高一(上)期末数学试卷3
试题及解析:成都七中2022-2023学年高一上期末数学(3)
2025届高一上期末测试卷(数学)试卷分数:150分考试时间:9:00—11:00一、单选题1.命题“”的否定为()A. B.C. D.2.已知0a b <<,则下列不等式成立的是()A .22a b <B .2a ab<C .11a b >D .1b a <3.30α= 是1sin 2α=的什么条件()A .充分必要B .充分不必要C .必要不充分D .既不充分也不必要4.函数2()xx f x x x⋅=-的图象大致为()A .B .C .D .5.已知3sin 375︒=,则cos 593︒=()A .35B .35-C .45D .45-6.已知2x >,则函数42y x x =+-的最小值是()A .8B .6C .4D .216.已知函数())2log f x x =-,若任意的正数,a b 均满足()f a +()310f b -=,则31a b+的最小值为.四、解答题17.已知函数()f x 是二次函数,(1)0f -=,(3)(1)4f f -==.(1)求()f x 的解析式;(2)解不等式(1)4f x -≥.18.已知cos(2)sin()tan()cos()()sin cos 22f πθθπθπθθππθθ--+-=⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.(1)化简()f θ;(2)若θ为第四象限角,且cos θ=,求()f θ的值.19.设集合{}{}220,4,2(1)10,R A B x x a x a x =-=+++-=∈.(1)若12a =-,求A B ⋃;(2)若A B B = ,求实数a 的取值范围.20.某医疗器械工厂计划在2023年利用新技术生产某款电子仪器,通过分析,生产此款电子仪器全年需投入固定成本200万元,每生产x (千部)电子仪器,需另投入成本()R x 万元,且210100,025()90005104250,25x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每1千部电子仪器售价500万元,且全年内生产的电子仪器当年能全部销售完.(1)求出2023年的利润()W x (万元)关于年产量x (千部)的函数关系式;(利润=销售额-成本)(2)2023年产量x 为多少千部时,该生产商所获利润最大?最大利润是多少?21.已知()221g x x ax =-+在区间[]13,上的值域为[]0,4。
山东省潍坊市高一上学期期末考试数学试题(解析版)
一、单选题1.已知集合,,则集合A ,B 的关系是( ) {}N A x y x =∈{}4,3,2,1B =A . B . C .D .B A ⊆A B =B A ∈A B ⊆【答案】A【分析】计算得到,据此得到集合的关系.{}0,1,2,3,4A =【详解】,,故错误; {}{N}0,1,2,3,4A xy x ==∈=∣{}4,3,2,1B =A B =集合中元素都是集合元素,故正确;B A B A ⊆是两个集合,不能用“”表示它们之间的关系,故错误;A B ,∈B A ∈集合中元素存在不属于集合的元素,故错误. A B A B ⊆故选:A2.函数的定义域为( )()()2ln 2f x x x =-A . B . (,0)(2,)-∞+∞ (,0][2,)-∞⋃+∞C . D .()0,2[]0,2【答案】C【分析】根据对数型函数的定义域运算求解. 【详解】令,解得,220x x ->02x <<故函数的定义域为.()()2ln 2f x x x =-()0,2故选:C.3.命题“,”的否定形式是( ) 2x ∀>240x -≠A ., B ., 2x ∃>240x -≠2x ∀≤240x -=C ., D .,2x ∃>240x -=2x ∃≤240x -=【答案】C【分析】根据全称命题的否定形式可直接得到结果.【详解】由全称命题的否定可知:原命题的否定为,. 2x ∃>240x -=故选:C.4.已知,,,则( ) 0.13a =30.3b =0.2log 3c =A . B .C .D .a b c <<c b a <<b a c <<c<a<b 【答案】B【分析】根据指数函数和对数函数单调性,结合临界值即可判断出结果.0,1【详解】,.3000.10.20.2log 3log 100.30.3133<=<<==< c b a ∴<<故选:B.5.某市四区夜市地摊的摊位数和食品摊位比例分别如图、图所示,为提升夜市消费品质,现用12分层抽样的方法抽取的摊位进行调查分析,则抽取的样本容量与区被抽取的食品摊位数分别6%A 为( )A .,B .,C .,D .,21024210272522425227【答案】D【分析】根据分层抽样原则,结合统计图表直接计算即可.【详解】根据分层抽样原则知:抽取的样本容量为;()1000800100014006%252+++⨯=区抽取的食品摊位数为.A 10006%0.4527⨯⨯=故选:D.6.小刚参与一种答题游戏,需要解答A ,B ,C 三道题.已知他答对这三道题的概率分别为a ,a ,,且各题答对与否互不影响,若他恰好能答对两道题的概率为,则他三道题都答错的概率为1214( ) A . B .C .D .12131415【答案】C【分析】记小刚解答A ,B ,C 三道题正确分别为事件D ,E ,F ,并利用D ,E ,F 构造相应的事件,根据概率加法公式与乘法公式求解相应事件的概率.【详解】记小刚解答A ,B ,C 三道题正确分别为事件D ,E ,F ,且D ,E ,F 相互独立, 且. ()()()1,2P D P E a P F ===恰好能答对两道题为事件,且两两互斥, DEF DEF DEF ++DEF DEF DEF ,,所以()()()()P DEF DEF DEF P DEF P DEF P DEF ++=++()()()()()()()()()P D P E P F P D P E P F P D P E P F =++,()()11111112224a a a a a a ⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯= ⎪⎝⎭整理得,他三道题都答错为事件,()2112a -=DEF 故.()()()()()()22111111224P DEF P D P E P F a a ⎛⎫==--=-= ⎪⎝⎭故选:C.7.定义在上的奇函数满足:对任意的,,有,且R ()f x ()12,0,x x ∈+∞12x x <()()21f x f x >,则不等式的解集是( ) ()10f =()0f x >A . B . ()1,1-()()1,01,-⋃+∞C . D .()(),10,1-∞-⋃()(),11,-∞-⋃+∞【答案】B【分析】根据单调性定义和奇函数性质可确定的单调性,结合可得不等式()f x ()()110f f -=-=的解集.【详解】对任意的,,有, ()12,0,x x ∈+∞12x x <()()21f x f x >在上单调递增,又定义域为,, ()f x \()0,∞+()f x R ()10f =在上单调递增,且,;()f x \(),0∞-()()110f f -=-=()00f =则当或时,, 10x -<<1x >()0f x >即不等式的解集为. ()0f x >()()1,01,-⋃+∞故选:B.8.已知函数,若函数有七个不同的零点,()11,02ln ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩()()()()24433g x f x t f x t =-+⎤⎦+⎡⎣则实数t 的取值范围是( ) A .B .C .D .1,12⎡⎤⎢⎥⎣⎦10,2⎛⎫ ⎪⎝⎭1,2⎡⎫+∞⎪⎢⎣⎭{}10,12⎛⎫⋃ ⎪⎝⎭【答案】D【分析】先以为整体分析可得:和共有7个不同的根,再结合的图象()f x ()34f x =()f x t =()f x 分析求解.【详解】令,解得或, ()()()()244330g x f x t f x t =-+⎦+⎤⎣=⎡()34f x =()f x t =作出函数的图象,如图所示,()y f x =与有4个交点,即方程有4个不相等的实根,()y f x =34y =()34f x =由题意可得:方程有3个不相等的实根,即与有3个交点, ()f x t =()y f x =y t =故实数t 的取值范围是.{}10,12⎛⎫⋃ ⎪⎝⎭故选:D.【点睛】方法点睛:应用函数思想确定方程解的个数的两种方法(1)转化为两熟悉的函数图象的交点个数问题、数形结合、构建不等式(方程)求解. (2)分离参数、转化为求函数的值域问题求解.二、多选题9.下列说法正确的是( ) A .的最小值为 B .无最小值 ()4f x x x=+4()4f x x x=+C .的最大值为D .无最大值()()3f x x x =-94()()3f x x x =-【答案】BC【分析】结合基本不等式和二次函数性质依次判断各个选项即可.【详解】对于AB ,当时,(当且仅当时取等号); 0x >44x x +≥=2x =当时,(当且仅当时取等号), 0x <()444x x x x ⎡⎤⎛⎫+=--+-≤-=- ⎪⎢⎥⎝⎭⎣⎦2x =-的值域为,无最小值,A 错误,B 正确; ()4f x x x∴=+(][),44,-∞-⋃+∞对于CD ,,()()22393324f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭当时,取得最大值,最大值为,C 正确,D 错误. ∴32x =()f x 94故选:BC.10.下列函数中,既是偶函数,又在上单调递减的是( ) (0,)+∞A . B .C .D .y x =||e x y =-12log y x =13y x -=【答案】BC【分析】A 选项不满足单调性;D 不满足奇偶性,B 、C 选项均为偶函数且在上单调递减正(0,)+∞确.【详解】在上单调递增,A 选项错误;y x =()0,∞+,故为偶函数,当时为单调递减函数,B()e ,)()e (xxf x f x f x =--==-||e x y =-()0,x ∈+∞e x y =-选项正确;,故为偶函数,当时为单调递1122()()log ,log ()g g g x x x x x =-==12log y x =()0,x ∈+∞12log y x =减函数,C 选项正确;是奇函数,D 选项错误. 13y x -=故选:BC11.如图,已知正方体顶点处有一质点Q ,点Q 每次会随机地沿一条棱向相邻的1111ABCD A B C D -某个顶点移动,且向每个顶点移动的概率相同,从一个顶点沿一条棱移动到相邻顶点称为移动一次,若质点Q 的初始位置位于点A 处,记点Q 移动n 次后仍在底面ABCD 上的概率为,则下列n P 说法正确的是( )A .B . 123P =259P =C .D .点Q 移动4次后恰好位于点的概率为012133n n P P +=+1C 【答案】ABD【分析】根据题意找出在下或上底面时,随机移动一次仍在原底面及另一底面的概率即可逐步分Q 析计算确定各选项的正误.【详解】依题意,每一个顶点由3个相邻的点,其中两个在同一底面.所以当点在下底面时,随机移动一次仍在下底面的概率为:, Q 23在上底面时,随机移动一次回到下底面的概率为:,13所以,故A 选项正确; 123P =对于B :,故B 选项正确;22211533339P =⨯+⨯=对于C :,故C 选项错误; ()1211113333n n n n P P P P +=+-=+对于D :点由点移动到点处至少需要3次, Q A 1C 任意折返都需要2次移动,所以移动4次后不可能 到达点,所以点Q 移动4次后恰好位于点的概率为0. 1C 1C 故D 选项正确; 故选:ABD.12.已知实数a ,b 满足,,则( ) 22a a +=22log 1b b +=A . B . C . D .22a b +=102a <<122a b->5384b <<【答案】ACD【分析】构建,根据单调性结合零点存在性定理可得,再利用指对数互()22xf x x =+-13,24a ⎛⎫∈ ⎪⎝⎭化结合不等式性质、函数单调性分析判断. 【详解】对B :∵,则,22a a +=220a a +-=构建,则在上单调递增,且,()22xf x x =+-()f x R 3413350,202244f f ⎛⎫⎛⎫=<=-> ⎪ ⎪⎝⎭⎝⎭故在上有且仅有一个零点,B 错误;()f x R 13,24a ⎛⎫∈ ⎪⎝⎭对A :∵,则, 22log 1b b +=222log 20b b +-=令,则,即,22log t b =22t b =220t t +-=∴,即,故,A 正确; 2lo 2g a t b ==22a b =22a b +=对D :∵,则,D 正确; 22a b +=253,284a b -⎛⎫=∈ ⎪⎝⎭对C :∵,且在上单调递增, 23211224a a ab a ---=-=>->-2x y =R ∴,C 正确. 11222a b-->=故选:ACD.【点睛】方法点睛:判断函数零点个数的方法:(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b ]上是连续的曲线,且f (a )·f (b )<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.三、填空题13.已知一元二次方程的两根分别为和,则______. 22340x x +-=1x 2x 1211x x +=【答案】## 340.75【分析】利用韦达定理可直接求得结果.【详解】由韦达定理知:,,. 1232x x +=-122x x =-1212121134x x x x x x +∴+==故答案为:. 3414.已知函数(且)的图象恒过定点M ,则点M 的坐标为______.1log (2)3a y x =-+0a >1a ≠【答案】13,3⎛⎫⎪⎝⎭【分析】函数存在参数,当时所求出的横纵坐标即是定点坐标. log (2)0a x -=【详解】令,解得,此时,故定点坐标为. log (2)0a x -=3x =13y =13,3M ⎛⎫ ⎪⎝⎭故答案为:13,3⎛⎫⎪⎝⎭15.将一组正数,,,…,的平均数和方差分别记为与,若,1x 2x 3x 10x x 2s 10214500i i x ==∑250s =,则______. x =【答案】20【分析】列出方差公式,代入数据,即可求解.【详解】由题意得,()10221110i i s x x ==-∑, 102211105010i i x x =⎛⎫=-= ⎪⎝⎭∑代入数据得,, ()214500105010x -=解得.20x =故答案为:2016.已知两条直线:和:,直线,分别与函数的图象相交1l 1y m =+2l ()221y m m =+>-1l 2l 2x y =于点A ,B ,点A ,B 在x 轴上的投影分别为C ,D ,当m 变化时,的最小值为______. CD【答案】()2log 2-【分析】分别求出直线,与函数的图象交点的横坐标,再根据对数运算与基本不等式求1l 2l 2x y =最值.【详解】由与函数相交得,解得,所以,1y m =+2x y =21x m =+()2log 1x m =+()()2log 1,0C m +同理可得,()()22log 2,0D m +所以,()()222222log 2log 1log 1m CD m m m +=+-+=+令,()2231211m g m m m m +==++-++因为, 所以,当且仅当时取最小值. 1m >-()31221g m m m =++-≥-+1m =所以 ()()22min log 2log 2CD ==所以的最小值为. CD ()2log 2-故答案为:()2log 2【点睛】利用基本不等式求最值时要注意成立的条件,一正二定三相等,遇到非正可通过提取负号转化为正的;没有定值时可对式子变形得到积定或和定再用基本不等式;取不到等号时可借助于函数的单调性求最值.四、解答题17.设全集,已知集合,. U =R {}11A x a x a =-+≤≤+401x B xx -⎧⎫=>⎨⎬-⎩⎭(1)若,求;3a =A B ⋃(2)若,求实数a 的取值范围. A B ⋂=∅【答案】(1)或;{1x x <}2x ≥(2). 23a ≤≤【分析】(1)由已知解出集合A ,B ,根据并集的运算即可得出答案; (2)若,根据集合间关系列出不等式,即可求出实数a 的取值范围. A B ⋂=∅【详解】(1)当,, 3a ={}24A x x =≤≤由得,所以或, 401x x ->-(4)(1)0x x -->{1B x x =<}4x >或;{1A B x x ∴⋃=<}2x ≥(2)已知, {}11A x a x a =-+≤≤+由(1)知或, {1B x x =<}4x >因为,且, A B ⋂=∅B ≠∅∴且, 11a -+≥14a +≤解得,23a ≤≤所以实数a 的取值范围为.23a ≤≤18.已知函数.()22f x x ax a =-+(1)若的解集为,求实数的取值范围; ()0f x ≥R a (2)当时,解关于的不等式. 3a ≠-x ()()43f x a a x >-+【答案】(1) []0,1(2)答案见解析【分析】(1)由一元二次不等式在上恒成立可得,由此可解得结果;R 0∆≤(2)将所求不等式化为,分别在和的情况下解不等式即可. ()()30x x a +->3a >-3a <-【详解】(1)由题意知:在上恒成立,,解得:, 220x ax a -+≥R 2440a a ∴∆=-≤01a ≤≤即实数的取值范围为.a []0,1(2)由得:;()()43f x a a x >-+()()()23330x a x a x x a +--=+->当时,的解为或; 3a >-()()30x x a +->3x <-x a >当时,的解为或;3a <-()()30x x a +->x a <3x >-综上所述:当时,不等式的解集为;当时,不等式的解集为3a >-()(),3,a -∞-+∞ 3a <-.()(),3,a -∞-+∞ 19.受疫情影响年下半年多地又陆续开启“线上教学模式”.某机构经过调查发现学生的上课2022注意力指数与听课时间(单位:)之间满足如下关系:()f t t min ,其中,且.已知在区间上的最大()()224,016log 889,1645a mt mt n t f t t t ⎧-++≤<⎪=⎨-+≤≤⎪⎩0m >0a >1a ≠()y f t =[)0,16值为,最小值为,且的图象过点. 8870()y f t =()16,86(1)试求的函数关系式;()y f t =(2)若注意力指数大于等于时听课效果最佳,则教师在什么时间段内安排核心内容,能使学生听85课效果最佳?请说明理由.【答案】(1) ()()2121370,0168log 889,1645t t t f t t t ⎧-++≤<⎪=⎨-+≤≤⎪⎩(2)教师在内安排核心内容,能使学生听课效果最佳1224t ⎡⎤∈-⎣⎦【分析】(1)根据二次函数最值和函数所过点可构造不等式求得的值,由此可得; ,,m n a ()f x (2)分别在和的情况下,由可解不等式求得结果.016t ≤<1645t ≤≤()85f t ≥【详解】(1)当时,,[)0,16t ∈()()()222412144f t m t t n m t m n =--+=--++,解得:; ()()()()max min 1214488070f t f m n f t f n ⎧==+=⎪∴⎨===⎪⎩1870m n ⎧=⎪⎨⎪=⎩又,,解得:, ()16log 88986a f =+=log 83a ∴=-12a =.()()2121370,0168log 889,1645t t t f t t t ⎧-++≤<⎪∴=⎨-+≤≤⎪⎩(2)当时,令,解得:;16t ≤<21370858t t -++≥1216t -≤<当时,令,解得:;1645t ≤≤()12log 88985t -+≥1624t ≤≤教师在内安排核心内容,能使学生听课效果最佳.∴1224t ⎡⎤∈-⎣⎦20.已知函数,函数. ()()33log log 39x f x x =⋅()1425x x g x +=-+(1)求函数的最小值;()f x (2)若存在实数,使不等式成立,求实数x 的取值范围.[]1,2m Î-()()0f x g m -≥【答案】(1) 94-(2)或 109x <≤27x ≥【分析】(1)将化为关于的二次函数后求最小值;()f x 3log x (2)由题意知,求得后再解关于的二次不等式即可.min ()()f x g m ≥min ()g m 3log x 【详解】(1) ()()3333()log log (3)log 2log 19x f x x x x =⋅=-+ ()233log log 2x x =--, 2319log 24x ⎛⎫=-- ⎪⎝⎭∴显然当即, , 31log 2x =x =min 9()4f x =-∴的最小值为. ()f x 94-(2)因为存在实数,使不等式成立,[]1,2m Î-()()0f x g m -≥所以, 又,min ()()f x g m ≥()()21421524x x x g x +=-+-=+所以,()()2124m g m -=+又,显然当时,,[]1,2m Î-0m =()()02min 2414g m -=+=所以有,即,可得, ()4f x ≥()233log log 24x x --≥()()33log 2log 30x x +-≥所以或,解得 或. 3log 2x ≤-3log 3x ≥109x <≤27x ≥故实数x 的取值范围为或. 109x <≤27x ≥21.某中学为了解高一年级数学文化知识竞赛的得分情况,从参赛的1000名学生中随机抽取了50名学生的成绩进行分析.经统计,这50名学生的成绩全部介于55分和95分之间,将数据按照如下方式分成八组:第一组,第二组,…,第八组,下图是按上述分组方法得[)55,60[)60,65[]90,95到的频率分布直方图的一部分.已知第一组和第八组人数相同,第七组的人数为3人.(1)求第六组的频率;若比赛成绩由高到低的前15%为优秀等级,试估计该校参赛的高一年级1000名学生的成绩中优秀等级的最低分数(精确到0.1);(2)若从样本中成绩属于第六组和第八组的所有学生中随机抽取两名学生,记他们的成绩分别为x ,y ,从下面两个条件中选一个,求事件E 的概率.()P E ①事件E :;[]0,5x y -∈②事件E :.(]5,15x y -∈注:如果①②都做,只按第①个计分.【答案】(1)0.08;81.8(2)选①:;选②: 715815【分析】(1)根据频率之和为1计算第六组的频率;先判断优秀等级的最低分数所在区间,再根据不低于此分数所占的频率为0.12求得此分数.(2)分别求出第六组和第八组的人数,列举出随机抽取两名学生的所有情况,再求出事件E 所包含事件的个数的概率,根据古典概型求解.【详解】(1)第七组的频率为, 30.0650=所以第六组的频率为,()10.0650.00820.0160.0420.060.08--⨯++⨯+=第八组的频率为0.04,第七、八两组的频率之和为0.10,第六、七、八组的频率之和为0.18,设优秀等级的最低分数为,则,m 8085m <<由,解得, 850.040.060.080.155m -++⨯=81.8m ≈故估计该校参赛的高一年级1000名学生的成绩中优秀等级的最低分数.81.8(2)第六组的人数为4人,设为,,第八组的人数为2人,设为, [80,85),a b ,c d [90,95],A B 随机抽取两名学生,则有共15种情况,,,,,,,,,,,,,,,ab ac ad bc bd cd aA bA cA dA aB bB cB dB AB选①:因事件发生当且仅当随机抽取的两名学生在同一组,[]:0,5E x y -∈所以事件包含的基本事件为共7种情况,E ,,,,,,ab ac ad bc bd cd AB 故. 7()15P E =选②:因事件发生当且仅当随机抽取的两名学生不在同一组,(]:5,15E x y -∈所以事件包含的基本事件为共8种情况,E ,,,,,,,aA bA cA dA aB bB cB dB 故. 8()15P E =22.已知函数的定义域为D ,对于给定的正整数k ,若存在,使得函数满足:()f x [],a b D ⊆()f x 函数在上是单调函数且的最小值为ka ,最大值为kb ,则称函数是“倍缩函()f x [],a b ()f x ()f x 数”,区间是函数的“k 倍值区间”.[],a b ()f x (1)判断函数是否是“倍缩函数”?(只需直接写出结果)()3f x x =(2)证明:函数存在“2倍值区间”;()ln 3g x x =+(3)设函数,,若函数存在“k 倍值区间”,求k 的值. ()2841x h x x =+10,2x ⎡⎤∈⎢⎣⎦()h x 【答案】(1)是,理由见详解(2)证明见详解(3){}4,5,6,7k ∈【分析】(1)取,结合题意分析说明;1,1,1k a b ==-=(2)根据题意分析可得至少有两个不相等的实根,构建函数结合零点存在性定理分析ln 32x x +=证明;(3)先根据单调性的定义证明在上单调递增,根据题意分析可得在内()h x 10,2⎡⎤⎢⎥⎣⎦2841x kx x =+10,2⎡⎤⎢⎥⎣⎦至少有两个不相等的实根,根据函数零点分析运算即可得结果.【详解】(1)取,1,1,1k a b ==-=∵在上单调递增,()3f x x =[]1,1-∴在上的最小值为,最大值为,且, ()3f x x =[]1,1-()1f -()1f ()()()1111,1111f f -=-=⨯-==⨯故函数是“倍缩函数”.()3f x x =(2)取,2k =∵函数在上单调递增,()ln 3g x x =+[],a b 若函数存在“2倍值区间”,等价于存在,使得成立, ()ln 3g x x =+0a b <<ln 32ln 32a a b b+=⎧⎨+=⎩等价于至少有两个不相等的实根,ln 32x x +=等价于至少有两个零点,()ln 23G x x x =-+∵,且在定义内连续不断, ()()()332e 0,110,2ln 210e G G G -=-<=>=-<()G x ∴在区间内均存在零点,()G x ()()3e ,1,1,2-故函数存在“2倍值区间”.()ln 3g x x =+(3)对,且,则, 121,0,2x x ⎡⎤∀∈⎢⎥⎣⎦12x x <()()()()()()12121212222212128148841414141x x x x x x h x h x x x x x ---=-=++++∵,则, 12102x x ≤<≤221212120,140,410,410x x x x x x -<->+>+>∴,即,()()120h x h x -<()()12h x h x <故函数在上单调递增, ()h x 10,2⎡⎤⎢⎥⎣⎦若函数存在“k 倍值区间”,即存在,使得成立, ()h x *10,2a b k ≤<≤∈N 22841841a ka ab kb b ⎧=⎪⎪+⎨⎪=⎪+⎩即在内至少有两个不相等的实根, 2841x kx x =+10,2⎡⎤⎢⎥⎣⎦∵是方程的根,则在内有实根, 0x =2841x kx x =+2841k x =+10,2⎛⎤ ⎥⎝⎦若,则,即,且, 10,2x ⎛⎤∈ ⎥⎝⎦[)284,841x ∈+[)4,8k ∈*k ∈N ∴,即.4,5,6,7k ={}4,5,6,7k ∈【点睛】方法点睛:利用函数零点求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.。
