求函数值域的常用方法
函数值域的十种求法
函数值域的十种求法
1、通过定义域的极限来求函数值域:由于函数表示法中的变量x的取值范围是定义域,而函数值f(x)的取值范围则可以通过定义域极限的方法来求得。
2、通过函数定义关系来求函数值域:由于函数在定义域内有一定的定义关系,所以可以根据函数定义关系来求函数值域。
3、由于函数在定义域内有一定的性质,所以可以根据函数性质来求函数值域。
4、由于函数在定义域内有一定的对称性,所以可以根据函数的对称性来求函数值域。
5、由于函数在定义域内有一定的单调性,所以可以根据函数的单调性来求函数值域。
6、根据函数的奇偶性来求函数值域:如果函数在定义域内具有奇偶性,则可以根据函数的奇偶性来求函数值域。
7、由于函数在定义域内有一定的常数性,所以可以根据函数的常数性来求函数值域。
8、根据函数增减性来求函数值域:如果函数在定义域内具有增减性,则可以根据函数的增减性来求函数值域。
9、由于函数在定义域内有一定的循环性,所以可以根据函数的循环性来求函数值域。
10、根据函数的图像形状来求函数值域:如果函数在定义域内具有特定的图像形状,则可以根据函数的图像形状来求函数值域。
求函数值域常用的十种方法
值域是全体函数值所构成的集合,值域也是构成函数的三要素之一。
由于求函数值域所涉及到的知识面较宽,所用到的数学思想与数学方法也相应较多,因此、求函数的值域往往是数学考察的基本内容之一,本文将举例说明求函数值域常用的十种方法,仅供参考。
1、利用非负数的性质根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。
例1、(1)求函数216x y -=的值域。
(2)求函数1322+-=x x y 的值域。
解析:(1)161602≤-≤x , 41602≤-≤∴x故 所求函数的值域为 []40,∈y 。
(2)012>+x ,∴原函数可化为 3)1(22-=+x x y ,即 3)1(2+=-y y x , 当1≠y 时,y y x -+=132, 02≥x ,013≥-+∴yy ,解得13≤≤-y 又 1≠y , 所以 13<≤-y ,故 所求函数的值域为 ),13[-∈y 。
2、利用函数的图象对于含有绝对值(或分段)函数,若函数图象比较易作出,则利用函数图象能较快的求出其值域。
例2、求函数|1||2|+--=x x y 的值域。
解析:去掉绝对值符号得 :⎪⎩⎪⎨⎧-<=++-≤≤-+-=+-->=+--=)1(3)1(2)21(12)1(2)2(3)1(2x x x x x x x x x x y 。
画出函数的图象(如图):由函数的图象可得,原函数的值域为]33[,-∈y 。
3、利用二次函数的性质对于二次函数或与二次函数有关的函数,在求其值域时常用此法。
例3、(1)求函数]22[2,,-∈+-=x x x y 的值域。
(2)求函数]231[27,,∈-=x x x y的值域。
解析:(1)41)21(22+--=+-=x x x y ,]22[,-∈x ,416≤≤-∴y 故 所求函数的值域为 ]416[,-∈y (2)849)471(2722727222+--=+-=-=-=x xx x x x x y , ]231[,∈x ,4273≤≤∴y 解得:, 故 所求函数的值域为 ]4273[,∈y 。
求函数值域的方法大全
求函数值域的方法大全
1、极限法:极限法是求函数值域的一种重要技术,可以用来求函数
的极值。
原理是找到函数的变量的极限,在此极限处求函数的极值。
求极
限的方法有四种:求不等式的极限,求一元函数的极限,求二元函数的极限,求多元函数的极限。
2、求导法:求导法是求函数的最值的经典方法。
原理是求函数的导数,当导数当0的时候,其点处就会是极值点,可以分别求函数的一次导
数和二次导数,分析二次导数的符号可以判断函数的极值点属性,从而有
效解决函数求极值问题。
3、几何法:几何法是求函数最值问题的一种有效方法。
原理是利用
函数的图象特征,以图形分析的方法在实值空间中求解函数的极值、拐点,从而求函数的最值。
因为函数图象的研究具有直观性,使用几何法能够比
较快速地解决函数最值问题。
4、范数法:范数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
这种方法利用范数的基本性质,即大于等于零、对称
性以及三角不等式,一般使用二范数求解,其核心思想是将函数转化为范
数的格式,得出最值的解。
5、参数法:参数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
求值域的10种方法
求值域的10种方法值域是一个函数在定义域内所有可能的输出值的集合。
找到函数的值域通常是为了确定函数可能的取值范围,并且在数学和计算中都是非常重要的。
以下是求值域的10种方法:1.列举法列举法是最简单直接的方法。
通过观察函数的定义,给出一组有序的输出值,并将这些值组成一个集合。
这些值将构成函数的值域。
