初三数学作业08

合集下载

专题08 平面直角坐标系与一次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)

专题08 平面直角坐标系与一次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)

专题08 平面直角坐标系与一次函数一.选择题1.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -2.(2022·湖北宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为()1,3.若小丽的座位为()3,2,以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )A .()1,3B .()3,4C .()4,2D .()2,43.(2022·四川眉山)一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.(2022·浙江金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校5.(2022·江苏扬州)在平面直角坐标系中,点P(﹣3,a 2+1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6.(2022·湖南株洲)在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为( ) A .()0,1- B .1,05⎛⎫- ⎪⎝⎭ C .1,05⎛⎫ ⎪⎝⎭ D .()0,17.(2022·陕西)在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( ) A .15x y =-⎧⎨=⎩ B .13x y =⎧⎨=⎩ C .31x y =⎧⎨=⎩ D .95x y =⎧⎨=-⎩8.(2022·湖南娄底)将直线21y x =+向上平移2个单位,相当于( )A .向左平移2个单位B .向左平移1个单位C .向右平移2个单位D .向右平移1个单位 9.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A.B.C.D.10.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)11.(2022·四川乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少12.(2022·安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A .甲B .乙C .丙D .丁13.(2022·江西)甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是( )A .甲、乙两种物质的溶解度均随着温度的升高而增大B .B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20gD .当温度为30℃时,甲、乙的溶解度相等14.(2022·重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度()m h 随飞行时间()s t 的变化情况,则这只蝴蝶飞行的最高高度约为( )A .5mB .7mC .10mD .13m15.(2022·浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( )16.(2022·湖南邵阳)在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A .m n <B .m n >C .m n ≥D .m n ≤17.(2022·浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >18.(2022·浙江嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .119.(2022·安徽)在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( ) A . B .C . D . 20.(2022·四川凉山)一次函数y =3x +b (b ≥0)的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限21.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )AB .C .D .二、填空题 22.(2022·湖南湘潭)请写出一个y 随x 增大而增大的一次函数表达式_________.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______. 24.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.25.(2022·浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.26.(2022·江苏宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y 随自变量x 增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是____.27.(2022·天津)若一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,则b 的值可以是___________(写出一个..即可). 28.(2022·江苏扬州)如图,函数()0y kx b k =+<的图像经过点P ,则关于x 的不等式3kx b +>的解集为________.29.(2022·浙江杭州)已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组310x y kx y -=⎧⎨-=⎩的解是_________. 30.(2022·甘肃武威)若一次函数y =kx −2的函数值y 随着自变量x 值的增大而增大,则k =_________(写出一个满足条件的值).31.(2022·四川德阳)如图,已知点()2,3A -,()2,1B ,直线y kx k =+经过点()1,0P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是______.32.(2022·湖北黄冈)如图1,在△ABC 中,∠B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 的运动速度为1cm/s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∠BAC 时,t 的值为________.三、解答题33.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C ''',且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''.34.(2022·浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.35.(2022·新疆)A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ;(2)分别求出,y y 甲乙与x 之间的函数解析式;(3)求出点C 的坐标,并写点C 的实际意义.36.(2022·浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?37.(2022·浙江嘉兴)6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x 时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?38.(2022·天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km,小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市y与停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离km x之间的对应关系.离开学生公寓的时间min请根据相关信息,解答下列问题:(1)填表:(2)填空:①阅览室到超市的距离为________km ;②小琪从超市返回学生公寓的速度为________km /min ; ③当小琪离学生公寓的距离为1km 时,他离开学生公寓的时间为___________min .(3)当092x ≤≤时,请直接写出y 关于x 的函数解析式.39.(2022·浙江绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x .40.(2022·陕西)如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为__________;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.。

专练08 方程与函数类应用题(20题)2020~2021学年九年级数学上期末考点必杀题(试题解析)

专练08 方程与函数类应用题(20题)2020~2021学年九年级数学上期末考点必杀题(试题解析)

专练08 方程与函数类应用题(20题)1.(2019·山东九年级期末)某电子厂商投产一种新型电子产品,每件制造成本为16元,每月销售量y (万件)与销售单价x (元)之间的函数关系如下表格所示:(1)求每月的利润W (万元)与销售单价x (元)之间的函数关系式; (2)当销售单价为多少元时,厂商每月获得的总利润为480万元?(3)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【答案】(1)221321600W x x =-+-;(2)26元或40元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.(1)由表格可知,y 与x 之间的函数关系是一次函数, 设y 与x 之间的函数关系式为y kx b =+, 将(30,40)和(40,20)代入得:30404020k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩,则y 与x 之间的函数关系式为2100y x =-+, 因此,(16)(16)(2100)W x y x x =-=--+, 即221321600W x x =-+-;(2)由题意得:221321600480x x -+-=, 整理得:26610400x x -+=, 解得26x =或40x =,答:当销售单价为26元或40元时,厂商每月获得的总利润为480万元; (3)由题意得:48003016y ≤≤=, 则0210030x ≤-+≤, 解得3550x ≤≤,将二次函数221321600W x x =-+-化成顶点式为22(33)578W x =--+, 由二次函数的性质可知,在3550x ≤≤范围内,W 随x 的增大而减小, 则当35x =时,W 取得最大值,最大值为22(3533)578570-⨯-+=(万元), 答:当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元. 【点睛】本题考查了利用待定系数法求一次函数的解析式、二次函数的性质、解一元二次方程、解一元一次不等式组等知识点,较难的是题(3),熟练掌握二次函数的性质是解题关键.2.(2020·迁安市迁安镇第一初级中学九年级期末)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x 元,填写下表.(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少; (3)求当4≤x≤6时第二个月销售利润的最大值.【答案】(1)52;52+x ;180;180-10x ;(2)60元;(3)2240元 解:(1)若设第二个月的销售定价每套增加x 元,填写下表:故答案为:52;52+x ;180;180-10x(2)若设第二个月的销售定价每套增加x 元,根据题意得: (52-40)×180+(52+x-40)(180-10x )=4160, 解得:x 1=-2(舍去),x 2=8, 当x=-2时,52+x=50(舍去),当x=8时,52+x=60.答:第二个月销售定价每套应为60元. (3)设第二个月利润为y 元. 由题意得到:y=(52+x-40)(180-10x ) =-10x 2+60x+2160 =-10(x-3)2+2250 ∵-10<0∴当4≤x≤6时,y 随x 的增大而减小, ∴当x=4时,y 取最大值,此时y=2240, ∴52+x=52+4=56,即要使第二个月利润达到最大,应定价为56元,此时第二个月的最大利润是2240元. 【点睛】本题考查了二次函数的应用,解题的关键是明确题意,列出相应的关系式,找出所求问题需要的条件. 3.(2019·山东九年级期末)如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA ,顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式可以用2y x bx c =-++表示,且抛物线经过点B 15,22⎛⎫ ⎪⎝⎭,C 72,4⎛⎫ ⎪⎝⎭;(1)求抛物线的函数关系式,并确定喷水装置OA 的高度; (2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【答案】(1)2724y x x =-++,74米;(2)114米;(3)至少要1⎛+ ⎝⎭米.(1)由题意,将点157,,2,224B C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭代入得:1154227424b c b c ⎧-++=⎪⎪⎨⎪-++=⎪⎩,解得274b c =⎧⎪⎨=⎪⎩,则抛物线的函数关系式为2724y x x =-++, 当0x =时,74y =, 故喷水装置OA 的高度74米; (2)将2724y x x =-++化成顶点式为211(1)4y x =--+,则当1x =时,y 取得最大值,最大值为114,故喷出的水流距水面的最大高度是114米;(3)当0y =时,211(1)04x --+=,解得12x =+或102x =-<(不符题意,舍去),故水池的半径至少要12⎛⎫+⎪ ⎪⎝⎭米,才能使喷出的水流不至于落在池外. 【点睛】本题考查了二次函数的实际应用,熟练掌握待定系数法和二次函数的性质是解题关键.4.(2020·保定市第二十一中学九年级期末)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x (元)()40x >,请你分别用含x 的代数式来表示销售量y (件)和销售该品牌玩具获得利润w (元),并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元. (3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?【答案】(1)1000-10x ,-10x 2+1300x-30000;(2)玩具销售单价为50元或80元时,可获得10000元销售利润;(3)商场销售该品牌玩具获得的最大利润为8640元. 解:(1)∵根据销售单价每涨1元,就会少售出10件玩具, ∵销售量y (件)为:600-10(x-40)=1000-10x ;销售玩具获得利润w (元)为: [600-10(x-40)](x-30) =-10x 2+1300x-30000 故答案为:1000-10x ,-10x 2+1300x-30000;(2)令-10x 2+1300x-30000=10000,解得:x=50 或x=80答:玩具销售单价为50元或80元时,可获得10000元销售利润; (3)根据题意得:10001054044x x -≥⎧⎨≥⎩解得:44≤x≤46由w=-10x 2+1300x-30000=-10(x-65)2+12250 ∵-10<0,对称轴是直线x=65. ∵当44≤x≤46时,w 随增大而增大 ∵当x=46时,W 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元. 【点睛】本题主要考查了二次函数的应用、不等式组的应用等知识点,灵活运用二次函数的性质以及二次函数求最大值是解答本题的关键.5.(2020·河北九年级期末)某种蔬菜的售价1y (元)与销售月份x 之间的关系如图所示,成本2y (元)与销售月份x 之间的关系如图所示.(图的图象是线段,图的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价-成本) (2)设每千克该蔬菜销售利润为P ,请列出P 与x 之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?(3)已知市场部销售该种蔬菜4、5两个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.4、5两个月的销售量分别是多少万千克?【答案】(1)6月份出售这种蔬菜每千克的利润是2元;(2)P=2110633x x -+-,5月份出售这种蔬菜,每千克的收益最大为73元;(3)4月份的销售量为40000千克,5月份的销售量为60000千克. (1)当x=6时,y 1=3,y 2=1, ∵y 1-y 2=3-1=2,∵6月份出售这种蔬菜每千克的利润是2元; (2)设y 1=mx+n ,y 2=a(x-6)2+1,将(3,5)、(6,3)分别代入y 1=mx+n ,得3563m n m n +=⎧⎨+=⎩, 解得:237m n ⎧=-⎪⎨⎪=⎩,∴1273=-+y x ; 将(3,4)代入y 2=a(x-6)2+1,得, 4=a (3-6)2+1, 解得:a=13, ∵()222116141333y x x x =-+=-+,∵P=12y y -=()2222111017741365333333x x x x x x ⎛⎫-+--+=-+-=--+ ⎪⎝⎭, ∵103-<, ∵当x=5时,P 取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大,最大值为73元; (3)当x=4时,P=2110633x x -+-=2, 设4月份的销售量为t 千克,则5月份的销售量为(t+20000)千克, 根据题意得:()72200002200003t t ++=, 解得:t=40000, ∴t+20000=60000,答:4月份的销售量为40000千克,5月份的销售量为60000千克. 【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质等知识,综合性较强,弄清题意,读懂图象,灵活运用相关知识是解题的关键.6.(2020·福建九年级期末)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元. (1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款; (2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.【答案】(1)这所学校需向园林公司支付的树苗款为6000元;(2)这所中学购买了80棵树苗. 解:(1)∵50<60, ∵120506000⨯=(元),∵答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗时所需支付的树苗款为120607200⨯=元8800<元, ∵该中学购买的树苗超过60棵. 又∵120100601000.5-+=,∵购买100棵树苗时每棵树苗的售价恰好降至100元.∵购买树苗超过100棵后,每棵树苗的售价仍为100元, 此时所需支付的树苗款超过10000元,而100008800>, ∵该中学购买的树苗不超过100棵. 设购买了()60100x x <≤棵树苗, 依题意,得()1200.5608800x x --=⎡⎤⎣⎦, 化简,得2300176000x x -+=, 解得1220100x =>(舍去),280x =. 答:这所中学购买了80棵树苗. 【点睛】本题考查一元二次方程的实际应用,理解题意弄清题目中的等量关系是本题的解题关键.7.(2020·四川九年级期末)如图,要利用一面足够长的墙为一边,其余三边用总长33m 的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽1.5米的门,能够建生态园的场地垂直于墙的一边长不超过6米(围栏宽忽略不计).()1每个生态园的面积为48平方米,求每个生态园的边长;()2每个生态园的面积_ (填“能”或“不能”)达到108平方米.(直接填答案)【答案】(1)每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米;理由见详解(2)不能,理由见详解.(1)解:设每个生态园垂直于墙的边长为x 米, 根据题意得:()33+1.523482x x ⨯-=⨯整理,得:212320x x +=﹣, 解得:1=4x 、2=8x (不合题意,舍去),∴ 当=4x 时,33+1.523363424x ⨯-=-⨯=,∴242=12÷.答:每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米. (2)由(1)及题意可知:()33+1.5231082x x ⨯-=⨯整理得:212720x x +=﹣()22=41241721440b ac ∆-=--⨯⨯=-<∴原方程无实数根∴每个生态园的面积不能达到108平方米.故答案为:不能. 【点睛】本题主要考查一元二次方程的实际应用,关键是通过题意设出未知数得到平行于墙的边长,要注意每个生态园开有1.5m 的门,然后根据题意列出一元二次方程即可;在解第二问时要注意利用一元二次方程根的判别式来分析.8.(2018·河北新河中学九年级期末)如图,在矩形 ABCD 中,AB =6cm ,BC =8cm ,动点 P 以 2cm /s 的速度从点 A 出发,沿AC 向点 C 移动,同时动点 Q 以 1cm /s 的速度从点 C 出发,沿 CB 向点 B 移动,设 P 、Q 两点移动 ts (0<t <5)后,△CQP 的面积为 Scm 2.在 P 、Q 两点移动的过程中,△CQP 的面积能否等于 3.6cm 2?若能,求出此时 t 的值;若不能,请说明理由.【答案】2 或 3 解:在矩形 ABCD 中, ∵AB =6cm ,BC =8cm ,∴AC =10cm ,AP =2tcm ,PC =(10﹣2t )cm , CQ =tcm ,过点 P 作 PH ⊥BC 于点 H ,易知:PH PC AB AC ==10210t-,∴PH =35(10﹣2t )cm , 根据题意,得12t •35(10﹣2t )=3.6, 解得:t 1=2,t 2=3.答:△CQP 的面积等于 3.6cm 2 时,t 的值为 2 或 3.【点睛】本题考查的是相似三角形的判定与性质,解题关键是对这些知识的熟练掌握及灵活运用.9.(2021·安徽九年级月考)教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降.水温()C y ︒和通电时间()min x 成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20C ︒,接通电源后,水温()C y ︒和通电时间()min x 之间的关系如图所示,回答下列问题:(1)分别求出当08x ≤≤和8x a <≤时,y 和x 之间的函数关系式; (2)求出图中a 的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40C ︒的开水,则他需要在什么时间段内接水?【答案】(1)08x ≤≤时,1020y x =+;8x a <≤时,800y x=;(2)40;(3)7:38到7:50之间 解:(1)当08x ≤≤时,设1y k x b =+,将(0,20),(8,100)的坐标分别代入1y k x b =+得1208100b k b =⎧⎨+=⎩, 解得110k =,20b =.∴当08x ≤≤时,1020y x =+. 当8x a <≤时,设2k y x=, 将(8,100)的坐标代入2k y x =, 得2800k =.∴当8x a <≤时,800y x=. 综上,当08x ≤≤时,1020y x =+;当8x a <≤时,800y x =; (2)将20y =代入800y x=,解得40x =, 即40a =; (3)当40y =时,8002040x ==. ∴要想喝到不低于40C ︒的开水,x 需满足820x ≤≤, 即李老师要在7:38到7:50之间接水.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析式是解题关键.10.(2020·内蒙古和林格尔县第三中学九年级月考)某气象研究中心观测到一场沙尘暴从发生到减弱的全过程.开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/小时)与时间x (小时)成反比例函数关系缓慢减弱.(1)这场沙尘暴的最高风速是__________千米/小时,最高风速维持了__________小时;(2)当20x ≥时,求出风速y (千米/小时)与时间x (小时)的函数关系式;(3)在这次沙尘暴形成的过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻为“危险时刻”,那么在沙尘暴整个过程中,求“危险时刻”共有几小时.【答案】(1)32,10;(2)640y x=;(3)共有59.5小时 解:(1)0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,10~20时,风速不变,最高风速维持时间为20-10=10小时;故答案为:32,10.(2)设k y x=,将()20,32代入,得:3220k =, 解得:640k =. 所以当20x ≥时,风速y (千米/小时)与时间x (小时)之间的函数关系为:640y x =. (3)∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,∴4.5时风速为10千米/时.将10y =代入640y x =, 得64010x=,解得64x =, 64 4.559.5-=(小时)故在沙尘暴整个过程中,“危险时刻”共有59.5小时.【点睛】 本题考查反比例函数的应用,待定系数法求函数的解析式,学生阅读图象获取信息的能力,理解题意,读懂图象是解决本题的关键.11.(2020·浙江九年级一模)2020年4月,学校复学后,为确保学生的安全,某校对各教室进行“84”消毒液消毒,如下左图描述了防疫人员消毒阶段室内每立方米空气中含药量()mg y 与时间()min x 的关系:表格记录了消毒结束后室内每立方米空气中含药量()mg y 与时间()min x 的部分数据.(1)求前3分钟消毒阶段y 关于x 的函数表达式;(2)在给出的平面直角坐标系中,根据表中数据画出消毒后y 关于x 的函数图象,并求出该函数表达式;(3)研究表明,当每立方米空气中含药量低于1.2mg 时,对人体无毒害作用,那么在哪个时段学生不能停留在教室里?【答案】(1)y=83x (0≤x≤3);(2)图像见详解,y=24x (x >3);(3)在920分钟到20分钟内不能停留在教室解:(1)设前3分钟消毒阶段的解析式为y=kx ,将(3,8)代入得8=3k ,解得k=83, ∴解析式为:y=83x (0≤x≤3);(2)图像如下:设函数表达式为y=k x, 将(6,4)代入得k=24,∴解析式为:y=24x(x >3); (3)当y=1.2时,在前三分钟内:得1.2=83x (0≤x≤3), 解得x=920, 在后期1.2=24x (x >3), 解得x=20, ∴920<x <20 ∴在920<x <20这段时间内不能回教室. 【点睛】本题考查了反比例函数和一次函数的综合,求出解析式是解题关键.12.(2020·河南九年级其他模拟)某校科技小组进行野外考察,途中遇到一片湿地,为了人员和设备能够安全迅速地通过这片湿地,他们沿着前进路线铺了若干块大小不同的木板,构筑成一条临时通道.根据学习函数的经验,该小组对木板对地面的压强与木板的面积之间的关系进行探究.已知当压力不变时,木板对地面的压强()P Pa 与木板面积()2S m的对应值如下表:(1)求P 与S 之间满足的函数关系式;(2)在平面直角坐标系中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象; (3)结合图形,如果要求压强不超过4000Pa ,木板的面积至少要多大?【答案】(1)600Sp =;(2)见解析;(3)当压强不超过4000Pa 时,木板面积至少20.15m 解:(1)1600154002300600⨯=⨯=⨯=.,600Sp ∴=; (2)如图所示,(3)当4000p =时,20.15s m =.答:当压强不超过4000Pa 时,木板面积至少20.15m .【点睛】本题主要考查反比例函数在实际生活中的应用,解题的关键是从实际问题中整理出函数模型,用反比例函数的知识解决实际问题,要认真观察图象得出正确的结果.13.(2020·广东深圳实验学校九年级期中)如图1,大桥桥型为低塔斜拉桥,图2是从图1抽象出的平面示意图,现测得拉索AB 与水平桥面的夹角是30°,拉索CD 与水平桥面的夹角是60°,两拉索顶端的距离B C 为4米,两拉索底端距离AD 为20米,试求立柱BE 的长.(结果精确到0.1 1.732≈)【答案】立柱BE 的长约为15.3米如图2,设BE=x 米,由BC=4米得CE=(x-4)米,在Rt △ABE 中 ∵tan BE A AE=,∠A=30°∴tan tan 30BE x AE A ===︒米; 在Rt △DCE 中 ∵tan CDE CE DE∠=,∠CDE=60°∴4D 4)tan tan 60CE x E x CDE -===-∠︒米 由AE-DE=20米,得4)20x -=解之得215.3x =≈.答:立柱BE 的长为15.3米.【点睛】此题考查三角函数的实际应用.此题关键是要分别在两个直角形内运用三角函数列关系式,再据题意例方程求解.14.(2020·长春吉大附中力旺实验中学九年级月考)数学爱好小组要测量5G 信号基站高度,一名同学站在距离5G 信号基站30m 的点E 处,测得基站项部的仰角52ACD ∠=°,已知测角仪的高度15m CE =..求这个5G 信号基站的高AB (精确到1m ).(参考数据:sin520.79,cos520.62,tan52 1.28===)【答案】40解:如图,过点C 作CD AB ⊥,垂足为D .则四边形CEBD 是矩形,15m BD CE ==.,在Rt ACD △中,30m,52CD EB ACD ==∠=︒ ∵tan AD ACE CD∠=, ∴tan 30 1.2838.4(m)AD CD ACD ∠=⋅≈⨯=.∴38.4 1.540(m)AB AD BD =+=+≈.答:这个5G 信号基站的高AB 约为40m .【点睛】本题主要考查锐角三角函数的应用.通过做辅助线,分割图形,构建直角三角形,并解直角三角形是解答本题的关键.15.(2020·潍坊市寒亭区教学研究室九年级一模)数学活动课上,小明和小红要测量小河对岸大树BC 的高度,小红在点A 测得大树顶端B 的仰角为45︒,小明从A 点出发沿斜坡走D ,在此处测得树顶端点B 的仰角为31︒,且斜坡AF 的坡比为1:2.(1)求小明从点A 到点D 的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC 的高度?若能,请计算:若不能,请说明理由.(参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)【答案】(1)4米 (2)能;22米解:(1)作DH AE ⊥于H ,如图所示:在Rt ADH ∆中, ∵12DH AH =, ∴2AH DH =,∵222AH DH AD +=,∴()(2222DH DH +=, ∴4DH =.答:小明从点A 到点D 的过程中,他上升的高度为4米.(2)如图所示:过点D 作DG BC ⊥于点G ,设BC xm =,在Rt ABC ∆中,45BAC ∠=︒,∴AC BC x ==,由(1)得28AH DH ==,在矩形DGCH 中,4DH CG ==,8DG CH AH AC x ==+=+,在Rt BDG ∆中,由4tan 0.68BG x BAG DG x ∠-==≈+, 解得:22x =答:大树的高度约为22米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.16.(2020·浙江九年级一模)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D 到BC 的距离;(2)求E 、E '两点的距离.【答案】(1)点D′到BC 的距离为()厘米;(2)E∵E′两点的距离是 解:(1)过点D′作D′H ⊥BC ,垂足为点H ,交AD 于点F ,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFD′=∠BHD′=90°.在Rt △AD′F 中,D′F=AD′•sin ∠DAD′=90×sin60°=453厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(453+70)厘米.答:点D′到BC 的距离为(453+70)厘米.(2)连接AE ,AE′,EE′,如图4所示.由题意,得:AE′=AE ,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE .∵四边形ABCD 是矩形,∴∠ADE=90°.在Rt △ADE 中,AD=90厘米,DE=30厘米, ∴223010AE AD DE =+=厘米,∴EE′=3010厘米.答:E 、E′两点的距离是3010厘米.【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F 的长度;(2)利用勾股定理求出AE 的长度.17.(2019·甘州中学九年级月考)如图,从一个建筑物的A 处测得对面楼BC 的顶部B 的仰角为32º,底部C 的俯角为45º,观测点与楼的水平距离AD 为31m ,则楼BC 的高度大约为多少米?(结果取整数).(参考数据:sin 320.5︒≈,cos320.8︒≈,tan 320.6︒≈)【答案】50.解:在Rt △ABD 中, ∵AD =31,∠BAD =32°, ∴BD =AD ⋅tan32°=31×0.6=18.6, 在Rt △ACD 中, ∵∠DAC =45°, ∴CD =AD =31,∴BC =BD +CD =18.6+31≈50m . 答:楼BC 的高度大约为50米. 【点睛】本题考查了仰角与俯角的知识,注意能借助仰角与俯角构造直角三角形并解直角三角形是解此题的关键. 18.(2020·浙江九年级一模)如图,小区内有一条南北方向的小路MN ,快递员从小路旁的A 处出发沿南偏东53°方向行走200m 将快递送至B 楼,又继续从B 楼沿南偏西30°方向行走120m 将快递送至C 楼,求此时快递员到小路MN 的距离.(计算结果精确到1m .参考数据:sin530.80,cos530.60,tan53 1.33︒≈︒≈︒≈)【答案】120m如图,过B 作BD ⊥MN 于D ,过C 作CE ⊥MN 于E ,过B 作BF ⊥EC 于F , 则四边形DEFB 是矩形, ∴BD =EF ,在Rt △ABD 中,ADB 90∠=︒ ,53DAB ∠=︒,AB =200m , ∴sin532000.8160BD AB =︒=⨯=m ,在Rt △BCF 中,90BFC ∠=︒ ,3CBF 0∠=︒,BC =120m , ∴1602CF BC ==m , ∴16060100CE EF CF =-=-=m , 答:快递员到小路MN 的距离是100m .【点睛】此题主要考查了解直角三角形的应用-方向角问题,正确把握定义是解题关键.19.(2020·浙江省临海市回浦实验中学九年级期中)在我市开展的创建文明城市活动中,某居民小区要在一块一边靠墙(墙长18m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC 边长为()x m ,花园的面积为2()y m(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)满足条件的花园面积能达到2200m 吗?若能,求出此时x 的值;若不能,说明理由; (3)当x 取何值时,花园的面积最大?最大面积为多少?【答案】(1)2240(1120)y x x x =-+≤<;(2)不能,理由见解析;(3)当x 取11米时,花园的面积最大,最大面积是2198m . 解:(1)由题意可得,()2402240y x x x x =⋅-=-+,0040218x x >⎧⎨<-≤⎩解不等式得11≤x <20即2240(1120)y x x x =-+≤<; (2)不能,理由:将200y =代入2240y x x =-+, 得2200240x x =-+, 解得,121011x x ==<,答:花园面积不能达到2200m ;(3)∵222402(10)200y x x x =-+=--+,∴函数图象的顶点为()10,200,开口向下,当10x <时,y 随x 的增大而增大,当10x >时,y 随x 的增大而减小,由题意可知,1120x ≤<,∴当11x =时,y 最大,此时198y =,答:当x 取11米时,花园的面积最大,最大面积是2198m . 【点睛】本题考查了二次函数的应用,结合实际问题并从中抽象出函数模型,借助二次函数解决实际问题是解决本题的关键.20.(2020·浙江九年级其他模拟)如图1,皮皮小朋友燃放一种手持烟花,这种烟花每隔1.6秒发射一发花弹,每一发花弹的飞行路径和爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h (米)随飞行时间t (秒)变化的规律如下表:(1)根据这些数据在图2的直角坐标系中画出相应的点,选择适当的函数表示h (米)与t (秒)之间的关系,并求出相应的函数表达式;(2)当第一发花弹发射2秒后,第二发花弹达到的高度为多少米?(3)为了安全,要求花弹爆炸时的高度不低于18米.皮皮发现在第一发花弹爆炸的同时,第二发花弹与它处于同一高度,请分析花弹的爆炸高度是否符合安全要求?【答案】(1)h=-2(t-3)2+19.8;(2)6.28米;(3)花弹的爆炸高度符合安全要求,理由见详解解:(1)描点如下图所示,其图象近似为抛物线,故可设其解析式为:h=a(t-3)2+19.8,把点(0,1.8)代入得:1.8=a(0-3)2+19.8,∴a=-2,∴h=-2(t-3)2+19.8,故相应的函数解析式为:h=-2(t-3)2+19.8,(2)∵花每隔1.6秒发射一发花弹∴当第一发花弹发射2秒后,第二发已经飞行了0.4秒,∴把t=0.4代入关系式h=-2(t-3)2+19.8即h=-2(0.4-3)2+19.8=6.28米,∴当第一发花弹发射2秒后,第二发花弹达到的高度为6.28米(3)∵这种烟花每隔1.6秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同,皮皮小朋友发射出的第一发花弹的函数解析式为:h=-2(t-3)2+19.8,∴第二发花弹的函数解析式为:h′=-2(t-4.6)2+19.8,皮皮发现在第一发花弹爆炸的同时,第二发花弹与它处于同一高度,则令h=h′得-2(t-3)2+19.8=-2(t-4.6)2+19.8∴t=3.8秒,此时h=h′=18.52米>18米,答:花弹的爆炸高度不符合安全要求.【点睛】本题是二次函数的应用题,需要先根据表格中数据描点,得出函数图象,再求出其解析式,分析变化趋势,可以代值验算,第三问需要从实际问题分析转变成数学模型,从而得解.。