人教版高一数学上册期末考试试卷及答案
人教版高一数学上册期末考试试卷及答案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!人教版高一数学上册期末考试试卷及答案人教版高一数学上册期末考试试卷及答案(含解析)这个学期马上就要结束了,我们也应该做好期末考试的准备了,那么关于高一数学期末试卷怎么做呢?以下是本店铺准备的一些人教版高一数学上册期末考试试卷及答案,仅供参考。
四川省南充市2023-2024学年高一上学期期末考试 数学(含答案)
南充市2023—2024学年度上期普通高中年级学业质量监测数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.第Ⅰ卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,{}26A x x =<<,{}04B x x =<≤,则()U B A ⋂=ð()A.{}02x x <≤ B.{}02x x << C.{}0,2 D.∅2.命题“01x ∃>,20010x ax ++≤”的否定是()A .1x ∀>,210x ax ++≤ B.1x ∀>,210x ax ++>C.1x ∀≤,210x ax ++≤ D.1x ∀≤,210x ax ++>3.函数()sin f x x x =⋅的部分图象可能是()A. B.C. D.4.函数()2log 4f x x x =+-的零点所在的一个区间为()A.()0,1 B.()1,2 C.()2,3 D.()3,45.已知()1,3P 为角α终边上一点,则()()()()2sin πcos πsin 2π2cos αααα-++=++-()A.17-B.1C.2D.36.已知33log 2a =,2log 5b =,3πcos 4c =,则()A.a b c<< B.b c a << C.c a b<< D.b a c<<7.已知()33ln43xf x ax b x+=+--,若()26f =,则()2f -=()A.14- B.14C.6- D.108.我国某科研机构新研制了一种治疗支原体肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量()c t (单位:mg /L )随着时间t (单位:h )的变化用指数模型()0ektc t c -=描述,假定该药物的消除速率常数0.1k =(单位:1h -),刚注射这种新药后的初始血药含量03000mg /L c =,且这种新药在病人体内的血药含量不低于1000mg /L 时才会对支原体肺炎起疗效,现给某支原体肺炎患者注射了这种新药,则该新药对病人有疗效的时长大约为()(参考数据:ln 20.693≈,ln 3 1.099≈)A.5.32hB.6.23hC.6.93hD.10.99h二、多选题:本题共4小题,每小题5分,共20分.在每小题给出四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.如果0a b >>,那么下列不等式正确的是()A.11a b< B.22ac bc < C.11a b b a+>+ D.22a ab b <<10.下列说法正确的有()A.21x y x+=的最小值为2;B.已知1x >,则41y x x =+-的最小值为5;C.若正数x 、y 满足213x y+=,则2x y +的最小值为3;D.设x 、y 为实数,若223x y xy ++=,则x y +的取值范围为[]22-,.11.已如定义在R 上的函数()f x 满足()()0f x f x +-=,()()40f x f x ++=且对任意的1x ,[]22,0x ∈-,当12x x ≠时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦,则以下判断正确的是()A.函数()f x 是偶函数B.函数()f x 的最小正周期是4C.函数()f x 在[]2,6上单调递增D.直线1x =是函数()1f x +图象的对称轴12.已知函数()2log ,04ππ2sin ,41666x x f x x x ⎧<<⎪=⎨⎛⎫-≤≤ ⎪⎪⎝⎭⎩,若方程()f x m =有四个不等的实根1x ,2x ,3x ,4x 且1234x x x x <<<,则下列结论正确的是()A.02m <<B.121=x x C.()[)123422,x x x x ∞+++∈+ D.31x x 取值范围为()1,7三、填空题:本题共4小题,每小题5分,共20分.13.设()20243,0log ,0x x f x x x ⎧≤=⎨>⎩,则()()1f f =______.14.如果1sin 3α=-,α为第三象限角,则3πsin 2α⎛⎫-=⎪⎝⎭______.15.若()()11121a a ---<+,则实数a 的取值范围为______.16.我们知道,函数()f x 的图象关于坐标原点成中心对称的充要条件是函数()f x 为奇函数,由此可以推广得到:函数()f x 的图象关于点(),P a b 成中心对称的充要条件是函数()y f x a b =+-为奇函数,利用题目中的推广结论,若函数()2xn f x m =+的图象关于点10,2P ⎛⎫- ⎪⎝⎭成中心对称,则m n -=______.第Ⅱ卷四、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.17.设集合{A x y ==,{}521B x m x m =-≤≤+.(1)若1m =时,求A B ⋃;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.18.(1)求值:1ln 222314lg 25lg 2e log 9log 22+++-⨯(2)已知()tan π2α+=.求222sin sin cos cos αααα-⋅+的值.19.已知函数()πsin 23f x x ⎛⎫=-⎪⎝⎭.(1)求函数()f x 的周期以及单调递增区间;(2)求()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值及相应的x 值.20.已知函数()21f x x mx =-+.(1)若关于x 的不等式()10f x n +-≤的解集为[]1,2-,求实数m ,n 的值;(2)求关于x 的不等式()()10f x x m m -+->∈R 的解集.21.已知()22xxf x a -=⋅-是定义域为R 的奇函数.(1)求实数a 的值;(2)判断函数()f x 在R 上的单调性,并利用函数单调性的定义证明;(3)若不等式()()92350xxf f t -++⋅-<在[]1,1x ∈-上恒成立,求实数t 的取值范围.22.已知函数()2log 1f x x =+,()22xg x =-.(1)求函数()()()()2123F x f x mf x m =--+∈⎡⎤⎣⎦R 在区间[]2,4上的最小值;(2)若函数()()()h x g f x =,且()()y h g x =的图象与()()243y g x n g x n =-⋅+⎡⎤⎣⎦的图象有3个不同的交点,求实数n 的取值范围.南充市2023—2024学年度上期普通高中年级学业质量监测数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.第Ⅰ卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,{}26A x x =<<,{}04B x x =<≤,则()U B A ⋂=ð()A.{}02x x <≤ B.{}02x x << C.{}0,2 D.∅【答案】A 【解析】【分析】应用集合的交补运算求集合.【详解】由题设{|2U A x x =≤ð或6}x ≥,故(){|02}U A B x x ⋂=<≤ð.故选:A2.命题“01x ∃>,20010x ax ++≤”的否定是()A.1x ∀>,210x ax ++≤B.1x ∀>,210x ax ++>C.1x ∀≤,210x ax ++≤D.1x ∀≤,210x ax ++>【答案】B 【解析】【分析】由特称命题的否定是将存在改为任意并否定原结论,即可得答案.【详解】由特称命题的否定为全称命题知:原命题的否定为1x ∀>,210x ax ++>.故选:B3.函数()sin f x x x =⋅的部分图象可能是()A. B.C. D.【答案】D 【解析】【分析】定义判断函数的奇偶性并结合π4f ⎛⎫⎪⎝⎭的符号,应用排除法即可得答案.【详解】由()sin()sin ()f x x x x x f x -=-⋅-==且定义域为R ,即函数为偶函数,排除A 、C ;由πππsin 0444f ⎛⎫=⋅>⎪⎝⎭,排除B.故选:D4.函数()2log 4f x x x =+-的零点所在的一个区间为()A.()0,1 B.()1,2 C.()2,3 D.()3,4【答案】C 【解析】【分析】根据解析式判断单调性,结合零点存在定理确定区间.【详解】由解析式知()2log 4f x x x =+-在(0,)+∞上单调递增,又()130f =-<,()210f =-<,()23log 310f =->,所以零点所在的一个区间为()2,3.故选:C5.已知()1,3P 为角α终边上一点,则()()()()2sin πcos πsin 2π2cos αααα-++=++-()A.17-B.1C.2D.3【答案】B 【解析】【分析】应用诱导公式及由弦化切化简目标式为2tan 1tan 2αα-+,结合三角函数的定义求得tan 3α=,即可求值.【详解】由()()()()2sin πcos π2sin cos 2tan 1sin 2π2cos sin 2cos tan 2αααααααααα-++--==++-++,又tan 3α=,所以2tan 12311tan 232αα-⨯-==++.故选:B6.已知33log 2a =,2log 5b =,3πcos 4c =,则()A.a b c <<B.b c a <<C.c a b<< D.b a c<<【答案】C 【解析】【分析】利用对数函数的单调性及中间量0和2即可求解.【详解】因为333log 2log 8a ==,函数3log y x =在()0,∞+上单调递增,所以330log 8log 92<<=,即02a <<.又因为函数2log y x =在()0,∞+上单调递增,所以22log 5log 42>=,即2b >.又因为3πcos 042c ==-<,所以c a b <<.故选:C.7.已知()33ln43xf x ax b x+=+--,若()26f =,则()2f -=()A.14- B.14C.6- D.10【答案】A 【解析】【分析】构造(x)(x)4g f =+并判断其奇偶性,利用奇偶性求()2f -即可.【详解】令33()()4ln3xg x f x ax b x+=+=+-,且定义域为()3,3-,3333()ln ln ()33x xg x ax b ax b g x x x-+-=-+=--=-+-,即()g x 为奇函数,所以()()()()80g x g x f x f x -+=-++=,即()(2)28(2)14f f f -+=-⇒-=-.故选:A8.我国某科研机构新研制了一种治疗支原体肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量()c t (单位:mg /L )随着时间t (单位:h )的变化用指数模型()0ektc t c -=描述,假定该药物的消除速率常数0.1k =(单位:1h -),刚注射这种新药后的初始血药含量03000mg /L c =,且这种新药在病人体内的血药含量不低于1000mg /L 时才会对支原体肺炎起疗效,现给某支原体肺炎患者注射了这种新药,则该新药对病人有疗效的时长大约为()(参考数据:ln 20.693≈,ln 3 1.099≈)A.5.32hB.6.23hC.6.93hD.10.99h【答案】D 【解析】【分析】由题设有103000e1000t-≥,利用指数函数单调性及指对数关系求解,即可得答案.【详解】由题意()103000e 1000t c t -=≥,则1ln 10ln 310.99103t t -≥⇒≤≈小时.故选:D二、多选题:本题共4小题,每小题5分,共20分.在每小题给出四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.如果0a b >>,那么下列不等式正确的是()A.11a b< B.22ac bc < C.11a b b a+>+ D.22a ab b <<【答案】AC 【解析】【分析】根据不等式性质判断A 、C 、D ;特殊值0c =判断B.【详解】由0a b >>,则22a ab b >>,110b a >>,故11a b b a+>+,A 、C 对,D 错;当0c =时22ac bc =,故B 错.故选:AC10.下列说法正确的有()A.21x y x+=的最小值为2;B.已知1x >,则41y x x =+-的最小值为5;C.若正数x 、y 满足213x y+=,则2x y +的最小值为3;D.设x 、y 为实数,若223x y xy ++=,则x y +的取值范围为[]22-,.【答案】BCD 【解析】【分析】由0x <对应函数符号即可判断A ;应用基本不等式及其“1”的代换、一元二次不等式解法判断B 、C 、D ,注意取最值条件.【详解】A :当0x <时,210x y x+=<,若存在最小值,不可能为2,错;B :由10x ->,411151y x x =-++≥=-,当且仅当3x =时取等号,所以41y x x =+-的最小值为5,对;C :由题设12112212(2)((5)(53333y x x y x y x y x y +=++=++≥+=,当且仅当1x y ==时取等号,所以2x y +的最小值为3,对;D :22222()()3()4x y x y xy x y xy x y +=+-=++-+≥,可得2()4x y +≤,当且仅当1x y ==±时取等号,则22x y -≤+≤,故x y +的取值范围为[]22-,,对.故选:BCD11.已如定义在R 上的函数()f x 满足()()0f x f x +-=,()()40f x f x ++=且对任意的1x ,[]22,0x ∈-,当12x x ≠时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦,则以下判断正确的是()A.函数()f x 是偶函数B.函数()f x 的最小正周期是4C.函数()f x 在[]2,6上单调递增D.直线1x =是函数()1f x +图象的对称轴【答案】CD 【解析】【分析】由题设()()f x f x -=-且()(4)f x f x =-+、()f x 在[]2,0-上递减,再进一步判断函数的奇偶性、周期性、区间单调性和对称性.【详解】由()()0()()f x f x f x f x +-=⇒-=-,函数为奇函数,A 错;由()()40()(4)(8)f x f x f x f x f x ++=⇒=-+=+,函数的周期为8,B 错;对任意的1x ,[]22,0x ∈-,当12x x ≠时,都有()()()12120x x f x f x ⎡⎤-⋅-<⎣⎦,所以()f x 在[]2,0-上递减,结合奇函数知:函数在[0,2]上递减,即函数[2,2]-上函数递减,由上可知()()(4)f x f x f x =--=-+,即()(4)f x f x -=+,故()f x 关于2x =对称,所以()f x 在[]26,上单调递增,且直线1x =是函数()1f x +图象的对称轴,C 、D 对.故选:CD12.已知函数()2log ,04ππ2sin ,41666x x f x x x ⎧<<⎪=⎨⎛⎫-≤≤ ⎪⎪⎝⎭⎩,若方程()f x m =有四个不等的实根1x ,2x ,3x ,4x 且1234x x x x <<<,则下列结论正确的是()A.02m <<B.121=x x C.()[)123422,x x x x ∞+++∈+ D.31x x 取值范围为()1,7【答案】ABD 【解析】【分析】根据解析式画出函数大致图象,数形结合可得02m <<,且1234114713164x x x x <<<<<<<<<,结合对数函数、正弦型函数性质可得121=x x 、3420x x +=,综合运用基本不等式、区间单调性判断各项正误.【详解】由函数解析式可得函数大致图象如下,由上图,要使方程()f x m =有四个不等的实根1x ,2x ,3x ,4x 且1234x x x x <<<,则02m <<,且1234114713164x x x x <<<<<<<<<,3421020x x +=⨯=,由2122|log ||log |x x =,则212221212log log log ()01x x x x x x -=⇒=⇒=,A 、B 对;所以1234111202022x x x x x x +++=++≥+,又1114x <<,即等号取不到,所以()1234(22,)x x x x ∞+++∈+,C 错;由图知:()f x 在区间(1,14)、(4,7)上单调性相同,且1311,474x x <<<<,所以13,x x 随m 变化同增减,故31x x 取值范围为()1,7,D 对.故选:ABD【点睛】关键点点睛:根据解析式得到图象并确定02m <<,且1234114713164x x x x <<<<<<<<<为关键.三、填空题:本题共4小题,每小题5分,共20分.13.设()20243,0log ,0x x f x x x ⎧≤=⎨>⎩,则()()1f f =______.【答案】1【解析】【分析】根据分段函数的解析式,从内到外运算求解即可.【详解】由题意,()20241log 10f ==,则()()1f f =0(0)31f ==.故答案为:1.14.如果1sin 3α=-,α为第三象限角,则3πsin 2α⎛⎫-= ⎪⎝⎭______.【答案】3【解析】【分析】由平方关系及角所在象限得cos 3α=-,应用诱导公式即可求函数值.【详解】由1sin 3α=-,α为第三象限角,则cos 3α=-,33πsin cos 2αα⎛⎫-=-= ⎪⎝⎭.故答案为:315.若()()11121a a ---<+,则实数a 的取值范围为______.【答案】()1,2,12⎛⎫-∞-⋃-⎪⎝⎭【解析】【分析】利用函数1y x -=的单调性,分三类讨论即可求解.【详解】考虑函数1y x -=.因为函数1y x -=的单调递减区间为()0,∞+和(),0∞-.所以不等式()()11121a a ---<+等价于10210121a a a a -<⎧⎪+<⎨⎪->+⎩或者10210a a -<⎧⎨+>⎩或者10210121a a a a ->⎧⎪+>⎨⎪->+⎩,解得:2a <-或112a -<<.所以实数a 的取值范围为:()1,2,12∞⎛⎫--⋃-⎪⎝⎭.故答案为:()1,2,12∞⎛⎫--⋃- ⎪⎝⎭16.我们知道,函数()f x 的图象关于坐标原点成中心对称的充要条件是函数()f x 为奇函数,由此可以推广得到:函数()f x 的图象关于点(),P a b 成中心对称的充要条件是函数()y f x a b =+-为奇函数,利用题目中的推广结论,若函数()2x n f x m =+的图象关于点10,2P ⎛⎫- ⎪⎝⎭成中心对称,则m n -=______.【答案】2±【解析】【分析】由题设定义有()11[()]22f x f x -+=-+,进而得到22()2(21)20x x n m m mn n m ++++⋅++=恒成立,求参数值,即可得答案.【详解】由题意()12y f x =+为奇函数,所以()11[()]22f x f x -+=-+,则112222x x n n m m -=+++--,所以202(2221)(12)(2)122(12)(2)10x x x x x x x x x n n n m m m m m m m ⋅+⋅+++=⋅+++⋅++++⇒=⋅,所以22()2(21)20x x n m m mn n m ++++⋅++=恒成立,故2012101m n m m mn n +==-⎧⎧⇒⎨⎨++==⎩⎩或11m n =⎧⎨=-⎩,所以2m n -=±.故答案为:2±【点睛】关键点点睛:根据定义得到22()2(21)20x x n m m mn n m ++++⋅++=恒成立为关键.第Ⅱ卷四、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.17.设集合{A x y ==,{}521B x m x m =-≤≤+.(1)若1m =时,求A B ⋃;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.【答案】(1){}45A B x x ⋃=-≤≤(2)[]2,3【解析】【分析】(1)先将集合A 化简,利用并集运算得解;(2)根据题意可得AB ,列式运算可求解.【小问1详解】由y =+,所以2050x x +≥⎧⎨-≥⎩,解得25x ≤≤,{}25A x x ∴=-≤≤,当1m =时,{}43B x x =-≤≤,{}45A B x x ∴⋃=-≤≤.【小问2详解】由题x A ∈是x B ∈的充分不必要条件,即A B ,则25521521m m m m -≥-⎧⎪≤+⎨⎪-≤+⎩(等号不同时取),解得23m ≤≤,所以实数m 的取值范围为[]2,3.18.(1)求值:1ln 222314lg 25lg 2e log 9log 22+++-⨯(2)已知()tan π2α+=.求222sin sin cos cos αααα-⋅+的值.