例如,对于函数f(x)=x^2,我们可以通过进行一系列的替换运算,然后给出输出值的集合{0,1,4,9,16,...}。
2.图像法在图像法中,我们首先绘制函数的图像,然后找到图像上所有纵坐标的值。
这些纵坐标的集合构成了函数的值域。
例如,对于函数f(x)=x^2,我们可以绘制一个抛物线形状的图像,然后观察所有纵坐标的值。
3.解析法解析法是通过使用代数表达式或方程来确定函数的值域。
例如,对于函数f(x)=x^2,我们可以使用代数方法将方程f(x)=y转化为x^2=y。
然后通过解这个方程,我们可以得到y可能的取值范围,即函数的值域。
4.图像逼近法在图像逼近法中,我们通过绘制函数的图像,并观察图像在最高和最低点之间所有可能的纵坐标值。
这些纵坐标的集合构成函数的值域。
5.猜测法猜测法是一种直觉方法,凭借对函数的直觉和理解猜测出其可能的取值范围。
这种方法通常需要一定的数学背景和经验,并且在实践中被广泛应用。
6.极值法在极值法中,我们通过找到函数的极大值和极小值来确定函数的值域。
极大值是函数图像的局部最高点,极小值是函数图像的局部最低点。
函数的值域就是极值点之间的所有可能的函数值。
7.夹逼法夹逼法是通过使用两个已知函数(夹逼函数)来夹住待求函数,然后确定待求函数的值域。
待求函数的值域将位于夹逼函数的值域之间。
8.对数法对数法是通过取函数的对数来确定函数的值域。
求函数的对数在一些问题中很有用,因为它可以将具有无穷大或无穷小解的问题转化为具有有限解的问题。
9.差集法差集法是通过找到函数定义域的补集,然后从全体实数集中去除差集的元素,得到函数的值域。
函数求值域的15种方法
函数求值域的15种方法求值域是数学中一个重要的概念,它可以用来确定函数在什么值上才能可以被定义。
它也可以用来判断函数是否具有极值以及极值在哪里。
求解函数域可以使用很多种方法,下面介绍15种求解函数域的方法。
1. 曲线图:用曲线图来求解函数域,通过分析函数的凹凸变化,以及变化的临界点来考虑函数的值域。
2. 区间法:分析函数的解析式,找出函数变量的取值范围,从而求出函数的定义域。
3. 限制法:通过限制函数的方程来求解函数域的大小,有助于函数属于哪个集合。
4. 线性变换:通过对函数值的线性变换,可以求解函数值的取值范围。
5. 积分法:根据求解函数值的积分值,来判断函数值的取值范围。
6. 求根法:通过求解函数的根,找出函数的定义域,计算出函数在一定范围内所具有的有效值。
7. 不等式法:分析函数的不等式,来求出函数的定义域。
8. 收敛法:通过检验函数的收敛性,来确定函数的定义域。
9. 极值法:通过分析函数的极值,找出函数的值域。
10. 极限法:通过求解函数的极限,来确定函数的值域。
11. 变分法:根据函数在不同变量上的变分,求出函数的定义域。
12. 拓扑法:根据不同拓扑形状,确定函数的定义域,计算出函数在一定范围内所具有的值。
13. 微分表示法:通过求解函数的微分,来确定函数的取值范围。
14. 二分法:通过分段求解函数的值,以二分的方式查找函数的值域。
15. 图解法:通过对函数的图解,计算出函数所具有的定义域。
以上就是15种求解函数域的方法。
上述15种方法都可以用来帮助我们求解函数域,可以根据不同的情况,适当选择不同的方法来解决问题。
根据实际情况,选择合适的方法,有助于我们获得更好的结果,但这也取决于我们是否能够正确掌握这些求解函数域的方法。
求函数值域的12种方法
求函数值域的12种方法函数的值域即为函数的输出值的集合。
在数学中,可以用多种方法来确定函数的值域。
1.输入法:根据函数的解析式,将不同的输入带入函数中,找出函数的输出值。
例如,对于函数$f(x)=x^2$,将不同的$x$值带入函数中,得到$f(1)=1$,$f(2)=4$,$f(3)=9$,...,通过这种方法可以找出函数的值域为正整数集合。
2. 虚拟增量法:给定函数的定义域,通过逐渐增加函数的输入值,观察函数的输出值是否有变化。
例如,对于函数$g(x) = \sqrt{x}$,可以从定义域中的最小值开始逐渐增加$x$的值,观察$\sqrt{x}$的变化,直到无法再增加$x$的值为止。
通过这种方法可以找出函数值域为非负实数集合。
3. 图像法:画出函数的图像,通过观察图像的高度范围找出函数的值域。
例如,对于函数$h(x) = \sin x$,可以画出其图像,观察图像的高度范围为$[-1, 1]$,则函数的值域为闭区间$[-1, 1]$。
4. 函数属性法:通过函数的性质推断出函数的值域。
例如,对于函数$f(x) = \frac{1}{x}$,可以通过观察函数的分母$x$的取值范围,推断出函数的值域为除去零的实数集合。
5. 求导法:对于可导函数,可以通过求导数来确定函数的值域。
例如,对于函数$f(x) = x^3 + 1$,求导得到$f'(x) = 3x^2$,由于$f'(x)$是一个二次函数,且开口向上,因此可以推断出函数$f(x)$的值域为$(-\infty, +\infty)$。
6. 函数复合法:对于复合函数,可以通过将函数复合起来,找出函数的值域。