【中考专项】2023年中考数学转向练习之选择题08 统计与概率

【中考专项】2023年中考数学转向练习之选择题08 统计与概率

【选择题】必考重点08 统计与概率统计与概率主要包括三部分内容:数据的收集与整理、数据分析和概率。

统计与概率是历年江苏省各地市中考的必考点,选择、填空以及解答均有考查。

其中在数据的收集与整理方面,主要考查全面调查与抽样调查的判断,总体、个体、样本、样本容量的概念,各类统计图表的判读,考查难度较低考生只要掌握基本的概念即可;在数据的分析方面,考点主要为平均数、中位数、众数的概念和计算、极差、方差、标准差的计算,以及数据稳定性和波动性的判断,考查难度较低。

概率方面,在选择题的考查一般为基本概念、事件发生的可能性大小、几何概率等。

【2022·江苏徐州·中考母题】我国近十年的人口出生率及人口死亡率如图所示.已知人口自然增长率=人口出生率—人口死亡率,下列判断错误的是()A.与2012年相比,2021年的人口出生率下降了近一半B.近十年的人口死亡率基本稳定C.近五年的人口总数持续下降D.近五年的人口自然增长率持续下降【考点分析】本题考查了折线统计图,从统计图获取信息是解题的关键.【思路分析】根据折线统计图逐项分析判断即可求解.【2022·江苏徐州·中考母题】将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A .14B .13C .12D 【考点分析】本题主要考查几何概率,根据正六边形的性质得到图中每个小三角形的面积都相等是解题的关键.【思路分析】如图,将阴影部分分割成图形中的小三角形,令小三角形的面积为a ,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【2022·江苏常州·中考母题】某汽车评测机构对市面上多款新能源汽车的0~100/h km 的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100/h km 的加速时间的中位数是s m ,满电续航里程的中位数是nkm ,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在( )A .区域①、②B .区域①、③C .区域①、④D .区域③、④【考点分析】本题考查了中位数的概念,根据中位数的值不变可知新添加的一组数据分别处在中位数的左右两侧或刚好都等于该中位数,理解这一点是解答本题的关键. 【思路分析】根据中位数的性质即可作答.【2022·江苏镇江·中考母题】第1组数据为:0、0、0、1、1、1,第2组数据为:00,0,,0m 个、11,1,,1n 个,其中m 、n 是正整数.下列结论:①当m n =时,两组数据的平均数相等;②当m n >时,第1组数据的平均数小于第2组数据的平均数;③当m n <时,第1组数据的中位数小于第2组数据的中位数;④当m n =时,第2组数据的方差小于第1组数据的方差.其中正确的是( ) A .①②B .①③C .①④D .③④【考点分析】此题考查了平均数、中位数、方差的求法,熟练掌握求解方法是解题的关键. 【思路分析】根据平均数、中位数、方差的求法分别求解后即可进行判断.1.(2022·江苏苏州·二模)如图,若随机向88⨯正方形网格内投针,则针尖落在阴影部分的概率为( )A .12B .58C .9π64D .25642.(2022·江苏·靖江市教师发展中心二模)甲、乙两个学校统计男女生人数,分别绘制了扇形统计图(如图),下列说法正确的是( )A .甲校的男生人数比乙校的男生人数多B .甲、乙两个学校的人数一样多C .乙校的女生人数比甲校的女生人数多D .甲校的男女生人数一样多3.(2022·江苏徐州·模拟预测)抗击新冠肺炎疫情期间,为了避免人员大量聚集,某公司复工后采取分时段上、下班方式,以错开高峰.小刘为了解本公司员工上下班情况,将考勤表中某天的相关数据制成条形统计图,已知该公司员工上下班各时段分别为:(8:0016:30)A -,(8:3017:00)B -,(9:0017:30)C -,(9:3018:00)D -,由图可知,下列说法错误的是( )A .统计图反映了该公司员工上下班各时段内的人数情况B .该公司共有870人C .该公司员工上下班在时段C 内的人数占总人数的30%D .该公司员工上下班在时段B 内的人数比时段A 内的人数多1倍 4.(2022·江苏泰州·一模)下列说法正确的是( ) A .“清明时节雨纷纷”是必然事件B .为了解某灯管的使用寿命,可以采用普查的方式进行C .两组身高数据的方差分别是2S =甲0.01,2S =乙0.02,那么乙组的身高比较整齐 D .一组数据3,5,4,5,6,7的众数、中位数和平均数都是5 5.(2022·江苏盐城·一模)下列说法错误的是( ) A .为了统计实验中学的学生人数,应采用抽样调查B .从一个只装有黄球和白球的不透明的袋子中,“摸出红球”是不可能事件C .想要了解盐城地区2021年第一季度的气温变化趋势,应选择折线统计图D .甲乙两组数据,若20.2S =甲,20.23S =乙,则甲组数据更为稳定6.(2022·江苏徐州·一模)下图是第七次全国人口普查的部分结果.下列判断正确的是( )A.江苏0-14岁人口比重高于全国B.徐州15-59岁人口比重高于江苏C.江苏60岁以上人口比重低于徐州D.徐州15岁以上人口比重低于江苏7.(2022·江苏苏州·模拟预测)有一个摊位游戏,先旋转一个转盘的指针,如果指针箭头停在奇数的位置,玩的人可以从袋子里抽出一个弹珠,当摸到黑色的弹珠就能得到奖品,转盘和弹珠如下图所示,小明玩了一次这个游戏,则小明得奖的可能性为()A.不可能B.不太可能C.非常有可能D.一定可以8.(2022·江苏徐州·模拟预测)九年级一班数学老师对全班学生在模拟考试中A卷成绩进行统计后,制成如下的统计表:则该班学生A卷成绩的众数和中位数分别是()A.82分,82分B.82分,83分C.80分,82分D.82分,84分9.(2022·江苏无锡·一模)下列说法正确的是()A.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是必然事件B.某市天气预报明天的降水概率为90%,则“明天下雨”是确定事件C.小丽买一张体育彩票中“一等奖”是随机事件D.若a是实数,则“|a|≥0”是不可能事件10.(2022·江苏·苏州市振华中学校模拟预测)一组不完全相同的数据a1,a2,a3,…,an的平均数为m,把m加入这组数据,得到一组新的数据a1,a2,a3,…,an,m,把新、旧数据的平均数、中位数,众数、方差这四个统计量分别进行比较,一定发生变化的统计量的个数是()A.1B.2C.3D.411.(2022·江苏徐州·二模)某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A.平均数是160B.众数是165C.中位数是167.5D.方差是2 12.(2022·江苏连云港·二模)某校九年级学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()A.这组数据的中位数是7.4B.这组数据的众数是7.5C.这组数据的平均数是7.3D.这组数据极差的是0.513.(2022·江苏·兴化市教师发展中心一模)如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是()A.18B.14C.13D.1214.(2022·江苏徐州·一模)五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),下列结论错误的是()A .本次抽样调查的样本容量是5000B .扇形统计图中的m 为10%C .若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D .样本中选择公共交通出行的有2400人15.(2022·江苏南京·模拟预测)某餐厅规定等位时间达到30分钟(包括30分钟)可享受优惠.现统计了某时段顾客的等位时间t (分钟),数据分成6组:1015t ≤<,1520t ≤<,2025t ≤<,2530t ≤<,3035t ≤<,如图是根据数据绘制的统计图.下列说法正确的是( )A .此时段有1桌顾客等位时间是40分钟B .此时段平均等位时间小于20分钟C .此时段等位时间的中位数可能是27D .此时段有6桌顾客可享受优惠16.(2022·江苏·江阴市祝塘第二中学一模)一组数据:3,4,4,4,5.若拿掉一个数据4,则发生变化的统计量是( )A.极差B.方差C.中位数D.众数17.(2022·江苏·苏州市第十六中学一模)学校为了丰富学生课余活动开展了一次“爱我学校,唱我学校”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60B.9.60,9.60C.9.60,9.70D.9.65,9.6018.(2022·江苏扬州·一模)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①19.(2022·江苏·扬州中学教育集团树人学校一模)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁20.(2022·江苏泰州·一模)如图是小刚进入中考复习阶段以来参加的10次物理水平测试成绩(满分70分)的统计图,那么关于这10次测试成绩,下列说法错误的是()A.中位数是55B.众数是60C.方差是26D.平均数是5421.(2022·江苏扬州·一模)某学校足球队23人年龄情况如下表:则下列结论正确的是()A.极差为3B.众数为15C.中位数为14D.平均数为1422.(2022·江苏苏州·二模)为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生23.(2022·江苏·靖江外国语学校一模)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月24.(2022·江苏·扬州中学教育集团树人学校一模)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.23B.16C.13D.1225.(2022·江苏·无锡市天一实验学校三模)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,15【选择题】必考重点08 统计与概率统计与概率主要包括三部分内容:数据的收集与整理、数据分析和概率。

2020年中考数学压轴题-专题08 动点产生的平行四边形(解析版)

2020年中考数学压轴题-专题08 动点产生的平行四边形(解析版)

专题08 动点产生的平行四边形教学重难点1.理解平行四边形的性质和判定;2.能应用平行四边形的性质和判定进行相关计算和证明;3.培养学生能在点的运动过程中寻找平行四边形,继而解决相关问题;4.培养学生分类讨论的能力,能应用分类讨论思想解决相关问题;5.体验运动过程,培养学生动态数学思维能力。

