=上,所以3||26OP ≤≤≠,故这样的点P 不存在; (3)设()()1122,,,A x y B x y ,连结 OQ ,OA ,OB ,则△AOQ 为直角三角形,所以222211||3AQ OA OQ x y =-=+-又A 在椭圆22:143x y E +=上,所以 2211143x y +=,得2221111||342x x AQ x y =+-== 而()221111||122AF x y x =-+=- 所以11112222AF AQ x x +=-+=; 同理可证:2BF BQ +=.所以AF AQ BF BQ +=+,即证【点睛】解析几何问题常见处理方法:(1)正确画出图形,利用平面几何知识简化运算;(2)坐标化,把几何关系转化为坐标运算.23.(1)22143x y +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积.【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b+=,解得23b =, 因此,椭圆C 的方程为22143x y +=; (2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y , 联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>, 由韦达定理可得1267y y +=-,1297y y =-, 所以,212112277OMN SOF y y =⋅-===⨯=. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.24.(1)4p =;(2)1.【分析】(1)求出p 后可得焦点到准线的距离.(2)设直线l 的方程为4x my =-,()11,M x y ,()22,N x y ,可用,M N 的坐标表示PB BQ ,再联立直线l 的方程和抛物线的方程,利用韦达定理化简PB BQ可得所求的值. 【详解】(1)因为()2,4T -在抛物线上,164p =即4p =,抛物线C 的焦点到准线的距离为4p =.(2)显然直线l 的斜率不为0,故设直线l 的方程为4x my =-,由248x my y x=-⎧⎨=⎩得28320y my -+=, 由()228320m ∆=->得216m >,设()11,M x y ,()22,N x y ,则128y y m +=,1232y y =,所以()12124my y y y =+. 又114MA y k x =-,224NA y k x =-, 所以直线MA :()1144y y x x =--,NA :()2244y y x x =--, 令4x =-,得1184P y y x -=-,2284Q y y x -=-, 所以121212124848PQ PB y y x y my BQ x y my y y --==⋅=⋅-- ()()121121211221221248844184844y y y my y y y y my y y y y y y y +---====-+--. 【点睛】思路点睛:直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题. 25.(1)2 ;(2)证明见解析.【分析】(1)联立直线()0y kx k =>与抛物线方程可得点A 坐标,由中点坐标公式可得点P 坐标,进而可得直线l 的方程与抛物线联立可得Q 点坐标,计算P QPR x QR x =即可求解; (2)利用A 和R 两点坐标求出直线AR 的方程,与抛物线方程联立消去x 得到关于y 的一元二次方程,由0∆=即可求证.【详解】(1)联立方程22,y kx y px =⎧⎨=⎩,可得:2220k x px -=,解得222p x k p y k ⎧=⎪⎪⎨⎪=⎪⎩所以222,p p A k k ⎛⎫ ⎪⎝⎭, 因为P 是OA 的中点,所以2,.p p P k k ⎛⎫⎪⎝⎭ 直线:p l y k =,点0,R p k ⎛⎫ ⎪⎝⎭ 将p y k =代入22y px =,得2,.2p p Q k k ⎛⎫ ⎪⎝⎭所以2222P Q pPR x k p QR x k ===. ()2因为222,p p A k k ⎛⎫ ⎪⎝⎭,0,R p k ⎛⎫ ⎪⎝⎭所以直线AR 的方程为2k p y x k =+, 与22y px =联立消去x 得222440k y pky p -+=, 因为222216440p k p k ∆=-⨯⨯=,所以直线AR 与抛物线C 只有一个公共点.【点睛】方法点睛:判断直线与曲线的位置关系可联立直线与曲线的方程消去y 得关于x 的一元二次方程,由判别式0∆>可得直线与曲线相交,由判别式0∆=可得直线与曲线相切,判别式∆<0可得直线与曲线相离.26.(1)24x y =;(2)1y x =+或1y x =-+.【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程.【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =, 所以轨迹C 的方程:24x y =;(2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+, 由241x yy kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=,∴21224y y k +=+,∴2122428AB y y p k =++=++=,解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+.【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.。

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》测试(包含答案解析)(4)

(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》测试(包含答案解析)(4)