例如,对于函数$f(x) = \sqrt{\sin x}$,可以将其分解为$f(x) = \sqrt{g(x)}$,其中$g(x) = \sin x$,由于$\sin x$的值域为$[-1, 1]$,因此$\sqrt{\sin x}$的值域为闭区间$[0, 1]$。
求函数值域的方法大全
求函数值域的方法大全函数的值域是指函数在定义域内所有可能的输出值的集合。
找到函数的值域可以帮助我们了解函数的整体走势和性质。
下面是一些常见的方法帮助我们求函数值域。
1.用图形法求值域:使用图形来观察函数的形状和趋势,根据图形的有界性和单调性来确定函数值域的范围。
例如,如果函数是上凸的,那么它的值域可能是从函数的最小值开始一直到正无穷大。
如果函数是下凸的,那么它的值域可能是从负无穷大到函数的最大值。
2.用定义法求值域:通过函数的定义式,将自变量的范围带入函数,计算函数的输出值,从而找到函数的可能取值。
例如,对于函数f(x)=x^2,我们可以把不同的x值代入函数中,并记录下函数的输出值,得到一个可能的值域的集合。
3.用反函数法求值域:如果函数具有反函数,可以通过求反函数的定义域来求原函数的值域。
例如,对于函数f(x)=x^2,它的反函数是f^(-1)(x)=√x,定义域为非负实数,因此原函数的值域也是非负实数。
4.用导数法求值域:对于给定范围内的函数,利用导数求得函数的驻点和拐点,结合函数的单调性和图像的形状来求值域。
例如,当函数的导数为零时,这些点可能是函数的最大值或最小值,通过比较这些点的对应函数值,可以确定函数的值域的上下界。
5.用极限法求值域:当函数的定义域是无界的时候,可以利用函数的极限来求值域。
通过求函数在正无穷大和负无穷大时的极限,可以确定函数的值域的上下界。
6.用解析法求值域:对于一些特定形式的函数,可以通过解析方法求值域。
例如,对于一次函数f(x)=ax+b,其中a和b为常数,如果a>0,则函数的值域是从负无穷大到正无穷大的实数集合。
7.用二次函数求值域:对于二次函数f(x)=ax^2+bx+c,其中a>0,可以通过将二次函数转化为顶点形式来求值域。
首先通过求导数找到二次函数的极值点(即顶点),然后结合函数的开口方向和顶点的y坐标,可以确定二次函数的值域。
8.用指数和对数函数求值域:对于指数函数f(x)=a^x和对数函数f(x)=log_a(x),其中a>0且a≠1,可以利用指数和对数函数的性质来求值域。
求函数值域常用的方法
求函数值域常用的方法函数的值域是指函数在定义域内可以取到的所有可能的值。
确定函数的值域可以帮助我们了解函数的变化规律以及其他数学问题的解。
以下是一些常见的方法来确定函数的值域。
1.函数的图像法通过绘制函数的图像,我们可以直观地看到函数的取值范围。
根据图像的形状和位置,我们可以确定函数的最大值、最小值以及其他可能的取值。
2.求导数法对于单调函数,可以通过求函数的导数来确定函数的值域。
当函数的导数大于零时,函数是递增的;当函数的导数小于零时,函数是递减的。
根据导数的符号变化,可以确定函数的最大值和最小值。
3.求解不等式法对于一些局部有界的函数,可以通过求解不等式来确定函数的值域。
首先,我们根据函数的定义确定限制条件,然后通过不等式的求解来确定可能的取值范围。
4.集合表示法对于一些特殊的函数,可以使用集合表示法来确定函数的值域。
例如,对于一个定义在实数集上的三角函数,可以使用集合表示法来表示函数的值域。
5.极限法对于一些特殊的函数,可以使用极限法来确定函数的值域。
通过求解极限,可以确定函数在无穷远处的取值,从而确定整个函数的值域。
6.函数的性质法对于一些具有特殊性质的函数,可以利用这些性质来确定函数的值域。
例如,对于一个奇函数,其值域可以根据函数的对称性质来确定。
7.利用关系式法对于一些复合函数,可以利用函数之间的关系式来确定函数的值域。
通过将函数进行分解、合并或者替换,可以得到其他已知函数的值域,从而确定整个函数的值域。
8.数学工具法对于一些复杂的函数,可以利用数学工具来确定函数的值域。
例如,使用微积分、线性代数、概率论等工具,可以确定函数的值域。
总结:确定函数的值域是数学中的一个重要问题。
通过函数的图像法、求导数法、求解不等式法、集合表示法、极限法、函数的性质法、利用关系式法和数学工具法等方法,可以确定函数的值域。
不同的函数适合不同的方法,选择适合的方法可以更方便地确定函数的值域。
函数专题:函数值域的6种常用求法-【题型分类归纳】