【备注】:1.根据后面两个图让学生回顾平行四边形的性质和判定,为后面的例题讲解做好准备;2.部分地方引导学生填空,让学生自己回顾。

时间大概5分钟。

平行四边形的性质:平行四边形的判定:【备注】:1.以下每题教法建议,请老师根据学生实际情况参考;2.在讲解时:不宜采用灌输的方法,应采用启发、诱导的策略,并在读题时引导学生发现一些题目中的条件(相等的量、不变的量、隐藏的量等等),使学生在复杂的背景下自己发现、领悟题目的意思;3.可以根据各题的“教法指导”引导学生逐步解题,并采用讲练结合;注意边讲解边让学生计算,加强师生之间的互动性,让学生参与到例题的分析中来;4.例题讲解,可以根据“参考教法”中的问题引导学生分析题目,边讲边让学生书写,每个问题后面有答案提示;5.引导的技巧:直接提醒,问题式引导,类比引导等等;6.部分例题可以先让学生自己试一试,之后再结合学生做的情况讲评;7.每个题目的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间足够的情况下讲解。

1.(2019·辽宁中考真题)如图1,在平面直角坐标系中,一次函数y =﹣34x +3的图象与x 轴交于点A ,与y 轴交于B 点,抛物线y =﹣x 2+bx +c 经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC ⊥x 轴于点C ,交直线AB 于点E .(1)求抛物线的函数表达式(2)是否存在点D ,使得⊥BDE 和⊥ACE 相似?若存在,请求出点D 的坐标,若不存在,请说明理由; (3)如图2,F 是第一象限内抛物线上的动点(不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标. 【整体分析】(1)根据334y x =-+,求出A ,B 的坐标,再代入抛物线解析式中即可求得抛物线解析式;(2)⊥BDE 和⊥ACE 相似,要分两种情况进行讨论: ⊥⊥BDE⊥⊥ACE ,求得13(4D ,3);⊥⊥DBE⊥⊥ACE ,求得23(12D ,50)9; (3)由DEGF 是平行四边形,可得DE⊥FG ,DE=FG ,设213(,3)4D m m m -++,3(,3)4E m m -+,213(,3)4F n n n -++,3(,3)4G n n -+,根据平行四边形周长公式可得:DEGF 周长=23892()48m --+,由此可求得点G 的坐标. 【满分解答】(1)在334y x =-+中,令0x =,得3y =,令0y =,得4x =,(4,0)A ∴,(0,3)B ,将(4,0)A ,(0,3)B 分别代入抛物线2y x bx c =-++中,得:24403b c c ⎧-++=⎨=⎩,解得:1343b c ⎧=⎪⎨⎪=⎩,∴抛物线的函数表达式为:21334y x x =-++. (2)存在.如图1,过点B 作BH CD ⊥于H ,设(,0)C t ,则213(,3)4D t t t -++,3(,3)4E t t -+,(,3)H t ;334EC t ∴=-+,4AC t =-,BH t =,2134DH t t =-+,24DE t t =-+BDE ∆∵和ACE ∆相似,BED AEC ∠=∠BDE ACE ∴∆∆∽或DBE ACE ∆∆∽⊥当BDE ACE ∆∆∽时,90BDE ACE ∠=∠=︒,∴BD AC DE CE=,即:BD CE AC DE =g g 23(3)(4)(4)4t t t t t ∴-+=-⨯-+,解得:10t =(舍去),24t =(舍去),3134t =,13(4D ∴,3)⊥当DBE ACE ∆∆∽时,BDE CAE ∠=∠ BH CD ⊥Q90BHD ∴∠=︒,∴tan tan BH CEBDE CAE DH AC=∠=∠=,即:BH AC CE DH =g g 2313(4)(3)()44t t t t t ∴-=-+-+,解得:10t =(舍),24t =(舍),32312t =,23(12D ∴,50)9; 综上所述,点D 的坐标为13(4,3)或23(12,50)9;(3)如图3,Q 四边形DEGF 是平行四边形 //DE FG ∴,DE FG =设213(,3)4D m m m -++,3(,3)4E m m -+,213(,3)4F n n n -++,3(,3)4G n n -+,则:24DE m m =-+,24FG n n =-+,2244m m n n ∴-+=-+,即:()(4)0m n m n -+-=,0m n -≠Q 40m n ∴+-=,即:4m n +=过点G 作GK CD ⊥于K ,则//GK AC EGK BAO ∴∠=∠∴cos cos GK AOEGK BAO EG AB=∠=∠=,即:GK AB AO EG =g g 5()4n m EG ∴-=,即:5()4EG n m =-DEGF ∴周长2253892()2[(4)()]2()448DE EG m m n m m =+=-++-=--+20-<Q ,∴当34m =时,DEGF ∴Y 周长最大值898=, 13(4G ∴,9)16【点睛】此题考查二次函数综合题,综合难度较大,解答关键在于结合函数图形进行计算,再利用待定系数法求解析式,配合辅助线利用相似三角形的性质进行解答.2.如图,在平面直角坐标系中,直线b kx y +=分别与x 轴负半轴交于点A ,与y 轴的正半轴交于点B ,⊙P 经过点A 、点B (圆心P 在x 轴负半轴上),已知AB=10,425=AP 。

中考一轮复习 数学专题08 反比例函数(学生版) 教案

中考一轮复习 数学专题08 反比例函数(学生版)  教案

专题08 反比例函数一.选择题1.(2022·山东潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是( )A .海拔越高,大气压越大B .图中曲线是反比例函数的图象C .海拔为4千米时,大气压约为70千帕D .图中曲线表达了大气压和海拔两个量之间的变化关系 2.(2022·湖南郴州)如图,在函数()20=>y x x 的图像上任取一点A ,过点A 作y 轴的垂线交函数()80y x x=-<的图像于点B ,连接OA ,OB ,则AOB 的面积是( )A .3B .5C .6D .103.(2022·黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数3y x=的图象上,顶点A 在反比例函数ky x=的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .1-D .2-4.(2022·江苏常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .50y x =+B .50y x =C .50y x=D .50=x y 5.(2022·四川内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣226.(2022·内蒙古通辽)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =120BDC ∠=︒,BCD S =△()0ky x x =<的图像经过C ,D 两点,则k 的值是( )A .-B .6-C .-D .12-7.(2022·湖南)在同一平面直角坐标系中,函数1(0)y kx k =+≠和(0)ky k x=≠的图像大致是( )A .B .C .D .8.(2022·海南)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( )A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)9.(2022·广西贺州)己知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为( )A .B .C .D .10.(2022·广东)点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A .1yB .2yC .3yD .4y11.(2022·江苏无锡)一次函数y =mx +n 的图像与反比例函数y =mx的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m,-2m )、B (m ,1),则△OAB 的面积( ) A .3B .134 C .72D .15412.(2022·河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是( )A .呼气酒精浓度K 越大,1R 的阻值越小B .当K =0时,1R 的阻值为100C .当K =10时,该驾驶员为非酒驾状态D .当120=R 时,该驾驶员为醉驾状态13.(2022·湖北荆州)如图是同一直角坐标系中函数12y x =和22y x =的图象.观察图象可得不等式22x x>的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >14.(2022·河北)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m 个人共同完成需n 天,选取6组数对(),m n ,在坐标系中进行描点,则正确的是( )A .B .C .D .15.(2022·湖北十堰)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x =>和()220ky k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .9二.填空题16.(2022·辽宁)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.17.(2022·内蒙古呼和浩特)点()121,-a y 、()2,a y 在反比例函数(0)ky k x=>的图象上,若120y y <<,则a 的取值范围是______.18.(2022·山东烟台)如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ∥x 轴于点C ,交OB 于点D .若D 为AC 的中点,∥AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.19.(2022·北京)在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)20.(2022·贵州铜仁)如图,点A 、B 在反比例函数ky x=的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 间面积为6,12AD AC =,则k 的值为_______.21.(2022·广西桂林)如图,点A 在反比例函数y =kx的图像上,且点A 的横坐标为a (a <0),AB ∥y 轴于点B ,若AOB 的面积是3,则k 的值是 _____.22.(2022·贵州遵义)反比例函数()0ky k x=≠与一次函数1y x =-交于点()3,A n ,则k 的值为__________.23.(2022·黑龙江哈尔滨)已知反比例函数6y x=-的图象经过点()4,a ,则a 的值为___________.24.(2022·湖北武汉)在反比例1k y x-=的图象的每一支上,y 都随x 的增大而减小,且整式24x kx -+是一个完全平方式,则该反比例函数的解析式为___________.25.(2022·黑龙江齐齐哈尔)如图,点A 是反比例函数(0)ky x x=<图象上一点,过点A 作AB ∥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且∥ABC 的面积为4,则k =______________.26.(2022·贵州毕节)如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)ky x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.27.(2022·湖北鄂州)如图,已知直线y =2x 与双曲线ky x=(k 为大于零的常数,且x >0)交于点A ,若OA k 的值为 _____.28.(2022·福建)已知反比例函数ky x=的图象分别位于第二、第四象限,则实数k 的值可以是______.(只需写出一个符合条件的实数)29.(2022·贵州黔东南)如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.30.(2022·内蒙古包头)如图,反比例函数(0)ky k x=>在第一象限的图象上有(1,6)A ,(3,)B b 两点,直线AB 与x 轴相交于点C ,D 是线段OA 上一点.若AD BC AB DO ⋅=⋅,连接CD ,记,ADC DOC 的面积分别为12,S S ,则12S S -的值为___________.31.(2022·广西梧州)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.32.(2022·山东威海)正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =kx(k ≠0)的图象经过点C ,则k 的值为 _____.33.(2022·广西玉林)如图,点A 在双曲线(0,0)k y k x x=>>上,点B 在直线2(0,0)y mx b m b =->>上,A 与B 关于x 轴对称,直线l 与y 轴交于点C ,当四边形AOCB 是菱形时,有以下结论:①()A b ②当2b =时,k =③m =④22AOCB S b =四边形 则所有正确结论的序号是_____________.34.(2022·四川宜宾)如图,△OMN 是边长为10的等边三角形,反比例函数y =kx(x >0)的图象与边MN 、OM分别交于点A 、B (点B 不与点M 重合).若AB ∥OM 于点B ,则k 的值为______.35.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强()Pa p 是它的受力面积2()m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为_________ Pa .三.解答题36.(2022·湖南湘潭)已知()3,0A 、()0,4B 是平面直角坐标系中两点,连接AB .(1)如图①,点P 在线段AB 上,以点P 为圆心的圆与两条坐标轴都相切,求过点P 的反比例函数表达式;(2)如图②,点N 是线段OB 上一点,连接AN ,将AON 沿AN 翻折,使得点O 与线段AB 上的点M 重合,求经过A 、N 两点的一次函数表达式.37.(2022·山东临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂),小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm ),确定支点O ,并用细麻绳固定,在支点O 左侧2cm 的A 处固定一个金属吊钩,作为秤钩; 第二步:取一个质量为0.5kg 的金属物体作为秤砣.(1)图1中,把重物挂在秤钩上,秤砣挂在支点О右侧的B 处,秤杆平衡,就能称得重物的质量.当重物的质量变化时,OB 的长度随之变化.设重物的质量为kg x ,OB 的长为cm y .写出y 关于x 的函数解析式;若048y <<,求x 的取值范围.(2)调换秤砣与重物的位置,把秤砣挂在秤钩上,重物挂在支点О右侧的B 处,使秤杆平衡,如图2.设重物的质量为kg x ,OB 的长为cm y ,写出y 关于x 的函数解析式,完成下表,画出该函数的图象.38.(2022·山东聊城)如图,直线()30y px p =+≠与反比例函数()0ky k x=>在第一象限内的图象交于点()2,A q ,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线3y px =+于点E ,且:3:4AOB COD S S =△△.(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.39.(2022·湖北武汉)如图,OA OB =,90AOB ∠=︒,点A ,B 分别在函数1k y x =(0x >)和2ky x =(0x >)的图象上,且点A 的坐标为(1,4).(1)求1k ,2k 的值:(2)若点C ,D 分在函数1k y x =(0x >)和2k y x=(0x >)的图象上,且不与点A ,B 重合,是否存在点C ,D ,使得COD AOB △△≌,若存在,请直接出点C ,D 的坐标:若不存在,请说明理由.40.(2022·黑龙江大庆)已知反比例函数ky x=和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)ky x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.41.(2022·内蒙古赤峰)阅读下列材料定义运算:min ,a b ,当a b ≥时,min ,a b b =;当a b <时,min ,a b a =.例如:min 1,31-=-;min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4-=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,()()2min,213kx b x x x x-+=+--.求这两个函数的解析式.42.(2022·四川雅安)如图,在平面直角坐标系中,等腰直角三角形ABO 的直角顶点A 的坐标为(m ,2),点B 在x 轴上,将∥ABO 向右平移得到∥DEF ,使点D 恰好在反比例函数y =8x(x >0)的图象上.(1)求m 的值和点D 的坐标;(2)求DF 所在直线的表达式; (3)若该反比例函数图象与直线DF 的另一交点为点G ,求S △EFG .43.(2022·黑龙江绥化)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫⎪⎝⎭两点,且与反比例函数22ky x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围; (3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.44.(2022·湖南永州)受第24届北京冬季奥林匹克运动会的形响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道A 端以平均()2x +米/秒的速度滑到B 端,用了24秒;第二次从滑雪道A 端以平均()3x +米/秒的速度滑到B 端,用了20秒.(1)求x 的值;(2)设小勇从滑雪道A 端滑到B 瑞的平均速度为v 米/秒,所用时间为t 秒,请用含t 的代数式表示v (不要求写出t 的取值范围).45.(2022·湖南岳阳)如图,反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式;(2)求ABC 的面积; (3)请结合函数图象,直接写出不等式kmx x<的解集.45.(2022·湖北荆州)小华同学学习函数知识后,对函数()()2410410x x y x x x ⎧-<≤⎪=⎨-≤->⎪⎩或通过列表、描点、连线,画出了如图1所示的图象.请根据图象解答:(1)【观察发现】①写出函数的两条性质:______;______;②若函数图象上的两点()11,x y ,()22,x y 满足120x x +=,则120y y +=一定成立吗?______.(填“一定”或“不一定”)(2)【延伸探究】如图2,将过()1,4A -,()4,1B -两点的直线向下平移n 个单位长度后,得到直线l 与函数()41y x x=-≤-的图象交于点P ,连接P A ,PB . ①求当n =3时,直线l 的解析式和∥P AB 的面积;②直接用含....n 的代数式表示......∥P AB 的面积.46.(2022·四川宜宾)如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =. (1)求一次函数和反比例函数的表达式;(2)求OCD 的面积.47.(2022·湖北恩施)如图,在平面直角坐标系中,O 为坐标原点,已知∥ACB =90°,A (0,2),C (6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k ≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围.48.(2022·贵州贵阳)一次函数3y x =--的图象与反比例函数ky x=的图象相交于()4,A m -,(),4B n -两点. (1)求这个反比例函数的表达式;(2)根据图象写出使一次函数值小于反比例函数值的x 的取值范围.49.(2022·山东青岛)如图,一次函数y kx b =+的图象与x 轴正半轴相交于点C ,与反比例函数2y x=-的图象在第二象限相交于点(1,)A m -,过点A 作AD x ⊥轴,垂足为D ,AD CD =. (1)求一次函数的表达式;(2)已知点(,0)E a 满足CE CA =,求a 的值.50.(2022·辽宁营口)如图,在平面直角坐标系中,OAC 的边OC 在y 轴上,反比例函数()0ky x x=>的图象经过点A 和点()2,6B ,且点B 为AC 的中点.(1)求k 的值和点C 的坐标;(2)求OAC 的周长.51.(2022·江苏常州)如图,在平面直角坐标系xOy 中,一次函数2y x b =+的图象分别与x 轴、y 轴交于点A 、B ,与反比例函数(0)ky x x=>的图象交于点C ,连接OC .已知点(0,4)B ,BOC 的面积是2.(1)求b 、k 的值;(2)求AOC △的面积.52.(2022·四川广安)如图,一次函数y =kx +b (k 、b 为常数,k ≠0)的图象与反比例函数y =mx(m 为常数,m ≠0)的图象在第二象限交于点A (﹣4,3),与y 轴负半轴交于点B ,且OA =OB (1)求反比例函数和一次函数的解析式.(2)根据图象直接写出当x <0时,不等式kx +b ≤mx的解集.53.(2022·内蒙古呼和浩特)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于A 、B 两点,且A 点的横坐标为1,过点B 作BE x ∥轴,AD BE ⊥于点D ,点71,22⎛⎫- ⎪⎝⎭C 是直线BE上一点,且AC =.(1)求一次函数与反比例函数的解析式;(2)根据图象,请直接写出不等式0mkx b x+-<的解集.54.(2022·广西)已知:点 A (1,3)是反比例函数1ky x=(k ≠0)的图象与直线2y mx =( m ≠0)的一个交点.(1)求k 、m 的值:(2)在第一象限内,当21>y y 时,请直接写出x 的取值范围55.(2022·吉林)密闭容器内有一定质量的气体,当容器的体积V (单位:3m )变化时,气体的密度ρ(单位:3kg/m )随之变化.已知密度ρ与体积V 是反比例函数关系,它的图像如图所示. (1)求密度ρ关于体积V 的函数解析式;(2)当3m 10V =时,求该气体的密度ρ.56.(2022·四川达州)如图,一次函数1y x =+与反比例函数ky x=的图象相交于(,2)A m ,B 两点,分别连接OA ,OB .(1)求这个反比例函数的表达式;(2)求AOB 的面积;(3)在平面内是否存在一点P ,使以点O ,B ,A ,P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.57.(2022·浙江金华)如图,点A 在第一象限内,AB x ⊥轴于点B ,反比例函数(k 0,x 0)k y x=≠>的图象分别交,AO AB 于点C ,D .已知点C 的坐标为(2,2),1BD =.(1)求k 的值及点D 的坐标.(2)已知点P 在该反比例函数图象上,且在ABO 的内部(包括边界),直接写出点P 的横坐标x 的取值范围.58.(2022·四川南充)如图,直线AB 与双曲线交于(1,6),(,2)A B m -两点,直线BO 与双曲线在第一象限交于点C ,连接AC .(1)求直线AB 与双曲线的解析式.(2)求ABC 的面积.59.(2022·重庆)反比例函数4y x =的图象如图所示,一次函数y kx b =+(0k ≠)的图象与4y x=的图象交于(,4)A m ,(2,)B n -两点,(1)求一次函数的表达式,并在所给的平面直角坐标系中面出该函数的图象;(2)观察图象,直接写出不等式4kx b x+<的解集;(3)一次函数y kx b =+的图象与x 轴交于点C ,连接OA ,求OAC 的面积.60.(2022·四川德阳)如图,一次函数312y x =-+与反比例函数k y x =的图象在第二象限交于点A ,且点A 的横坐标为-2.(1)求反比例函数的解析式;(2)点B 的坐标是()3,0-,若点P 在y 轴上,且AOP 的面积与AOB 的面积相等,求点P 的坐标.61.(2022·山东泰安)如图,反比例函数y=mx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.。