【答案】(1)3;(2)75.【解析】【分析】(1)应用指对数运算性质及指对数关系化简求值;(2)由题设tan 2α=,再应用“1”的代换及齐次运算求值即可.【详解】(1)原式232lg 5lg 222log 3log 2523=+++-⨯=-=;(2)由()tan πtan 2αα+==,22222222222sin sin cos cos 2tan tan 1222172sin sin cos cos sin cos tan 1215ααααααααααααα-⋅+-+⨯-+-⋅+====+++.19.已知函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭.(1)求函数()f x 的周期以及单调递增区间;(2)求()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值及相应的x 值.【答案】19.π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈20.最大值为1,相应的5π12x =;最小值为2-,相应的0x =.【解析】【分析】(1)利用正弦型函数的周期公式即可求解函数的周期;利用整体代入法和正弦函数的性质即可求出函数的单调增区间.(2)利用整体代入法和正弦函数的性质即可求解.【小问1详解】由()πsin 23f x x ⎛⎫=-⎪⎝⎭可得:函数()f x 的周期为2ππ2T ==.令πππ2π22π,Z 232k x k k -+≤-≤+∈,解得:π5πππ,Z 1212k x k k -+≤≤+∈,∴()f x 的单调递增区间为π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈.【小问2详解】令π23t x =-,因为π0,2⎡⎤∈⎢⎣⎦x ,所以π2π,33t ⎡⎤∈-⎢⎥⎣⎦.所以当ππ232x -=,即5π12x =时,()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上可取得最大值,最大值为1;当233x -=-ππ,即0x =时,()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上可取得最小值,最小值为.故()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上最大值为1,相应的5π12x =;最小值为2,相应的0x =.20.已知函数()21f x x mx =-+.(1)若关于x 的不等式()10f x n +-≤的解集为[]1,2-,求实数m ,n 的值;(2)求关于x 的不等式()()10f x x m m -+->∈R 的解集.【答案】(1)1,2m n ==-;(2)答案见解析.【解析】【分析】(1)由不等式解集可得1,2-是20x mx n -+=的两个根,利用根与系数关系求参数值;(2)由题意有()(1)0x m x -->,讨论1m <、1m =、1m >求不等式解集.【小问1详解】由题设20x mx n -+≤的解集为[]1,2-,即1,2-是20x mx n -+=的两个根,所以121,122m n =-+==-⨯=-.【小问2详解】由题意()21(1)()(1)0f x x m x m x m x m x -+-=-++=-->,当1m <时,解得x m <或1x >,故解集为(,)(1,)m -∞+∞ ;当1m =时,解得1x ≠,故解集为{|1}x x ∈≠R ;当1m >时,解得1x <或x >m ,故解集为(,1)(,)-∞+∞ m ;21.已知()22x xf x a -=⋅-是定义域为R 的奇函数.(1)求实数a 的值;(2)判断函数()f x 在R 上的单调性,并利用函数单调性的定义证明;(3)若不等式()()92350x x f f t -++⋅-<在[]1,1x ∈-上恒成立,求实数t 的取值范围.【答案】21.1a =22.单调递增,答案见解析23.(,∞-【解析】【分析】(1)利用奇函数的性质即可得出a 的值;(2)先判断单调性,再根据函数单调性的定义判断即可;(3)结合(2)的结论和奇函数的性质,不等式可转化为3t m m<+,利用基本不等式求出最值即可.【小问1详解】()f x 是R 上的奇函数,()()f x f x ∴-=-,对任意x ∈R ,即()2222x x x x a a --⋅-=-⋅-,即()()1220x x a --+=,对任意x ∈R 恒成立,10a ∴-=,即1a =.【小问2详解】()f x 为R 上的增函数,证明如下:任取1x ,2R x ∈,且12x x <,()()()1122122222x x x x f x f x ---=---()121212222222x x x x x x -=-+⋅()1212122122x x x x ⎛⎫=-+ ⎪⋅⎝⎭,12x x < ,1212122,1022x x x x ∴<+>⋅,()()120f x f x ∴-<,即()()12f x f x <,所以函数()f x 为R 上的增函数.【小问3详解】不等式()()92350x x f f t -++⋅-<在R 上恒成立,()()()929235x x x f f f t ∴--+=->⋅-,又()f x 为R 上的增函数,9235x x t ∴->⋅-在R 上恒成立,即()23330x x t -⨯+>,令3x m =,0m >,上式等价于230m tm -+>对0m >恒成立,即3t m m <+,令()3g m m m =+,只需()min t g m <即可,又()3g m m m =+≥()min g m ∴=,t ∴<.所以实数t的取值范围为(,∞-.22.已知函数()2log 1f x x =+,()22x g x =-.(1)求函数()()()()2123F x f x mf x m =--+∈⎡⎤⎣⎦R 在区间[]2,4上的最小值;(2)若函数()()()h x g f x =,且()()y h g x =的图象与()()243y g x n g x n =-⋅+⎡⎤⎣⎦的图象有3个不同的交点,求实数n 的取值范围.【答案】(1)答案见解析(2)25n ³【解析】【分析】(1)根据已知条件求出()[]()()222log 2log 13F x x m x m =-++∈R ,令2log x t =换元后()F x 变为2223y t mt m =--+,利用二次函数的性质确定最小值;(2)求出()2log 12222x h x x +=-=-,进而确定()()()22h g x g x =-,令()g x a =换元后有()()y h g x =化为22y a =-,()()243y g x n g x n ⎡⎤=-⋅+⎣⎦化为243y a na n =-+,问题转化为()242320a n a n -+++=有两个根,且一个根在()0,2内,一个根在[)2,+∞内,设()()24232a a n a n ϕ=-+++,通过限制二次函数根所在区间得出不等式,求解不等式即可解出实数n 的取值范围.【小问1详解】()()()()2123F x f x mf x m ⎡⎤=--+∈⎣⎦R ,所以()()()()222log 2log 13F x x m x m =-++∈R ,令2log x t =,因为[]2,4x ∈,则[]1,2t ∈,所以()F x 变为2223y t mt m =--+,函数的对称轴为t m =,当1m £时,函数在[]1,2上单调递增,1t =时,函数有最小值44m -;当12m <<时,函数在[]1,m 上单调递增减,函数在(],2m 上单调递增,t m =时,函数有最小值223m m --+;当2m ≥时,函数在[]1,2上单调递减,2t =时,函数有最小值67m -+.【小问2详解】()()()h x g f x =即()()2log 122220x h x x x +=-=->,所以()22y g x =-,令()g x a =,所以()()y h g x =化为:()220y a a =->,()()243y g x n g x n ⎡⎤=-⋅+⎣⎦化为243y a na n =-+;令22243a a na n -=-+,整理有:()242320a n a n -+++=;因为()22xa g x ==-,作出简图如下注意到0a >,可得:当02a <<时,22x a =-有两个根;当2a ≥时,22x a =-有一个根;因为()()y h g x =的图象与()()243y g x n g x n ⎡⎤=-⋅+⎣⎦的图象有3个不同的交点,所以()242320a n a n -+++=有两个根,且一个根在()0,2内,一个根在[)2,+∞内,设()()24232a a n a n ϕ=-+++,则有:()x ϕ为关于a 的二次函数,图象开口向上,对称轴为21a n =+,根据题意有:()()0020ϕϕ⎧>⎪⎨<⎪⎩,即320520n n +>⎧⎨-+<⎩解得25n >,或()()00200212n ϕϕ⎧>⎪=⎨⎪<+<⎩,即3205201122n n n ⎧⎪+>⎪-+=⎨⎪⎪-<<⎩解得25n =综上所述:25n ³.【点睛】方法点睛:①换元法的应用,注意取值范围;②数形结合的应用.。
2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】
数学模拟试卷03第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河北高二学业考试)已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ).A .{}1,2B .{}0C .{}0,1,2D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.(2019·浙江高二学业考试)已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.4.(2020·黑龙江哈尔滨市第六中学校高三开学考试(理))设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】C 【解析】23110133⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,503221>=,221log log 103<=, ∴c a b <<. 故选:C5.(2020·江苏南通市·高三期中)已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A .50-B .50C .50-D .50【答案】A 【解析】角α的终边经过点()3,4P ,5OP ∴==,由三角函数的定义知:3cos 5α=,4sin 5α, 2237cos 22cos 121525αα⎛⎫∴=-=⨯-=- ⎪⎝⎭,4324sin 22sin cos 25525ααα==⨯⨯=,()()π724cos 2cos2cos sin 2sin 4442525ππααα∴+=-=-=.故选:A.6.(2020·甘肃兰州市·西北师大附中高三期中)函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,4【答案】D 【解析】因为()3f x +关于3x =-对称,所以()f x 关于y 轴对称,所以()()221f f -==, 又()f x 在[)0,+∞单调递增,由()21f x -≤可得222x -≤-≤,解得:04x ≤≤, 故选:D7.(2020·浙江高一期末)对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .4【答案】A 【解析】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确;当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即2523,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④错误. 故选:A8.(2020·山西吕梁市·高三期中(文))函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6C .4D .2【答案】A 【解析】由函数图象的平移可知, 函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=.故选:A9.(2020·山西吕梁市·高三期中(文))已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)-C .(1,0)-D .[1,0)-【答案】B 【解析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可.解:因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B.10.(2020·河北高二学业考试)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ). A .[]3,3- B .[]4,4-C .(][),33,-∞-+∞D .(][),44,-∞-⋃+∞【答案】A 【解析】0x ≥时,()()2log 1f x x =+,()f x ∴在[)0,+∞上单调递增,又()f x 是定义在R 上的奇函数,()f x ∴在R 上单调递增,易知()()223log 31log 42f =+==,()()332f f -=-=-, 由()2f x ≤, 解得:()22f x -≤≤, 由()f x 在R 上单调递增, 解得:33x -≤≤,()2f x ∴≤的解集是[]3,3-.故选:A.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π; 【解析】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.12.(2020·浙江宁波市·高三期中)设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示)【答案】9 1a + 【解析】2log 3a =,22394429log log a ∴===,4222236log 36log 6log (23)log 2log 314lg a lg ===⨯=+=+, 故答案为:9,1a +.13.(2020·深圳科学高中高一期中)某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________. 【答案】乙 (60,)+∞ 【解析】由题意,设月通话时间为t 分钟,有甲费用为300.1t +,乙费用为0.2t , ∴每月手机费预算为50元,则:由300.150t +=知,甲的通话时间为200分钟, 由0.250t =知,乙的通话时间为250分钟, ∴用户每月手机费预算为50元,用乙种卡合算;要使用甲种卡合算,即月通话时间相同的情况下甲费用更低,即300.10.2t t +<, 解得300t >时,费用在(60,)+∞. 故答案为:乙,(60,)+∞14.(2020·商丘市第一高级中学高一期中)设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______. 【答案】(],9-∞ 【解析】当1x <时,由13x e -≤得1ln3x ≤+,所以1x <; 当1≥x 时,由213x ≤得9x ≤,所以19x ≤≤. 综上,符合题意的x 的取值范围是(,9]-∞. 故答案为:(,9]-∞.15.(2020·辽宁本溪市·高二月考)摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.【答案】1852 π55cos 6515H t =-+,030t ≤≤. 【解析】如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,游客甲位于点()0,55P -,以OP 为终边的角为π2-; 根据摩天轮转一周大约需要30min , 可知座舱转动的角速度约为πmin 15rad , 由题意可得πππ55sin 6555cos 6515215H t t ⎛⎫=-+=-+⎪⎝⎭,030t ≤≤.当10t =时,π18555cos 1065152H ⎛⎫=-⨯+= ⎪⎝⎭. 故答案为:1852;π55cos 6515H t =-+,030t ≤≤ 16.(2020·浙江建人专修学院高三三模)已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.3 233-因为4log 3a =,所以43a =,即2a =01a <<,所以()2a f a ==1(1)(1)2a f a f a --=--=-==3-17.(2020·上海虹口区·高三一模)已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________.【解析】2212sin 2cos214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,)απ∈,所以sin 0α≠,因此由2sin 2sin cos sin 2cos tan 2(0,)2πααααααα=⇒=⇒=⇒∈,而22sin cos 1(1)αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=(0,)2πα∈,因此cos α=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·黑龙江工农�鹤岗一中高二期末(文))函数()22xxaf x =-是奇函数. ()1求()f x 的解析式;()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,求m 的取值范围.【答案】(1)()122xxf x =-;(2)5m <-.() 1函数()22x x af x =-是奇函数, ()()1222222x x x x x x a af x a f x --∴-=-=-+=-+=-,故1a =, 故()122xx f x =-; ()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,即21(2)42x xm +<-⋅在()0,x ∈+∞恒成立,令()2(2)42x xh x =-⋅,(0)x >,显然()h x 在()0,+∞的最小值是()24h =-, 故14m +<-,解得:5m <-.19.(2020·宁夏长庆高级中学高三月考(理))已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.【答案】(1)最小正周期为2π;(2)()min f x =()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)1cos ()2sin cos 222x x xf x +=+sin x x =+12sin cos 2sin 223x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为2π. (2)因为[]0,x π∈,所以4,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以当433x ππ+=,即x π=时,函数()f x 取得最小值由4233x πππ≤+≤,得6x ππ≤≤,所以函数()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 20.(2019·河北师范大学附属中学高一期中)已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.【答案】(1)21()2f x x x =-+;(2)存在;2m =-,0n =. 【解析】(1)由已知,设()()2f x ax x =-.因为()f x 的图象经过点()4,4-,所以()4442a -=-,解得12a =-, 即()f x 的解析式为21()2f x x x =-+; (2)假设满足条件实数m ,n 的存在, 由于221111()(1)2222f x x x x =-+=--+≤,因此122n ≤,即14n ≤. 又()f x 的图象是开口向下的抛物线,且对称轴方程1x =,可知()f x 在区间[],m n 上递增,故有()2()2f m m f n n=⎧⎨=⎩,并注意到14m n <≤,解得2m =-,0n =. 综上可知,假设成立,即当2m =-,0n =时,()f x 的定义域和值域分别为[],m n 和[]2,2m n .21.(2020·山西吕梁市·高三期中(文))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值. 【答案】(1)37π;(2)14π. 【解析】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤. 又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min 314x x πϕ-+=. 即314714πππϕ=-=.22.(2020·安徽省蚌埠第三中学高一月考)设函数()()21x x a t f x a--=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x x m g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)2t =;(2)不存在,理由见解析.【解析】(1)∵()f x 是定义域为R 的奇函数,∴()00f =,∴2t =;经检验知符合题意.(2)函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以2132a a -=, ∴2a =(12a =-舍去), 假设存在正数m ,且1m ≠符合题意,由2a =得()()22log 2222x x x x m g x m --⎡⎤=+--⎣⎦, 设22x x t -=-,则()()22222222x x x x m t mt -----+=-+,∵[]21,log 3x ∈,2[2,3]x ∈,∴38,23t ⎡⎤∈⎢⎥⎣⎦,记()22h t t mt =-+, ∵函数()g x 在[]21,log 3上的最大值为0,∴(i )若01m <<时,则函数()22h t t mt =-+在38,23⎡⎤⎢⎥⎣⎦有最小值为1, 由于对称轴122m t =<,∴()min 31731312426h t h m m ⎛⎫==-=⇒= ⎪⎝⎭,不合题意. (ii )若1m 时,则函数()220h t t mt =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大值为1,最小值大于0, ①()max 1252512212736873241324m m m h t h m ⎧⎧<≤<≤⎪⎪⎪⎪⇒⇒=⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩, 而此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,又()min 73048h t h ⎛⎫=< ⎪⎝⎭, 故()g x 在[]21,log 3无意义, 所以7324m =应舍去; ②()max 25252126313126m m h t h m ⎧⎧>>⎪⎪⎪⎪⇒⇒⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩m 无解, 综上所述:故不存在正数m ,使函数()g x 在[]21,log 3上的最大值为0.。
高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
高一上学期期末考试数学试题(原卷版)
A. 的最小正周期为
B. 图象的一个对称中心为
C. 的值域为
D. 图象的一条对称轴方程为
12.定义:实数 满足 则称 比 远离 .已知函数 的定义域为 任取 等于 和 中远离0的那个值则()
高一数学试卷
试卷120分钟满分:150分
一选择题:本题共8小题每小题5分共40分.在每小题给出的四个选项中只有一项是符合题目要求的.