函数专题:函数值域的6种常用求法一、函数的最大(小)值1、最大值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≤M,那么,我们称M是函数y=f(x)的最大值,即当x=x0时,f(x0)是函数y=f(x)的最大值,记作y max=f(x0).2、最小值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≥M,那么,我们称M是函数y=f(x)的最小值,即当x=x0时,f(x0)是函数y=f(x)的最小值,记作y min=f(x0).3、几何意义:函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.二、求函数值域的6种常用求法1、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y=f(x)在区间[a,b]上单调递增,则y max=f(b),y min=f(a).(2)若函数y=f(x)在区间[a,b]上单调递减,则y max=f(a),y min=f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.2、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x函数的图象,从而利用图象求得函数的值域.3、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.4、换元法:换元法是将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围. (2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理 5、分离常数法:主要用于含有一次的分式函数,形如+=+ax b y cx d或2++=+ax bx e y cx d (a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下: 第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式, 第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。
求函数值域常见的五种方法
求函数值域常见的五种方法求函数的值域是函数学习的一个难点,求值域时涉及到的知识和方法较多,下面介绍几种常用的方法供参考.一、 判别式法思路:将函数式整理成一元二次方程的形式,借用判别式求值域.例1 求函数的4312--=x x y 值域. 解:原式整理成01432=---y yx yx , )4()41()1(∞+⋃-⋃--∞∈,,,x ,且0≠y ,∴0)14(492≥++=∆y y y .解得0≥y 或254-≤y . 当 254-=y 时,)41(23,-∈=x . 又0≠y , ∴所求函数的值域是),0(]254--+∞⋃∞,(. 二、 配方法例2 求函数x x y 21-+=的值域. 解:由已知得2121)21(21+-+--=x x y 1)121(212+---=x∴所求函数的值域是]1-,(∞. 三、 单调性法思路:利用函数的图象和性质求解.例3 当)0,21(-∈x 时,求函数)1lg()1lg(x x y -++=的值域.解:由已知得)1lg(2x y -=, ∵)0,21(-∈x ,∴)41,0(2∈x . 又2x -在)0,21(-∈x 上递增, ∴)1,43(12∈-x . 又u y lg =在)1,43(上递增, ∴)0,43(lg )1lg(2∈-x ,原函数的值域为)0,43(lg . 四、 反函数法例4 求函数xx y -+=11的值域. 解:∵函数的定义域是{}1,0|≠≥x x x 且,由原函数变形得011≥+-=y y x , ∴1≥y 或1-<y .∴函数的值域为),1[)1,(+∞⋃--∞.五、 换元法例5 求函数x x y --=1的值域。
解:令x t -=1,则)0(12≥-=t t x ,那么45)21(2++-=t y . ∵1≥t 时,y 在),0[+∞上递减, ∴当t ≥0时,]1,(-∞∈y .∴原函数的值域是]1,(-∞.。
高中数学函数值域的求法(9种)
函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。
常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。
(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。
如函数211xy +=的值域{}10|≤<y y 。
(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。
例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。
(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。
如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。
(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。
(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。
例如:12--+=x x y 。
(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。