初三数学《三角函数的实际应用》题目

初三数学《三角函数的实际应用》题目

专题08《三角函数的实际应用》题型一、利用仰角和俯视解决问题【例1】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).【变式1-1】小明在楼高AB=15米的楼顶A处测得一电视塔底部C的俯角为31°,测得塔顶D的仰角为52°,求楼顶A到塔顶D的距离(结果保留整数).(参考数据:sin31°=0.52,cos31°=0.86,tan31°=0.80,sin52°=0.79,cos52°=0.62,tan52°=1.28)【变式1-2】如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需绕行B地.已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向.若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长.(结果保留整数)(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)【变式1-3】如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB 和CD之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°,点B、E、D在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1m)【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90】【例2】如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE =39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)【变式2-1】为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上(如图所示).该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A 的仰角为45°,平面镜E的俯角为67°,测得FD=2.4米.求旗杆AB的高度约为多少米?(结果保留整数,参考数据:sin67°≈,cos67°≈,tan67°≈)【变式2-2】如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D 与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)【变式2-3】某公园的人工湖边上有一座假山,假山顶上有一竖起的建筑物CD,高为10米,数学小组为了测量假山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,求假山的高度DE.(结果精确到1米,参考数据:sin35°≈,cos35°≈,tan35°≈)题型二、方位角的应用【例1】钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一我国渔政执法船C ,求此时船C 与船B 的距离是多少.(结果保留根号)【变式1-1】如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB ,栈道AB 与景区道路CD 平行.在C 处测得栈道一端A 位于北偏西42︒方向,在D 处测得栈道另一端B 位于北偏西32︒方向.已知120CD m =,80BD m =,求木栈道AB 的长度(结果保留整数).(参考数据:17sin 3232︒≈,17cos3220︒≈,5tan 328︒≈,27sin 4240︒≈,3cos 424︒≈,9tan 42)10︒≈【变式1-2】如图,位于A 处的海上救援中心获悉:在其北偏东68︒方向的B 处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30︒且距离A 点20海里的C 处救生船,此时,遇险船在救生船的正东方向B 处,现救生船沿着航线CB 前往B 处救援,求救生船到达B 处行驶的距离?(参考数据:sin 680.90︒≈,cos680.36︒≈,tan 68 2.50︒≈,1.7)≈【例2】我国北斗导航装备的不断更新,极大方便人们的出行.某中学从A 地出发,组织学生利用导航到B 、C 两个地区进行研学考察活动,出发时,发现C 地恰好在A 地正北方向,且距离A 地15.3千米.但是导航显示路线应沿北偏东45°方同走到B 地,再沿北偏西37°方向走一段距离才能到达C地,求B,C两地的距离(精确到1千米).(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.7)【变式2-1】某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈【变式2-2】码头A、B位于东西走向的河岸线l上,一游轮在P处测得码头A在其北偏东70°,游轮向东航行10分钟后到达Q处,此时测得码头B在其北偏东35°.已知游轮的速度为30千米/小时,两码头A、B相距2千米.(1)求点P到河岸线l的距离;(2)若该游轮按原速度从点Q驶向码头B,则它至少需要多长时间才能到达码头B?(参考数据:sin35°≈,cos35°≈,tan35°≈,sin70°≈,cos70°≈,tan70°≈)【变式2-3】海岛A 的周围8 n mile 内有暗礁,渔船跟踪鱼群由西向东航行,在点B 处测得海岛A 位于北偏东67︒,航行12n mlie 到达C 点,又测得小岛A 在北偏东45︒方向上.如果渔船不改变航线继续向东航行,那么它有没有触礁的危险?请说明理由.(参考数据:12sin 6713︒≈,5cos 6713︒,12tan 67)5︒≈题型三、综合类【例1】如图,马路的两边CF ,DE 互相平行,线段CD 为人行横道,马路两侧的A ,B 两点分别表示车站和超市.CD 与AB 所在直线互相平行,且都与马路的两边垂直,马路宽20米,A ,B 相距62米,∠A =67°,∠B =37°.(1)求CD 与AB 之间的距离;(2)某人从车站A 出发,沿折线A →D →C →B 去超市B .求他沿折线A →D →C →B 到达超市比直接横穿马路多走多少米.(参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈)【变式1-1】如图,某学校教学楼AB的后面有一建筑物CD,在距离CD正后方28米的观测点P处,以22︒的仰角测得建筑物的顶端C恰好挡住教学楼的顶端A,而在建筑物CD 上距离地面2米高的E处,测的教学楼的顶端A的仰角为45︒,求教学楼AB的高度(结果保留整数,2 tan22)5︒≈.【变式1-2】如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.【变式1-3】在一次综合实践课上,同学们为教室窗户设计一个遮阳篷,小明同学绘制的设计图如图所示,其中AB表示窗户,且AB=2米,BCD表示直角遮阳蓬,已知当地一年中正午时刻太阳光与水平线CD的最小夹角∠PDN=18.6°,最大夹角∠MDN=64.5°请你根据以上数据,帮助小明同学计算出遮阳篷中CD的长是多少米?(结果精确到0.1)(参考数据:sin18.6°≈0.32,tan18.6°≈0.34,sin64.5°≈0.90,tan64.5°≈2.1)【变式1-4】如图是某斜拉桥引申出的部分平面图,AE,CD是两条拉索,其中拉索CD与水平桥面BE的夹角为72°,其底端与立柱AB底端的距离BD为4米,两条拉索顶端距离AC为2米,若要使拉索AE与水平桥面的夹角为35°,请计算拉索AE的长.(结果精确到0.1米)(参考数据:sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)【变式1-5】2018年2月17日上午10点34分,我国自主研制的第二架C919大型客机在上海浦东国际机场进行首次飞行,这意味着C919大型客机逐步拉开全面试验试飞的新征程.这大大激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【变式1-6】如图,在一条河流的两岸分别有A,B,C,D四棵景观树,已知AB∥CD,某数学活动小组测得∠DAB=45°,∠CBE=73°,AB=10m,CD=30m,请计算这条河的宽度.(参考数据:sin73°≈,cos73°≈,tan73°≈)【课堂练习】1、如图所示,小河中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)2、小明家所在居民楼的对面有一座大厦AB,AB=80米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)3、若商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式动扶梯,如图所示,已知原阶梯式自动扶梯AB长为10m,扶梯AB的坡度i为1:.改造后的斜坡式动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.参考数据:sin15°≈0.26,cos15°≈0.97,tanl5°≈0.27)4、共享单车为人们的生活带来了极大的便利.如图,一辆单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A,B之间的距离为49cm,现测得AC,BC与AB的夹角分别为45°,68°.若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为5cm,求点E到地面的距离.(结果保留一位小数,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50)。

中考数学专题08平面直角坐标系与一次函数-三年(2019-2021)中考真题数学分项汇编

中考数学专题08平面直角坐标系与一次函数-三年(2019-2021)中考真题数学分项汇编

专题08.平面直角坐标系与一次函数一、单选题1.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,62.(2021·湖南邵阳市·中考真题)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( )A .小明修车花了15minB .小明家距离学校1100mC .小明修好车后花了30min 到达学校D .小明修好车后骑行到学校的平均速度是3m/s3.(2021·重庆中考真题)小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y (单位:km )与时间t (单位:h )之间的对应关系.下列描述错误..的是( )A .小明家距图书馆3kmB .小明在图书馆阅读时间为2hC .小明在图书馆阅读书报和往返总时间不足4hD .小明去图书馆的速度比回家时的速度快 4.(2021·陕西中考真题)在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m 的值为( )A .-5B .5C .-6D .65.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个6.(2021·江苏苏州市·中考真题)已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是( )A .m n >B .m n =C .m n <D .无法确定7.(2021·四川乐山市·中考真题)如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为( )A .12y x =B .y x =C .32y x =D .2y x =8.(2021·江苏扬州市·中考真题)如图,一次函数y x =+的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30交x 轴于点C ,则线段AC 长为( )A B.C .2+D 9.(2021·重庆中考真题)甲无人机从地面起飞,乙无人机从距离地面20m 高的楼顶起飞,两架无人机同时匀速上升10s .甲、乙两架无人机所在的位置距离地面的高度y (单位:m )与无人机上升的时间x (单位:s )之间的关系如图所示.下列说法正确的是( )A .5s 时,两架无人机都上升了40mB .10s 时,两架无人机的高度差为20mC .乙无人机上升的速度为8m /sD .10s 时,甲无人机距离地面的高度是60m10.(2021·甘肃武威市·中考真题)将直线5y x =向下平移2个单位长度,所得直线的表达式为( ) A .52y x =- B .52y x =+ C .()52y x =+ D .()52y x =-11.(2021·安徽中考真题)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A .23cmB .24cmC .25cmD .26cm12.(2021·四川凉山州·中考真题)函数y kx b =+的图象如图所示,则关于x 的一元二次方程210x bx k ++-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定13.(2021·浙江嘉兴市·中考真题)已知点(),P a b 在直线34y x =--上,且250a b -≤( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 14.(2020·贵州毕节市·中考真题)在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是( )A .()5,4B .()4,5C .()4,5-D .()5,4-15.(2020·浙江嘉兴市·中考真题)一次函数y=-2x -1的图象大致是( )A .B .C .D .16.(2020·四川广安市·中考真题)一次函数7y x =--的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限17.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( ) A . B . C . D .18.(2020·四川中考真题)已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值为3时,自变量x 的值为( ) A .﹣2 B .﹣23 C .﹣2或﹣23 D .﹣2或﹣3219.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .220.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .621.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,点1234,,,,A A A A 在x 轴正半轴上,点123,,,B B B在直线(0)3y x x =≥上,若1(1,0)A ,且112223334,,,A B A A B A A B A 均为等边三角形,则线段20192020B B 的长度为( )A.2B.2C.2 D.222.(2020·内蒙古鄂尔多斯市·中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)23.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<24.(2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y < 25.(2020·四川内江市·中考真题)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( )A .122t ≤<B .112t <≤ C .12t <≤ D .122t ≤≤且1t ≠ 26.(2020·山东潍坊市·中考真题)若定义一种新运算:(2)6(2)a ba b a b a b a b 例如:31312⊗=-=;545463⊗=+-=.则函数(2)(1)y x x =+⊗-的图象大致是( )A .B .C .D .27.(2020·湖南湘潭市·中考真题)如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >28.(2020·湖北黄石市·中考真题)函数13y x =+-x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠ D .2x >,且3x ≠29.(2020·湖北武汉市·中考真题)一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( ) A .32 B .34 C .36 D .3830.(2020·湖北宜昌市·中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列31.(2020·四川凉山彝族自治州·中考真题)点()2,3A 关于x 轴对称的点的坐标是( )A .()2,3--B .()2,3-C .()2,3D .()2,3-32.(2019·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)33.(2019·浙江中考真题)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A 的位置表述正确的是( )A .在南偏东75º方向处B .在5km 处C .在南偏东15º方向5km 处D .在南偏东75º方向5km 处34.(2019·江苏苏州市·中考真题)若一次函数y kx b =+(k b 、为常数,且0k ≠)的图象经过点()01A -,,()11B ,,则不等式1kx b +>的解为( )A .0x <B .0x >C .1x <D .1x >35.(2019·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点1A 、2A 、3A …n A 在x 轴上,1B 、2B 、3B …n B 在直线3y x =上,若()11,0A ,且112A B A ∆、223A B A ∆…1n n n A B A +∆都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为1S 、2S 、3S …n S .则n S 可表示为( )A .22nB .22n -C .22n -D .22n -36.(2019·四川眉山市·中考真题)如图,一束光线从点()4,4A 出发,经y 轴上的点C 反射后经过点()10B ,,则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,2 二、填空题目37.(2021·四川成都市·中考真题)在正比例函数y kx =中,y 的值随着x 值的增大而增大,则点()3,P k 在第______象限.38.(2021·上海中考真题)已知6()f x x=,那么f =__________.39.(2021·湖南怀化市·中考真题)在函数 y = 中,自变量x 的取值范围是___________. 40.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.41.(2021·四川眉山市·中考真题)一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.42.(2021·上海中考真题)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.43.(2021·上海中考真题)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式_________.44.(2021·江苏苏州市·中考真题)若21x y +=,且01y <<,则x 的取值范围为______.45.(2021·四川自贡市·中考真题)当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.46.(2020·黑龙江大庆市·中考真题)点(2,3)关于y 轴对称的点的坐标为_____.47.(2020·四川广安市·中考真题)一次函数y=2x +b 的图象过点(0,2),将函数y=2x +b 的图象向上平移5个单位长度,所得函数的解析式为________.48.(2020·贵州黔南布依族苗族自治州·中考真题)如图,在平面直角坐标系中,直线y =﹣43x+4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC =OC =OA ,则点C 的坐标为___.49.(2020·贵州黔南布依族苗族自治州·中考真题)函数1y x =-的图象一定不经过第_________象限. 50.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为________.51.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).52.(2020·湖南益阳市·中考真题)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是______元.53.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A 的坐标是_____.54.(2020·辽宁营口市·中考真题)如图,∠MON =60°,点A 1在射线ON 上,且OA 1=1,过点A 1作A 1B 1⊥ON 交射线OM 于点B 1,在射线ON 上截取A 1A 2,使得A 1A 2=A 1B 1;过点A 2作A 2B 2⊥ON 交射线OM 于点B 2,在射线ON 上截取A 2A 3,使得A 2A 3=A 2B 2;…;按照此规律进行下去,则A 2020B 2020长为_____.55.(2020·上海中考真题)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行____米.56.(2020·黑龙江鹤岗市·中考真题)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,,则点2020B 的坐标______.57.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.58.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.59.(2020·四川广安市·中考真题)如图,在平面直角坐标系中,边长为2的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角钱OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3……以此类推,则正方形OB 2020B 2021C 2021的顶点B 2021的坐标是________.60.(2019·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为()5,0,点B 在x 轴的上方,OAB ∆的面积为152,则OAB ∆内部(不含边界)的整点的个数为_____.61.(2019·江苏中考真题)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为_______.62.(2019·山东济宁市·中考真题)已知点(,)P x y 位于第二象限,并且4y x +≤,,x y 为整数,写出一个符合上述条件的点P 的坐标:______.63.(2019·湖北鄂州市·中考真题)在平面直角坐标系中,点()00,P x y 到直线0Ax By C ++=的距离公式为:d =,则点()3,3P -到直线2533y x =-+的距离为_____.三、解答题64.(2021·浙江绍兴市·中考真题)I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.(1)求b的值及II号无人机海拔高度y(m)与时间x(min)的关系式.(2)问无人机上升了多少时间,I号无人机比II号无人机高28米.65.(2021·湖北恩施土家族苗族自治州·中考真题)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?66.(2021·湖北宜昌市·中考真题)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.x(单位:kg)表示购买苹果的重量,y(单位:元)表示付款金额.(1)文文购买3kg苹果需付款________元,购买5kg苹果需付款_______元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?67.(2021·陕西中考真题)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离()m y 与时间()min x 之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______m /min ;(2)求AB 的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.68.(2021·湖南衡阳市·中考真题)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为cm x ,单层部分的长度为cm y .经测量,得到下表中数据.(1)根据表中数据规律,求出y 与x 的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm 时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为cm L ,求L 的取值范围.69.(2021·天津中考真题)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系. 请根据相关信息,解答下列问题:(Ⅰ)填表(Ⅱ)填空:①书店到陈列馆的距离为________km ;②李华在陈列馆参观学的时间为_______h ; ③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ;④当李华离学校的距离为4km 时,他离开学校的时间为_______h .(Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.70.(2021·浙江丽水市·中考真题)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?71.(2021·浙江宁波市·中考真题)某通讯公司就手机流量套餐推出三种方案,如下表:A ,B ,C 三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系如图所示. (1)请直接写出m ,n 的值.(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?72.(2021·甘肃武威市·中考真题)如图1,小刚家,学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离()m y 与他所用的时间()min x 的函数关系如图2所示.(1)小刚家与学校的距离为___________m ,小刚骑自行车的速度为________m/min ;(2)求小刚从图书馆返回家的过程中,y 与x 的函数表达式;(3)小刚出发35分钟时,他离家有多远?73.(2021·云南中考真题)某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l,射线2l分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资1y(单位:x )的函数关系.元)和2y(单位:元)与其当月鲜花销售量x(单位:千克)(0(1)分别求1y﹑2y与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?74.(2020·辽宁大连市·中考真题)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.下图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.75.(2020·江苏南通市·中考真题)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.76.(2020·吉林长春市·中考真题)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为_________千米/时,a的值为____________.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.77.(2020·吉林中考真题)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为_____L,机器工作的过程中每分钟耗油量为_____L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.78.(2019·江西中考真题)如图,在平面直角坐标系中,点A B ,的坐标分别为(,,连接AB ,以AB 为边向上作等边三角形ABC .(1)求点C 的坐标;(2)求线段BC 所在直线的解析式.79.(2019·重庆中考真题)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数2||y x =-的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数2||2y x =-+和2| 2|y x =-+的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数-2|2|y x =+的对称轴.(2)探索思考:平移函数2||y x =-的图象可以得到函数2||2y x =-+和2|2|y x =-+的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数2|3|1y x =--+的图象.若点()11,x y 和(22,)x y 在该函数图象上,且213x x >>,比较1y ,2y 的大小.80.(2019·江苏淮安市·中考真题)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为1y 千米,慢车行驶的路程为2y 千米.如图中折线OAEC 表示1y 与x 之间的函数关系,线段OD 表示2y 与x 之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC 所表示的1y 与x 之间的函数表达式; (3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.祝福语祝你考试成功!祝福语祝你考试成功!。

2020年中考数学压轴解答题08 二次函数与菱形存在型问题 (学生版)

2020年中考数学压轴解答题08 二次函数与菱形存在型问题 (学生版)