1.下列函数中周期为 的是()
A. B.
C. D.
2.函数 的单调递增区间为()
A. B.
C. D.
3.函数 的部分图象如图所示则 可能是()
A B.
C. D.
4.已知角 的终边在射线 上则 的值为()
17.已知复数 .
(1)若 是实数求 的值;
(2)若复数 在复平面内对应的点在第三象限且 求实数 的取值范围.
18 已知 .
(1)若 三点共线求 满足的等量关系;
(2)在(1)条件下求 的最小值.
19.问题:在 中内角A 所对的边分别为a .
(1)求A;
(2)若 的面积为 ________求 .
请在① ;② ;③ 这三个条件中选择一个补充在上面的横线上并完成解答.
20.某网红景区拟开辟一个平面示意图如图 五边形 观光步行道 为景点电瓶车专用道 .
(1)求 的长;
(2)请设计一个方案使得折线步行道 最长(即 最大).
21.如图所示在 中 与 相交于点 . 的延长线与边 交于点 .
(1)试用 表示 ;
(2)设 求 的值.
22.已知 的内角 所对的边分别为 向量 .
高一数学上册期末考试试卷及答案解析(经典,通用)
高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。
2022-2023学年吉林省高一上学期期末考试数学试题(解析版)
A.735°与15°是终边相同的角
B.若一扇形的圆心角为 ,半径为3cm,则该扇形面积为
C.设 是锐角,则角 为第一或第二象限角
D.函数 的图象可由函数 的图象向右平移 之后得到
【答案】BC
【解析】
【分析】A选项,利用角的定义得到 与 终边相同;B选项,将角度化为弧度,利用扇形面积公式求出答案;C选项,举出反例即可;D选项,利用左加右减求出函数的平移过程.
【详解】集合 , ,
则 .
故选:D.
2.若函数 的定义域为 ,则函数 的定义域为()
A. B. C. D.
【答案】A
【解析】
【分析】由函数 的定义域,可得 ,求出 的范围,即可得到函数 的定义域.
【详解】因为函数 的定义域为 ,
所以 ,解得 ,
所以函数 的定义域为 .
故选:A.
3.在同一坐标系中,函数 与函数 的图象可能为()
(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.
(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图像与性质(如单调性、奇偶性)才能确定函数有多少个零点.
(3)利用图像交点的个数:将函数变形为两个函数的差,画两个函数的图像,看其交点的横坐标有几个不同的零点,则 的可能值为()
A.0B.1C. D.2
【答案】AD
【解析】
【分析】由 得 ,利用数形结合即可得到结论.
【详解】由 得 ,作出函数 , |的图像,如图所示.
当 ,满足条件,
当 时,此时 与 有三个交点,
故符合条件的 满足 或 .
故选:AD
【点睛】方法点睛:函数零点 求解与判断方法:
2024届山东省青岛市高一上数学期末综合测试试题含解析
注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
BD1 3 3 【点睛】考查了异面直线所成角的计算方法,关键得出直线 AD1 与 EF 所成角即为∠AD1B ,难度中等 12、 2 【解析】根据直线一般式,两直线平行则有 A1B2 A2B1 0 ,代入即可求解. 【详解】由题意,直线 x y 2 0 与直线 ax 2y 0 平行,
则有1 (2) 1 a 0 a 2 故答案为: 2
3
,
则反射光线所在直线方程 y 3 3 1 x 4 4 1
即: 4x 5y 1 0
故选 A 10、D 【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于(0,1),分为三种情况,即可得解.
【详解】方程 x2 (m 2)x 2m 1 0 对应的二次函数设为: f x x2 (m 2)x 2m 1
(m 2)2 42m 1 0 ,解得 m 6 2 7 ,
当 m 6 2 7 时,方程 x2 (m 2)x 2m 1 0 的根为 2 7 ,不合题意;
若 m 6 2 7 ,方程 x2 (m 2)x 2m 1 0 的根为 7 2 ,符合题意
综上:实数
m
的取值范围为
不一定有对任意 x R , f x 0 ,所以 A 错误,
对于 B,当函数 y f x 的图像关于原点成中心对称,可知 f (x) f (x) ,函数 f (x) 为奇函数,所以 B 错误,
高一数学期末复习题三(试题和答案)
高一数学期末复习题(三)一、选择题(本大题共12小题,每小题4分,共48分)1.设集合M={x|-1≤x<2},N={x|x-k ≤0},若M ∩N ≠∅,则k 的取值范围是( ) A.k ≤2 B.k ≥-1 C.k>-1 D.-1≤k ≤2 解析:由图形可知k ≥-1.答案:B2.设f 是从集合A 到集合B 的映射,下列四个说法,其中正确的是( )①集合A 中的每一个元素在集合B 中都有元素与之对应 ②集合B 中的每一个元素在集合A 中也都有元素与之对应 ③集合A 中不同的元素在集合B 中的对应元素也不同 ④集合B 中不同的元素在集合A 中的对应元素也不同A.①和②B.②和③C.③和④D.①和④思路解析:根据映射的定义,从集合A 到集合B 的映射f ,只要求集合A 的每一个元素在集合B 中都有“唯一”“确定”的元素与之对应即可.即集合A 中不同的元素在集合B 中的对应元素可以相同,也没有要求集合B 中的元素在集合A 中都要有对应元素.解:①符合映射的定义,∴正确;映射的定义不要求集合B 中的元素在集合A 中都要有对应元素,∴②不正确;集合A 中不同的元素在集合B 中的对应元素可以相同,∴③不正确;④正确.∵如果集合B 中不同的元素在集合A 中的对应元素相同,那么就违背了映射定义的“唯一”性原则.综上,①和④正确,因此,选D. 答案:D3.函数y=(21)x -(21)-x是( ) A.奇函数,在(0,+∞)上是减函数 B.偶函数,在(0,+∞)上是减函数C.奇函数,在(0,+∞)上是增函数D.偶函数,在(0,+∞)上是增函数解析:利用奇偶性定义可知为奇函数,再取特殊点验证知在(0,+∞)上单调递减. 答案:A4.若函数f(x)=3sin(2x+5θ)的图象关于y 轴对称,则( )A.1052πθθ+=k ,k ∈Z B.552ππθ+=k ,k ∈Z C.552πθθ+=k ,k ∈Z D.55ππθ+=k ,k ∈Z 思路分析:∵函数f(x)=3sin(2x+5θ)的图象关于y 轴对称,∴当x=0时,有5θ=kπ+2π,k ∈Z ,∴θ=105ππ+k ,k ∈Z .故B 正确. 答案:B5.下列各等式中,正确的是( )A.44a =|a|B.3622)2(-=-C.a 0=1 D.21105)12()12(-=-思路解析:要想判断等式是否正确,首先要使等式两边都有意义,然后计算两边的值,如果相等则正确,如果不相等,则不正确,在计算时要充分应用幂的运算法则.解:44a =|a|,由于不知道a 的符号,因此A 不正确;∵62)2(->0,32-<0,∴62)2(-≠32-.因此B 不正确;如果 a=0,则a 0没有意义,因此C 也不正确;∵2>1,∴105)12(-=21105)12()12(-=-.∴D 正确.因此,选D. 答案:D6.已知0<α<2π<β<π,又sinα=53,cos(α+β)=54-,则sinβ等于( )A.0B.0或2524C.2524D.±2524思路分析:∵0<α<2π<β<π,∴2π<α+β<23π.∵sinα=53.∴cosα=54.由cos(α+β)=-54<0,得sin(α+β)=±53.∴sinβ=sin [(α+β)-α]=sin(α+β)·cosα-cos(α+β)·sinα053)54(5453=∙--∙±=或2524. 又∵2π<β<π,∴sinβ=2524.答案:C7.函数y=122+x x的值域是( )A.{x|0<x<1}B.{x|0<x ≤1}C.{x|x>0}D.{x|x ≥0} 思路解析:求值域要在定义域中求,本题中函数的定义域为R ,∴要求值域就要对函数解析式进行变形,由于分子和分母的“次数”相同,因此想到部分分式法.或者根据指数函数y= 2x 的值域为正,即2x >0来求解. 解法一:因此y=122+x x=1-121+x. 又∵2x +1>1,∴0<121+x <1,∴0<y <1. 因此,选A. 解法二:由2x =yy-1>0, 得0<y <1.因此,选A. 答案:A8.对于函数f(x)=2sin(2x+3π),给出下列结论: ①图象关于原点成中心对称;②图象关于直线x=12π成轴对称;③图象可由函数y=2sin2x 的图象向左平移3π个单位得到;④图象向左平移12π个单位,即得到函数y=2cos2x 的图象.其中正确结论的个数为( )A.0B.1C.2D.3解析:∵f(x)是非奇非偶函数,∴①错误. ∵f(x)是由y=2sin2x 向左平移6π得到的, ∴③错误. 把x=12π代入f(x)中使函数取到最值, ∴②正确.f(x)=2sin(2x+3π)−−−−→−个单位左移12πf(x)=2sin [2(x+12π)+3π]=2cos2x, ∴④正确.答案:C9.偶函数y=f(x)(x ∈R)在x<0时是增函数,若x 1<0,x 2>0且|x 1|<|x 2|,下列结论中正确的是( ) A.f(-x 1)<f(-x 2) B.f(-x 1)>f(-x 2)C.f(-x 1)=f(-x 2)D.f(-x 1)和f(-x 2)的大小关系不能确定 解析:由条件知-x 2<x 1,∴f(-x 2)<f(x 1),又f(x)是偶函数, ∴f(-x 1)=f(x 1),∴f(-x 2)<f(-x 1). 答案:B10.设函数f(x)=sin3x+|sin3x|,则f(x)为( )A.周期函数,最小正周期为3πB.周期函数,最小正周期为32πC.周期函数,最小正周期为2πD.非周期函数 解析:f(x)=sin3x+|sin3x|=⎪⎪⎩⎪⎪⎨⎧+<<++≤≤.3232332,0,33232,3sin 2πππππππk x k k x k x∴B 正确. 答案:B11.某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴.洗浴时,已知每分钟放水34升,在放水的同时按4升/分钟2的匀加速度自动注水.当水箱内的水量达到最小值时,放水程序自动停止,现假定每人洗浴用水量为65升,则该热水器一次至多可供( ) A. 3人洗浴 B. 4人洗浴 C. 5人洗浴 D. 6人洗浴思路解析:设经过时间t 时水箱中的水量为y,可知y=2t 2-34t+200,当t=434=217时,y 取得最小值,此时放水为172,易求出至多可供四人洗浴.12.已知函数f(x)=asin(x-φ)(a≠0,x ∈R )在x=4π处取得最小值,则函数y=f(43π-x)是( )A.偶函数且它的图象关于点(π,0)对称B.偶函数且它的图象关于点(23π,0)对称C.奇函数且它的图象关于点(23π,0)对称 D.奇函数且它的图象关于点(π,0)对称思路解析:f(x)=asin(x-φ)的周期为2π,函数在x=4π处取得最小值,不妨设f(x)=sin(x-43π),则函数y=f(43π-x)=sin(43π-x-43π)=sinx , 所以y=f(43π-x)是奇函数且它的图象关于点(π,0)对称.答案:D二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上)13.如果函数y=x 2+2x+m+3至多有一个零点,则m 的取值范围是_________________. 解析:Δ=4-4(m+3)≤0,解得m ≥-2. 答案:[-2,+∞) .14.在△ABC 中,若sinB·sinC=2cos 2A,则此三角形为_______.思路分析:∵A+B+C=π,∴A=π-(B+C).又∵sinB·sinC=cos 22A ,∴21[cos(B-C)-cos(B+C)]=21 (1+cosA),即cos(B-C)-cos(B+C)=1+cosA.又∵cos(B+C)=-cosA ,∴cos(B-C)=1. 又∵-π<B-C <π,∴B-C=0,即B=C. ∴△ABC 是等腰三角形. 答案:等腰三角形 .15.①已知函数y=21log (x 2-2x+a)定义域为R ,则a 的取值范围是_____________,②已知函数y=21log (x 2-2x+a)值域为R ,则a 的取值范围是________________.思路解析:两题乍一看似乎一样,但若仔细分析,其设问角度不同,解题方法也有区别.①对x ∈R ,x 2-2x+a >0恒成立,②由于当t ∈(0,+∞)时,21log t ∈R 故要求x 2-2x+a 取遍每一个正实数,换言之,若x 2-2x+a 的取值范围为D,则(0,+∞)∈D.①x 2-2x+a=(x-1)2+a-1≥a-1,故只要a-1>0则x ∈R 时,x 2-2x+a >0恒成立.因此,填a >1;②x 2-2x+a=(x-1)2+a-1≥a-1,故x 2-2x+a 的取值范围为[a-1, +∞],要求(0,+∞) ⊆[a-1, +∞)只要a-1≤0.因此,填a ≤1.答案:a >1 a ≤116.函数y=1gsinx+216x -的定义域是________________.思路解析:要使函数有意义,x 应满足下列不等式组⎩⎨⎧≥->.016.0sin 2x x 解得⎩⎨⎧≤≤-∈+<<.44),(22x Z k k x k πππ当k=0时,不等式组的解为0<x <π; 当k=-1时,不等式组的解为-4≤x <-π; 当k 取其他整数时,无解.所以定义域为{x|-4≤x <-π或0<x <π}. 答案:{x|-4≤x <-π或0<x <π}三、解答题(本大题共5小题,共56分.解答应写出必要的文字说明、解题步骤或证明过程)17.已知集合A={x|(x-2)[x-(3a+1)]<0},B={x|)1(22+--a x ax <0}. (1)当a=2时,求A ∩B;(2)求使B ⊆A 的实数a 的取值范围.解:(1)当a=2时,A=(2,7),B=(4,5),∴A ∩B=(4,5).(2)∵B=(2a,a 2+1) 当a<13时,A=(3a+1,2) , 要使B ⊆A ,必须⎩⎨⎧≤++≥212132a a a ,此时a=-1;当a=31时,A =∅,使B ⊆A 的a 不存在; 当a>31时,A =(2,3a +1),要使B ⊆A ,必须⎩⎨⎧+≤+≥131222a a a ,此时1≤a ≤3.综上,可知使B ⊆A 的实数a 的取值范围为[1,3]∪{-1}.18.(1).求函数y=sinx·cosx+sinx+cosx 的最大值.思路分析:sinx+cosx 与sinxcosx 有相互转化的关系,若将sinx+cosx 看成整体,设为新的元,函数式可转化为新元的函数式,注意新元的取值范围.解:设sinx+cosx=t ,t ∈[2,2-],则(sinx+cosx)2=t 2,即1+2sinxcosx=t 2,sinxcosx=212-t .1)1(2121)2(2121222-+=-+=-+=t t t t t y ,当t=2时,y max =212+(2).已知tanα-4sinβ=3,3tanα+4sinβ=1,且α是第三象限角,β是第四象限角,求α、β.思路分析:由已知利用方程组求出tanα和sinβ,再依据α和β所在的象限,确定其具体值,注意要写出所有的角.解:由⎩⎨⎧=+=-,1sin 4tan 3,3sin 4tan βαβα得⎪⎩⎪⎨⎧-==.21sin ,1tan βα由tanα=1,α是第三象限角,∴α=2kπ+45π,k ∈Z . 由sinβ=21-且β是第四象限角,∴β=2kπ-6π,k ∈Z .19.已知函数2221()(xx a f x a+=-为常数). (1)证明:函数f(x)在()-∞,+∞上是减函数; (2)若f(x)为奇函数,求a 的值.解:(1)在()-∞,+∞上任取两个值12x x ,且12x x <,12122212222121()()()()xxx x a a f x f x ++-=--- 2121211222222121(21)(21)x x x xx x x x -++++=-=, ∵2>1且12x x <,∴21220x x->.又12(21)(21)0x x++>,∴12()()0f x f x ->,即12()()f x f x >. ∴函数f(x)在()-∞,+∞上是减函数. (2)∵f(x)为奇函数且在x=0处有意义,∴f(0)=0,即0022210a +-=.∴a=1.20.已知某海滨浴场的海浪高度y(m)是时间t(0≤t≤24,单位:h)的函数,记作y=f(t).下表是某日各时的浪高数据: t(h) 0 3 6 9 12 15 18 21 24 y(m) 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5 经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b 的图象.(1)根据以上数据,求出函数y=Aco sωt+b 的最小正周期T 、振幅A 及函数表达式;(2)依据规定,当海浪高度高于1 m 时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供冲浪爱好者进行运动? 解析:由表中数据,知周期T=12.∴ω=1222ππ=T =6π.① 由t=0,y=1.5,得A+b=1.5.② 由t=3,y=1.0,得b=1.0.由①②得A=0.5,b=1.0,∴振幅为21. ∴y=21cos 6πt+1. (2)由题知,当y >1时才可对冲浪者开放.∴21cos 6πt+1>1,∴cos 6πt >0. ∴2kπ-2π<6πt <2kπ+2π,即12k-3<t <12k+3.③故可令③中k 分别为0,1,2,得0≤t <3或9<t <15或21<t≤24.∴在规定的时间上午8:00至晚上20:00之间,有6个小时时间可供冲浪者运动,即上午9:00至下午15:00. 21.已知函数f(x)=log 11(xa x +-其中a>0且1)a ≠.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性并给出证明;(3)若12[0]x ∈,时,函数f(x)的值域是[0,1],求实数a 的值.解:(1)由条件知110x x +->,解得-1<x<1.∴函数f(x)的定义域为(-1,1). (2)函数f(x)为奇函数.证明:由(1)知函数f(x)的定义域关于原点对称.f(-x)=log 11x a x -+=-log 11()xa x f x +-=-.因此f(x)是奇函数.(3)f(x)=log 11x a x +-=log 121x a x -+- =log 1211()x a x x ---+=log 21(1)a x ---,记21()1x g x -=--,则21()1x g x -=--在12[0],上单调递增,因此当a>1时,f(x)在12[0],上单调递增, 由12()1f =,得a=3;当0<a<1时,f(x)在12[0],上单调递减, 由f(0)=1得出矛盾a ,∈;综上可知a=3。