一、选择题1.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+= 2.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( )A .13B .3C .12D .23.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 4.已知椭圆22:13620x y C +=的右焦点是F ,直线()0y kx k =≠与椭圆C 交于A 、B 两点,则222AF BF +的最小值是( ) A .36B .48C .72D .965.抛物线:24y x =的过焦点的弦的中点的轨迹方程为( ) A .21y x =-B .212y x =-C .22(1)y x =-D .221y x =-6.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =( ) A .165B .2C .85D .17.若椭圆22221(0)x y a b a b +=>>,则213a b +的最小值为( )A B .3C .2D8.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF 为等边三角形,则该双曲线的渐近线的斜率为( ) A .2±B .3C .6±D .7±9.已知直线:(1)(2)230l a x a y a +++--=经过定点P ,与抛物线24x y =交于,A B 两点,且点P 为弦AB 的中点,则直线l 的方程为( ) A .230x y +-= B .210x y -+= C .210x y -+=D .20x y +-=10.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A .273+ B .273+ C .53D .211.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( ) A .(1,2]B .5(1,]3C .[2,)+∞D .4[,)3+∞12.已知抛物线24x y =的焦点F 和点(1,8),A P -为抛物线上一点,则||||PA PF +的最小值是( ) A .3B .9C .12D .6二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.已知F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,过F 的直线与C 的两条渐近线的交点分别为,M N ,若0OM MF ⋅=,||MN b =,则C 的离心率为________.15.F 为抛物线2:4C y x =的焦点,过F 且斜率为k 的直线l 与抛物线交于P 、Q 两点,线段PQ 的垂直平分线交x 轴于点M ,且||6PQ =,则||MF =__________.16.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.17.设点P 是抛物线2:4C y x =上一动点,F 是抛物线的焦点,O 为坐标原点,则OP PF的最大值为___________.18.已知点F 为抛物线2:2C x y =的焦点,过点F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则4AB DE +的最小值为_________.19.已知双曲线M :22221x y a b-=(0a >,0b >),ABC 为等边三角形.若点A 在y轴上,点B ,C 在双曲线M 上,且双曲线M 的实轴为ABC 的中位线,则双曲线M 的离心率为________.20.已知P 为椭圆22143x y +=上一点,1F 、2F 是焦点,1260F PF ∠=︒,则12F PF S =△______. 三、解答题21.设动点(),M x y (0x ≥)到定点()2,0F 的距离比它到y 轴的距离大2. (Ⅰ)求动点M 的轨迹方程C ;(Ⅱ)设过点F 的直线l 交曲线C 于A ,B 两点,O 为坐标原点,求AOB 面积的最小值.22.已知抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4. (1)求抛物线C 的方程;(2)过点F 且斜率为1的直线l 与C 交于A ,B 两点,O 为坐标原点,求OAB 的面积.23.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F 、,点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形. (1)求椭圆C 的方程;(2)过点M 分别作直线MA 、MB 交椭圆于A B 、两点,设两直线MA 、MB 的斜率分别为12k k 、,且128k k +=,探究:直线AB 是否过定点,并说明理由.24.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.25.已知圆22:4C x y +=,点P 为圆C 上的动点,过点P 作x 轴的垂线,垂足为Q ,设D 为PQ 的中点,且D 的轨迹为曲线E (PQD 三点可重合). (1)求曲线E 的方程;(2)不过原点的直线l 与曲线E 交于M 、N 两点,已知OM ,直线l ,ON 的斜率1k 、k 、2k 成等比数列,记以OM ,ON 为直径的圆的面积分别为S 1,S 2,试探究12S S +是否为定值,若是,求出此值;若不是,说明理由.26.如图,已知点P 是x 轴下方(不含x 轴)一点,抛物线2:C y x =上存在不同的两点A 、B 满足PD DA λ=,PE EB λ=,其中λ为常数,且D 、E 两点均在C 上,弦AB 的中点为M .(1)若P 点坐标为(1,2)-,3λ=时,求弦AB 所在的直线方程;(2)若直线PM 交抛物线C 于点Q ,求证:线段PQ 与QM 的比为定值,并求出该定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=,整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.2.B解析:B 【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得3c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.3.