如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。
求值域的十种方法
求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。
例 1 .求函数的值域。
【解析】∵ ,∴ ,∴函数的值域为。
【练习】1 .求下列函数的值域:① ;② ;③ ;,。
【参考答案】① ;② ;③ ;。
二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。
形如的函数的值域问题,均可使用配方法。
例 2 .求函数()的值域。
【解析】。
∵ ,∴ ,∴ ,∴ ,∴ 。
∴函数()的值域为。
例 3 .求函数的值域。
【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:配方得:利用二次函数的相关知识得,从而得出:。
说明:在求解值域 ( 最值 ) 时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:。
例 4 .若,试求的最大值。
【分析与解】本题可看成第一象限内动点在直线上滑动时函数的最大值。
利用两点,确定一条直线,作出图象易得:, y=1 时,取最大值。
【练习】2 .求下列函数的最大值、最小值与值域:① ;② ;③ ;④ ;,;。
【参考答案】① ;② ;③ ;④ ;;三.反函数法:反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。
适用类型:分子、分母只含有一次项的函数 ( 即有理分式一次型 ) ,也可用于其它易反解出自变量的函数类型。
例 5 .求函数的值域。
分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出,从而便于求出反函数。
反解得,故函数的值域为。
【练习】1 .求函数的值域。
2 .求函数,的值域。
【参考答案】 1 .;。
四.分离变量法:适用类型 1 :分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。
例 6 :求函数的值域。
解:∵ ,∵ ,∴ ,∴函数的值域为。
适用类型 2 :分式且分子、分母中有相似的项,通过该方法可将原函数转化为为( 常数 ) 的形式。
例 7 :求函数的值域。
函数求值域15种方法
函数求值域15种方法方法一:对于已知函数,可以通过求函数的表达式来确定函数的值域。
例如对于f(x)=x^2+1需要求值域,可以将其表示为y=x^2+1,然后观察x和y的关系,可以得到y的值域为[1,+∞)。
方法二:对于一些简单的函数,可以使用数学知识来确定其值域。
例如对于 f(x) = sin(x),由于正弦函数的值域为[-1, 1],因此 f(x) 的值域也是[-1, 1]。
方法三:对于复合函数,可以通过将内部函数的值域代入外部函数中来确定整个函数的值域。
例如对于f(x)=√(x^2+1),内部函数g(x)=x^2+1的值域为[1,+∞),将值域代入外部函数,可以得到f(x)的值域也是[1,+∞)。
方法四:对于分段函数,可以分别求解不同区间上函数的值域,然后将这些值域合并得到整个函数的值域。
例如对于f(x)={x,x<0;x^2,x≥0},可以分别求解x<0和x≥0的情况,得到f(x)的值域为(-∞,0]∪[0,+∞)。
方法五:利用函数的奇偶性来确定函数的值域。
如果函数是奇函数,即f(-x)=-f(x),那么函数的值域关于原点对称;如果函数是偶函数,即f(-x)=f(x),那么函数的值域关于y轴对称。
根据函数的奇偶性可以推断出函数的值域。
方法六:利用函数的周期性来确定函数的值域。
如果函数有周期T,那么函数的值域在一个周期内是相同的。
可以通过观察函数的图像或者函数的性质来确定函数的周期,并进一步确定函数的值域。
方法七:利用函数的极限来确定函数的值域。
可以求函数在正无穷和负无穷的极限,根据极限的性质来确定函数的值域。
如果函数在正无穷的极限是一个确定的值,那么函数的值域是有界的;如果函数在正无穷的极限趋近于正无穷,那么函数的值域是无界的。
方法八:利用函数的导数来确定函数的值域。
可以求函数的导数,然后分析导函数的正负性和极值点,从而确定函数的值域。
如果导函数在一些区间内始终大于零,那么函数在该区间上是单调递增的,可以确定函数的值域;如果导函数在一些区间内始终小于零,那么函数在该区间上是单调递减的,可以确定函数的值域。
求函数值域的十三种方法
求函数值域的十三种方法求函数值域是数学中常见的问题,通过求函数值域可以了解函数的取值范围,对于解决实际问题和理论分析都有重要意义。
下面将介绍求函数值域的十三种方法。
一、观察法观察法是最直观的方法,通过观察函数的定义域和性质,可以初步确定函数的值域。
例如,对于一个关于实数的二次函数,如果其开口向上,则可以判断其值域为大于等于最低点的y坐标的实数集合。