2022-2023学年河南省郑州一中高一(上)期末数学试卷(含答案解析)
2022-2023学年河南省郑州一中高一(上)期末数学试卷1. 若集合A={x|x>1},B={x|x2−2x−3≤0},则A∩B=( )A. (1,3]B. [1,3]C. [−1,1)D. [−1,+∞)2. sin20∘cos40∘+sin70∘sin40∘=( )A. 14B. √34C. 12D. √323. 设函数f(x)={g(x)+2,x>0log2(1−x),x≤0,若f(x)是奇函数,则g(3)的值是( )A. 2B. −2C. 4D. −44. 函数f(x)=(4−x2)ln|−x|的图象是( )A. B.C. D.5. 已知a=log23,b=2−0.4,c=0.52.1,则a,b,c的大小关系为( )A. a<b<cB. a<c<bC. c<b<aD. c<a<b6. 下列命题中正确的个数是( )①命题“∃x∈R,x2+1<0”的否定是“∀x∈R,x2+1≥0”;②函数f(x)=9x−lgx的零点所在区间是(9,10);③若α+β=3π4,则tanα+tanβ−tanαtanβ=1;④命题p:x≥3,命题q:2x−1≤1,命题p是命题q的充要条件.A. 1个B. 2个C. 3个D. 4个7. “不积跬步,无以至千里:不积小流,无以成江海.”,每天进步一点点,前进不止一小点.今日距离高考还有936天,我们可以把(1+1%)936看作是每天的“进步”率都是1%,高考时是1.01936≈11086.79;而把(1−1%)936看作是每天“退步”率都是1%.高考时是0.99936≈0.000082.若“进步”的值是“退步”的值的100倍,大约经过天(参考数据:lg101≈2.0043,lg99≈1.9956)( )A. 200天B. 210天C. 220天D. 230天8. 已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)的最小正周期为2,且函数图像过点(13,1),若f(x)在区间[−2,a]内有4个零点,则a的取值范围为( )A. [116,176) B. (116,176] C. [176,236) D. (176,236]9. 下列命题中正确的是( )A. 存在实数α,使sinα⋅cosα=1B. 函数y=sin(3π2+x)是偶函数C. 若α是第一象限角,则α2是第一象限或第三象限角D. 若α,β是第一象限角,且α>β,则sinα>sinβ10. 二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是( )A. 2a+b=0B. 4a+2b+c<0C. 9a+3b+c<0D. abc<011. 已知a,b为正数,a+b+ab=8,则下列说法正确的是( )A. log ab(a+b)>1B. 1a +1b的最小值为1C. 2a+2b的最小值为8D. a+2b的最小值为6√2−312. 设函数y=f(x)的定义域为R,且满足f(x)=f(2−x),f(−x)=−f(x−2),当x∈(−1,1]时,f(x)=−x2+1.则下列说法正确的是( )A. f(2022)=1B. 当x∈[4,6]时,f(x)的取值范围为[−1,0]C. y=f(x−1)为奇函数D. 方程f(x)=log9(x+1)仅有3个不同实数解13. 点A(sin1919∘,cos1919∘)是第______象限角终边上的点.14. 函数y =a x−2+7的图象恒过定点A ,且点A 在幂函数f(x)的图象上,则f(x)=______.15. 将函数y =3sin(x +π12)的图象上每个点的横坐标变为原来的2倍(纵坐标不变),再向左平移π6个单位长度,得到函数y =f(x)的图象,若方程f(x)=k 在x ∈[0,11π3]上有且仅有两个实数根,则k 的取值范围为______.16. 已知a ∈R ,b >0,若存在实数x ∈[0,1),使得|ax −2b|≤a −2bx 2成立,则ab 的取值范围为______.17. 设全集U =R ,集合A ={x|4−xx+1>0},集合B ={x|x 2−2ax +a 2−1<0},其中a ∈R.(1)当a =4时,求∁U A ∩B ;(2)若x ∈∁U A 是x ∈∁U B 的充分不必要条件,求实数a 的取值范围.18. 在平面直角坐标系xOy 中,角α的顶点与原点O 重合,始边与x 轴的正半轴重合,它的终边过点P(−35,45),角α的终边逆时针旋转π4得到角β的终边. (1)求tanβ的值; (2)求cos(α+β)的值.19. 已知函数f(x)=log 3x.(1)设函数g(x)是定义在R 上的奇函数,当x >0时,g(x)=f(x),求函数g(x)的解析式; (2)已知集合A ={x|3log 32x −20log 9x +3≤0}.①求集合A;②当x∈A时,函数ℎ(x)=f(x3a )⋅f(x9)的最小值为−2,求实数a的值.20. 已知f(x)=4cosωx⋅sin(ωx−π6)+1(ω>0),且f(x)的最小正周期为π.(1)求关于x的不等式f(x)>1的解集;(2)求f(x)在[0,π]上的单调区间.21. 某城市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格P(x)(单位:元)与时间x(单位:天)的函数关系近似满足P(x)=10+kx(k为常数,且k>0),日销售量Q(x)(单位:件)与时间x(单位:天)的部分数据如表所示:(1)给出以下四个函数模型:①Q(x)=ax+b;②Q(x)=a|x−m|+b;③Q(x)=a⋅b x;④Q(x)=a⋅log b x.请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量Q(x)与时间x的变化关系,并求出该函数的解析式;(2)设该工艺品的日销售收入为f(x)(单位:元),求f(x)的最小值.22. 已知函数f(x)=x2−2x−a2+2a,(a∈R),集合A={x|f(x)≤0}.(1)若集合A中有且仅有3个整数,求实数a的取值范围;(2)集合B={x|f(f(x)+b)≤0},若存在实数a≤1,使得A⊆B,求实数b的取值范围.答案和解析1.【答案】A【解析】解:∵A ={x|x >1},B ={x|−1≤x ≤3},∴A ∩B =(1,3].故选:A.可以求出集合B ,然后进行交集的运算即可.本题考查了描述法、区间的定义,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.2.【答案】D【解析】解:sin20∘cos40∘+sin70∘sin40∘=sin20∘cos40∘+cos20∘sin40∘=sin(20∘+40∘)=sin60∘=√32,故选:D.由两角和的正弦公式,结合诱导公式求解即可.本题考查了两角和的正弦公式,重点考查了诱导公式,属基础题.3.【答案】D【解析】解:函数f(x)={g(x)+2,x >0log 2(1−x),x ≤0,若f(x)是奇函数,则f(3)=g(3)+2=−f(−3)=−log 2(1+3)=−2, 可得g(3)=−4, 故选:D.由奇函数的定义和对数的运算性质可得所求值.本题考查函数的奇偶性的定义和运用,考查运算能力,属于基础题.4.【答案】B【解析】解:根据题意,函数f(x)=(4−x 2)ln|−x|,其定义域为{x|x ≠0}, 有f(−x)=(4−x 2)ln|−x|=f(x),则函数f(x)为偶函数,排除AD , 在区间(0,1)上,4−x 2>0,ln|−x|=lnx <0,则f(x)<0,排除C , 故选:B.根据题意,先分析函数的奇偶性,排除AD ,再分析区间(0,1)上,函数的符号,排除C ,即可得答案.本题考查函数的图象分析,涉及函数的奇偶性,属于基础题.5.【答案】C【解析】解:a =log 23>log 22=1,∵b =2−0.4=0.50.4,y =0.5x 在R 上单调递减, ∴b =0.50.4>0.52.1=c , ∵0<b <1,0<c <1,∴a >b >c.故选:C.根据已知条件,结合对数函数的公式,以及指数函数的单调性,即可求解. 本题主要考查对数函数的公式,以及指数函数的单调性,属于基础题.6.【答案】B【解析】解:①,特称命题的否定为全称命题,命题“∃x ∈R ,x 2+1<0”的否定是“∀x ∈R ,x 2+1≥0”正确;②,函数f(x)=9x−lgx 在(0,+∞)上单调递减,又f(9)=1−lg9>0,f(10)=910−1=−110<0,则f(9)f(10)<0,由函数零点存在性定理可知,函数f(x)在(9,10)上存在零点,正确; ③,tan(α+β)=tanα+tanβ1−tanαtanβ=−1,则tanα+tanβ−tanαtanβ=−1,错误; ④,由2x−1≤1,可得2−(x−1)x−1≤0,即x−3x−1≥0,解得x <1或x ≥3,所以命题p 是命题q 的充分不必要条件,错误. 故选:B.根据特称命题的否定为全称命题可判断选项A ;根据函数零点存在性定理可判断选项B ;由正切的和角公式可判断选项C ;由充要条件的定义可判断选项D.本题主要考查命题的真假判断,考查逻辑推理能力和运算求解能力,属于基础题.7.【答案】D【解析】解:设经过x 天后,“进步”的值是“退步”的值的100倍,则1.01x 0.99x=100,即x =log 1.010.99100=2lg1.01−lg0.99=2lg101−lg99≈230天.故选:D.由题设有1.01x0.99x=100,应用指对数互化及对数的运算性质求x 值即可.本题考查指对数的运算,考查分析问题解决问题以及运算求解能力,属于基础题.8.【答案】A【解析】解:由最小正周期T=2=2πω,可得ω=π.因为函数f(x)图象过点(13,1),所以sin(π3+φ)=1,所以π3+φ=π2+2kπ,k∈Z,因为|φ|<π,所以k=0时,φ=π6,所以f(x)=sin(πx+π6).当x∈[−2,a]时,πx+π6∈[−2π+π6,πa+π6],因为f(x)在[−2,a]内有4个零点,所以2π≤πa+π6<3π,所以116≤a<176,所以a的取值范围为[116,17 6).故选:A.由三角函数的周期公式和f(13)=1,可得ω,φ的值,进而得到f(x)的解析式,再结合f(x)在区间[−2,a]内有4个零点,得到关于a的不等式,解不等式求出a的取值范围即可.本题考查正弦函数的图象和性质的应用,考查转化思想和方程思想,属于中档题.9.【答案】BC【解析】解:对于A,由sinα⋅cosα=1,得12sin2α=1,即sin2α=2>1,故错误;对于B,函数y=sin(3π2+x)=−cosx是偶函数,故正确;对于C,若α是第一象限的角,则2kπ<α<2kπ+π2,k∈Z,则kπ<a2<kπ+π4,可得α2是第一象限或第三象限角,故正确;对于D,若α=390∘,β=30∘,满足条件α,β是第一象限角,且α>β,但sinα=sinβ,故错误.故选:BC.对于A,利用二倍角的正弦公式及正弦函数的性质即可求解;对于B,利用诱导公式,余弦函数的性质即可求解;对于C,根据象限角的概念即可求解;对于D,取特例,若α=390∘,β=30∘,满足条件,但sinα=sinβ,即可判断得解.本题主要考查了二倍角的正弦公式,正弦函数的性质,诱导公式,余弦函数的性质,象限角的概念,属于中档题.10.【答案】ACD【解析】解:由图象知,抛物线开口向下,所以a <0,令x =0,则y =c >0, 二次函数的对称轴为x =−b 2a=1,所以2a +b =0,故A 正确;因为对称轴为x =1,所以x =2与x =0对应的函数值相等,由图可得x =0时,y >0,则x =2时,则y =4a +2b +c >0,故B 错误; 因为对称轴为x =1,所以x =−1与x =3对应的函数值相等,由图可得x =−1时,y <0,则x =3时,y =9a +3b +c <0,故C 正确; 因为x =−b2a =1,a <0,所以b >0,则abc <0,故D 正确; 故选:ACD.通过图象开口向下可得a <0,可判断抛物线与y 轴的交点纵坐标为c >0,抛物线对称轴为x =−b 2a=1,进而得到b >0以及ab 的关系式,即可判断A ;根据对称轴以及二次函数对称性可判断B ,C ,本题考查了抛物线与轴的交点,关键是对二次函数性质和特殊值法的应用,属于中档题.11.【答案】BCD【解析】解:因为a +b =8−ab ≥2√ab ,解得0<ab ≤4, 且ab =8−(a +b)≤(a+b 2)2,解得a +b ≥4,当且仅当a =b 时取等号,A :log ab (a +b)−1=log ab a+b ab=log ab (8ab−1)≥log ab 1=0,当且仅当a =b =2时取等号,所以log ab (a +b)≥1,故A 错误, B :1a+1b=a+b ab=8ab−1≥1,当且仅当a =b =2时取等号,故B 正确,C :2a +2b ≥2√2a ⋅2b =2√2a+b ≥2√24=8,当且仅当a =b =2时取等号,故C 正确,D :由已知可得a =8−b1+b,则a +2b =8−b1+b+2b =2b 2+b+81+b=2(1+b)2−3(1+b)+91+b=2(1+b)+91+b−3≥2√2(1+b)⋅91+b −3=6√2−3, 当且仅当b =3√22−1,a =3√2−1时取等号,故D 正确,故选:BCD.利用基本不等式求出0<ab ≤4,a +b ≥4,然后根据基本不等式以及统一变量思想对各个选项逐个化简即可判断求解.本题考查了基本不等式的应用,考查了学生的运算能力,属于中档题.12.【答案】BC【解析】解:因为f(−x)=−f(x −2),所以f(x)=−f(−x −2),因为f(x)=f(2−x),故f(2−x)=−f(−x −2),所以f[2−(2−x)]=−f[−(2−x)−2],即f(x)=−f(x−4),所以f(x−4)=−f(x−8),所以f(x)=f(x−8),所以y=f(x)的周期为8,因为2022=8×252+6,所以f(2022)=f(6),因为f(x)=f(2−x),f(−x)=−f(x−2),所以f(6)=f(2−6)=f(−4)=−f(4−2)=−f(2)=−f(2−2)=−f(0),因为x∈(−1,1]时,f(x)=−x2+1,所以f(0)=−02+1=1,故f(6)=−f(0)=−1,A错误;当x∈[4,5],x−4∈[0,1],所以f(x)=−f(x−4)=−[−(x−4)2+1]=(x−4)2−1∈[−1,0],当x∈(5,6],2−x∈[−4,−3),2−x+4=6−x∈[0,1),所以f(x)=f(2−x)=−f(2−x+4)=−f(6−x)=−[−(6−x)2+1]=(x−6)2−1∈[−1,0),综上:当x∈[4,6]时,f(x)的取值范围为[−1,0],B正确;因为f(−x)=−f(x−2),所以f(x)关于(−1,0)对称,故y=f(x−1)关于原点中心对称,所以y=f(x−1)为奇函数,C正确;画出y=f(x)与g(x)=log9(x+1)的图象,如下:显然两函数图象共有4个交点,其中x4=8,所以方程f(x)=log9(x+1)仅有4个不同实数解,D错误.故选:BC.根据f(x)=f(2−x),f(−x)=−f(x−2),推导出f(x)=f(x−8),所以y=f(x)的周期为8,可判断A;根据函数性质求出x∈[4,5],f(x)=(x−4)2−1∈[−1,0],当x∈(5,6]时,f(x)=(x−6)2−1∈[−1,0),从而确定f(x)的取值范围,可判断B;根据f(−x)=−f(x−2)得到f(x)关于(−1,0)中心对称,从而y=f(x−1)关于原点中心对称,即y=f(x−1)为奇函数,可判断C;画出y=f(x)与g(x)=log9(x+1)的图象,数形结合求出交点个数,即可求出方程f(x)=log9(x+ 1)的根的个数,可判断D.本题主要考查抽象函数及其应用,考查函数奇偶性的判断,方程根的个数问题,考查数形结合思想与运算求解能力,属于中档题.13.【答案】四【解析】解:∵1919∘=3×360∘+119∘为第二象限的角,∴sin1919∘>0,cos1919∘<0,A(sin1919∘,cos1919∘)是第四象限角终边上的点,故答案为:四.利用诱导公式可得1919∘为第二象限的角,从而可得点A 的坐标的符号,进而可得答案. 本题考查诱导公式、象限角及三角函数符号的确定,属于基础题.14.【答案】x 3【解析】解:对于函数函数y =a x−2+7,当x =2时,y =8, 所以A(2,8),设f(x)=x α,把点A 的坐标代入该幂函数的解析式中,8=2α⇒α=3⇒f(x)=x 3, 故答案为:x 3.根据指数幂的运算性质,结合待定系数法进行求解即可. 本题主要考查了幂函数解析式的求解,属于基础题.15.【答案】[−3,0]∪[32,3]【解析】解:根据题意可得f(x)=3sin[12(x +π6)+π12]=3sin(12x +π6),作出函数f(x)在[0,11π3]上的图象,如下:f(0)=32,f(11π3)=0,f(x)max =3,f(x)min =−3,因为方程f(x)=k 在x ∈[0,11π3]上有且仅有两个实数根,所以32≤k ≤3或−3≤k ≤0, 所以k 的取值范围为[−3,0]∪[32,3].根据题意可得f(x)=3sin(12x +π6),作出函数f(x)在[0,11π3]上的图象,若方程f(x)=k 在x ∈[0,11π3]上有且仅有两个实数根,则函数y =f(x)与y =k 有且只有两个交点,即可得出答案.本题考查函数与方程的关系,解题中注意转化思想的应用,属于中档题.16.【答案】[4√2−4,+∞)【解析】解:由于b >0,故不等式两边同时除以b ,得|ab x −2|≤ab −2x 2,令ab =t,(t ∈R), 即不等式|tx −2|≤t −2x 2在x ∈[0,1)上有解,去掉绝对值即得2x 2−t ≤tx −2≤t −2x 2,即{2x 2−t ≤tx −2tx −2≤t −2x 2,即{t ≥2x 2+2x+1t ≥2x 2−21−x=−2x −2在x ∈[0,1)上有解, 设f(x)=2x 2+2x+1,g(x)=−2x −2,x ∈[0,1),即t ≥f(x)min ,且t ≥g(x)min 即可.