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -+=过点F,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PF F F +==故()2222220a ++=. 可得1a=ce a== 故选:D 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).4.D解析:D 【分析】求得2AF BF a +=,结合a c BF a c -<<+,利用二次函数的基本性质可求得222AF BF +的最小值.【详解】设椭圆C 的左焦点为F ',在椭圆C 中,6a =,25b =,则224c a b =-=,由题意可知,点A 、B 关于原点对称,且O 为FF '的中点, 所以,四边形AFBF '为平行四边形,所以,BF AF '=,由椭圆的定义可得212AF BF AF AF a '+=+==,0k ≠,a c BF a c ∴-<<+,即210BF <<,()()2222222122324144349696AF BF BFBF BF BF BF ∴+=-+=-+=-+≥,当且仅当4BF =时,等号成立,因此,222AF BF +的最小值为96. 故选:D. 【点睛】关键点点睛:解决本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应曲线的定义,本题中利用对称性结合椭圆定义可得出AF BF +;(2)利用椭圆的几何性质得出焦半径的取值范围.5.C【分析】设出过焦点的直线方程,与抛物线方程联立求出两根之和,可得中点的坐标,消去参数可得中点的轨迹方程. 【详解】由抛物线的方程可得焦点(1,0)F ,可得过焦点的直线的斜率不为0, 设直线方程为:1x my =+,设直线与抛物线的交点1(A x ,1)y ,2(B x ,2)y ,设AB 的中点(,)P x y , 联立直线与抛物线的方程可得:2440y my --=,124y y m +=,21212()242x x m y y m +=++=+,所以可得2212x m y m⎧=+⎨=⎩,消去m 可得P 的轨迹方程:222y x =-,故选:C . 【点睛】方法点睛:求轨迹方程的常见方法有:1、定义法;2、待定系数法;3、直接求轨迹法;4、反求法;5、参数方程法等等.6.C解析:C 【分析】直接设出直线方程,用“设而不求法”表示出AF ,BF ,利用性质可解. 【详解】由题意可知直线AB 的斜率一定存在,设为k ,联立2,22,p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩消去y 可得()22222204k p k x k px -++=,设()11,A x y ,()22,B x y ,所以2124p x x =.又根据抛物线的定142p x +=,212p x +=,所以241224p p p ⎫⎫⎛⎛--= ⎪⎪⎝⎝⎭⎭,解得85p =.故选:C 【点睛】"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.7.C解析:C 【分析】由椭圆的离心率为3和222a b c =+,求得3a b =,化简2219113333a b b b b b ++==+,结合基本不等式,即可求解.由题意,椭圆22221(0)x y a b a b +=>>的离心率为3,即3c a =,即3c =,又由222a b c =+,可得2219b a =,即3a b =所以22191132333a b b b b b ++==+≥=,当且仅当133b b=,即13b =时,“=”成立.故选:C. 【点睛】 关键点睛:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.8.C解析:C 【分析】利用双曲线的定义可求得12AF a =,24AF a =,利用余弦定理可求得ca的值,利用公式=b a . 【详解】2ABF 为等边三角形,22AB AF BF ∴==,且260ABF ∠=︒,由双曲线的定义可得121212||BF AB AF a B AF F BF =+-==-,212AF AF a -=,24AF a ∴=,在12AF F △中12AF a =,24AF a =,12120F AF ∠=,由余弦定理可得122F F c ===,即c a =b a ====.因此,该双曲线的渐近线的斜率为. 故选:C.【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)定义法:直接利用a ,b ,求得比值,则焦点在x 轴时渐近线by x a=±,焦点在y 轴时渐近线ay x b=±; (2)构造齐次式,利用已知条件,结合222+=a b c ,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写渐近线即可.9.B解析:B 【分析】利用点差法求出直线斜率,即可得出直线方程. 【详解】由直线:(1)(2)230l a x a y a +++--=得(2)(23)0a x y x y +-++-=所以20230x y x y +-=⎧⎨+-=⎩ 解得11x y =⎧⎨=⎩ 则()1,1P 设1122(,),(,)A x y B x y ,则21122244x y x y ⎧=⎨=⎩,两式相减得121212()()4()x x x x y y -+=-, 即121212142AB y y x x k x x -+===-, 则直线方程为11(x 1)2y -=-,即210x y -+=. 故选:B. 【点睛】方法点晴:点差法是求解中点弦有关问题的常用方法.10.A解析:A 【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54P x a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54b y xc a c =++,化简得3(54)30bx a c y bc -++=, 又直线FP 与圆222x y a +=相切,a =,345bc a a c=+人,变形为4293440160e e e ---=,22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去). 故选:A . 