备战2020中考数学之解密压轴解答题命题规律 专题08 二次函数与菱形存在型问题【典例分析】【例1】如图,已知抛物线23)0(y a bx a =++≠经过点()1,0A 和点()3,0B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长;②连接PB ,PC ,求PBC ∆的面积最大时点P 的坐标;(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.【例2】如图,在平面直角坐标系内,抛物线2y x 2x 3=-++与x 轴交于点A,C (点A 在点C 的左侧),与y 轴交于点B,顶点为D .点Q 为线段BC 的三等分点(靠近点C ).(1)点M 为抛物线对称轴上一点,点E 为对称轴右侧抛物线上的点且位于第一象限,当MQC △的周长最小时,求CME △面积的最大值;(2)在(1)的条件下,当CME △的面积最大时,过点E 作EN x ⊥轴,垂足为N,将线段CN 绕点C 顺时针旋转90°得到点N,再将点N 向上平移16个单位长度.得到点P,点G 在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H,使点D,P,G ,H 构成菱形.若存在,请直接写出点H 的坐标,若不存在,请说明理由.【例3】如图,直线4y x =-+交x 轴于点A ,交y 轴于点C ,抛物线212y x bx c =++经过点A ,交y 轴于点()0,2B -.点D 为抛物线上一动点,过点D 作x 轴的垂线,交直线AC 于点P ,设点D 的横坐标为m .(1)求抛物线的解析式;(2)当点D 在直线AC 下方的抛物线上运动时,求线段PD 长度的最大值;(3)若点E 是平面内任意一点,是否存在点D ,使以B ,C ,P ,E 为顶点的四边形为菱形?若存在,请直接出m 的值;若不存在,请说明理由.【例4】如图,在平面直角坐标系中,抛物线y 23233x 轴交于A,B 两点,与y 轴交于点C,点D 为抛物线的顶点,抛物线的对称轴与直线AC 交于点E .(1)若点P 为直线AC 上方抛物线上的动点,连接PC,PE,当△PCE 的面积S △PCE 最大时,点P 关于抛物线对称轴的对称点为点Q,此时点T 从点Q 开始出发,沿适当的路径运动至y 轴上的点F 处,再沿适当的路径运动至x 轴上的点G 处,最后沿适当的路径运动至直线AC 上的点H 处,求满足条件的点P 的坐标及QF+FG+33AH的最小值.(2)将△BOC绕点B顺时针旋转120°,边BO所在直线与直线AC交于点M,将抛物线沿射线CA方向平移233个单位后,顶点D的对应点为D′,点R在y轴上,点N在坐标平面内,当以点D′,R,M,N为顶点的四边形是菱形时,请直接写出N点坐标.【例5】二次函数y=﹣54x2+bx+c的图象与直线y=﹣12x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为C(﹣3,0).(1)填空:b=_____,c=_____.(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.【例6】如图1,在平面直角坐标系中,抛物线y=﹣12x2﹣72x﹣3交x轴于A,B两点(点A在点B的左侧),交y轴于点C(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点(不与点A,点C重合),过点P作PD⊥x轴交AC于点D,求PD的最大值;(3)将△BOC沿直线BC平移,点B平移后的对应点为点B′,点O平移后的对应点为点O′,点C平移后的对应点为点C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,求出所有符合条件的点S的坐标.【变式训练】1.如图,直线y=12x+2与y轴交于点A,与直线y=﹣12x交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣12x上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2≤h≤12B.﹣2≤h≤1C.﹣1≤h≤32D.﹣1≤h≤122.如图,在平面直角坐标系xOy中,抛物线C1:y1=12(x+3)2﹣92,将抛物线C1 向右平移3个单位、再向上平移4.5个单位得抛物线C2,则图中阴影部分的面积为________.3.如图,在平面直角坐标系中,菱形OABC 的顶点 A 在 x 轴正半轴上,顶点 C 的坐标为(4,3),D 是抛物线 y =﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为__________4.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(3,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y=-x 2-5x+c 经过点B 、C,则菱形ABCD 的面积为_______.5.二次函数y =23x 2的图象如图所示,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在函数图象上,四边形OBAC 为菱形,且∠OBA =120°,则点C 的坐标为______.6.如图,菱形OABC 的顶点O 、A 、C 在抛物线213y x 上,其中点O 为坐标原点,对角线OB 在y 轴上,且OB =2.则菱形OABC 的面积是_______.7.如图,已知二次函数y=ax 2+2x+c 的图象经过点C (0,3),与x 轴分别交于点A,点B (3,0).点P 是直线BC 上方的抛物线上一动点.(1)求二次函数y=ax 2+2x+c 的表达式;(2)连接PO,PC,并把△POC 沿y 轴翻折,得到四边形POP′C .若四边形POP′C 为菱形,请求出此时点P 的坐标;(3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积.8.如图1,抛物线1C :22y ax bx =+-与直线l :1122y x =--交于x 轴上的一点A ,和另一点()3,B n()1求抛物线1C 的解析式;()2点P 是抛物线1C 上的一个动点(点P 在A ,B 两点之间,但不包括A ,B 两点)PM AB ⊥于点M ,//PN y 轴交AB 于点N ,求MN 的最大值;()3如图2,将抛物线1C 绕顶点旋转180︒后,再作适当平移得到抛物线2C ,已知抛物线2C 的顶点E 在第一象限的抛物线1C 上,且抛持线2C 与抛物线1C 交于点D ,过点D 作//DF x 轴交抛物线2C 于点F ,过点E 作//EG x 轴交抛物线1C 于点G ,是否存在这样的抛物线2C ,使得四边形DFEG 为菱形?若存在,请求E 点的横坐标;若不存在,请说明理由.9.如图,在平面直角坐标系中,抛物线y =﹣235333x x ++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求出△ABC 的周长.(2)在直线BC 上方有一点Q ,连接QC 、QB ,当△QBC 面积最大时,一动点P 从Q 出发,沿适当路径到达y 轴上的M 点,再沿与对称轴垂直的方向到达对称轴上的N 点,连接BN ,求QM +MN +BN 的最小值.(3)在直线BC 上找点G ,K 是平面内一点,在平面内是否存在点G ,使以O 、C 、G 、K 为顶点的四边形是菱形?若存在,求出K 的坐标;若不存在,请说明理由.10.定义:对于抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),若b 2=ac ,则称该抛物线为黄金抛物线.例如:y =x 2﹣x +1是黄金抛物线(1)请再写出一个与上例不同的黄金抛物线的解析式; (2)将黄金抛物线y =x 2﹣x +1沿对称轴向下平移3个单位 ①直接写出平移后的新抛物线的解析式;②新抛物线如图所示,与x 轴交于A 、B (A 在B 的左侧),与y 轴交于C ,点P 是直线BC 下方的抛物线上一动点,连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.③当直线BC 下方的抛物线上动点P 运动到什么位置时,四边形 OBPC 的面积最大并求出此时P 点的坐标和四边形OBPC 的最大面积.11.如图,抛物线与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由12.如图,已知抛物线2y x bx c =++与x 轴交于点A,B,AB=2,与y 轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为.13.如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,且OC=3OA.点P是抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点D,连接PC.(1)求抛物线的解析式;(2)如图2,当动点P只在第一象限的抛物线上运动时,求过点P作PF⊥BC于点F,试问△PDF的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由.(3)当点P在抛物线上运动时,将△CPD沿直线CP翻折,点D的对应点为点Q,试问,四边形CDPQ是否成为菱形?如果能,请求出此时点P的坐标,如果不能,请说明理由.14.如图,二次函数y=﹣16x2+32x+6与x轴相交A,B两点,与y轴相交于点C.(1)若点E为线段BC上一动点,过点E作x轴的垂线与抛物线交于点P,垂足为F,当PE﹣2EF取得最大值时,在抛物线y的对称轴上找点M,在x轴上找点N,使得PM+MN+22NB的和最小,若存在,求出该最小值及点N的坐标;若不存在,请说明理由.(2)在(1)的条件下,若点P′为点P关于x轴的对称点,将抛物线y沿射线BP′的方向平移得到新的抛物线y′,当y′经过点A时停止平移,将△BCN沿CN边翻折,点B的对应点为点B′,B′C与x轴交于点K,若抛物线y′的对称轴上有点R,在平画内有点S,是否存在点R、S使得以K、B′、R、S为顶点的四边形是菱形,若存在,直接写出点S的坐标;若不存在,请说明理由.15.在平面直角坐标系中,抛物线y =﹣23984x x+6与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)如图1,点P 为直线BC 上方抛物线上一动点,过点P 作PH ∥y 轴,交直线BC 于点H,过点P 作PQ ⊥BC于点Q,当PQ ﹣12PH 最大时,点C 关于x 轴的对称点为点D,点M 为直线BC 上一动点,点N 为y 轴上一动点,连接PM 、MN,求PM+MN+45ND 的最小值;(2)如图2,连接AC,将△OAC 绕着点O 顺时针旋转,记旋转过程中的△OAC 为△OA'C',点A 的对应点为点A',点C 的对应点为点C'.当点A'刚好落在线段AC 上时,将△OA'C'沿着直线BC 平移,在平移过程中,直线OC'与抛物线对称轴交于点E,与x 轴交于点F,设点R 是平面内任意一点,是否存在点R,使得以B 、E 、F 、R 为顶点的四边形是菱形?若存在,请直接写出点R 的坐标;若不存在,请说明理由.16.已知菱形OABC 的边长为5,且tan ∠AOC =43,点E 是线段BC 的中点,过点A 、E 的抛物线y =ax 2+bx +c 与边AB 交于点D .压轴解答题·直面高考精品资源·战胜高考(1)求点A 和点E 的坐标;(2)连结DE ,将△BDE 沿着DE 翻折.①当点B 的对应点B '恰好落在线段AC 上时,求点D 的坐标;②连接OB 、BB ',请直接写出此时该抛物线二次项系数a =.17.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点A (-3,4)、B (-3,0)、C (-1,0) .以D 为顶点的抛物线y = ax 2+bx +c 过点B . 动点P 从点D 出发,沿DC 边向点C 运动,同时动点Q 从点B 出发,沿BA 边向点A 运动,点P 、Q 运动的速度均为每秒1个单位,运动的时间为t 秒. 过点P 作PE ⊥CD 交BD 于点E ,过点E 作EF ⊥AD 于点F ,交抛物线于点G .(1)求抛物线的解析式;(2)当t 为何值时,四边形BDGQ 的面积最大?最大值为多少?(3)动点P 、Q 运动过程中,在矩形ABCD 内(包括其边界)是否存在点H ,使以B ,Q ,E ,H 为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.。

初中-数学-中考-专题08二次函数的应用——解决实际问题

初中-数学-中考-专题08二次函数的应用——解决实际问题
A.25min~50min,王阿姨步行的路程为800m
B.线段CD的函数解析式为
C.5min~20min,王阿姨步行速度由慢到快
D.曲线段AB的函数解析式为
10、如图,正方形 的边长为 ,动点 , 同时从点 出发,在正方形的边上,分别按 , 的方向,都以 的速度运动,到达点 运动终止,连接 ,设运动时间为 , 的面积为 ,则下列图象中能大致表示 与 的函数关系的是()
(1)当 时, 与 的关系式为______;
(2) 为多少时,当天的销售利润 (元)最大?最大利润为多少?
(3)若超市希望第 天到第 天的日销售利润 (元)随 的增大而增大,则需要在当天销售价格的基础上涨 元/ ,求 的最小值.
29、网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中 ).
(1)求h的值.
(2)按照经验,该作物提前上市的天数m(天)与生长率P满足函数关系:
生长率P
0.2
0.25
0.3
0.35
提前上市的天数m(天)
0
5
10
15
①请运用已学的知识,求m关于P的函数表达式;
②请用含 的代数式表示m;
(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).

专题08 全等三角形中的边角问题(原卷版)2022年中考数学二轮解题方法分类专项突破

专题08 全等三角形中的边角问题(原卷版)2022年中考数学二轮解题方法分类专项突破

专题08 全等三角形中的边角问题【类型】一、全等三角形中的边角问题-公共角模型一、解答题1.在ABC 中,∠BAC =90°,AB AC =,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为直角边在AD 右侧作等腰直角三角形ADE (90DAE ∠=︒,AD AE =),连接CE .(1)如图1,当点D 在线段BC 上时,猜想:BC 与CE 的位置关系,并说明理由;(2)如图2,当点D 在线段CB 的延长线上时,(1)题的结论是否仍然成立?说明理由;(3)如图3,当点D 在线段BC 的延长线上时,结论(1)题的结论是否仍然成立?不需要说明理由.2.如图1,在等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),过点A 作AG ∠AH 且AG =AH ,连接GC ,HB .(1)证明:AHB ∠AGC ;(2)如图2,连接GF ,HG ,HG 交AF 于点Q .∠证明:在点H 的运动过程中,总有∠HFG =90°; ∠当AQG 为等腰三角形时,求∠AHE 的度数.3.已知,∠ABC 是边长为4cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,沿线段AB ,BC 运动,且它们的速度均为1cm/s .当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ).(1)如图1,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.(2)如图2,当t为何值时,∠PBQ是直角三角形?(3)如图3,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,请直接写出∠CMQ度数.4.如图,我们把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.己知四边形ABCD中,AC∠BD.垂足为O,求证:AB2+CD2=AD2+BC2;(2)解决问题:已知AB=2.BC=2,分别以∠ABC的边BC和AB向外作等腰Rt∠BCE和等腰Rt∠ABD;∠如图2,当∠ACB=90°,连接DE,求DE的长;∠如图3.当∠ACB≠90°,点G、H分别是AD、AC中点,连接GH.若GH=6,则S△ABC=.5.在四边形ABCD中,∠DAB+∠DCB=180°,AC平分∠DAB.(1)如图1,求证:BC=CD;(2)如图2,连接BD交AC于点E,若∠ADB=90°,AE=2DE,求∠ABD的度数;(3)如图3,在(2)的条件下,过点C作CH∠AB于点H,∠BCH沿BC翻折,点H的对应点为点F,点G在线段AB上,连接FG,若∠CGF=30°,S△CHG=9,求线段CG的长.【类型】二、全等三角形中的边角问题-公共边模型一、单选题1.如图,∠ACB=90°,AC=BC,AD∠CE,BE∠CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.1.5B.2C.22D.102.如图,BN为∠MBC的平分线,P为BN上一点,且PD∠BC于点D,∠APC+∠ABC=180°,给出下列结论:∠∠MAP=∠BCP;∠P A=PC;∠AB+BC=2BD;∠四边形BAPC的面积是∠PBD面积的2倍,其中结论正确的个数有()A.4个B.3个C.2个D.1个3.如图,∠ABC的面积为9cm2,BP平分∠ABC,AP∠BP于P,连接PC,则∠PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm2二、解答题4.如图,在ABC中,BE是ABC∠=∠+∠.∠的平分线,AD BE⊥,垂足为D,求证:21C5.如图,在四边形ABCD 中,已知BD 平分∠ABC ,∠BAD +∠C =180°,求证:AD =CD .6.如图,在四边形ABCD 中,BC >BA ,AD=CD ,BD 平分∠ABC ,求证:∠A+∠C=180°.7.已知,如图ABC ∆中,AB AC =,90A ∠=︒,ACB ∠的平分线CD 交AB 于点E ,90BDC ∠=︒, 求证:2CE BD =.8.如图,在∠ABC 中,点D 为边BC 的中点,点E 在∠ABC 内,AE 平分∠BAC ,CE∠AE 点F 在AB 上,且BF=DE(1)求证:四边形BDEF 是平行四边形(2)线段AB ,BF ,AC 之间具有怎样的数量关系?证明你所得到的结论9.直线AB:y=x+b分别与x,y轴交于A,B两点,点A的坐标为(-3,0),过点B的直线交x轴正半轴于点C,且OB∠OC=3∠1.(1)求点B的坐标及直线BC的函数表达式;(2)在y轴上存在点P,使得以点B、C、P三点构成的三角形为等腰三角形,请直接写出点P的坐标:______________;(3)在坐标系平面内,存在点D,使以点A,B,D为顶点的三角形与∠ABC全等,画出∠ABD,并求出点D的坐标.【类型】三、全等三角形中的边角问题-边边角模型一、解答题1.如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE 绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE+OD 与OC 的数量关系,并说明理由; (2)当∠DCE 绕点C 旋转到CD 与OA 不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由; (3)当∠DCE 绕点C 旋转到CD 与OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD 、OE 与OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.2.如图,OC 平分∠MON ,A 、B 分别为OM 、ON 上的点,且BO >AO ,AC =BC ,求证:∠OAC +∠OBC =180°.3.如图,在四边形ABCD 中,已知BD 平分∠ABC ,∠BAD +∠C =180°,求证:AD =CD .4.如图,在四边形ABCD 中,BC >BA ,AD=CD ,BD 平分∠ABC ,求证:∠A+∠C=180°.【类型】四、全等三角形中的边角问题-X 模型一、填空题1.如图,已知AD 是ABC 的中线,E 是AC 上的一点,BE 交AD 于F ,AC BF =,24DAC ∠=︒,32EBC ∠=︒,∠__________.则ACB二、解答题2.问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,∠ABC中,若AB=4,AC=3,求BC 边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE =AD,则得到∠ADC∠∠EDB,小明证明∠BED∠∠CAD用到的判定定理是:(用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以∠ABC的边AB,AC为边向外作∠ABE和∠ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.3.如图,在∠ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.4.阅读下面材料【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图∠.在∠ABC中,若AB=8,AC=6,求BC边上的中线AD 取值范围,小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明方法思考:(1)由已知和作图能得到∠ADC∠∠EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)由三角形三边的关系可求得AD长的取值范围是()A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【解后感悟】解题时,条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到一个三角形中.【灵活运用】如图∠,AD是∠ABC的中线,BE交AC于E,交AD于F,且AE=EF若EF=4,EC=3,求线段BF的长.5.阅读下面的题目及分析过程.已知:如图点E是BC的中点,点A在DE上,且AB DC=说明:BAE D∠=∠分析:说明两个角相等,常用的方法是应用全等三角形或等腰三角形的性质.观察本题中说明的两个角,它们既不在同一个三角形中,而且们所在两个三角形也不全等.因此,要说明BAE D∠=∠,必须添加适当的辅助线,构造全等三角形或等腰三角形,现在提供两种添加辅助线的方法如下:CF AB,交DE的延长线于点F.如图∠过点C作//如图∠延长DE至点M,使ME DE=,连接BM.(1)请从以上两种辅助线中选择一种完成上题的说理过程.(2)在解决上述问题的过程中,你用到了哪种数学思想?请写出一个._______________.(3)反思应用:⊥于点B.如图,点B是AE的中点,BC BD+与CD之间的大小关系,并说请类比(1)中解决问题的思想方法,添加适当的辅助线,判断线段AC DE明理由.6.【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图1,∠ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到∠ADC∠∠EDB,依据是.A.SSS B.SAS C.AAS D.HL(2)由“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.7.如图,等边三角形ABC中,E是线段AC上一点,F是BC延长线上一点.连接BE,AF.点G是线段BE 的中点,BN ∠AC ,BN 与AG 延长线交于点N .(1)若∠BAN =15°,求∠N ;(2)若AE =CF ,求证:2AG =AF .8.如图,等边三角形ABC 中,E 是线段AC 上一点,F 是BC 延长线上一点.连接BE ,AF .点G 是线段BE 的中点,BN AC ,BN 与AG 延长线交于点N .(1)若15BAN ∠=︒,求N ∠;(2)若AE CF =,求证:2AG AF =.9.数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在ABC 中,AB 8=,AC 6=,D 是BC 的中点,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使DE AD =,请补充完整证明“ADC ∠EDB ”的推理过程.()1求证:ADC ∠EDB证明:延长AD 到点E ,使DE AD = 在ADC 和EDB 中AD ED(=已作),ADC EDB(∠∠=______),CD BD(=中点定义), ADC ∴∠EDB(______),()2探究得出AD 的取值范围是______;【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】()3如图2,ABC 中,B 90∠=,AB 2=,AD 是ABC 的中线,CE BC ⊥,CE 4=,且ADE 90∠=,求AE 的长.10.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,∠ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE =AD ,请根据小明的方法思考:(1)由已知和作图能得到∠ADC∠∠EDB 的理由是_____.A .SSSB .SASC .AASD .HL(2)求得AD 的取值范围是______.A .6<AD <8B .6≤AD≤8C .1<AD <7 D .1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中. 【问题解决】(3)如图2,AD 是∠ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF.求证:AC =BF.11.P 为等边∠ABC 的边AB 上一点,Q 为BC 延长线上一点,且P A =CQ ,连PQ 交AC 边于D . (1)证明:PD =DQ .(2)如图2,过P 作PE ∠AC 于E ,若AB =6,求DE 的长.12.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;(2)如图2,请写出AF 与DG 之间的关系并证明.【类型】五、全等三角形中的边角问题-一线三等角模型一、单选题1.如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边∠DPE ,连结BE ,则∠BDE 的面积为( )A .43B .2C .4D .632.如图,在∠ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于( )A .3B .2C .94D .923.如图,AC =CE ,∠ACE =90°,AB ∠BD ,ED ∠BD ,AB =6cm ,DE =2cm ,则BD 等于( )A .6cmB .8cmC .10cmD .4cm二、填空题 4.如图,直线l 1∠l 3,l 2∠l 3,垂足分别为P 、Q ,一块含有45°的直角三角板的顶点A 、B 、C 分别在直线l 1、l 2、线段PQ 上,点O 是斜边AB 的中点,若PQ 72OQ 的长等于 _____.5.如图,一个等腰直角三角形ABC 物件斜靠在墙角处(∠O =90°),若OA =50cm ,OB =28cm ,则点C 离地面的距离是____ cm .三、解答题6.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠ ;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型. 应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.∠求证:ABP PCD △△∽;∠当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.7.问题背景:(1)如图∠,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图∠,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图∠,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.8.(1)课本习题回放:“如图∠,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,2.5cm AD =,1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图∠,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN ∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌.(3)拓展应用:如图∠,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)9.(1)如图(1)在∠ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ∠直线m ,CE ∠直线m ,垂足分别为点D 、E .求证:DE =BD +CE ;(2)如图(2)将(1)中的条件改为:在∠ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请给出证明;若不成立,请说明理由.10.(1)如图1,在∠ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ∠直线m ,CE ∠直线m ,垂足分别为点D 、E .求证:∠ABD ∠∠CAE ;(2)如图2,将(1)中的条件改为:在∠ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论∠ABD ∠∠CAE 是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为∠BAC 平分线上的一点,且∠ABF 和∠ACF 均为等边三角形,连接BD ,CE ,若∠BDA =∠AEC =∠BAC ,求证:∠DEF 是等边三角形.。