因为x ∈[0,1),所以x +1∈[1,2),2x+2∈(1,2],由f(x)=2x 2+2x+1=2[(x+1)2+2−2(x+1)]x+1=2[(x +1)+2(x+1)−2]≥2[2⋅√(x +1)⋅2(x+1)−2]=4√2−4, 当且仅当x +1=2x+1,即x =√2−1∈[0,1)时,等号成立,故f(x)≥4√2−4,即f(x)min =4√2−4,故t ≥4√2−4,由g(x)=−2x −2在x ∈[0,1)上,−4<−2x −2≤−2,即g(x)∈(−4,−2],故t ≥−2, 综上,t 的取值范围为[4√2−4,+∞),即ab 的取值范围为[4√2−4,+∞). 故答案为:[4√2−4,+∞).根据已知条件及不等式的性质,利用绝对值不等式的等价条件,再将不等式成立问题转化为函数的最值问题,结合基本不等式及一次函数的性质即可求解.本题主要考查函数恒成立问题,考查绝对值不等式的解法,基本不等式的应用,考查运算求解能力,属于中档题.17.【答案】解:(1)由题可得A =(−1,4),∴∁U A =(−∞,−1]∪[4,+∞),又当a =4时,B ={x|x 2−8x +15<0}=(3,5), ∴∁U A ∩B =[4,5);(2)∵x ∈∁U A 是x ∈∁U B 的充分不必要条件, ∴∁U A ⫋∁U B ,∵B ={x|x 2−2ax +a 2−1<0}={x|a −1<x <a +1}, ∴∁U B =(−∞,a −1]∪[a +1,+∞), ∴{−1≤a −14≥a +1,解得0≤a ≤3,∴a 的取值范围为[0,3].【解析】(1)先化简,再运算即可得解;(2)由题意可得∁U A ⫋∁U B ,从而建立a 的不等式组,解不等式组即可得解. 本题考查集合的基本运算,充分与必要条件的概念,属基础题.18.【答案】解:(1)由α的终边过点P(−35,45),可得sinα=45,cosα=−35,tanα=−43,将角α的终边逆时针旋转π4得到角β的终边, 则tanβ=tan(α+π4)=1+tanα1−tanα=1−431+43=−17;(2)因为sinβ=sin(α+π4)=√22(sinα+cosα)=√210,cosβ=cos(α+π4)=√22(cosα−sinα)=−7√210,所以cos(α+β)=cosαcosβ−sinαsinβ=(−35)×(−7√210)−45×√210=17√250. 【解析】(1)由任意角三角函数的定义和两角和的正切公式,求解即可;(2)由两角和的正弦公式、余弦公式,结合cos(α+β)=cosαcosβ−sinαsinβ求解即可. 本题考查任意角三角函数的定义和两角和的正弦公式、余弦公式和正切公式的运用,考查转化思想和运算能力,属于基础题.19.【答案】解:(1)因为函数f(x)=log 3x ,当x >0时,g(x)=f(x)=log 3x ,x <0时,−x >0,g(−x)=log 3(−x);又因为g(x)为R 上的奇函数,所以g(−x)=−g(x),g(x)=−g(−x)=−log 3(−x), 综上,函数g(x)的解析式为g(x)={log 3x,x >00,x =0−log 3(−x),x <0;(2)①不等式3log 32x −20log 9x +3≤0可化为3log 32x −10log 3x +3≤0,即(3log 3x −1)(log 3x −3)≤0, 解得13≤log 3x ≤3, 即√33≤x ≤27, 所以集合A =[√33,27];②因为函数ℎ(x)=f(x 3a )⋅f(x 9)=log 3(x 3a )⋅log 3(x 9)=(log 3x −a)(log 3x −2)=log 32x −(a +2)log 3x +2a ,设t =log 3x ,则t ∈[13,3],所以函数ℎ(x)化为s(t)=t 2−(a +2)t +2a =[t −a+22]2−(a−2)24,当a+22≤13,即a ≤−43时,函数s(t)在[13,3]上是增函数,所以ℎ(x)的最小值为s(t)min =s(13)=53a −59=−2,解得a =−1315(不合题意,舍去); 当a+22≥3,即a ≥4时,函数s(t)在[13,3]上是减函数,所以ℎ(x)的最小值为s(t)min =s(3)=3−a =−2,解得a =5;当13<a+22<3,即−43<a <3时,函数s(t)在[13,3]上有最小值s(a+22), 所以ℎ(x)的最小值为s(t)min =s(a+22)=−(a+2)24=−2,解得a =2−2√2或a =2+2√2(不合题意,舍去); 综上,实数a 的值为2−2√2或5.【解析】(1)根据当x >0时g(x)=f(x),求出x <0时g(x)的解析式,再根据奇函数的定义写出函数g(x)的解析式;(2)①不等式化为3log 32x −10log 3x +3≤0,求不等式的解集即可得出集合A ;②化函数ℎ(x)=log 32x −(a +2)log 3x +2a ,利用换元法设t =log 3x ,根据二次函数的图象与性质求出ℎ(x)的最小值,即可求得实数a 的值.本题考查了函数的性质与应用问题,也考查了分类讨论思想与运算求解能力,是难题.20.【答案】解:(1)f(x)=4cosωx ⋅sin(ωx −π6)+1=4cosωx(√32sinωx −12cosωx)+1=√3sin2ωx −cos2ωx =2sin(2ωx −π6),由f(x)的最小正周期为π,可得2π2ω=π,解得ω=1,因为f(x)>1,所以sin(2x −π6)>12,所以π6+2kπ<2x −π6<5π6+2kπ,k ∈Z ,解得kπ+π6<x <kπ+π2,k ∈Z , 所以不等式的解集为(kπ+π6,kπ+π2),k ∈Z ;(2)由2kπ−π2≤2x −π6≤2kπ+π2,k ∈Z ,解得kπ−π6≤x ≤kπ+π3,k ∈Z , 由k =0,1,可得f(x)在[0,π]的增区间为[0,π3],[5π6,π]; 由2kπ+π2≤2x −π6≤2kπ+3π2,k ∈Z ,解得kπ+π3≤x ≤kπ+5π6,k ∈Z ,由k =0,可得f(x)在[0,π]的减区间为[π3,5π6]. 【解析】(1)根据f(x)的最小正周期为π,求出ω,得到f(x)的解析式,再解不等式f(x)>1即可; (2)由正弦函数的单调区间,求出f(x)在[0,π]上的单调区间即可.本题考查了三角恒等变换,以及正弦函数的性质,考查转化思想和运算能力,属于中档题.21.【答案】解:(1)由表中数据可知,当时间变化时,日销售量有增有减,函数不单调,而①③④均为单调函数,故选②Q(x)=a|x −m|+b , 则{a|10−m|+b =50a|15−m|+b =55a|20−m|+b =60a|25−m|+b =55a|30−m|+b =50,解得a =−1,m =20,b =60,故函数解析式为Q(x)=−|x −20|+60;(2)由题意,Q(x)=−|x −20|+60={x +40,1≤x ≤2080−x,20<x ≤30,Q(10)⋅P(10)=50(10+k 10)=505,即k =1,则f(x)=P(x)⋅Q(x)={(10+1x)(x +40),1≤x ≤20(10+1x)(80−x),20<x ≤30, 当1≤x ≤20时,f(x)=401+10x +40x≥401+2√10x ⋅40x=441元;当20<x ≤30时,f(x)=799−10x +80x,在(20,30]上为减函数, 则f(x)≥49983元.综上所述,该工艺品的日销售收入f(x)的最小值为441元.【解析】(1)由表中的数据判断日销售量有增有减,函数不单调,结合四个函数的单调性和待定系数法,可得所求函数的解析式;(2)由Q(10)⋅P(10)=505,解得k ,求得f(x)的分段函数的解析式,再由基本不等式和函数的单调性可得所求最小值.本题考查函数模型的选择及应用,以及函数的单调性求最值,考查运算能力和推理能力,属于中档题.22.【答案】解:(1)由f(x)=x 2−2x −a 2+2a =(x −a)(x +a −2),由于f(x)对称轴为x =1,所以1∈A ,集合A 中有且仅有3个整数,所以集合A 的3个整数只可能是0,1,2,若a =2−a 即a =1时,集合A ={x|f(x)≤0}={1}与题意矛盾,所以a ≠1; 若a <2−a 即a <1时,集合A ={x|f(x)≤0}=[a,2−a], 则{−1<a ≤02≤2−a <3,解得−1<a ≤0, 若a >2−a 即a >1时,集合A ={x|f(x)≤0}=[2−a,a], 则{−1<2−a ≤02≤a <3,解得2≤a <3, 综上所述实数a 的取值范围是(−1,0]∪[2,3);(2)若a =2−a 即a =1时,集合A ={x|f(x)≤0}={x|(x −a)(x +a −2)≤0}={1},B ={x|f(f(x)+b)≤0}={x|f(x)+b =1}, 因为A ⊆B ,所以1∈B 即f(1)+b =1解得b =1,若a <2−a 即a <1时,集合A ={x|f(x)≤0}=[a,2−a],则B ={x|f(f(x)+b)≤0}={x|a ≤f(x)+b ≤2−a}={x|a −b ≤f(x)≤2−a −b} 设集合B =[x 1,x 2],因为A ⊆B ,即[a,2−a]⊆[x 1,x 2],如图所示,则{a −b ≤f(1)2−a −b ≥0,即{a −b ≤−a 2+2a −12−a −b ≥0,得a 2−a +1≤b ≤2−a , 所以a 2−a +1≤2−a 可得−1≤a ≤1,所以−1≤a <1,所以2−a ≤2−(−1)=3, 又因为a 2−a +1=(a −12)2+34≥34,所以34≤a 2−a +1≤b ≤2−a ≤3即34≤b ≤3. 综上所述b 的取值范围是[34,3].【解析】(1)根据条件解不等式f(x)≤0,即(x −a)(x +a −2)≤0,分a =1、a <1、a >1得到集合A ,通过二次函数的对称轴分析1∈A ,又集合A 中有且仅有3个整数,故3个整数只可能是0,1,2,然后由集合A 列出不等式组,解不等式组即可得a 的取值范围;(2)分a =1和a <1两种情况分别写出集合A ,B 对应的解集,根据A ⊆B 列出不等式组,综合利用不等式的性质,求出b 的取值范围即可.本题考查利用不等式的整数解求参数,由于二次函数的零点之间的大小不确定,需对参数a 进行讨论,考查了分类讨论思想的应用,同时也考查了利用集合的包含关系求参数,正确理解并表达集合B 是解题的关键,属于难题.。
2022-2023学年河北省张家口市高一(上)期末数学试卷(含答案解析)
2022-2023学年河北省张家口市高一(上)期末数学试卷1. 已知集合A={x|x2<4},B={−1,0,2},则A∩B=( )A. {−1,0}B. {−1}C. {0,2}D. {2}2. “πa>πb”是“a>b”的一个( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 已知命题p:“∀x∈(0,+∞),3x2+3=3x”,则¬P为( )A. ∃x∈(0,+∞),3x2+3≠3xB. ∃x∉(0,+∞),3x2+3=3xC. ∀x∉(0,+∞),3x2+3≠3xD. ∃x∈(0,+∞),3x2+3=3x4. 函数f(x)=log2(x−1)−1x2的零点所在区间为( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)5. 已知函数f(x)={3+3x,−3≤x<1x2−3x,1≤x≤3,则f(f(32))=( )A. −274B. −154C. −2716D. −15166. 设a=0.30.3,b=0.40.3,c=0.30.4,则a,b,c的大小关系为( )A. c<a<bB. a<c<bC. b<c<aD. c<b<a7. 若x>0,y>0,x+3y=1,则xy3x+y的最大值为( )A. 19B. 112C. 116D. 1208. 已知方程x2−2ax+6a+7=0在[2,+∞)上有实数解,则实数a的取值范围为( )A. [7,+∞)B. (−∞,−1))∪[7,+∞)C. (−∞,−7]∪[1,+∞)D. (−∞,−112)∪[7,+∞)9. 下列命题正确的是( )A. 若a>b,则1a <1bB. 若a2>b2,则a>bC. 若a>b,则a3>b3D. 若a<b<0,则a2>ab>b210. 已知不等式3ax2+2ax+1>0,则下列说法正确的是( )A. 若a=−1,则不等式的解集为(−1,13)B. 若不等式的解集为(−2,43),则a=−18C. 若不等式的解集为(x1,x2),则8x1⋅8x2=14D. 若不等式恒成立,则a∈(0,3)11. 若函数f(x)=lg(x2+ax−a),则下列说法正确的是( )A. 若a =0,则f(x)为偶函数B. 若f(x)的定义域为R ,则−4<a <0C. 若a =1,则f(x)的单调增区间为(−12,+∞) D. 若f(x)在(−2,−1)上单调递减,则a <12 12. 已知函数f(x)={|lgx|,0<x ≤1010−x −1,−10≤x ≤0,则下列说法正确的是( )A. 函数f(x)在[0,10)上有两个零点B. 方程f(x)=t 在[0,10)有两个不等实根,则t ∈(0,1]C. 方程f(x))=t 在(0,10]上的两个不等实根为x 1,x 2,则x 1x 2=1D. 方程f(x)=10−|x|+1共有两个实根13. 若幂函数f(x)的图象经过点A(4,2),则f(2)=______. 14. 函数y =log 2(2x +2)的值域为______. 15. 不等式5×2x −4x >4的解集为______.16. 若∀x ∈[34,43],不等式4x 2−(λ+3)x +1≥0恒成立,则实数λ的取值范围为______. 17. 计算下列各式的值:(1)(√22)−2+√(−2)44−(20222021)0;(2)log 65×log 110100×(log 52+log 53)+5log 53.18. 已知集合A ={x|2x 2−3x +1≤0},集合B ={x|ax 2−(4a +1)x +4>0}.(1)当a =2时,求A ∪B ;(2)若a >14,且满足A ⊆B ,求实数a 的取值范围.19. 李华计划将10000元存入银行,恰巧银行最新推出两种存款理财方案.方案一:年利率为单利(单利是指一笔资金无论存期多长,只有本金计取利息,而以前各期利息在下一个利息周期内不计算利息的计息方法),每年的存款利率为2.5%.方案二:年利率为复利(复利是指在计算利息时,某一计息周期的利息是由本金加上先前周期所积累利息总额来计算的计息方式,也即通常所说的“利生利”),每年的存款利率为2%. (1)如果李华想存款x(x ∈N)年,其所获得的利息为y 元,分别写出两种方案中,y 关于x 的函数关系式;(2)李华最后决定存款10年,如果你是银行工作人员,请帮他合理选择一种投资方案,并告知原由.(参考数据:(1+2%)10≈1.21899,(1+2%)9≈1.19509)20. 已知函数f(x)=log a (x −2)+log a (x −4)(a >0且a ≠1).(1)若a =2,且g(x)=f(x)−3,求函数g(x)的零点; (2)当x ∈(4,6]时,f(x)有最小值−3,求a 的值.21. 已知函数f(x)=ln x+11−x.(1)判断函数f(x)的奇偶性并证明你的结论;(2)在f(x)>0的条件下,求函数g(x)=x2+2x+3x+1的最小值.22. 已知函数f(x)为定义在R上的偶函数,且当x≥0时,f(x)={2x,0≤x≤2|x−6|,x>2.(1)①作出函数f(x)在[−10,10]上的图象;②若方程f(x)=a恰有6个不相等的实根,求实数a的取值范围.(2)设g(x)=log2(x2+1)−(12)x,若∀x1∈R,∃x2∈[1,+∞),使得f(x1)+3a≥g(x2)成立,求实数a的最小值.答案和解析1.【答案】A【解析】解:集合A={x|x2<4}=(−2,2),B={−1,0,2},则A∩B={−1,0}.故选:A.由交集的运算直接求解即可.本题主要考查交集及其运算,考查运算求解能力,属于基础题.2.【答案】C【解析】解:∵y=πx在R上为增函数,∴πa>πb⇔a>b,∴πa>πb是a>b的一个充要条件,故选:C.利用指数函数的单调性,充要条件的定义判定即可.本题考查了指数函数的单调性,充要条件的判定,考查了推理能力与计算能力,属于基础题.3.【答案】A【解析】解:命题p为全称命题,则¬P为:∃x∈(0,+∞),3x2+3≠3x.故选:A.根据含有量词的命题的否定即可得到结论.本题主要考查含有量词的命题的否定,比较基础.4.【答案】C【解析】解:由题意得函数定义域为(1,+∞),∵y=log2(x−1)和y=−1x2在(1,+∞)上单调递增,∴函数f(x)=log2(x−1)−1x2在(1,+∞)上单调递增,又f(2)=−14<0,f(3)=1−19=89>0,∴由零点存在性定理得f(x)的零点所在区间为(2,3),故选:C.判断函数的单调性,结合函数零点的判定定理,即可得出答案.本题考查函数零点的判定定理,考查转化思想,考查逻辑推理能力和运算能力,属于基础题.5.【答案】B【解析】解:∵f(x)={3+3x,−3≤x <1x 2−3x,1≤x ≤3,∴f(32)=(32)2−3×32=−94;∴f(f(32))=f(−94)=3+3×(−94)=−154. 故选:B.先求出f(32),再求f(f(32))可得答案.本题考查了分段函数中函数值的求解,属于基础题.6.【答案】A【解析】解:因为函数y =x 0.3 在(0,+∞)上单调递增, 所以0.30.3<0.40.3,即a <b , 因为函数y =0.3x 为减函数, 所以0.30.4<0.30.3,即c <a , 综上,c <a <b. 故选:A.由幂函数与指数函数的性质即可比较大小.本题主要考查幂函数与指数函数的性质,数的大小的比较,考查逻辑推理能力,属于基础题.7.【答案】C【解析】解:因为x >0,y >0,x +3y =1, 则3x+y xy=3y +1x =(3y +1x )(x +3y)=9+1+3x y +3y x≥10+2√3x y ×3yx=16,当且仅当x =y =14时等号成立, 则xy 3x+y=13x+y xy≤116,当且仅当x =y =14时等号成立,即xy 3x+y 的最大值为116, 故选:C.根据题意,利用基本不等式的性质分析3x+yxy 的最小值,而xy3x+y =13x+y xy,分析即可得答案.本题考查基本不等式的性质以及应用,注意对原式的变形,属于基础题.8.