【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.11.A解析:A 【分析】根据题中条件,由双曲线的定义,得到2PF a =,13PF a =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又213PF PF =,所以222PF a =,即2PF a =,则13PF a =, 因为双曲线中,1212+≥PF PF F F ,即42a c ≥,则2ca≤,即2e ≤, 又双曲线的离心率大于1,所以12e <≤. 故选:A.【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可.12.B解析:B 【分析】根据抛物线的标准方程求出焦点坐标和准线方程,利用抛物线的定义可得||||||||PA PF PA PF AM +=+≥,故AM 为所求【详解】解:由题意得2p =,焦点(0,1)F ,准线方程为1y =-, 设P 到准线的距离为PM ,(即PM 垂直于准线,M 为垂足),则||||||||9PA PF PA PF AM +=+≥=,(当且仅当,,P A M 共线时取等号), 所以||||PA PF +的最小值是9, 故选:B 【点睛】关键点点睛:此题考查抛物线的定义、标准方程,以及简单性质的应用,解题的关键是由题意结合抛物线定义得||||||||PA PF PA PF AM +=+≥,从而可得结果二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a两边同除4a ,可得42950250e e -+=,解得55,3==e e (舍) 故答案为:5 【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.2【分析】首先根据可得可计算结合可得是等腰三角形且再由渐进线的斜率可计算出点坐标即可求出点坐标利用结合可得之间的关系即可求解【详解】因为所以即所以为点到渐近线的距离所以可得点为的中点又因为所以所以设解析:2 【分析】首先根据0OM MF ⋅=可得⊥OM MF ,可计算MF b =,结合||MN b =可得OFN △是等腰三角形,且ON c =,再由渐进线的斜率可计算出点N 坐标,即可求出点M 坐标,利用OM a =结合222b c a =-可得,a c 之间的关系,即可求解. 【详解】因为0OM MF ⋅=,所以OM MF ⊥,即⊥OM MF 所以MF 为点(),0F c 到渐近线0bx ay -=的距离,22bcMF b cb a ===+, 所以MF MN b ==,可得点M 为NF 的中点, 又因为⊥OM MF ,所以ON OF c ==, 所以222OM c b a =-=,设双曲线的左焦点为1F ,1FON θ∠=,(),N x y 则()tan tan tan bFON FON aθπ=-∠=-∠=,因为222c a b =+,所以cos acθ=,sin b c θ=所以cos a x ON c a c θ=-=-⋅=-,sin by ON c b cθ==⋅=, 所以(),N a b -,因为M 为NF 中点,所以,22a M c b -⎛⎫⎪⎝⎭, 222222c a b OM a -⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,将222b c a =-代入整理可得:()22224c a c a a -+-= 即222240c ac a --=,所以220e e --=,可得()()210e e -+=, 解得:2e =或1e =-(舍), 故答案为:2 【点睛】方法点睛:求椭圆离心率的方法: (1)直接利用公式c e a=;(2)利用变形公式e =; (3)根据条件列出关于,a c 的齐次式,两边同时除以2a ,化为关于离心率的方程即可求解.15.3【分析】先根据抛物线方程求出p 的值再由抛物线性质求出的垂直平分线方程即可得到答案【详解】∵抛物线∴p=2焦点F(10)可设直线l :P(x1y1)Q(x2y2)将代入抛物线得:∴设PQ 中点为N(x0解析:3 【分析】先根据抛物线方程求出p 的值,再由抛物线性质求出PQ 的垂直平分线方程,即可得到答案. 【详解】∵抛物线2:4C y x =,∴p =2,焦点F (1,0) 可设直线l :(1)y k x =-,P (x 1,y 1)、Q (x 2,y 2)将(1)y k x =-代入抛物线2:4C y x =得:2222(24)0k x k x k -++= ∴12242x x k +=+1224||226,PQ x x p k k =++=++=∴=设PQ 中点为N (x 0,y 0),则2120004242,(1)222x x k x y k x k++=====-= 所以线段PQ 的垂直平分线方程:1(2)y k x k-=--令y =0,可得x =4,所以||413MF =-=故答案为:3 【点睛】坐标法是解析几何的基本方法,利用坐标法把几何关系转化为代数运算.16.【分析】根据题意找到abc 的关系求出离心率的范围【详解】设椭圆的中心为因为所以所以所以椭圆上的点到原点距离最远的是长轴端点所以即所以离心率所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据解析:⎫⎪⎪⎣⎭【分析】根据题意,找到a 、b 、c 的关系,求出离心率的范围 【详解】设椭圆的中心为O ,因为60MPN ∠=︒,所以60POM ∠=︒,所以||2||OP OM =,所以2OP b =,椭圆上的点到原点距离最远的是长轴端点,所以2a b ≥,即12b a ≤,2222211,,44b ac a a -∴≤∴≤所以离心率2c e a ==≥=,所以2⎫∈⎪⎪⎣⎭e .故答案为:,12⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.【分析】设点则则可得出令利用二次函数的基本性质求出二次函数的最大值即可得出的最大值【详解】设点则则抛物线的准线方程为由抛物线的定义可得所以令当且仅当时函数取得最大值因此的最大值为故答案为:【点睛】方【分析】设点(),P x y ,则24y x =,则0x ≥,可得出OP PF=(]10,11t x =∈+,利用二次函数的基本性质求出二次函数2321y t t =-++的最大值,即可得出OPPF的最大值. 