专题08一元二次方程及其应用(知识点总结例题讲解)-2021届中考数学一轮复习

专题08一元二次方程及其应用(知识点总结例题讲解)-2021届中考数学一轮复习

中考数学专题 08 一元二次方程及其应用(知识点总结+例题讲解)一、一元二次方程有关概念:1.一元二次方程定义:只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的整式方程,叫做一元二次方程;2.一般形式:ax2+bx+c=0;(其中 a、b、c 为常数,a≠0)(1)其中 ax2、bx、c 分别叫做二次项、一次项和常数项;(2)a、b 分别称为二次项系数和一次项系数;(3)二次项系数:a≠0;(当 a=0 时,不含有二次项,即不是一元二次方程)3.一元二次方程必须具备三个条件:(1)必须是整式方程(等号两边都是整式);(2)必须只含有 1 个未知数;(3)所含未知数的最高次数是 2;4.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解;一元二次方程的解也叫做一元二次方程的根。

【例题1】(2020 秋•奉贤区期末)下列各方程中,一定是一元二次方程的是()A.1 + 1 −2 = 0 B.ax2+bx+c=0x2 xC.(x﹣2)2=2(x﹣2)D.x2+2y=3【答案】C【解析】利用一元二次方程定义进行解答即可.解:A、含有分式,不是一元二次方程,故此选项不符合题意;B、当 a=0 时,不是一元二次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;= D 、含有两个未知数,不是一元二次方程,故此选项不符合题意;故选:C .【变式练习 1】(2020 秋•丹阳市期末)关于 x 的方程(m+1)x 2+2mx ﹣3=0 是一元二次方程,则( )A .m≠±1B .m =1C .m≠1D .m≠﹣1【答案】D【解析】根据一元二次方程定义可得 m+1≠0,再解可得答案. 解:由题意得:m+1≠0,解得:m≠﹣1;故选:D .【例题 2】(2020 秋•郫都区期末)若 x =m 是方程 x 2+x ﹣1=0 的根,则 m 2+m+2020 的值为()A .2022B .2021C .2019D .2018【答案】B【解析】把 x =m 代入已知方程,可以求得 m 2+m =1,然后整体代入所求的代数式求值即可.解:∵x=m 是方程 x 2+x ﹣1=0 的根,∴m 2+m ﹣1=0,∴m 2+m =1,∴m 2+m+2020=1+2020=2021.故选:B .【变式练习 2】设 m 是方程 x 2﹣3x+1=0 的一个实数根,则m 4+m 2+18 . m 2【答案】8【解析】利用一元二次方程的解的意义得到 m 2﹣3m+1=0,两边除以 m 得到 m + 1=3,m再把原式变形得到原式=m 2+1+ 1m 2=(m + 1 )2﹣2+1,然后利用整体代入的方法计算. m解:∵m 是方程 x 2﹣3x+1=0 的一个实数根,∴m 2﹣3m+1=0,∴m + 1 =3,∴原式=m 2+1+ 1 =(m + 1)2﹣2+1=9﹣2+1=8.mm 2mq b 4ac ≥0 二、一元二次方程的解法:1.解一元二次方程的基本思想:转化思想,即把一元二次方程转化为一元一次方程来求解;2.常用方法:(1)直接开平方法:适用形式:x 2=p(p≥0),(x+n)2=p 或(mx+n)2=p(p≥0)的方程;(2)配方法:套用公式 a 2+2ab+b 2=(a+b)2;a 2-2ab+b 2=(a-b)2将一元二次方程ax 2+bx+c=0(a≠0)配方为(x+m)2=n 的形式,再用直接开平方法求解; 配方法解一元二次方程的一般步骤是: ①将已知方程化为一般形式;②化二次项系数为 1;③常数项移到右边;④方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; 变形为(x+p)2=q 的形式:如果 q≥0,方程的根是 x=-p± ;如果 q <0,方程无实根;(3)公式法:利用求根公式 x = -b ±∆ = 2 -)解一元二次方程 ax 2+bx+c=0(a≠0); 2a(4)因式分解法:将一元二次方程通过分解因式变为(x-a)(x-b)=0 的形式;进而得到 x-a=0 或 x-b=0 来求解; 3.方法选择技巧:(1)若一元二次方程缺少常数项,且方程的右边为 0,可考虑用因式分解法求解;(2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解;(3)若一元二次方程的二次项系数为 1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解;(4)若用以上三种方法都不容易求解时,可考虑用公式法求解。

专题08 中考19题 三角函数的应用—2023年中考数学必考特色题型讲练(河南专用)(原卷版)

专题08 中考19题 三角函数的应用—2023年中考数学必考特色题型讲练(河南专用)(原卷版)

专题08三角函数的应用选题介绍本题型属于河南省中招考试的必考题型,每年解答题中均有体现。

本专题整理的三角函数的应用主要是解答题型,所考知识点主要是锐角三角函数在直角三角形中的应用,本题型首先会引入一个环境,然后让学生通过利用解直角三角型的思想求长度。

该题一般为解答题,分值9分,难度系数中等,得分率偏高。

利用三角函数解直角三角形的解题思路:①找直角三角形(注意找哪些角所在的直角三角形);②构造直角三角形(题目中涉及的角如果在直角三角形中不需构造,直接解直角三角形,如果不再则需作垂线构造);③解直角三角形;④设直角边为x;(直角三角形中有边长时直接求其它边,没有边长时需要设x);⑤利用三角函数构造关于x的方程。

真题展现2022年河南中招填空题第19题19.开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑。

某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得浮云阁顶端D的仰角儿为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°。

已知测角仪的高度为1.5m,测量点A、B与拂云阁DC的底部C在同一水平线上,求浮云阁DC的高度。

(结果精确到1m,参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).2021年河南中招填空题第19题19.(9分)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77).2020年河南中招填空题第18题18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.2019年河南中招填空题第19题19.(9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)2018年河南中招填空题第20题20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE(结为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)模拟演练字母型1.黄河全长约5464千米,是中国第二长河.位于郑州市黄河文化公园东部的黄河滩地公园,集休闲观光、农业采摘、林间漫步、亲子研学等多项功能,成为省会郑州的“大氧吧”“后花园”和网红打卡地.周末,小明一家来到黄河滩地公园游玩,小明想测量某段黄河的宽度.如图,小明利用自制测角仪,在河岸A处测得对岸C处在南偏东40°方向,沿岸边向东走100步到达B处,并测得对岸C处在南偏东30°方向,请根据以≈︒≈︒≈,上信息,估算此段黄河的宽度.(结果精确到0.1m.参考数据:一步0.8m,sin400.64,cos400.77︒≈≈tan40 1.73)2.无塔位于河南汝南城南,俗传冬至正午无塔影,故称无影塔.某数学活动小组到汝南测无影塔的高度.如图,他们在点D处测得塔顶A的仰角为30°,沿直线前行23米至点C,在点C处测得塔顶4的仰角为50︒.已如点B,C,D在同一直线上,请依据相关数据求无影塔的商度(结果精确到0.1m.参考数据:sin500.77,cos500.64,tan50 1.117︒≈︒≈︒≈≈9.3).背靠背型3.如图,小明在某森林公园的一处观景台观赏垂直而下的瀑布,从D点看到瀑布顶端B的仰角为45︒,看到瀑布底端E的俯角为30︒,若瀑布底有一水潭,D点到水潭水平面的距离DA为4m,求瀑布顶端到水潭水平面的距离BE的长.(结果保留整数.参考数据:2 1.414≈≈,3 1.732)4.被誉为“天下第一塔”的开封铁塔,八角十三层,其设计精巧,单是塔砖就有数十种图案.铁塔位于铁塔公园的东半部,是园内重要的文物,也是主要的景点,始建于公元1049年(北宋皇祐元年),是1961年我国首批公布的国家重点保护文物之一,素有“天下第一塔”之称.某数学兴趣小组开展了“测量开封铁塔的高度”的实践活动,具体过程如下:工具准备:皮尺,测角仪.方案设计:如图2,开封铁塔AB 垂直于地面,在地面上选取C ,D 两处分别测得ACB ∠和ADB ∠的度数(,,C B D 在同一条直线上)数据收集:通过实地测量:地面上C ,D 120m ,45ACB ∠=︒,42ADB ∠=︒.问题解决:(1)求开封铁塔AB 的高度(精确到0.1m).景点介绍开封铁塔的高度为55.88米,则计算结果的误差为多少?并说出一条导致计算结果产生误差的原因可能是什么?(参考数据:sin420.67︒≈,cos420.74︒≈,tan420.9︒≈ 1.41≈)(2)根据上述方案及数据,请你完成求解过程.活动阅读型5.嵩岳寺塔位于登封市区西北6千米嵩山南麓嵩岳寺院内,为北魏时期佛塔.该塔是我国现存最早的砖塔,反映了中外建筑文化交流融合创新的历程,在结构、造型等方面具有很大价值,对后世砖塔建筑有着巨大影响.某数学兴趣小组通过调查研究把“如何测量嵩岳寺塔的高度”作为一项课题活动,他们制订了测量方案,并利用课余时间实地测量.请你根据表中信息结合示意图帮助该数学兴趣小组求嵩岳寺塔AB 的高度.(精确到0.1米,参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)6.手机测距APP 可以测量物体高度、宽度等,这些测距软件是基于几何学原理设计的.测量时只需要输入身高,再用手机拍摄功能将准星对准物体顶端和底部拍摄图片,程序就会计算出物体的高度.某款测距APP 提供的测高模式如下:点,,,A B C D 都在同一平面内,手机位置为A 点,待测物体为CD ,且AB 和CD 均与地面BD 垂直.从点A 处测得顶端C 的仰角为α,底部D 的俯角为β.奋进小组的同学想用上述方式手动计算某景区宣传广告牌的高度.如图2,经过测量得到 1.65m AB =,仰角35α=︒,俯角28β=︒,求出广告牌CD 的高度(参考数据:sin 350.57,cos350.82,tan 350.70,sin 280.47,cos 280.88,tan 280.53︒≈︒≈︒≈︒≈︒≈︒≈,结果精确到0.1).垂直构造型7.宝轮寺塔-中国四大回音建筑之一,位于三门峡市陕州风景区,始建于隋唐时期,因能发出“呱-呱”的声音而俗称“蛤蟆塔”.当地某校数学实践活动小组的同学们一起对该塔的高度()AB进行测量.因塔底部B无法直接到达,制定了如下的测量方案:先在该塔正前方广场地面C处测得塔尖A的仰角()∠为45︒,因ACB广场面积有限,无法再向C点的正后方移动,故操控无人机飞到C点正上方10米的D处测得塔尖A的仰角为32︒,A,B,C,D四点在同一个平面内,求塔高()AB为多少米.(结果精确到0.1米,参考数据:︒≈︒≈,tan320.62)sin320.53︒≈,cos320.858.如图,活动课上,小玥想要利用所学的数学知识测量某个建筑地所在山坡AE的高度,她先在山脚下的点E处测得山顶A的仰角是30°,然后,她沿着坡度i=1:1的斜坡按速度20米/分步行15分钟到达C处,此时,测得点A的俯角是15°.图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上,求出建筑地所在山坡AE的高度AB.(精确到0.1米,参考数据:2≈1.41).不规则图形构造直角三角形9.郑州外国语中学数学兴趣小组借助无人机测量一条河流的宽度CD .如图所示,一架水平飞行的无人机在A 处测得正前方河流的左岸C 处的俯角为α,无人机沿水平线AF 方向继续飞行60米至B 处,测得正前方河流右岸D 处的俯角为30°.线段AM 的长为无人机距地面的铅直高度,点M 、C 、D 在同一条直线上.其中tan 2α=,MC =米.(1)求无人机的飞行高度AM ;(结果保留根号)(2)求河流的宽度CD .(结果精确到1 1.41≈, 1.73≈)10.如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角∠EOA=30°,在OB 的位置时俯角∠FOB=60°,若OC ⊥EF ,点A 比点B 高7cm ,求单摆的长度(结果精确到0.1,1.73).。

2020年中考数学题型08 与圆有关的证明与计算题【含解析】

2020年中考数学题型08 与圆有关的证明与计算题【含解析】

2020年中考数学题型08 与圆有关的证明与计算题一、单选题1.如图,是的弦,交于点,点是上一点,,则的AB O OC AB ⊥O C D O 30ADC ∠=︒BOC ∠度数为( ).A .30°B .40°C .50°D .60°【答案】D【分析】由垂径定理、等腰三角形的性质和平行线的性质证出∠OAC =∠OCA =∠AOC ,得出△OAC 是等腰三角形,得出∠BOC =∠AOC =60°即可.【详解】解:如图,∵,30ADC ∠=︒∴.260AOC ADC ∠=∠=︒∵是的弦,交于点,AB O OC AB ⊥O C ∴.AC BC =∴.60AOC BOC ∠=∠=︒故选:D .【点睛】本题考查垂径定理,解题关键证明.AC BC =2.如图,为的切线,切点为,连接,与交于点,延长与交于点AB O A AO BO 、BO O C BO O ,连接,若,则的度数为( )D AD 36ABO ∠=oADC ∠A .B .C .D .54o36o32o27o【答案】D【分析】由切线性质得到,再由等腰三角形性质得到,然后用三角形外角性质得AOB ∠OAD ODA ∠=∠出ADC∠【详解】切线性质得到90BAO ∠=o903654AOB ∴∠=-=o o oOD OA=Q OAD ODA∠=∠∴AOB OAD ODA∠=∠+∠Q 27ADC ADO ∴∠=∠=o故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键3.如图,是的内接三角形,,过点的圆的切线交于点,则的度数为ABC ∆O 119A ∠=︒C BO P P ∠( )A .32°B .31°C .29°D .61°【答案】A【分析】根据题意连接OC ,为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可COP ∆计算的的度,再根据直角三角形可得的度数.COP ∠P ∠【详解】根据题意连接OC .因为119A ∠=︒所以可得BC 所对的大圆心角为 2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得 23818058COD ︒︒︒∠=-=由于为直角三角形COP ∆所以可得 905832P ︒︒︒∠=-=故选A .【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.4.如图,一条公路的转弯处是一段圆弧,点是这段弧所在圆的圆心,,点是的中O 40AB m =CAB 点,且,则这段弯路所在圆的半径为( )10CD m =A .B .C .D .25m 24m 30m 60m【答案】A【分析】根据题意,可以推出AD =BD =20,若设半径为r ,则OD =r ﹣10,OB =r ,结合勾股定理可推出半径r 的值.【详解】解:,OC AB ⊥ ,20AD DB m ∴==在中,,Rt AOD ∆222OA OD AD =+设半径为得:,r ()2221020r r =-+解得:,25r m =这段弯路的半径为∴25m故选:A .【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r 后,用r 表示出OD 、OB 的长度.5.如图,点为扇形的半径上一点,将沿折叠,点恰好落在上的点处,C OAB OB OAC ∆AC OAB D 且(表示的长),若将此扇形围成一个圆锥,则圆锥的底面半径与母线长:1:3BD AD ''=BD 'BD OAB 的比为( )A .B .C .D .1:31:π1:42:9【答案】D【分析】连接OD ,求出∠AOB ,利用弧长公式和圆的周长公式求解即可.【详解】解:连接交AC 于.OD M由折叠的知识可得:,,12OM OA=90OMA ∠=︒,30OAM ∴∠=︒,60AOM ∴∠=︒且, :1:3BDAD ''=80AOB ∴∠=︒设圆锥的底面半径为,母线长为,r l ,802180lr ππ=.:2:9r l ∴=故选:.D 【点睛】本题考查的是扇形,熟练掌握圆锥的弧长公式和圆的周长公式是解题的关键.6.如图,边长为的内切圆的半径为( )ABC ∆A .1BC .2D.【答案】A【分析】连接AO 、CO ,CO 的延长线交AB 于H ,如图,利用内心的性质得CH 平分∠BCA ,AO 平分∠BAC ,再根据等边三角形的性质得∠CAB =60°,CH ⊥AB ,则∠OAH =30°,AH =BH = AB =3,然后利用正切的定义12计算出OH 即可.【详解】设的内心为O ,连接AO 、BO ,CO 的延长线交AB 于H ,如图,ABC ∆∵为等边三角形,ABC ∆∴CH 平分,AO 平分,∵为等边三角形,BCA ∠BAC ∠ABC ∆∴,,60CAB ︒∠=CH AB ⊥∴,30OAH ︒∠=12AH BH AB ===在中,∵,Rt AOH ∆OHtan tan 30AHOAH ︒∠==∴,1OH ==即内切圆的半径为1.ABC ∆故选A .【点睛】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质.7.如图,在Rt △ABC 中,∠ABC =90°,AB =,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )ABC .D .2π2π+π-2π-【答案】A【分析】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD =2AH ,∠AHO =90°,在Rt △ABC 中,利用∠A 的正切值求出∠A =30°,继而可求得OH 、AH 长,根据圆周角定理可求得∠BOC =60°,然后根据S 阴影=S △ABC -S △AOD -S 扇形BOD 进行计算即可.【详解】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD =2AH ,∠AHO =90°,在Rt △ABC 中,∠ABC =90°,AB =,BC =2,tan ∠A=,BC AB ==∴∠A =30°,∴OH =OA,AH =AO •cos∠A ,∠BOC=2∠A =60°,1232=∴AD =2AH =,3∴S 阴影=S△ABC -S △AOD -S扇形BOD =,112322⨯-⨯2π-故选A .【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.8.如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是( )A .4B .6.25C .7.5D .9【答案】A【分析】先利用勾股定理判断△ABC 为直角三角形,且∠BAC =90°,继而证明四边形AEOF 为正方形,设⊙O 的半径为r ,利用面积法求出r 的值即可求得答案.【详解】∵AB =5,BC =13,CA =12,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形,且∠BAC =90°,∵⊙O 为△ABC 内切圆,∴∠AFO =∠AEO =90°,且AE =AF ,∴四边形AEOF 为正方形,设⊙O 的半径为r ,∴OE =OF =r ,∴S 四边形AEOF =r ²,连接AO ,BO ,CO,∴S △ABC =S △AOB +S △AOC +S △BOC ,∴,11()22AB AC BC r AB AC++=⋅∴r =2,∴S 四边形AEOF =r ²=4,故选A .【点睛】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键.9.如图,是的直径,,是上的两点,且平分,分别与,相交AB O C D O BC ABD ∠AD BC OC 于点,,则下列结论不一定成立的是( )E FA .B .C .D .OC BD AD OC ⊥CEF BED ∆≅∆AF FD=【答案】C【分析】由圆周角定理和角平分线得出,,由等腰三角形的性质得出90ADB ∠=︒OBC DBC ∠=∠,得出,证出,选项A 成立;由平行线的性质得出OCB OBC ∠=∠DBC OCB ∠=∠OC BD ,选项B 成立;由垂径定理得出,选项D 成立;和中,没有相等的边,AD OC ⊥AF FD =CEF ∆BED ∆与不全等,选项C 不成立,即可得出答案.CEF ∆BED ∆【详解】∵是的直径,平分,AB O BC ABD ∠∴,,90ADB ∠=︒OBC DBC ∠=∠∴,AD BD ⊥∵,OB OC =∴,OCB OBC ∠=∠∴,DBC OCB ∠=∠∴,选项A 成立;OC BD ∴,选项B 成立;AD OC ⊥∴,选项D 成立;AF FD =∵和中,没有相等的边,CEF ∆BED ∆∴与不全等,选项C 不成立,CEF ∆BED ∆故选C .【点睛】本题考查了圆周角定理,垂径定理,等腰三角形的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌圆周角定理和垂径定理.10.如图,在中,以BC 为直径的半圆O 交斜边AB 于点D ,Rt ABC ∆90304ACB A BC ∠=︒∠=︒=,,,则图中阴影部分的面积为()A .B.C.D.43π23π13π-13π-【答案】A【分析】根据三角形的内角和得到,根据圆周角定理得到,根据扇60B ∠︒∥12090COD CDB ∠︒∠︒=,=形和三角形的面积公式即可得到结论.【详解】解:∵在中,,Rt ABC ∆9030ACB A ∠︒∠︒=,=,60B ∴∠︒=,120COD ∴∠︒=,BC 为半圆O 的直径,4BC =,90CDB ∴∠︒=,2OC OD ∴==,CD ∴==图中阴影部分的面积2120214136023CODCOD S S ππ∆⋅⨯-⨯=扇形=﹣=,故选:A .【点睛】本题考查扇形面积公式、直角三角形的性质、解题的关键是学会分割法求面积。