二、代数法代数法是通过运用代数运算的方法求函数值域。
例如,对于一个有理函数,可以通过求其对应的分式函数的极限来确定函数的值域。
三、图像法图像法是通过绘制函数的图像来求函数值域。
通过观察图像的变化趋势,可以确定函数的值域。
例如,对于一个周期函数,可以通过绘制其一个周期内的图像,然后根据图像的波动范围确定函数的值域。
四、导数法导数法是通过求函数的导数来求函数值域。
通过分析导数的增减性和极值点,可以确定函数的值域。
例如,对于一个单调递增函数,其值域为整个定义域;对于一个有界函数,其值域为一个闭区间。
五、反函数法反函数法是通过求函数的反函数来求函数值域。
通过求反函数的定义域,可以得到函数的值域。
例如,对于一个严格单调增函数,其反函数的定义域即为函数的值域。
六、极限法极限法是通过求函数的极限来求函数值域。
通过分析函数的极限可以确定函数的趋势和边界,从而确定函数的值域。
例如,对于一个无界函数,可以通过求其极限来确定函数的值域。
七、积分法积分法是通过求函数的积分来求函数值域。
通过分析函数的积分可以确定函数的曲线下面积,从而确定函数的值域。
例如,对于一个连续非负函数,可以通过求其积分来确定函数的值域。
八、级数法级数法是通过求函数级数的和来求函数值域。
通过分析级数的收敛性和和的性质,可以确定函数的值域。
例如,对于一个幂级数函数,可以通过求级数的收敛域来确定函数的值域。
九、微分方程法微分方程法是通过求函数满足的微分方程来求函数值域。
通过求微分方程的解析解或数值解,可以确定函数的值域。
求函数值域常用的方法
求函数值域常用的方法-CAL-FENGHAI.-(YICAI)-Company One12 求函数值域常用的方法(1)直接法——从自变量x 的范围出发,推出y =f(x)的取值范围;(2)二次函数法(配方法)——配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
(3)分离常数法——形如)0(≠++=a b ax d cx y 的函数,求出y 的取值范围;(4)单调性法——根据函数在定义域(或定义域的某个子集)上的单调性求出函数的值域;(5)换元法——形如d cx b ax y +±+=的函数(6)利用函数的导数——当一个函数在定义域上可导时,可据其导数求值域;(7)数形结合法——利用函数所表示的几何意义,借助几何方法或图象来求函数的值域.(8)不等式法——利用基本不等式,“)00(22>>≥+b a ab b a ,” “一正、二定、三相等”。
当条件不具备时,需要进行适当的转化基础训练:(求下列函数的值域)1:函数1y = 2. 函数12-=x y3,函数]2,3[,822-∈--=x x x y 4.函数y =5.函数12x y x 6、函数x x y --=127.函数14()3y x x =≤ 8、函数x x y 2122-+=39、 函数x x y 1+=)0(>x 10、函数 )2(4>+=x xx y强化训练:1,函数323yx 2、函数322+--=x x y3、函数xx y +-=11 4、函数y x =5、函数123+-+=x x y6、函数]1,1[,122-∈++-=x x x y7、函数]2,0[,sin 2cos 2π∈-=x x x y8、(整体换元) 已知[]0,2x ∈,求函数1224)(-•+=x x x f 的值域。
9、(三角换元) 求函数21x x y -+=值域。
求函数值域的常用方法
求函数值域的常用方法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1 求函数y = 3 -x 的值域。
解: x ≥0 ∴- x ≤0 3- x ≤3故函数的值域是:[ -∞,3 ]2 、配方法配方法是求二次函数值域最基本的方法之一。
例2 、求函数y=2x -2x+5,x ∈[-1,2]的值域。
解:将函数配方得:y=(x-1)2+4, x ∈[-1,2], 由二次函数的性质可知:当x = 1时,y m in = 4 当x = - 1,时m ax y = 8 故函数的值域是:[ 4 ,8 ] 3 、判别式法例3 求函数y = 2211x x x +++的值域。
解:原函数化为关x 的一元二次方程(y-1 )2x -x+(y - 1 )= 0(1)当y ≠1时, x ∈R ,△ = (-1)2-4(y-1)(y-1) ≥0 解得:21≤y ≤23 (2)当y=1,时,x = 0,而1∈[ 21, 23] 故函数的值域为[21,23] 例4求函数y=x+)2(x x -的值域。
解:两边平方整理得:22x -2(y+1)x+y 2=0 (1) x ∈R ,∴△=4(y+1)2-8y ≥0 解得:1-2≤y ≤1+2但此时的函数的定义域由x (2-x ) ≥0,得:0≤x ≤2。
由△≥0,仅保证关于x 的方程:22x -2(y+1)x+y 2=0在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由△ ≥0求出的范围可能比y 的实际范围大,故不能确定此函数的值域为[21,23]。