【详解】设点(),P x y ,则24y x =,则0x ≥,抛物线C 的准线方程为1x =-,由抛物线的定义可得1PF x =+,所以,OPPF ==== 0x ≥,令(]10,11t x =∈+,221443213333y t t t ⎛⎫=-++=--+≤ ⎪⎝⎭, 当且仅当13t =时,函数2321y t t =-++取得最大值43,因此,OP PF故答案为:3. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.18.18【分析】设直线的方程为联立方程组分别求得和结合基本不等式即可求得的最小值得到答案【详解】由题抛物线的焦点准线方程为设直线的方程为联立方程组则设可得由抛物线的定义可得由可将上式中的换为可得则当且仅解析:18 【分析】设直线1l 的方程为12y kx =+,联立方程组,分别求得222AB k =+和22||2DE k=+,结合基本不等式,即可求得4AB DE +的最小值,得到答案. 【详解】由题,抛物线2:2C x y =的焦点10,2F ⎛⎫⎪⎝⎭,准线方程为12y设直线1l 的方程为12y kx =+,0k ≠, 联立方程组2212x y y kx ⎧=⎪⎨=+⎪⎩,则2210x kx --=,设()11,A x y ,()22,B x y ,可得122x x k +=,()21212121112122y y kx kx k x x k +=+++=++=+由抛物线的定义可得212||122AB y y k =++=+, 由12l l ⊥,可将上式中的k 换为1k -,可得22||2DE k=+,则224102102184AB DE k k ⎛⎫+=++≥+⨯= ⎪⎝⎭,当且仅当k = 则4AB DE +的最小值为18 故答案为:18 【点睛】方法点睛:本题考查抛物线的焦点弦,考查基本不等式的应用,与抛物线的焦点有关问题的解题策略:1、与抛物线的焦点有关的问题,一般情况下都与抛物线的定义有关:“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径;2、特别提醒:主要灵活运用抛物线上一点(,)P x y 到焦点F 的距离:2PF px =+或2PF p y =+. 19.【分析】可根据实轴为的中位线得出再根据对称性及为等边三角形表示出的坐标代入双曲线方程得到关系式求解离心率【详解】实轴长为则关于轴对称不妨设在双曲线左支则其横坐标为根据为等边三角形可得故将的坐标代入双【分析】可根据实轴为ABC 的中位线,得出BC ,再根据对称性及ABC 为等边三角形,表示出B 的坐标,代入双曲线方程,得到,a b 关系式求解离心率. 【详解】实轴长为2a ,则4BC a =,BC 关于y 轴对称不妨设B 在双曲线左支,则其横坐标为2a ,根据ABC 为等边三角形,60ABC ∠=可得B y =故()2,B a ,()2,C a -,将B 的坐标代入双曲线方程有2222431a a a b-=,则a b =,则c =故e =【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).20.【分析】利用余弦定理以及椭圆的定义可得再由三角形面积公式计算可得结果【详解】由已知得所以从而在中即①由椭圆的定义得即②由①②得所以故答案为:【点睛】方法点睛:本题考查椭圆的定义考查余弦定理的应用三角【分析】利用余弦定理以及椭圆的定义可得124PF PF ⋅=,再由三角形面积公式计算可得结果. 【详解】由已知得2a =,b =1c ==,从而1222F F c ==,在12F PF △中,2221212122cos60F F PF PF PF PF ︒=+-⋅,即2212124PF PF PF PF =+-⋅,① 由椭圆的定义得124PF PF +=, 即221212162PF PF PF PF +=+⋅,② 由①②得124PF PF ⋅=,所以12121sin 602F PF S PF PF ︒=⋅=△【点睛】方法点睛:本题考查椭圆的定义,考查余弦定理的应用、三角形面积公式,对于焦点三角形面积问题,一是结合余弦定理和面积公式,二是利用椭圆定义可得解,考查逻辑思维能力和运算求解能力,属于常考题.三、解答题21.(Ⅰ)28y x =;(Ⅱ)8. 【分析】(Ⅰ)根据M 的几何性质可得)20x x +=≥,化简后可得抛物线的方程.(Ⅱ)设:2l x ty =+,联立直线方程和抛物线方程,消元后可得面积的表达式,从而可求面积的最小值. 【详解】(Ⅰ)由题设可得)20x x +=≥,整理可得()280y x x =≥.(Ⅱ)设:2l x ty =+,由228x ty y x=+⎧⎨=⎩可得28160y ty --=,故12y y -==又1282OAB S =⨯⨯=≥,当且仅当0t =时等号成立,故AOB 面积的最小值为8. 【点睛】方法点睛:圆锥曲线中的最值问题,往往需要利用韦达定理构建目标的函数关系式,自变量可以斜率、斜率的倒数或点的横、纵坐标等.而目标函数的最值可以通过常见函数的性质、基本不等式或导数等求得.22.(1)28x y =;(2) 【分析】(1)由题中条件,根据抛物线的定义,得到242p+=,求出p ,即可得出抛物线方程; (2)先由(1)得到焦点坐标,得出直线l 的方程,设()11,A x y ,()22,B x y ,联立直线与抛物线方程,结合韦达定理,以及抛物线的焦点弦公式,求出弦长AB ,再由点到直线距离公式,以及三角形面积公式,即可求出结果. 【详解】(1)因为抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4,所以242p+=,解得4p =, 所以抛物线C 的方程为28x y =; (2)由(1)可得,()0,2F ;则过点F 且斜率为1的直线l 的方程为:2y x =+,即20x y -+=, 设()11,A x y ,()22,B x y ,由228y x x y=+⎧⎨=⎩消去x ,整理得21240y y -+=, 则1212y y +=,因此1212416AB AF BF y y p =+=++=+=, 又点O 到直线20x y -+=的距离为d ==,所以OAB的面积为12OABS AB d ==. 【点睛】 思路点睛:求解圆锥曲线中三角形的面积问题时,一般需要联立直线与曲线方程,结合韦达定理,弦长公式,以及三角形面积公式,即可得出三角形的面积.23.