专题08 创新作图题-在网格线中作图-2022年中考数学第二轮总复习课件(全国通用)

专题08 创新作图题-在网格线中作图-2022年中考数学第二轮总复习课件(全国通用)

(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的
△A´B´C´.
B
B
C
C

A C´
O

A


图1
图2
当堂训练
按要求构造图形
知识点四
1.把长为2,宽为1的矩形如图依次摆放,恰使一个矩形的宽在另一个矩形的
长的对称轴上,点A是格点(矩形的顶点为格点).请在网格中完成下列画图.
A
A
BA
B
0
图1
B
0
图2
0
图3
强化训练
通过计算长度作图
提升能力
6.由5×6个边长为1的小正方形组成的网格如图所示,每个小正方形的顶 点称为格点,△ABC的三个顶点均在格点上,请仅用无刻度直尺,分别按下 列要求画出线段EF. (1)在图1中,点E,F分别在AB,AC上,EF∥BC且EF=0.5BC; (2)在图2中,点E,F分别在AB,AC上,EF∥BC且EF=0.4BC. (3)在图3中,点E,F分别在AB,BC上,EF∥BC且EF=0.4AC.
①找点:两__点__确__定__一__条__直__线__________________________

根据图形的判定方法构造三角形、四边形等
②画线:________________________________________
知识点
01 利用常用技巧作图 02 利用性质作位置关系 03 利用性质作数量关系 04 按要求构造图形
无刻度直尺画顶点均落在格点上的面积最大的图形.
(1)在图1中画一个直角三角形;
(2)在图2中画一个四条边均不在网格线上的矩形.

2023年高考备考反比例函数全国初三数学(含答案)

2023年高考备考反比例函数全国初三数学(含答案)

专题08 反比例函数一.选择题〔共14小题〕1.〔2023•江岸区校级自主招生〕如图,点A在反比例函数y1=〔x>0〕的图象上,过点A作AB⊥x轴,垂足为B,交反比例函数y2=〔x>0〕的图象于点C,P为y轴上一点,连接PA,PC,则△APC的面积为〔 〕A.6B.8C.12D.20 2.〔2023•江岸区校级自主招生〕直线y=kx+1与双曲线y=有两个交点均在直线y=x的同侧,则k的取值范围为〔 〕A.<k<B.﹣<k<0或<k<C.k<﹣或k>D.﹣<k<0或0<k<3.〔2023•温江区校级自主招生〕已知点A〔﹣4,m〕,B〔﹣,n〕都在反比例函数y=的图象上,则m与n的大小关系是〔 〕A.m>n B.m<n C.m=n D.不能确定4.〔2023•淄博〕如图,在直角坐标系中,以坐标原点O〔0,0〕,A〔0,4〕,B〔3,0〕为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=的图象上,则k的值为〔 〕A.36B.48C.49D.64 5.〔2023•南岸区自主招生〕如图,点A与点B关于原点对称,点C在第四象限,∠ACB =90°.点D是x轴正半轴上一点,AC平分∠BAD,E是AD的中点,反比例函数y=〔k>0〕的图象经过点A,E.假设△ACE的面积为6,则k的值为〔 〕A.4B.6C.8D.12 6.〔2023•巴南区自主招生〕如图,点A,B分别在x轴,y轴的正半轴上,且△ABO的面积为8,假设双曲线y=〔k≠0〕经过边AB的中点C,则k的值为〔 〕A.4B.6C.8D.12 7.〔2023•浙江自主招生〕如图,点A是函数y=的图象上的点,点B,C的坐标分别为B〔﹣,﹣〕,C〔,〕.试利用性质:“函数y=的图象上任意一点A都满足|AB﹣AC|=2〞求解下面问题:作∠BAC的角平分线AE,过B作AE的垂线交AE于F,已知当点A在函数y=的图象上运动时,点F总在一条曲线上运动,则这条曲线为〔 〕A.直线B.抛物线C.圆D.反比例函数的曲线8.〔2023•永春县校级自主招生〕如图,点A、B是反比例函数y=〔k≠0〕图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,假设S△ABE=7,则k的值为〔 〕A.﹣12B.﹣10C.﹣9D.﹣69.〔2023•湖州〕如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=〔x<0〕图象上一点,AO的延长线交函数y=〔x>0,k是不等于0的常数〕的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,交于x轴于点B,连接AB,AA′,A′C′.假设△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于〔 〕A.8B.10C.3D.4 10.〔2023•市北区校级自主招生〕如图,△OA1B1,△B1A2B2为等边三角形,△OA1B1的面积为,点A1,A2在反比例函数y=的图象上,则B2点的坐标为〔 〕A.〔2,0〕B.〔+1,0〕C.〔3,0〕D.〔2,0〕11.〔2023•江汉区校级自主招生〕已知点A是双曲线在第—象限上的一动点,连接AO并延长交另一分支于点B,以AB为一边作等边三角形ABC,点C在第四象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式是〔 〕A.〔x>0〕B.〔x>0〕C.〔x>0〕D.〔x>0〕12.〔2023•赫山区校级自主招生〕如图,反比例函数的图象经过点A〔2,1〕,假设y ≤1,则x的范围为〔 〕A.x≥1B.x≥2C.x<0或0<x≤1D.x<0或x≥213.〔2023•南岸区自主招生〕如图,点A和点B都是反比例函数在第—象限内图象上的点,点A的横坐标为1,点B的纵坐标为1,连接AB,以线段AB为边的矩形ABCD 的顶点D,C恰好分别落在x轴,y轴的负半轴上,连接AC,BD交于点E,假设△ABC的面积为6,则k的值为〔 〕A.2B.3C.6D.12 14.〔2023•镇江〕如图,一次函数y=2x与反比例函数y=〔k>0〕的图象交于A,B两点,点P在以C〔﹣2,0〕为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为〔 〕A.B.C.D.二.填空题〔共6小题〕15.〔2023•渝中区校级自主招生〕如下图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象P经过点A〔3,﹣1〕,直线l:y=x+k与图象P交于点B,与y轴交于点C.记图象P在点A、B之间的局部与线段OA、OC、BC围成的地域〔不含边界〕为W,且地域W内恰有3个整数点〔即横、纵坐标均为整数的点〕,则k的取值范围为 .16.〔2023•武昌区校级自主招生〕过原点的直线与双曲线y=分别交于A、B两点,过点B作x轴的垂线,垂足为点C〔如图〕,则△ABC的面积为 .17.〔2023•衡阳县自主招生〕如图,直线y=x+1与x轴交于点A,与函数y=〔k>0,x>0〕的图象交于点B,BC⊥x轴于点C,平移直线y=x+1,使其经过点C,且与函数y=〔k>0,x>0〕的图象交于点D,假设AB=2CD,则k的值为 .18.〔2023•温江区校级自主招生〕在平面直角坐标系xOy中,记反比例函数y=〔k<0,x<0〕的图象为C1,将C1沿x轴翻折得到C2〔如下图〕.假设点A〔m,2〕在C1上,将线段AO绕点A顺时针方向旋转90°后,点O恰好落在C2上点B的位置,则k = .19.〔2023•武昌区校级自主招生〕如图,已知直线y=kx〔k>0〕分别交反比例函数y=和y=在第—象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.假设△ABC是等腰三角形,则k的值是 .20.〔2023•汉阳区校级自主招生〕如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为〔6,4〕,反比例函数的图象与AB边交于点D,与BC边交于点E,连接DE,将△BDE沿DE翻折到△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是 .三.解答题〔共5小题〕21.〔2023•浦东新区校级自主招生〕点A在y=〔x>0〕上,点B、C在y=〔x>0〕上,AB∥y轴,AC∥x轴,且=,求BC的长.22.〔2023•黄州区校级自主招生〕如图,在平面直角坐标系中已知四边形ABCD为菱形,且A〔0,3〕,B〔﹣4,0〕.〔1〕求过点C的反比例函数表达式;〔2〕设直线l与〔1〕中所求函数图象相切,且与x轴,y轴的交点分别为M,N,O为坐标原点.求证:△OMN的面积为定值.23.〔2023•温江区校级自主招生〕如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点C〔0,2〕,与反比例函数y=〔x>0〕的图象交于点A〔1,a〕.〔1〕求一次函数和反比例函数的表达式;〔2〕设M是反比例函数y=〔x>0〕图象上一点,N是直线AB上一点,假设以点O、M、C、N为顶点的四边形是平行四边形,求点N的坐标.24.〔2023•北碚区自主招生〕某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.〔1〕当x=5时,求y1的值;〔2〕在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;〔3〕进一步探究函数图象并解决问题:已知函数y2=﹣的图象如下图,结合函数y1的图象,直接写出不等式y1≥y2的解集.25.〔2023•汉阳区校级自主招生〕如图1,平面直角坐标系xOy中,A〔﹣4,3〕,反比例函数y=〔k<0〕的图象分别交矩形ABOC的两边AC,BC于E,F〔E,F不与A重合〕,沿着EF将矩形ABOC折叠使A,D重合.〔1〕①如图2,当点D恰好在矩形ABOC的对角线BC上时,求CE的长;②假设折叠后点D落在矩形ABOC内〔不包含边界〕,求线段CE长度的取值范围.〔2〕假设折叠后,△ABD是等腰三角形,请直接写出此时点D的坐标.专题08 反比例函数参考答案与真题解析一.选择题〔共14小题〕1.(解答)解:连接OA和OC,∵点P在y轴上,AB∥y轴,则△AOC和△APC面积相等,∵点A在反比例函数y1=〔x>0〕的图象上,点C在反比例函数y2=〔x>0〕的图象上,AB⊥x轴,∴S△OAB=×20=10,S△OBC==4,∴S△AOC=S△OAB﹣S△OBC=6,∴△APC的面积为6,应选:A.2.(解答)解:因为双曲线y=与直线y=x的交点为A〔2,2〕,B〔﹣2,﹣2〕.当函数y=kx+1的图象过点A〔2,2〕时,k=;当函数y=kx+1的图象过点B〔﹣2,﹣2〕时,k=.当k>0时,又因为直线y=kx+1与双曲线y=有两个交点均在直线y=x的同侧,所以实数k的取值范围是:<k<,令kx+1=得到方程kx2+x﹣4=0,当k<0时,△=1+16k>0解得:﹣<k<0,综上,实数k的取值范围是<k<或﹣<k<0,应选:B.3.(解答)解:∵k=2>0,∴函数的图象在一、三象限,依据函数性质,函数在一、三象限y随x的增大而减小,∵﹣4<﹣,∴m>n,应选:A.4.(解答)解:过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,∵A〔0,4〕,B〔3,0〕,∴OA=4,OB=3,∴AB==5,∵△OAB的两个锐角对应的外角角平分线相交于点P,∴PE=PC,PD=PC,∴PE=PC=PD,设P〔t,t〕,则PC=t,∵S△PAE+S△PAB+S△PBD+S△OAB=S矩形PEOD,∴×t×〔t﹣4〕+×5×t+×t×〔t﹣3〕+×3×4=t×t,解得t=6,∴P〔6,6〕,把P〔6,6〕代入y=得k=6×6=36.应选:A.5.(解答)解:连接OC,在Rt△ABC中,点O是AB的中点,∴OC=AB=OA,∴∠OAC=∠OCA,∵AC是∠BAD的角平分线,∴∠OAC=∠EAC,∴∠OCA=∠EAC,∴AE∥OC∴S△AEC=S△AOE,过A作AM⊥x轴于M,过E作EN⊥x轴于N,∵A、E都在反比例函数y=的图象上,∴S△AOM=S△EON,∴S梯形AMNE=S△AOE,∵AM∥EN,∴△DAM∽△DEN,∵AE=DE,S梯形AMNE=S△AOE=S△AEC=6,∴S△AOD=12,延长DA交y轴于P,易得△DAM∽△DPO,设EN=a,则AM=2a,∴ON=,OM=,∴MN=,DN=,∴DM:OM=2:1,∴S△DAM:S△AOM=2:1,∴S△AOM=4,∴k=8.应选:C.6.(解答)解:设点A〔a,0〕,点B〔0,b〕,∴OA=a,OB=b,∵△ABO的面积为8,∴ab=8,∴ab=16,∵点C是AB中点,∴点C〔,〕,∵点C在双曲线y=〔k≠0〕上,∴k=×=4,应选:A.7.(解答)解:如图:延长AC交BF的延长线于G,连接OF.∵AF⊥BG,∴∠AFB=∠AFG=90°,∴∠BAF+∠ABF=90°,∠G+∠GAF=90°,∵AE为∠BAG的平分线,∴∠BAF=∠FAG,∴∠ABF=∠G,∴AB=AG,∵AF⊥BG,∴BF=FG,∵B〔﹣,﹣〕,C〔,〕,∴OB=OC,∴OF=CG,∵AC=AG﹣CG,AB=AG,∴AB﹣AC=CG,∵|AB﹣AC|=2,∴CG=2,∴OF=,∴点F在以O为圆心为半径的圆上运动.应选:C.8.(解答)解:设A〔m,〕,C〔0,n〕,则D〔m,0〕,E〔m,0〕,∵AB=BC,∴B〔,〕,∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•〔﹣m〕•+•n•〔﹣m〕﹣•〔﹣m〕•n,∴14=﹣k﹣+,∴k=﹣12.解法二:过点B作BM⊥DE于M,设A〔a,〕,则B〔,〕.由题意,OE=﹣a,DE=﹣a,ME=﹣a,BM=,DM=﹣a,∵S△ABE=S梯形ADMB+S△BEM﹣S△ADE=7,∴〔+〕×〔﹣a〕+×〔﹣a〕×〔〕﹣××〔﹣a〕=7,解得k=﹣12.应选:A.9.(解答)解:过A作AD⊥x轴于D,连接OA′,∵点A是函数y=〔x<0〕图象上一点,∴设A〔a,〕,∵点C在函数y=〔x>0,k是不等于0的常数〕的图象上,∴设C〔b,〕,∵AD⊥BD,BC⊥BD,∴△OAD∽△OCB,∴==,∵S△ADO=,S△BOC=,∴k2=,∵S△ABC=S△AOB+S△BOC=〔﹣〕•b+=6,∴k2﹣=12,①当k>0时,k=﹣,∴k2+k﹣12=0,解得:k=3,k=﹣4〔不合题意舍去〕,②当k<0时,k=,∴k2﹣k﹣12=0,解得:k=﹣3,k=4〔不合题意舍去〕,∴k2=9∵点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3=90°,∴OA′,OC′在同一条直线上,∴S△OBC′=S△OBC==,∵S△OAA′=2S△OAD=1,∴由线段AC,CC′,C′A′,A′A所围成的图形的面积=S△OBC+S△OBC′+S△OAA′=10.应选:B.10.(解答)解:分别过A1、A2作x轴的垂线,垂足分别为D、E,如图,设OD=m,B1E=n〔m>0,n>0〕.∵△OA1B1,△B1A2B2是等边三角形,∴∠OA1D=∠B1A2E=30°,OD=DB1=OB1,B1E=EB2=B1B2,A1D=m,A2E=n,则A1〔m,m〕,A2〔2m+n,n〕∴S△A1OD=S△A1OB1==|k|,∴k=〔k>0〕,∴反比例函数的关系式为:y=,把A1〔m,m〕,A2〔2m+n,n〕代入得,m•m=,〔2m+n〕•n=,∴m=1,n=﹣1,∴OB2=2m+2n=2,∴B2点的坐标为〔2,0〕,应选:A.11.(解答)解:设A〔a,〕,∵点A与点B关于原点对称,∴OA=OB,∵△ABC为等边三角形,∴AB⊥OC,OC=AO,∵AO=,∴CO=,过点C作CD⊥x轴于点D,则可得∠AOD=∠OCD〔都是∠COD的余角〕,设点C的坐标为〔x,y〕,则tan∠AOD =tan∠OCD,即=,解得:y=﹣x,在Rt△COD中,CD2+OD2=OC2,即y2+x2=3a2+,将y=﹣x代入,可得:x2=,故x=,y=﹣x=﹣a,则xy=﹣9,故可得:y=﹣〔x>0〕.应选:C.12.(解答)解:在第—象限纵坐标为1的以及小于1的函数图象所对应的自变量的取值为x≥2;在第三象限纵坐标为1的以及小于1的函数图象所对应的自变量的取值为x<0.应选:D.13.(解答)解:∵点A和点B都是反比例函数在第—象限内图象上的点,点A的横坐标为1,点B的纵坐标为1∴A〔1,k〕、B〔k,1〕E为矩形ABCD对角线的交点,∴E〔,〕∵D,C恰好分别落在x轴,y轴的负半轴上,设D〔a,0〕、C〔0,b〕E为点A、C的中点∴a=1﹣k,b=1﹣k∴D〔1﹣k,0〕,C〔0,1﹣k〕且1﹣k<0在等腰直角△COD中,OD=OC=k﹣1,由勾股定理得:DC2=OD2+OC2DC2=〔k﹣1〕2+〔k﹣1〕2DC=〔k﹣1〕A〔1,k〕、D〔1﹣k,0〕,AD2=〔1﹣k﹣1〕2+k2=k∴k2﹣k﹣6=0解得:k=3,k=﹣2〔不符合题意,舍去〕应选:B.14.(解答)解:连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为,∴BP长的最大值为×2=3,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B〔t,2t〕,则CD=t﹣〔﹣2〕=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=〔t+2〕2+〔﹣2t〕2,t=0〔舍〕或﹣,∴B〔﹣,﹣〕,∵点B在反比例函数y=〔k>0〕的图象上,∴k=﹣=;应选:C.二.填空题〔共6小题〕15.(解答)解:∵函数y=〔x>0〕的图象P经过点A〔3,﹣1〕,∴m=3×〔﹣1〕=﹣3,∴直线l为:y=﹣x+k,如图1,直线l在OA的下方时,当直线l:y=﹣x+k过〔1,﹣2〕时,k=﹣,地域W内有两个点整点,当直线l:y=﹣x+k过〔1,﹣3〕时,k=﹣,地域W内有三点整点,∴地域W内恰有3个整点,b的取值范围是﹣≤k<﹣.如图2,直线l在OA的上方时,当直线l:y=﹣x+k过〔0,1〕时,k=1,地域W内有两个点整点,当直线l:y=﹣x+k过〔1,1〕时,k=,地域W内有三个点整点,∴地域W内恰有3个整点,k的取值范围是1<k≤.综上所述,地域W内恰有3个整点,k的取值范围是﹣≤k<﹣或1<k≤.故答案为﹣≤k<﹣或1<k≤.16.(解答)解:设点A坐标为〔a,b〕,则点B的坐标为〔﹣a,﹣b〕,∴b=,即ab=﹣2,依据题意可知,S△BOC====1,===1,S△ABC=S△BOC+S△AOC=1+1=2.故答案为:2.17.(解答)解:由直线y=x+1可知A〔﹣2,0〕,∴OA=2,设B〔m.m+1〕,∴OC=m,BC=,∴AC=2+m,由题意可知,△ABC∽△CDE,∴=,即,∴CE=1+m,DE=m+,∴OE=OC+CE=1+m,∴D〔1+m,m+〕,∵函数y=〔k>0,x>0〕的图象过点B、点D,∴k=m〔m+1〕=〔1+m〕〔m+〕,解得m=2〔负数舍去〕,∴k=2×〔=4,故答案为4.18.(解答)解:作AE⊥x轴于E,作BD∥x轴,交AE于D,∵点A〔m,2〕在C1上,∴OE=﹣m,AE=2,依据题意C2的函数关系式为y=﹣,∵∠BAO=90°,∴∠BAD+∠OAE=90°,∵∠OAE+∠AOE=90°,∴∠BAD=∠AOE,∵∠AEO=∠BDA=90°,AB=OA,∴△ABD≌△OAE〔AAS〕,∴BD=AE=2,AD=OE=﹣m,∴B〔m﹣2,﹣m+2〕,∵点A〔m,2〕在C1上,点B〔m﹣2,﹣m+2〕在C2上,∴k=2m,﹣k=〔m﹣2〕〔﹣m+2〕,∴2m+〔m﹣2〕〔m+2〕=0,整理得:m2+2m﹣4=0,解得m1=﹣1﹣,m2=﹣1+,∵k<0,x<0,∴m=﹣1﹣,∴k=2m=﹣2﹣2,故答案为﹣2﹣2.19.(解答)解:∵点B是y=kx和y=的交点,y=kx=,∴点B坐标为〔,2〕,同理可求出点A的坐标为〔,〕,∵BD⊥x轴,∴点C横坐标为,纵坐标为,∴BA=,AC=,BC=,∴BA2﹣AC2=k>0,∴BA≠AC,假设△ABC是等腰三角形,①当AB=BC时,则=,解得:k=±〔舍去负值〕;②当AC=BC时,同理可得:k=;故答案为:或.20.(解答)解:∵四边形ABCD为矩形,B〔6,4〕,∴E点的纵坐标为4,D点的横坐标为6,当x=6时,y==1,则D〔6,1〕;当y=4时,=4,解得x=,则E〔,4〕,∴BE=,BD=3,AD=1,∵△BDE沿DE翻折到△B'DE处,∴EB′=EB=,DB′=DB=3,∠EB′D=∠B=90°,作B′M⊥AB于M,EN⊥B′M于N,如图,则MN=BE=,EN=BM,∵∠EB′N+∠DB′M=90°,∠EB′N+∠B′EN=90°,∴∠B′EN=∠DB′M,∴Rt△EB′N∽Rt△B′DM,∴====,设B′N=t,则DM=t,∴B′M=EN=〔3+t〕,∵B′N+B′M=,∴t+〔3+t〕=,解得t=,∵AM=DM﹣AD=×﹣1=,而+NB′=+=,∴B′点的坐标为〔,﹣〕,把B′〔,﹣〕代入y=kx得k=﹣,解得k=﹣.故答案为﹣.三.解答题〔共5小题〕21.(解答)解:∵点A在反比例函数y=〔x>0〕的图象上,点B、C在y=〔x>0〕上,∴设A〔a,〕,∵AB∥y轴,AC∥x轴,∴B〔a,〕,C〔3a,〕,∴AB=﹣=,AC=3a﹣a=2a,又∵=,∴=,∴B〔,2〕,C〔,〕,∴BC==.22.(解答)〔1〕解:∵点A的坐标为〔0,3〕,点B的坐标为〔﹣4,0〕,∴OA=3,OB=4.在Rt△AOB中,OA=3,OB=4,∴AB==5.∵四边形ABCD为菱形,∴BC∥y轴,且BC=AB=5,∴点C的坐标为〔﹣4,﹣5〕.∵点C在反比例函数y=的图象上,∴k=〔﹣4〕×〔﹣5〕=20,∴过点C的反比例函数表达式为y=.〔2〕证明:设直线l的解析式为y=mx+n〔m≠0〕,将y=mx+n代入y=得:mx+n=,整理得:mx2+nx﹣20=0.∵直线l与反比例函数y=的图象相切,∴△=n2﹣4×m×〔﹣20〕=0,∴n2=﹣80m.当x=0时,y=m×0+n=n,∴点N的坐标为〔0,n〕;当y=0时,mx+n=0,解得:x=﹣,∴点M的坐标为〔﹣,0〕.∴S△OMN=|n|×|﹣|=||=40,∴△OMN的面积为定值.23.(解答)解:〔1〕∵点C〔0,2〕在直线y=x+b上,∴b=2,∴一次函数的表达式为y=x+2;∵点A〔1,a〕在直线y=x+2上,∴a=3,∴点A〔1,3〕,∵点A〔1,3〕在反比例函数y=〔x>0〕的图象上,∴k=1×3=3,∴反比例函数的表达式为y=;〔2〕由〔1〕知,直线AB的表达式为y=x+2,反比例函数的表达式为y=,设点M〔m,〕,N〔n,n+2〕,假设以点O、M、C、N为顶点的四边形是平行四边形,则①以OC和MN为对角线时,∴=0,,∴m=,n=﹣或m=﹣〔此时,点M不在第—象限,舍去〕,n=,∴N〔﹣,﹣+2〕,②以CN和OM为对角线时,∴=,=,∴m=n=﹣2+或m=n=﹣2﹣〔此时,点M不在第—象限,舍去〕,∴N〔﹣2+,〕,③以CM和ON为对角线时,∴=,=,∴m=n=或m=n=﹣〔此时,点M不在第—象限,舍去〕,∴N〔,2+〕,即满足条件的点N的坐标为〔﹣,﹣+2〕或〔﹣2+,〕或〔,2+〕.24.(解答)解:〔1〕由题意x=0时,y1=0,∴16+4b+8=0,∴b=﹣6,∴x=5时,y1=25﹣6×5+8=3.〔2〕函数图象如下图:性质:x<3时,y1随x的增大而减小,x>3时,y1随x的增大而增大.〔3〕观察图形可知:不等式y1≥y2的解集为:x≤﹣2或x>0.25.(解答)解:〔1〕①如图2中,连接AD交EF于H.∵四边形ABOC是矩形,A〔﹣4,3〕,∴∠A=90°,OB=AC=4,AB=OC=3,∵E,F在y=时,∴可以假设E〔,3〕,F〔﹣4,〕,∴AE=4+,AF=3+,∴AE:AF=4:3,∵AC:BC=4:3,∴=,∵∠EAF=∠CAB,∴△EAF∽△CAB,∴∠AEF=∠ACB,∴EF∥BC,∵A,D关于EF对称,点D落在BC上,∴EF垂直平分线段AD,∴AH=DH,∵EF∥BC,∴=,∴AE=EC=2.②如图3中,当点D落在OB上时,连接AD交EF于H.∵∠EAF=∠ABD=90°,∠AEF=∠BAD,∴△AEF∽△BAD,∴=,则==,∴BD=AB÷=,设AF=x,则FB=3﹣x,FD=AF=x在Rt△BDF中,∵FB2+BD2=DF2,∴〔3﹣x〕2+〔〕2=x2,解得x=,∴AF=,∴AE=AF=,∴EC=4﹣AE=4﹣=,∴<CE<4时,折叠后点D落在矩形ABOC内〔不包含边界〕,线段CE长度的取值范围为:<CE<4.〔2〕∵△ABD是等腰三角形,F与B不重合,∴AB≠BD.①如图4中,当AD=BD时,∠BAD=∠ABD,由〔1〕可知∠BAD=∠AEF,∴∠ABD=∠AEF.作DM∥OB交AB于M,交OC于N.则DM⊥AB,MN=AC=4,∴∠BMD=∠EAF=90°,BM=AB=,∴△AEF∽△MBD,∴=,则==,∴MD=BM÷=,∴DN=MN﹣MD=4﹣=,∴D〔﹣,〕.②如图5中,当AD=AB时,作DM∥OB交AB于M,交OC于N.则DM⊥AB,MN =AC=4,∴∠AMD=∠EAF=90°,由〔1〕可得∠BAD=∠AEF,∴△AEF∽△MAD,∴=,则==,设AM=4a,则MD=3a,在Rt△MAD中,∵AM2+DM2=AD2,∴〔4a〕2+〔3a〕2=32,∴a=,∴AM=,MD=,∴BM=AB=AM=3﹣=,DN=MN﹣MD=4﹣=,∴D〔﹣,〕.综上所述,满足条件的点D的坐标为〔﹣,〕或〔﹣,〕.。