【答案】D【解析】解:令f(x)=x 2−2ax +6a +7,则对称轴为x =−−2a2=a , 当a <2时,f(x)在[2,+∞)为增函数,∵方程x 2−2ax +6a +7=0在[2,+∞)上有实数解, ∴f(2)≤0,即22−4a +6a +7≤0,解得a ≤−112,当a ≥2时,∵方程x 2−2ax +6a +7=0在[2,+∞)上有实数解, ∴Δ=4a 2−4(6a +7)≥0,解得a ≥7或a ≤−1(舍去), 综上,实数a 的取值范围为(−∞,−112)∪[7,+∞). 故选:D.令f(x)=x 2−2ax +6a +7,求出对称轴x =a ,然后分a <2和a ≥2两种情况讨论,能求出a 的取值范围.本题考查二次函数的单调性、对称轴、根的判别式等基础知识,考查运算求解能力,是中档题.9.【答案】CD【解析】解:对于A :当a =1,b =0时,1b 无意义,故A 错误; 对于B :当a =−2,b =1时,a 2>b 2,但a <b ,故B 错误; 对于C :若a >b ,则a 3>b 3,故C 正确;对于D :若a <b <0时,在不等式两边同时乘以a ,则a 2>ab ,同时乘以b ,则ab >b 2,则a 2>ab >b 2,故D 正确. 故选:CD.直接利用不等式的性质和赋值法的应用判断A 、B 、C 、D 的结论.本题考查了不等式的性质及赋值法,重点考查了运算能力和数学思维能力,属基础题.10.【答案】ABC【解析】解:对于A :若a =−1,−3x 2−2x +1>0,即3x 2+2x −1<0,可得(3x −1)(x +1)<0,解得−1<x <13,即不等式的解集为(−1,13),故A 正确;对于B :若不等式的解集为(−2,43),∴a <0,且−2与43是方程3ax 2+2ax +1的两根, ∴(−2)+43=−23,(−2)×43=13a ,解得a =−18.故B 正确;对于C :若不等式的解集为(x 1,x 2),∴a <0,且x 1与x 2是方程3ax 2+2ax +1的两根, ∴{x 1+x 2=−23x 1⋅x 2=13a,则8x 1⋅8x 2=8x 1+x 2=8−23=23×(−23)=14,故C 正确; 对于D :由不等式恒成立,即不等式的解集为R , 当a =0,1>0显然成立,当a ≠0时,{a >0Δ=4a 2−12a <0,解得0<a <3.综上所述:a ∈[0,3)故D 错误,故选:ABC.根据不等式的解集可得对应方程的根结合韦达定理和对应的二次函数图像求解即可.本题考查了一元二次不等式与二次函数的关系,是基础题.11.【答案】ABD【解析】解:对于A,当a=0时同,f(x)=lgx2,定义域为:{x|x≠0},所以f(−x)=lgx2=f(x),所以f(x)为偶函数,故正确;对于B,由题意可得x2+ax−a>0的解集为R,所以Δ=a2+4a<0,解得−4<a<0,故正确;对于C,当a=1时,f(x)=lg(x2+x−1),由x2+x−1>0可得x<−1+√52或x>−1+√52,由复合的单调性可得f(x)的单调性为(−1+√52,+∞),故错误;对于D,因为f(x)在(−2,−1)上单调递减,由复合的单调性可得y=x2+ax−a在(−2,−1)上单调递减且满足y>0,即有{−a2≥−1(−1)2−a−a>0,解得a<12,故正确.故选:ABD.对于A,将a=0代入得f(x)=lgx2,求出定义域,再根据偶函数的定义判断即可;对于B,由题意可得x2+ax−a>0的解集为R,根据一元二次不等式解法求解即可;对于C,D根据对数函数的性质及复合函数的单调性求解即可.本题考查了对数函数的性质、复合函数的单调性、一元二次不等式的解法,属于中档题.12.【答案】ACD【解析】解:画出f(x)的图象如图所示:由图可知,函数f(x)在[0,10)上有两个零点,即x=0和x=1,故A正确;方程f(x)=t在[0,10)有两个不等实根,则t∈[0,1],故B错误;方程f(x)=t在(0,10]上的两个不等实根为x1,x2,不妨设x1<x2,则−lgx1=lgx2,即lgx1+lgx2=lg(x1x2)=0,解得x1x2=1,故C正确;设g(x)=10−|x|+1,则g(x)为偶函数,当x∈[0,+∞),所以g(x)=10−|x|+1=10−x+1=(110)x+1,所以g(x)在[0,+∞)上单调递减,由g(x)为偶函数可得g(x)在(−∞,0)上单调递增,且g(x)∈(1,2],所以f(x)与g(x)的图象在(−∞,0)上有1个交点,在(0,+∞)上也有1个交点,所以f(x)与g(x)的图象有2个交点,即方程f(x)=10−+1共有两个实根,故D正确.故选:ACD.画出函数f(x)的图象,根据图象可判断AB;不妨设x1<x2,可得−lgx1=lgx2,根据对数的运算可判断C;设g(x)=10−|x|+1,根据函数g(x)的图象与性质求解f(x)与g(x)图象的交点个数,从而可判断D.本题考查函数的零点与方程根的关系的应用,属于中档题.13.【答案】√2【解析】解:因为函数f(x)为幂函数,设f(x)=xα.由函数f(x)的图象经过点A(4,2),所以4α=2,得α=12.所以f(x)=x 1 2.则f(2)=212=√2.故答案为√2.设出幂函数的解析式,把点A的坐标代入解析式求出幂指数,然后直接求解f(2)的值.本题考查了幂函数的定义,考查了函数值的求法,是基础题.14.【答案】(1,+∞)【解析】解:∵2x>0,∴2x+2>2,∴y=log2(2x+2)>log22=1,故函数y=log2(2x+2)的值域为:(1,+∞).故答案为:(1,+∞).求出真数整体的范围,进而求解结论.本题考查指数函数的单调性,属于函数函数性质应用题,较容易.15.【答案】(0,2)【解析】解:设t=2x>0,则原不等式化为t2−5t+4<0,(t−1)(t−4)<0,∴1<t<4,即1<2x<4,∴0<x<2,解集为(0,2).故答案为:(0,2).设t =2x ,将原不等式转化为一元二次不等式即可的解.本题考查一元二次不等式的解法,考查指数不等式的解法,属于基础题.16.【答案】(−∞,43]【解析】解:由∀x ∈[34,43],不等式4x 2−(λ+3)x +1≥0恒成立, 得λ+3≤4x +1x 在x ∈[34,43]上恒成立, 令f(x)=4x +1x ,x ∈[34,43], 任取x 1,x 2∈[34,43],且x 1<x 2, 则f(x 2)−f(x 1)=4x 2+1x 2−(4x 1+1x 1)=4(x 2−x 1)+x 1−x 2x 2x 1 =(x 2−x 1)(4−1x 2x 1)=(x 2−x 1)⋅4x 2x 1−1x 2x 1,因为34≤x 1<x 2≤43,所以x 2−x 1>0,x 2x 1>0,4x 2x 1−1>0,所以(x 2−x 1)⋅4x 2x 1−1x2x 1>0,所以f(x 2)−f(x 1)>0,即f(x 2)>f(x 1),所以f(x)=4x +1x 在[34,43]上单调递增, 所以f(x)min =f(34)=4×34+134=3+43=133,所以λ+3≤133,得λ≤43, 即实数λ的取值范围为(−∞,43]. 故答案为:(−∞,43].由题意可得λ+3≤4x +1x 在x ∈[34,43]上恒成立,然后构造函数f(x)=4x +1x 求出其最小值,从而可求出实数λ的取值范围.本题考查了函数的恒成立问题,属于中档题.17.【答案】解:(1)原式=(√2)2+2−1=2+2−1=3;(2)原式=log 65×(−2)×log 56+3=−2+3=1.【解析】利用对数的运算性质以及有理数指数幂的运算性质对各个问题化简即可求解. 本题考查了对数的运算性质以及有理数指数幂的运算性质,属于基础题.18.【答案】解:(1)因为集合A ={x|2x 2−3x +1≤0}={x|12≤x ≤1},当a =2时,集合B ={x|2x 2−9x +4>0}={x|x <12或x >4}, 则A ∪B ={x|x ≤1或x >4},(2)因为a >14,则1a <4,则集合B ={x|ax 2−(4a +1)x +4>0}={x|(ax −1)(x −4)>0}={x|x <1a 或x >4},又A ⊆B ,则1a>1,则a <1, 则a 的取值范围为(14,1).【解析】(1)根据集合的运算可解; (2)根据集合间的关系可解.本题考查集合间的关系以及运算,属于基础题.19.【答案】解:(1)方案一:因为只有本金计取利息,每年的存款利率为2.5%,所以李华将10000元存入银行x(x ∈N)年,其所获得的利息y =10000×2.5%×x =250x ; 方案二:计息利息时,由本金加上先前周期所积累利息总额来计息,每年的存款利率为2%, 所以李华将10000元存入银行x(x ∈N)年,其所获得的利息y =10000(1+2%)x −10000. (2)①方案一存款10年,所得总利息y 1=250×10=2500元;②方案二存款10年,所得总利息y 2=10000(1+2%)10−10000≈2189.9元. 因为2500>2189.9,所以选择方案一投资.【解析】(1)方案一:本金乘以存款利率和年限即可;方案二:根据复利的计算公式求解即可; (2)结合(1)分别计算出方案一和方案二存款10年的总利息,比较大小即可判断. 本题主要考查根据实际问题选择合适的函数模型,属于中档题.20.【答案】解:(1)a =2时,g(x)=log 2(x −2)+log 2(x −4)−3定义域为(4,+∞),令g(x)=log 2(x −2)+log 2(x −4)−3=0, 即log 2(x −2)(x −4)=3,所以(x −2)(x −4)=8, 即x 2−6x =0解得x =0(舍)或x =6, 所以g(x)的零点为6;(2)f(x)=log a (x −2)+log a (x −4)=log a (x 2−6x +8),x ∈(4,6],令y =x 2−6x +8,x ∈(4,6],则y =x 2−6x +8在x ∈(4,6]单调递增,若0<a<1,f(x)=log a(x2−6x+8)在x∈(4,6]单调递减,f(x)min=f(6)=log a8=−3,解得a=12,若a>1,f(x)=log a(x2−6x+8)在x∈(4,6]单调递增,无最小值,不满足题意,所以a=12.【解析】(1)利用函数零点的定义以及对数的运算求解;(2)根据复合函数的单调性讨论最值求解.本题考查了函数零点的定义和复合函数的单调性,属于中档题.21.【答案】解:(1)f(x)=ln x+11−x为奇函数.证明:由x+11−x>0,得−1<x<1,定义域关于原点对称,则f(−x)+f(x)=ln−x+11+x +ln x+11−x=ln1=0,即f(−x)=−f(x),则f(x)是奇函数.(2)令f(x)>0,得x+11−x>1,解得0<x<1;当0<x<1时,g(x)=x 2+2x+3x+1=x+1+2x+1≥2√(x+1)⋅2x+1=2√2(当且仅当x+1=2x+1,即x=√2−1时取等号),∴在f(x)>0的条件下,函数g(x)=x2+2x+3x+1的最小值为2√2.【解析】(1)f(x)=ln x+11−x为奇函数,利用奇函数的定义证明即可;(2)令f(x)>0,求得0<x<1;g(x)=x2+2x+3x+1=x+1+2x+1,利用基本不等式可求得其最小值.本题主要考查函数奇偶性的判断以及函数最值的求解,考查运算求解能力,属于中档题.22.【答案】解:(1)①当x≥0时,f(x)={2x,0≤x≤2|x−6|,x>2,列表:因为f(x)为偶函数,所以f(x)的图象关于y 轴对称,所以f(x)在[−10,10]上的图象如图所示:②f(x)=a 恰有6个不相等的实根,等价于y =f(x)与y =a 有6个交点, 由图象可知当1<a <4时,有6个交点, 所以实数a 的取值范围为(1,4);(2)因为t =x 2+1在[1,+∞)上为增函数,y =log 2t 在(0,+∞)上为增函数,所以y =log 2(x 2+1)在[1,+∞)上为增函数,因为y =−(12)x 在[1,+∞)上为增函数,所以g(x)=log 2(x 2+1)−(12)x 在[1,+∞)上为增函数, 所以g(x)min =g(1)=12,由(1)可知f(x)在R 上的最小值为0,因为∀x 1∈R ,∃x 2∈[1,+∞),使得f(x 1)+3a ≥g(x 2)成立, 所以f(x)min +3a ≥g(x)min , 所以0+3a ≥12,解得a ≥16, 所以实数a 的最小值为16.【解析】(1)①先作出[0,10]上的图象,再利用偶函数的性质作出[−10,0)上的图象即可,②f(x)=a 恰有6个不相等的实根,等价于y =f(x)与y =a 有6个交点,然后结合图象可求得答案; (2)由题意可得f(x)min +3a ≥g(x)min ,利用函数的单调性结合换元法求出g(x)min ,再由(1)求出f(x)min ,代入上式可求出实数a 的范围,从而可求出其最小值. 本题考查函数的零点与方程根的关系的应用,属于中档题.。
2022-2023年江苏徐州高一数学上学期期末试卷及答案
2022-2023年江苏徐州高一数学上学期期末试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 命题“”的否定是( ) 20,0x x ∀>>A. B. 20,0x x ∀≤>2000,0x x ∃>≤C. D.2000,0x x ∃≤≤20,0x x ∀>≤【答案】B2. 已知集合,则( ) {}21230,22xA xx x B x ⎧⎫=+-<=>⎨⎬⎩⎭∣∣()R = A B ðA. B.(),1-∞(),3-∞C. D.()3,1-(](),11,-∞-⋃+∞【答案】A3. 已知函数,角终边经过与图象的交点,则()()112,f x x g x x -==θ()f x ()g x tan θ=( )A. 1B.D. 1±【答案】A 4. “”是“”的( ) 1sin 2α=2,6k k Z παπ=+∈A. 充分必要条件 B. 充分条件C. 必要条件D. 既不充分又不必要条件【答案】C 5. 设,则的大小关系为( ) 2.52.1210.5,log 5,22a b c -===,,a b c A. B. c<a<b b a c <<C. D.a b c <<a c b <<【答案】D6. 拱券是教堂建筑的主要素材之一,常见的拱券包括半圆拱、等边哥特拱、弓形拱、马蹄拱、二心内心拱、四心拱、土耳其拱、波斯拱等.如图,分别以点A 和B 为圆心,以线段AB 为半径作圆弧,交于点C ,等边哥特拱是由线段AB ,,所围成的图形.若,则该 AC BC2AB =拱券的面积是( )A.B.23π-23π-C. D.43π+43π【答案】D7. 已知关于的不等式的解集是,则不等式x 20ax bx c ++<()(),12,-∞-+∞ 的解集是( )20bx ax c +-≤A. B. []1,2-][(),12,-∞-⋃+∞C. D.[]2,1-][(),21,∞∞--⋃+【答案】A8. 若函数在区间内仅有1个零点,则的取值范围是()2sin (0)f x x ωω=>3,44ππ⎡⎤⎢⎥⎣⎦ω( ) A. B. C.D. 4,43⎡⎫⎪⎢⎣⎭4,43⎛⎤⎥⎝⎦48,33⎡⎫⎪⎢⎣⎭48,33⎛⎤⎥⎝⎦【答案】C二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选铓的得0分. 9. 已知都是正数,且,则( ) a b c d ,,,,a b c d <>A. B. a c b d -<-a c b d +>+C. D.ad bc <a c a db c b d++>++【答案】ACD10. 若函数在一个周期内的图象如图所()()sin (0,0,0π)f x A x A ωϕωϕ=+>><<示,则( )A. 的最小正周期为 ()f x 3πB. 的增区间是 ()f x ()5ππ3π,3πZ 44k k k ⎡⎤-+∈⎢⎥⎣⎦C. ()()5π0f x f x -+-=D. 将的图象上所有点的横坐标变为原来的倍(纵坐标不变)得到π2sin 3y x ⎛⎫=+ ⎪⎝⎭32()f x 的图象 【答案】ABD11. 已知函数,则下列命题正确的是( ) ()2sin 1f x x x =+-A. 函数是奇函数 ()f x B. 函数在区间上存在零点 ()f x π0,6⎡⎤⎢⎥⎣⎦C. 当时, π,6x ∞⎡⎫∈+⎪⎢⎣⎭()0f x >D. 若,则 ()21sin g x x x=+()()5f x g x +≥【答案】BC12. 悬链线是平面曲线,是柔性链条或缆索两端固定在两根支柱顶部,中间自然下垂所形成的外形.在工程中有广泛的应用,例如县索桥、双曲拱桥、架空电缆都用到了悬链线的原理.当微积分尚未出现的伽利略时期,伽利略猜测这种形状是抛物线.直到1691年莱布尼兹和伯努利利用微积分推导出悬链线的方程是,其中为有关参数.这样,e e 2-⎛⎫=+ ⎪⎝⎭x xcc c y c 数学上又多了一对与有关的著名函数——双曲函数:双曲正弦函数和e ()e esinh 2--=x xx 双曲余弦函数.则( )()e e cosh 2-+=x xx A.()()22sinh ]cosh ]1x x ⎡⎡-=⎣⎣B.()()()sinh 22sinh cosh x x x =C.()1cosh ln sinh ln x x ⎛⎫> ⎪⎝⎭D.()()()()sinh ecosh ln cosh e sinh ln >xxx x 【答案】BCD三、填空题:本题共4小题,每小题5分,共20分. 13. 函数的定义域为__________. ()()ln 1f x x =--【答案】()1,214. 已知,则的值为__________.1sin 63x π⎛⎫+= ⎪⎝⎭5sin cos 63x x ππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭【答案】2315. 已知正数满足,则的最小值为__________. ,m n 320m n mn +-=m n +【答案】2+2+16. 已知函数是定义在上的奇函数,当时,,则()f x R 0x >()2log f x x =()2f x ≥-的解集是__________. 【答案】 ][14,0,4⎡⎫-⋃+∞⎪⎢⎣⎭四、解答题:本题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合. {}{211},12A xa x a B x x =-<<+=-≤≤∣∣(1)若,求;1a =-A B ⋃(2)若,求实数的取值范围. A B A = a 【答案】(1); (3,2]A B ⋃=-(2). [0,1][2,)⋃+∞18. 已知,且.求下列各式的值:sin θ=π,02θ⎛⎫∈- ⎪⎝⎭(1):2sin 3cos 3sin 2cos θθθθ+-(2). ()()()π3πsin cos tan π22tan πsin πθθθθθ⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭--⋅--【答案】(1) 47-(2)19. 