(1)22184x y +=;(2)直线AB 过定点1,22⎛⎫-- ⎪⎝⎭,理由见解析【分析】(1)通过点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形,可求得,a b ,从而可求椭圆方程;(2)若直线AB 的斜率存在,设AB 方程代入椭圆方程,利用韦达定理及128k k +=,可得直线AB 的方程,从而可得直线AB 过定点;若直线AB 的斜率不存在,设AB 方程为0x x =,求出直线AB 的方程,即可得到结论.【详解】(1)由点(0,2)M 是椭圆的一个顶点,可知2b =, 又12F MF △是等腰直角三角形,可得a =,即a =28a =,24b =所以椭圆的标准方程为22184x y +=;(2)若直线AB 的斜率存在,设AB 方程为y kx m =+,依题意2m ≠±,联立22184y kx mx y =+⎧⎪⎨+=⎪⎩,得222(12)4280k x kmx m +++-=由已知0∆>,设1122(,),(,)A x y B x y ,由韦达定理得:2121222428,1212km m x x x x k k --+==++, 128k k +=12221211212222y y kx m k k k x m x x x x -+-+-=+=+-∴+ 12212121142(2)()2(2)2(2)828x x km k m k m k m x x x x m +-=+-+=+-=+-=-42kmk m ∴-=+,整理得122m k =- 故直线AB 方程为122y kx k =+-,即122y k x ⎛⎫=+- ⎪⎝⎭,所以直线AB 过定点1,22⎛⎫-- ⎪⎝⎭; 若直线AB 的斜率不存在,设AB 方程为0x x =,设0000(,),(,)A x y B x y -, 由已知得0000228y y x x ---+=,解得012x =-, 此时直线AB 方程为12x =-,显然过点1,22⎛⎫-- ⎪⎝⎭;综上,直线AB 过定点1,22⎛⎫-- ⎪⎝⎭. 【点睛】方法及易错点睛:对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和椭圆方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系对题目条件进行化简计算,从而可得出结论,另外设直线方程时常常不要忽略斜率是否存在的问题.24.(1)22143x y +=;(2)7. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+,设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-, 所以,2121122OMNSOF y y =⋅-====.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.25.(1)2214x y +=;(2)12S S +是否为定值,为54π.证明过程见解析. 【分析】(1)设(,)D x y ,用,x y 表示出P 点坐标,代入圆的方程即可得;(2)设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠,直线方程代入椭圆方程,应用韦达定理得1212,x x x x +,利用率1k 、k 、2k 成等比数列,得2121212y y k k k x x ==可计算出214k =,然后计算12S S +可得证. 【详解】(1)设(,)D x y ,则有(,2)P x y ,又P 在已知不上,∴2244x y +=,所以曲线E 的方程为2214x y +=;(2)设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠,由2214y kx t x y =+⎧⎪⎨+=⎪⎩得222(14)8440k x ktx t +++-=,2222644(14)(44)0k t k t ∆=-+->,∴122814kt x x k +=-+,21224414t x x k -=+,111y k x =,222y k x =,∵1k 、k 、2k 成等比数列,∴2121212y y k k k x x ==,∴2221212121212()()()kx t kx t k x x kt x x t k x x x x +++++==,212()0kt x x t ++=,又0t ≠,∴12()0k x x t ++=,228014k tt k -+=+,解得12k =±. 1228414kt x x kt k +=-=-+,22122442214t x x t k-==-+, 22222222121212()2162(22)4444x x x x x x k t t t t +=+-=--=-+=,22222222121122()()2244OM ON S S OM ON x y x y ππππ⎛⎫⎛⎫+=⨯+⨯=+=+++ ⎪ ⎪⎝⎭⎝⎭, 222222222211221212124()()4()2()2x y x y kx t kx t k x x kt x x t +++=++++=+++++222244825k k t t =+-+=,∴1254S S π+=为定值. 【点睛】关键点点睛:本题考查求轨迹方程,考查直线与椭圆相交问题中的定值问题.解题方法是设而不求的思想方法,设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠,直线方程代入椭圆方程,应用韦达定理得1212,x x x x +,再利用题中其他条件求出参数满足的结论,并计算12S S +.26.(1)230x y -+=;(2)证明见解析,定值为1λλ+.【分析】(1)设11(,)A x y ,22(,)B x y ,由3PD DA =,3PE EB =可得D 与E 坐标,代入抛物线方程可得1x 与2x ,即可求AB 所在的直线方程;(2)由设00(,)P x y ,PD DA λ=,PE EB λ=可得D 与E 坐标,代入抛物线方程可得1x 与2x 满足的方程220002(1)0x x x y x λλλ-++-=,通过计算得到直线PM 的方程为0x x =,即线段PQ 与QM 的比为Q P M Qy y y y --,计算化简得到定值.【详解】(1)设11(,)A x y ,22(,)B x y ,由3PD DA =,3PE EB =, 可得111323(,)44x y D +-+,221323(,)44x y E +-+,由D 点在C 上可得:2112313()44y x -++=,化简得:211230x x --=,同理可得: 222230x x --=,∵A 、B 两点不同,不妨设(3,9)A ,(1,1)B -, ∴弦AB 所在的直线方程为230x y -+=.