可以采取如下方法进一步确定原函数的值域。
0≤x ≤2,∴y=x+)2(x x - ≥0,∴y min =0,y=1+2代入方程(1),解得:1x =222224-+∈[0,2],即当1x =222224-+时,原函数的值域为:[0,1+2]。
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
求函数值域的常见方法
求函数值域的常见方法函数的值域是指函数所有可能的输出值组成的集合。
确定函数的值域可以帮助我们了解函数的性质和特点,进而进行函数的图像绘制、解方程、求极限等各种数学问题。
以下是几种求函数值域的常见方法:1.列表法:将函数的所有可能的输出值写成一个列表。
通常使用这种方法求值域时,要先求出函数的定义域,再根据定义域进行函数运算。
例如,对于函数f(x)=x^2-1,定义域是实数集R。
我们可以取一些实数作为输入值,计算出相应的函数值,然后将结果列成一个列表。
根据计算得到的结果,我们可以得知函数的值域是[-1,+∞)。
2.解析法:利用函数的解析表达式,通过对函数进行分析和推理,求出函数的值域。
这种方法通常适用于简单的多项式函数、指数函数和对数函数等。
例如,对于函数f(x)=x^2,可以通过分析发现,对于任意实数x,x^2的值都是非负的。
因此,函数的值域是[0,+∞)。
3. 图像法:绘制函数的图像,通过观察图像的形状和特点来确定函数的值域。
这种方法适用于各种函数,特别是复杂函数。
当函数的图像在已知定义域内是连续的、单调的、有界的时候,可以通过观察图像的极值点、端点和趋势来确定函数的值域。
例如,对于函数f(x) = sin(x),我们可以绘制出函数的图像,观察到正弦函数的值在[-1,1]之间变化,因此函数的值域是[-1,1]。
4.推导法:利用函数的性质和数学定理来推导函数的值域。
这种方法通常适用于特殊的函数,如三角函数、指数函数和对数函数等。
例如,对于函数f(x)=e^x,利用指数函数的性质,我们可以得知e^x在定义域内是一个单调递增的正值函数,因此函数的值域是(0,+∞)。
5.逆映射法:如果函数有反函数,可以通过求反函数的定义域来确定原函数的值域。
这种方法适用于有反函数的函数。
例如,对于函数f(x)=x^2,它的反函数是f^(-1)(x)=√x。
我们可以求出反函数的定义域是[0,+∞),因此原函数的值域是[0,+∞)。
高中数学求函数值域的10种常见方法
高中数学求函数值域的10种常见方法
一、显函数法:
须先将函数写成显函数的形式,然后通过分析函数表达式的特征,确定其值域。
二、图像法:
一般通过函数的图像来确定其值域,可以在纸上绘制函数的图像,或者利用数学软件进行绘图分析。
三、函数增减性:
通过函数的增减性来确定其值域,即分析函数在定义域上的单调性。
四、函数的周期性:
若函数具有周期性,则值域受周期性的限制。
五、函数的有界性:
若函数在定义域上有上下界,则其值域也受到该有界性的限制。
六、反函数法:
通过求函数的反函数,获得原函数的值域。
七、导数法:
通过求函数的导数,分析其在定义域内的极值和拐点,得出值域的上下界。
八、极限法:
通过求函数在定义域两端的极限,确定函数值域的范围。
九、变量替换法:
可将复杂的函数转化为简单的函数,通过分析简单函数的值域,确定复杂函数的值域。
十、函数值的性质:
根据函数的性质和定义,通过推理和证明,确定函数值域。
以上是求函数值域的十种常见方法,根据不同的题目和函数形式,我们可以选择适用的方法来解决问题。
在实际应用中,经常需要综合运用多种方法来确定函数的值域。
求函数值域的12种方法
求函数值域的12种方法函数是中学数学的重要的基本概念之一,它与代数式、方程、不等式、三角函数、微积分等内容有着密切的联系,应用十分广泛。
函数的基础性强、概念多,其中函数的定义域、值域、奇偶性等是难点之一,是高考的常见的题型。
下面就函数的值域的求法,举例说如下。
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:∵ ,
∴ 的图像如图所示,
由图像知:函数 的值域为
例1求函数 的值域
解: 设
例2求函数Байду номын сангаас的值域。
解:由 = ,令 ,
因为 , ,则 = ,
于是 , ,
,所以 。
三、分离常数法
分子、分母是一次函数 的有理函数,可用分离常数法,将原函数化为 ,值域为
例1求函数 的值域
解:∵ ,∵ ,∴ ,
∴函数 的值域为
例2求函数 的值域
四、反解法
利用函数的定义域与值域的关系,通过将原函数变形,反解出x或者与x有关的式子,再根据原函数的定义域求出原函数的值域。
例1求函数 的值域。
解:令 ,则
(1)当 时, ,当且仅当t=1,即 时取等号,所以 (2)当t=0时,y=0,综上所述,函数的值域为:
例2已知函数f(x)= ,x∈[1,+∞ ,当a= 时,求函数f(x)的值域
例3求函数的值域:
解:
当且仅当 时,即 时等号成立,
,所以元函数的值域为 .