已知函数.()[]22322,0,2xx f x x =-⨯+∈(1)求函数的值域;()f x (2)若关于的不等式恒成立,求实数的取值范围. x ()2log f x ax ≥a 【答案】(1) 1,64⎡⎤-⎢⎥⎣⎦(2)(,3⎤-∞-⎦20. “硬科技”是以人工智能、航空航天、生物技术、光电芯片、信息技术、新材料、新能源、智能制造等为代表的高精尖科技,属于由科技创新构成的物理世界,是需要长期研发投入、持续积累才能形成的原创技术,具有极高技术门槛和技术壁垒,难以被复制和模仿、最近十年,我国的一大批自主创新的企业都在打造自己的科技品牌,某高科技企业自主研发了一款具有自主知识产权的高级设备,并从2023年起全面发售.经测算,生产该高级设备每年需投入固定成本1000万元,每生产x 百台高级设备需要另投成本万元,且y 每百台高级设备售价为160万元,假2240,040,100N,180001652250,40100,100N.x x x x y x x x x ⎧+≤<∈⎪=⎨+-≤≤∈⎪⎩设每年生产的高级设备能够全部售出,且高级设备年产展最大为10000台. (1)求企业获得年利润(万元)关于年产量(百台)的函数关系式; P x (2)当年产量为多少时,企业所获年利润最大?并求最大年利润.【答案】(1); 221201000,0401800051250,40100x x x P x x x ⎧-+-≤<⎪=⎨--+≤≤⎪⎩(2)当年产量为30百台时公司获利最大,且最大利润为800万元.21. 已知函数的图象与x 轴的两个相邻交点之间的距离为π()sin()0,||2ωϕωϕ⎛⎫=+>< ⎪⎝⎭f x x ,直线是的图象的一条对称轴. π2π6x =()f x (1)求函数的解析式;()f x (2)若函数在区间上恰有3个零点()()22g x f x a =-π11π,824⎡⎤-⎢⎥⎣⎦()123123,,x x x x x x <<,请直接写出的取值范围,并求的值. a ()321sin 448x x x --【答案】(1) ()πsin 26f x x ⎛⎫=+⎪⎝⎭(2);0a ≤≤()321sin 448x x x --=22. 对于两个定义域相同的函数和,若存在实数,使()f x ()g x ,m n ,则称函数是由“基函数和”生成的.()()()h x mf x ng x =+()h x ()f x ()g x (1)若是由“基函数和”生成的,求()49h x x x =+()12f x x a x =-+()1422g x x x=+-实数的值;a (2)试利用“基函数和”生成一个函数,使之满()()2log 41xf x =+()112g x x =+()h x 足为偶函数,且. ()h x ()01h =-①求函数的解析式;()h x ②已知,对于区间上的任意值,*03,,1,1n n n N x x ≥∈=-=()1,1-12,,x x ,若恒成立,求实数的最小值.(注:()1121n n x x x x --<<< ()()11ni i i h x h x M -=-≤∑M .)121nin i xx x x ==+++∑ 【答案】(1);1(2)①;②. 2()log (41)2xh x x =+--252log 4。
2023-2024学年北京市海淀区高一上学期期末考试数学试题+答案解析
2023-2024学年北京市海淀区高一上学期期末考试数学试题一、单选题:本题共14小题,每小题5分,共70分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知全集,集合,则()A. B. C. D.2.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查.已知在初中学生中随机抽取了100人,则在高中学生中抽取了()A.150人B.200人C.250人D.300人3.命题“”的否定是()A. B.C. D.4.方程组的解集是()A. B.C. D.5.某部门调查了200名学生每周的课外活动时间单位:,制成了如图所示的频率分布直方图,其中课外活动时间的范围是,并分成五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h的人数是()A.56B.80C.144D.1846.若实数a,b满足,则下列不等式成立的是()A. B. C. D.7.函数的零点所在的区间为()A. B. C. D.8.在同一个坐标系中,函数的部分图象可能是()A. B.C. D.9.下列函数中,既是奇函数,又在上单调递减的是()A. B. C. D.10.已知,则实数a,b,c的大小关系是()A. B. C. D.11.已知函数,则“”是“为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知函数,则不等式的解集为()A. B. C. D.13.科赫曲线是几何中最简单的分形.科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线……在分形中,一个图形通常由N个与它的上一级图形相似,且相似比为r的部分组成.若,则称D为该图形的分形维数.那么科赫曲线的分形维数是()A. B. C.1 D.14.已知函数,若存在非零实数,使得成立,则实数a的取值范围是()A. B. C. D.二、填空题:本题共6小题,每小题5分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年四川省成都高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={0,1,2},B={2,3},则A∪B=()A.{0,1,2,3}B.{0,1,3}C.{0,1}D.{2}2.(5分)下列函数中,为偶函数的是()A.y=log2x B.C.y=2﹣x D.y=x﹣23.(5分)已知扇形的弧长为6,圆心角弧度数为3,则其面积为()A.3 B.6 C.9 D.124.(5分)已知点A(0,1),B(﹣2,1),向量,则在方向上的投影为()A.2 B.1 C.﹣1 D.﹣25.(5分)设α是第三象限角,化简:=()A.1 B.0 C.﹣1 D.26.(5分)已知α为常数,幂函数f(x)=xα满足,则f(3)=()A.2 B.C.D.﹣27.(5分)已知f(sinx)=cos4x,则=()A.B.C.D.8.(5分)要得到函数y=log2(2x+1)的图象,只需将y=1+log2x的图象()A.向左移动个单位B.向右移动个单位C.向左移动1个单位D.向右移动1个单位9.(5分)向高为H的水瓶(形状如图)中注水,注满为止,则水深h与注水量v的函数关系的大致图象是()A.B.C.D.10.(5分)已知函数,若f[f(x0)]=﹣2,则x0的值为()A.﹣1 B.0 C.1 D.211.(5分)已知函数,若,则=()A.1 B.0 C.﹣1 D.﹣212.(5分)已知平面向量,,满足,,且,则的取值范围是()A.[0,2]B.[1,3]C.[2,4]D.[3,5]二、填空题(本大题4小题,每小题5分,共20分,答案写在答题卡相应横线上)13.(5分)设向量,不共线,若,则实数λ的值为.14.(5分)函数的定义域是.15.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象(如图所示),则f(x)的解析式为.16.(5分)设e为自然对数的底数,若函数f(x)=e x(2﹣e x)+(a+2)•|e x﹣1|﹣a2存在三个零点,则实数a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设向量,,已知.(I)求实数x的值;(II)求与的夹角的大小.18.(12分)已知.(I)求tanα的值;(II)若﹣π<α<0,求sinα+cosα的值.19.(12分)如图,在△ABC中,M为BC的中点,.(I)以,为基底表示和;(II)若∠ACB=120°,CB=4,且AM⊥CN,求CA的长.20.(12分)某地政府落实党中央“精准扶贫”政策,解决一贫困山村的人畜用水困难,拟修建一个底面为正方形(由地形限制边长不超过10m)的无盖长方体蓄水池,设计蓄水量为800m3.已知底面造价为160元/m2,侧面造价为100元/m2.(I)将蓄水池总造价f(x)(单位:元)表示为底面边长x(单位:m)的函数;(II)运用函数的单调性定义及相关知识,求蓄水池总造价f(x)的最小值.21.(12分)已知函数,其中ω>0.(I)若对任意x∈R都有,求ω的最小值;(II)若函数y=lgf(x)在区间上单调递增,求ω的取值范围•22.(12分)定义函数,其中x为自变量,a为常数.(I)若当x∈[0,2]时,函数f a(x)的最小值为一1,求a之值;(II)设全集U=R,集A={x|f3(x)≥f a(0)},B={x|f a(x)+f a(2﹣x)=f2(2)},且(∁U A)∩B≠∅中,求a的取值范围.2016-2017学年四川省成都高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={0,1,2},B={2,3},则A∪B=()A.{0,1,2,3}B.{0,1,3}C.{0,1}D.{2}【解答】解:∵集合A={0,1,2},B={2,3},∴A∪B={0,1,2,3}.故选:A.2.(5分)下列函数中,为偶函数的是()A.y=log2x B.C.y=2﹣x D.y=x﹣2【解答】解:对于A,为对数函数,定义域为R+,为非奇非偶函数;对于B.为幂函数,定义域为[0,+∞),则为非奇非偶函数;对于C.定义域为R,关于原点对称,为指数函数,则为非奇非偶函数;对于D.定义域为{x|x≠0,x∈R},f(﹣x)=f(x),则为偶函数.故选D.3.(5分)已知扇形的弧长为6,圆心角弧度数为3,则其面积为()A.3 B.6 C.9 D.12【解答】解:由弧长公式可得6=3r,解得r=2.∴扇形的面积S==6.故选B.4.(5分)已知点A(0,1),B(﹣2,1),向量,则在方向上的投影为()A.2 B.1 C.﹣1 D.﹣2【解答】解:=(﹣2,0),则在方向上的投影===﹣2.故选:D.5.(5分)设α是第三象限角,化简:=()A.1 B.0 C.﹣1 D.2【解答】解:∵α是第三象限角,可得:cosα<0,∴=﹣,∵cos2α+cos2αtan2α=cos2α+cos2α•=cos2α+sin2α=1.∴=﹣1.故选:C.6.(5分)已知α为常数,幂函数f(x)=xα满足,则f(3)=()A.2 B.C.D.﹣2【解答】解:∵α为常数,幂函数f(x)=xα满足,∴f()==2,解得,∴f(x)=,∴f(3)==.故选:B.7.(5分)已知f(sinx)=cos4x,则=()A.B.C.D.【解答】解:∵f(sinx)=cos4x,∴=f(sin30°)=cos120°=﹣cos60°=﹣.故选:C.8.(5分)要得到函数y=log2(2x+1)的图象,只需将y=1+log2x的图象()A.向左移动个单位B.向右移动个单位C.向左移动1个单位D.向右移动1个单位【解答】解:∵y=log2(2x+1)=log22(x+),y=1+log2x=log22x,∴由函数图象的变换可知:将y=log22x向左移动个单位即可得到y=log2(2x+1)=log22(x+)的图象.故选:A.9.(5分)向高为H的水瓶(形状如图)中注水,注满为止,则水深h与注水量v的函数关系的大致图象是()A.B.C.D.【解答】解:从水瓶的构造形状上看,从底部到顶部的变化关系为:开始宽,逐渐细小,再变宽.则注入的水量V随水深h的变化关系为:先慢再快,最后又变慢,那么从函数的图象上看,C对应的图象变化为先快再慢,最后又变快,不符合;A、B对应的图象中间没有变化,只有D 符合条件.故选:D10.(5分)已知函数,若f[f(x0)]=﹣2,则x0的值为()A.﹣1 B.0 C.1 D.2【解答】解:∵函数,f[f(x0)]=﹣2,∴①当f(x 0)≥1时,f[f(x0)]==﹣2,f(x 0)=4,则当x0≥1时,f(x0)=,解得x0=,不成立;当x0<1时,f(x0)=1﹣3x0=4,解得x0=﹣1.②当f(x0)<1时,f[f(x0)]=1﹣3f(x0)=﹣2,f(x0)=1.不成立.综上,x0的值为﹣1.故选:A.11.(5分)已知函数,若,则=()A.1 B.0 C.﹣1 D.﹣2【解答】解:由已知可得:=log2=log2,可得:﹣sinα﹣cosα=2(﹣sinα+cosα),解得:tanα=3,则=log2=log2=log2=log2=log2=﹣1.故选:C.12.(5分)已知平面向量,,满足,,且,则的取值范围是()A.[0,2]B.[1,3]C.[2,4]D.[3,5]【解答】解:∵,,∴==4.∵,∴=﹣=cosα﹣3,设α为与的夹角.∴cosα=∈[﹣1,1],解得∈[1,3].故选:B.二、填空题(本大题4小题,每小题5分,共20分,答案写在答题卡相应横线上)13.(5分)设向量,不共线,若,则实数λ的值为﹣2.【解答】解:∵,则存在实数k使得=k,∴(1﹣kλ)﹣(2+4k)=,∵向量,不共线,∴1﹣kλ=0,﹣(2+4k)=0,解得λ=﹣2.故答案为:﹣2.14.(5分)函数的定义域是[0,).【解答】解:由x≠kπ+,k∈Z,且πx﹣2x2≥0,可得0≤x<,故定义域为[0,).故答案为:[0,).15.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象(如图所示),则f(x)的解析式为.【解答】解:由题意可知A=2,T=4(﹣)=π,可得:ω==2,由于:当x=时取得最大值2,所以:2=2sin(2×+φ),可得:2×+φ=2kπ+,k∈Z,解得:φ=2kπ+,k∈Z,由于:|φ|<π,所以:φ=,函数f(x)的解析式:f(x)=2sin(2x+).故答案为:.16.(5分)设e为自然对数的底数,若函数f(x)=e x(2﹣e x)+(a+2)•|e x﹣1|﹣a2存在三个零点,则实数a的取值范围是(1,2] .【解答】解:令t=e x﹣1,e x=t+1,f(t)=1﹣t2+(a+2)|t|﹣a2,令m=|t|=|e x﹣1|,则f(m)=﹣m2+(a+2)m+1﹣a2,∵f(x)有3个零点,∴根据m=|t|=|e x﹣1|,可得f(m)的一根在(0,1),另一根在[1,+∞),∴∴a∈(1,2].故答案为(1,2].三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设向量,,已知.(I)求实数x的值;(II)求与的夹角的大小.【解答】解:(Ⅰ)∵.∴=,即+=0…(2分)∴2(7x﹣4)+50=0,解得x=﹣3…(5分)(Ⅱ)设与的夹角为θ,=(﹣3,4),=(7,﹣1),∴=﹣21﹣4=﹣25,…(6分)且==5,=5…(8分),∴.…(9分)∵θ∈[0,π],∴,即a,b夹角为.…(10分)18.(12分)已知.(I)求tanα的值;(II)若﹣π<α<0,求sinα+cosα的值.【解答】解:(I)∵已知,可得3sinα=﹣6cosα,∴.(Ⅱ)∵α∈(﹣π,0),且tanα==﹣2,sinα<0,sin2α+cos2α=1,∴,∴,∴.19.(12分)如图,在△ABC中,M为BC的中点,.(I)以,为基底表示和;(II)若∠ACB=120°,CB=4,且AM⊥CN,求CA的长.【解答】解:(Ⅰ)=+=﹣+=﹣+;∴,(Ⅱ)由已知AM⊥CN,得,即,展开得,又∵∠ACB=120°,CB=4,∴,即,解得,即CA=8为所求20.(12分)某地政府落实党中央“精准扶贫”政策,解决一贫困山村的人畜用水困难,拟修建一个底面为正方形(由地形限制边长不超过10m)的无盖长方体蓄水池,设计蓄水量为800m3.已知底面造价为160元/m2,侧面造价为100元/m2.(I)将蓄水池总造价f(x)(单位:元)表示为底面边长x(单位:m)的函数;(II)运用函数的单调性定义及相关知识,求蓄水池总造价f(x)的最小值.【解答】解:(Ⅰ)设蓄水池高为h,则,…(2分)∴…(4分)=…(6分)(Ⅱ)任取x1,x2∈(0,10],且x1<x2,则=…(8分)∵0<x1<x2≤10,∴x1x2>0,x1﹣x2<0,x1x2(x1+x2)<2000,∴y=f(x1)﹣f(x2),即f(x1)>f(x2),∴y=f(x)在x∈(0,10]上单调递减…(10分)故x=10当时,f min(x)=f(10)=48000…(11分)答:当底面边长为10m时,蓄水池最低造价为48000元…(12分)21.(12分)已知函数,其中ω>0.(I)若对任意x∈R都有,求ω的最小值;(II)若函数y=lgf(x)在区间上单调递增,求ω的取值范围•【解答】解:(Ⅰ)由已知f(x)在处取得最大值,∴;…(2分)解得,…(4分)又∵ω>0,∴当k=0时,ω的最小值为2;…(5分)(Ⅱ)解法一:∵,∴,…(6分)又∵y=lgf(x)在内单增,且f(x)>0,∴.…(8分)解得:.…(10分)∵,∴且k∈Z,…(11分)又∵ω>0,∴k=0,故ω的取值范围是.…(12分)解法二:根据正弦函数的图象与性质,得,∴,∴0<ω≤4,又y=lgf(x)在内单增,且f(x)>0,∴;解得:;可得k=0,所以ω的取值范围是.22.(12分)定义函数,其中x为自变量,a为常数.(I)若当x∈[0,2]时,函数f a(x)的最小值为一1,求a之值;(II)设全集U=R,集A={x|f3(x)≥f a(0)},B={x|f a(x)+f a(2﹣x)=f2(2)},且(∁U A)∩B≠∅中,求a的取值范围.【解答】解:(Ⅰ)令t=2x,∵x∈[0,2],∴t∈[1,4],设φ(t)=t2﹣(a+1)t+a,t∈[1,4]…(1分)1°当,即a≤1时,f min(x)=φ(1)=0,与已知矛盾;…(2分)2°当,即,解得a=3或a=﹣1,∵1<a<7,∴a=3;…(3分)3°当,即a≥7,f min(x)=φ(4)=16﹣4a﹣4+a=1,解得,但与a≥7矛盾,故舍去…(4分)综上所述,a之值为3…(5分)(Ⅱ)∁U A={x|4x﹣4•2x+3<0}={x|0<x<log23}…(6分)B={x|4x﹣(a+1)•2x+a+42﹣x﹣(a+1)•22﹣x+a=6}=.…(7分)由已知(∁U A)∩B≠∅即﹣(a+1)()+2a﹣6=0在(0,log23)内有解,令t=,则t∈[4,5),方程(t2﹣8)﹣(a+1)t+2a﹣6在[4,5)上有解,也等价于方程在t∈[4,5)上有解…(9分)∵在t∈[4,5)上单调递增,…(10分)∴h(t)∈[﹣1,2)…(11分)故所求a的取值范围是[﹣1,2)…(12分)。