(2)设00(,)P x y ,211(,)A x x ,222(,)B x x ,由PD DA λ=,得20101(,)11x x y x D λλλλ++++,代入2yx ,化简得:22101002(1)0x x x y x λλλ-++-=, 同理可得:22202002(1)0x x x y x λλλ-++-=,显然12x x ≠,∴1x 、2x 是方程220002(1)0x x x y x λλλ-++-=的两个不同的根,∴1202x x x +=,20012(1)y x x x λλ+-⋅=,∴1202M x x x x +==,即直线PM 的方程为0x x =, ∵2220012(12)(1)2M x y x x y λλλ+-++==,20Q y x =, ∴200(1)(1)M Q x y y y λλλ+-+-=,200Q P y y x y -=-,所以线段PQ 与QM 的比为200200(1)(1)1Q PM Q y y x y y x y y λλλλλ-==+-+--+∴线段PQ 与QM 的比为定值1λλ+.【点晴】思路点晴:由向量关系得到点,,A B P 坐标关系,求得直线PM 的方程为P x x =,所以M Q MQ y y =-,Q P QP y y =-,则线段PQ 与QM 的比为Q P M Qy y y y --,结合题意得比值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京师范大学附中2013届高三数学一轮复习单元训练:圆锥曲线与方程本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆()222210x y a a b +=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )A .(0,)B .(0,12) C .1,1]D .[12,1]【答案】D2.已知双曲线E 的中心为原点,(3,0)F 是E 的焦点,过F 的直线l 与E 相交于,A B 两点,且AB 的中点为(12,15)N --,则双曲线E 的方程为( )A .22136x y -= B .22163x y -= C .22145x y -= D .22154x y -= 【答案】C3.抛物线22 y p x = 的焦点为F ,点ABC 在此抛物线上,点A 坐标为(1,2).若点F 恰为△ABC 的重心,则直线BC 的方程为( ) A . 0x y +=B . 210x y +-=C . 0x y -=D . 210x y --=【答案】B 4.已知抛物线的焦点为F,过F 的直线与该抛物线相交于两点,则的最小值是( ) A . 4 B . 8 C . 12 D . 16 【答案】B5.已知圆O 的半径为定长r ,A 是圆O 外一定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相较于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A .圆 B .椭圆 C .抛物线 D .双曲线一支 【答案】D6.若直线mx- ny = 4与⊙O: x 2+y 2= 4没有交点,则过点P(m,n)的直线与椭圆22194x y +=的交点个数是( ) A .至多为1 B .2 C .1 D .0【答案】B7.已知F 是椭圆12222=+by a x (a >b>0)的左焦点, P 是椭圆上的一点, PF ⊥x 轴, OP ∥AB(O为原点), 则该椭圆的离心率是( )A .22 B .42 C .21 D .23 【答案】A8.抛物线 22y x -=的准线方程是( )A .21=y B .81=y C .41=x D .81=x 【答案】D9.方程0)1lg(122=-+-y x x 所表示的曲线图形是( )【答案】D10.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( )A .221169x y += B .2211612x y += C .22143x y += D .22134x y += 【答案】C11.我们把离心率为黄金比215-的椭圆称为“优美椭圆”.设12222=+b y a x (a>b>0)为“优美椭圆”,F 、A 分别是它的左焦点和右顶点,B 是它短轴的一个端点,则∠ABF 等于( )A .60°B .75°C .90°D .120° 【答案】C12.设双曲线222:1,(0,1),10x M y C x y a-=-+=点若直线交双曲线的两渐近线于点A 、B ,且2BC AC =,则双曲线的离心率为( )A B C D 【答案】B第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知过点P (1,0)且倾斜角为60°的直线l 与抛物线24y x =交于A 、B 两点,则弦长|AB|= . 【答案】16314.设F 为抛物线241x y -=的焦点,与抛物线相切于点)4,4(--P 的直线l 与x 轴的交点为Q ,则PQF ∠的值是 . 【答案】2π 15.已知P 为椭圆221259x y += 上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=900,则△F 1PF 2的面积为___________; 【答案】916.已知椭圆1162522=+y x 的焦点为F 1、F 2,直线CD 过焦点F 1,则∆F 2CD 的周长为_______【答案】20三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知直线L :1y kx =-与抛物线C :2y x =,相交于两点,A B ,设点(0,2)M ,MAB∆的面积为S .(Ⅰ)若直线L 上与M 连线距离为1的点至多存在一个,求S 的范围。