初三年级数学寒假作业(八)

初三年级数学寒假作业(八)

初三年级数学寒假作业(八)1.在四边形ABCD 中,∠B=90°,AC=4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB =x ,AD =y ,则y 关于x 的函数关系为 .(第1题) (第2题) (第3题) (第4题)2.如图,在△ABC 中,BF 平分∠ABC ,AF ⊥BF 于点F ,D 为AB 的中点,连接DF 延长交AC 于点E .若AB =10,BC =16,则线段EF 的长为 .3.如图,矩形ABCD 的边长AD =3,AB =2,E 为AB 的中点,F 在边BC 上,且BF =2FC ,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为 .4.如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H ,若点H 是AC 的中点,则AG FD的值为__________.(第5题) (第6题) (第8题) (第9题)5.如图,矩形纸片ABCD 中,AB=4,BC=6。

将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是__________.6.如图,点A 在函数4y x=(x >0)的图像上,且OA=4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为 .7.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0)。

未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元。

通过市场调研发现,该时装单价每降1元,每天销量增加4件。

在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 .8.如图,△AOB 是直角三角形,AOB ∠=︒90,OA OB 2=,点A 在反比例函数xy 1=的图像上.若点B 在反比例函数xk y =的图像上,则 k 的值为 . 9.如图,在矩形ABCD 中,AB =10,BC =5.若点M 、N 分别是线段ACAB 上的两个动点,求BM +MN 的最小值为 .10.如图,在Rt △ABC 中,∠ACB =90°,AC =5cm ,∠BAC =60°,动点M 从点B 出发,在BA 边上以每秒2cm 的速度向点A 匀速运动,同时动点N 从点C 出发,在CB 边上以每秒3cm 的速度向点B 匀速运动,设运动时间为t 秒(05≤≤t ),连接MN .(1)若BM =BN ,求t 的值;(2)若△MBN 与△ABC 相似,求t 的值;(3)当t 为何值时,四边形ACNM 的面积最小?并求出最小值.F N M E D C B A HG FE D C BA (第8题)B C11.如图,已知四边形ABCD 内接于⊙O ,A 是的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F 、E ,且.(1)求证:△ADC ∽△EBA ;(2)如果AB =8,CD =5,求tan ∠CAD 的值.12.如图1,△ABC 和△DEF 中,AB =AC ,DE =DF ,∠A =∠D .(1)求证:BC AB =EF DE; (2)由(1)中的结论可知,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的对边(即底边BC )与邻边(即腰AB 或AC )的比值也就确定,我们把这个比值记作T (A ),即T (A )=∠A 的对边(底边) ∠A 的邻边(腰)=BC AB,如T (60°)=1. ①理解巩固:T (90°)= ,T= ,若α是等腰三角形的顶角,则T (α)的取值范围是 ;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T≈1.97,T (80°)≈1.29,T (40°)≈0.68)。

九年级数学下学期第八次课堂作业 试题

九年级数学下学期第八次课堂作业  试题

创作;朱本晓 九下数学第八次课堂作业一、选择题〔每一小题2分,一共16分〕 题号 1 2 3 4 5 6 7 8 选择〔 〕A .〔-1,3〕 B.〔1,3〕 C.〔3,-1〕 D.〔1,-3〕 2、点P(x,y)的坐标满足方程|x +1|+y -2 =0,那么点P 在〔 〕A .第一象限 B.第二象限 C.第三象限 D.第四象限3、一元二次方程x 2+kx-3=0的一个根是x=1,那么另一个根是 ( )A.3B.-1C.-34、假设关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解一共有4个,那么m 的取值范围是 ( )A.6<m<7B.6≤m<7C.6≤m≤7D.6<m≤7 5、将一副三角板按图中的方式叠放,那么角α等于〔 〕A .75B .60C .45D .30 6、点P(3,-5)关于x轴对称的点的坐标为创作;朱本晓 〔 〕A . (3,5)B . (5,3)C .(3,5)D . (3,5) 7、以下函数中,y 随x 增大而减小的是〔 〕 A .x y 3=B .5+=x yC .x y 21-=D .)0(212<-=x x y 8、如图,在□ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,那么的□ABCD 周长为〔 〕A .422+B .1262+C .222+D .221262++或 二、填空题〔每一小题2分,一共20分〕9、函数12+-=x x y 中,自变量x 的取值范围是 。

10、一个圆锥的底面直径是6cm ,母线长8cm ,求得它的侧面积为 cm 2.11、假如两个相似三角形的一组对应边分别为3cm 和5cm ,且较小三角形的周长为15cm ,那么较大三角形的周长为__________cm .12、有一组数据如下: 3, a, 4, 6, 7. 它们的平均数是5,那么数组5、2a-1、7、11、13的方差_________. 13、假设关于x 的分式方程131=---xx a x 无解,那么a = 。

专题08 切线的判定与性质(解析版) -2021-2022学年九年级数学之专攻圆各种类型题

专题08  切线的判定与性质(解析版) -2021-2022学年九年级数学之专攻圆各种类型题

专题08 切线的判定与性质概念规律重在理解1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.OA为⊙O的半径,BC ⊥OA于A。

则BC为⊙O的切线。

注意:在此定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线。

2.判断一条直线是一个圆的切线有三个方法:(1)定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;(2)数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;(3)判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.3.证切线时辅助线的添加方法(1) 有交点,连半径,证垂直;(2) 无交点,作垂直,证半径.4.有切线时常用辅助线添加方法见切点,连半径,得垂直.5.切线的其他重要结论(1)经过圆心且垂直于切线的直线必经过切点;(2)经过切点且垂直于切线的直线必经过圆心.6.切线的性质定理:圆的切线垂直于经过切点的半径.直线l是⊙O 的切线,A是切点,直线l ⊥OA.说明:利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.典例解析掌握方法【例题1】(2021吉林长春)如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35°,则∠ACB的大小为()A.35°B.45°C.55°D.65°【答案】C【解析】先根据切线的性质得到∠ABC=90°,然后利用互余计算出∠ACB的度数.∵BC是⊙O的切线,AB是⊙O的直径,∴AB⊥BC,∴∠ABC=90°,∴∠ACB=90°﹣∠BAC=90°﹣35°=55°.【例题2】(2021广西玉林)如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.【答案】见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程练习题
一、填空
1.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。

2.关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。

3.已知直角三角形三边长为连续整数,则它的三边长是 。

4. ++x x 32 +=x ( 2);-2x x (2=+ 2)。

5.直角三角形的两直角边是3︰4,而斜边的长是15㎝,那么这个三角形的面积是 。

6.若方程02=++q px x 的两个根是2-和3,则q p ,的值分别为 。

7.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。

8.方程492=x 与a x =23的解相同,则a = 。

9.当t 时,关于x 的方程032=+-t x x 可用公式法求解。

10.若实数b a ,满足022=-+b ab a ,则b
a = 。

11.若8)2)((=+++
b a b a ,则b a += 。

12.已知1322++x x 的值是10,则代数式1642++x x 的值是 。

二、选择
1.下列方程中,无论取何值,总是关于x 的一元二次方程的是( )
(A )02=++c bx ax (B )x x ax -=+221
(C )0)1()1(222=--+x a x a (D )03
12=-+=a x x 2.若12+x 与12-x 互为倒数,则实数x 为( )
(A )±21 (B )±1 (C )±
22 (D )±2 3.若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )
(A )1- (B )1 (C )21- (D )2
1 4.关于x 的一元二次方程02=++m nx x 的两根中只有一个等于0,则下列条件正确的
是( )
(A )0,0==n m (B )0,0≠=n m (C )0,0=≠n m (D )0,0≠≠n m
5.关于x 的一元二次方程02
=+k x 有实数根,则( )
(A )k <0 (B )k >0 (C )k ≥0 (D )k ≤0
6.已知x 、y 是实数,若0=xy ,则下列说法正确的是( )
(A )x 一定是0 (B )y 一定是0 (C )0=x 或0=y (D )0=x 且0=y
7.若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( )
(A )1,0 (B )-1,0 (C )1,-1 (D )无法确定
三、解方程
1. 选用合适的方法解下列方程
(1))4(5)4(2+=+x x (2)x x 4)1(2=+
(3)22)21()3(x x -=+ (4)31022
=-x x
四、解答题
1. 已知等腰三角形底边长为8,腰长是方程02092=+-x x 的一个根,求这个三角
形的腰。

2. 已知一元二次方程
043712
2=-+++-m m mx x m )(有一个根为零,求m 的值。

答案
一、填空题 1、04x 8x 2
=--,481--、、; 2、1m 1,m ≠=; 3、543,,; 4、2x,-,222349,
,; 5、54; 6、-1,-6; 7、1或32-;8、34; 9、49t ≤
; 10、251±- 11、-4,2;12、19 二、选择题
1、C
2、C
3、A
4、B
5、D
6、C
7、C
三、计算题
1、-4或1;
2、1
3、432或-
; 4、2315± 四、解答题
1、解020x 9x 2=+-
5x ,4x 21==
5
x 844=∴=+ 答等腰三角形的腰为5 2、解04m 3m 2=-+
1m ,4m 21=-=
4m 1m 01m -=∴≠∴≠-。

相关文档
最新文档