(Ⅱ)若直线L 上与M 连线的距离为1的点有两个,分别记为,C D ,且满足S λ≥⋅|CD | 恒成立,求正数λ的范围.【答案】(1)由已知, 直线L 与抛物线相交,所以222110,40y kx x kx k y x=-⎧⇒-+=∆=->⎨=⎩,即24k >… (1) 又直线L 与以M 为圆心的单位圆相离或相切,所以1d =≥,28k ≤ (2)由(1)(2)得:248k <≤1||(0,3]2S AB d =⋅==(2)由题意可知,当直线L 与以M 为圆心的单位圆相交于点 C ,D 时,可得28k >,且||CD ==令2()8)||S f k k CD ==>,令28(0)t k t =->,0)y t ==>,当且仅当k =取到最小值是154所以,154λ≤18.已知椭圆m x y y x +==+及直线1422,当直线和椭圆有公共点时,求实数m 的取值范围。

【答案】由⎩⎨⎧+==+mx y y x 1422 得012522=-++m mx x因为直线与椭圆有公共点所以0)1(20422≥--=∆m m ,解得2525≤≤-m 19.抛物线x y C 4:2=与直线k x y +=2相交于B A ,两点,且15=AB(Ⅰ)求k 的值。

(Ⅱ)在抛物线C 上是否存在点P ,使得ABP ∆的重心恰为抛物线C 的焦点F ,若存在,求点P 的坐标,若不存在,请说明理由。

【答案】(Ⅰ)设()11,Ax y ,()22,B x y ,由直线与抛物线方程联立可得:2244(1)0x k x k +-+= 1221214x x k k x x +=-⎧⎪∴⎨=⎪⎩由AB ==即1k =-(Ⅱ)假设存在动点00(,)P x y ,使得ABP ∆的重心恰为抛物线C 的焦点F , 由题意可知,AB 的中点M 坐标为(1,1)由三角形重心的性质可知,2PF FM =即00(1,)2(0,1)x y --=0012x y =⎧∴⎨=-⎩即(1,2)P -满足抛物线方程故存在动点00(,)P x y ,使得ABP ∆的重心恰为抛物线C 的焦点F20.已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点分别为1(F,2F ,点(1,0)M 与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,0)M 的直线l 与椭圆C 相交于A ,B 两点,设点(3,2)N ,记直线AN ,BN 的斜率分别为1k ,2k ,求证:12k k +为定值.【答案】(Ⅰ)依题意,由已知得c =,222a b -=,由已知易得1b OM ==,解得a = 则椭圆的方程为2213x y +=. (II) ①当直线l 的斜率不存在时,由221, 13x x y =⎧⎪⎨+=⎪⎩解得1,x y ==.设(1,3A,(1,3B -,则122233222k k ++=+=为定值. ②当直线l 的斜率存在时,设直线l 的方程为:(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简,得2222(31)6330k x k x k +-+-=.依题意,直线l 与椭圆C 必相交于两点,设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+.又11(1)y k x =-,22(1)y k x =-,所以1212122233y y k k x x --+=+--122112(2)(3)(2)(3)(3)(3)y x y x x x --+--=--12211212[2(1)](3)[2(1)](3)93()k x x k x x x x x x ---+---=-++ 1212121212122()[24()6]93()x x k x x x x x x x x -++-++=-++2212222222336122()[246]3131633933131k k x x k k k k k k k --++⨯-⨯+++=--⨯+++ 2212(21)2.6(21)k k +==+综上得12k k +为常数2.21.已知双曲线22221x y a b-=的离心率为2,,过右焦点F 2的直线l 交双曲线于A 、B 两点,F 1为左焦点.(Ⅰ)求双曲线的方程;(Ⅱ)若1F AB ∆的面积等于,求直线l 的方程.【答案】(Ⅰ)依题意,3,21,2c b a c a=⇒==,∴双曲线的方程为:22 1.3y x -=(4分)(Ⅱ)设1122(,),(,)A xy B xy ,2(2,0)F ,直线:(2)l y k x =-, 由22(2)13y k x y x =-⎧⎪⎨-=⎪⎩,消元得2222(3)4430k x k xk --++=,k 时,22121222443,33k k x x x x k k ++==--,1212()y y k x x -=-, 1F AB ∆的面积121222S c yy k xx k =-=⋅-=2k == 42289011k k k k ⇒+-=⇒=⇒=±, 所以直线l 的方程为(2).y x =±- 22.设动点(),P x y ()0x ≥到定点1,02F ⎛⎫⎪⎝⎭的距离比到y 轴的距离大12.记点P 的轨迹为曲线C .(1)求点P 的轨迹方程;(2)设圆M 过()1,0A ,且圆心M 在P 的轨迹上,BD 是圆M在y 轴的截得的弦,当M运动时弦长BD 是否为定值?说明理由; (3)过1,02F ⎛⎫⎪⎝⎭做互相垂直的两直线交曲线C 于G 、H 、R 、S ,求四边形GRHS 面积的最小值.【答案】 (1) 由题意知,所求动点(),P x y 为以1,02F ⎛⎫⎪⎝⎭为焦点,直线1:2l x =-为准线的抛物线,方程为22y x =;(2) 设圆心2,2a M a ⎛⎫⎪⎝⎭,半径r = 圆的方程为()222222122a a x y a a ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭令0x =得()()0,1,0,1B a D a +-+ 2BD ∴= 即弦长BD 为定值;(3)设过F 的直线方程为12y k x ⎛⎫=-⎪⎝⎭,()()1122,,,G x y H x y 由2122y k x y x⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩得()2222204k k x k x -++= 由韦达定理得12221x x k +=+ 222GH k =+ 同理得222RS k =+ 四边形GRHS 的面积()22221212222282T k k k k ⎛⎫⎛⎫=++=++≥ ⎪ ⎪⎝⎭⎝⎭.。

相关文档
最新文档