例4求函数 的值域.
解: ;ⅰ)当 时, , ,此时 ,等号成立,当且仅当 .ⅱ)当 时, , ,此时有
,
等号成立,当且仅当 .综上,原函数的值域为: .
八、数型结合法
函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。
例4求函数 的值域
例5求函数 的值域
五、判别式法
对形如 ( 、 不同时为零)的函数的值域,通常转化成关于x的二次方程,由于方程有实根,即 从而求得y的范围,即值域。注意:主要适用于定义在R上的分式函数,需要注意检验二次项系数为零时,方程是否有解,若无解或是函数无意义,都应从值域中去掉该值。
例1求函数 的值域
例2求函数 的值域
解:∵ ,∴ ,∴函数 的值域为
变式 的值域[-1,+ ]
变式求函数 的值域
解:由 ,故此函数值域为 。
例3求函数 的值域
例4求函数 的值域
例5求函数 (-1 x )的值域[ ,1]
例6 的值域(0,1]
二、配方法
配方法式求“二次函数类”值域的基本方法,形如 的函数的值域问题,均可使用配方法。
例1求函数 的值域
解:令 ( ),则 ,
∴ ∵当 ,即 时, ,无最小值
∴函数 的值域为
变式求函数 在 时的值域
例2求函数 的值域
解:令t= (t ),则 =
∴ ∵当 ,即 时, ,无最小值
∴函数 的值域为
例3求函数 的值域
解:令 ,则 。
,
当 时, ,值域为
四、三角换元法
若题目中含有 项,则可设 ,其中
求函数值域的常用方法
一、直接法(分析观察法)
有的函数结构并不复杂,可以通过我们所学过的函数的值域及不等式的性质观察出函数的值域。即从自变量 的范围出发,推出 的取值范围。或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。注意此法关键是定义域。一般适合于根式、分式、指数式、二次函数
例1已知函数 , ,求函数的值域
例1求函数 , 的值域
例2求函数 的值域。
解:∵当 增大时, 随 的增大而减少, 随 的增大而增大,
∴函数 在定义域 上是增函数。∴ ,
∴函数 的值域为 。
例3求函数 在区间 上的值域。
解:任取 ,且 ,则 ,因为 ,所以: ,当 时, ,则 ;当 时, ,则 ;而当 时, 于是:函数 在区间 上的值域为
例1求函数 的值域
解:由 解得 ,∵ ,∴ ,∴ ∴函数 的值域为 。
例2求函数 的值域
解:由 得 由 ,得 ,解得 。
此函数值域为
变式当 时,函数 的值域_______
例3求函数 的值域
解:由函数的解析式可以知道,函数的定义域为 ,对函数进行变形可得
,∵ ,∴ ( , ),∴ ,∴ ,∴函数 的值域为
例4求函数 的值域
解:令 ,则 由指数函数的单调性知,原函数的值域为
变式求函数 的值域
例5求函数 在 内的值域.
解:显然 在 可导,且 .由 得 的极值点为 . . .
所以,函数 的值域为 .
七、基本不等式法
利用基本不等式求函数值域,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值。利用基本不等式 ,用此法求函数值域时,要注意条件“一正,二定,三相等”.如利用 求某些函数值域(或最值)时应满足三个条件① ;② 为定值;③取等号成立的条件 .三个条件缺一不可。
解:由 变形得 ,
当 时,此方程无解;当 时,∵ ,∴ ,
解得 ,又 ,∴
∴函数 的值域为
例2求函数 的值域。
解析:原式整理可得 。
当 即 时, 原式成立。
当 即 时, ,解得 。
综上可得原函数值域为 。
六、函数的单调性法(最大最小值法)
对于闭区间上的连续函数,利用函数的单调性和最大值、最小值求函数的值域
例1求函数 ( )的值域
解: ,∵ ,∴ ,
∴ ∴ ,∴ ∴函数 ( )的值域为
例2求函数 的值域
解:因为 ,即 , ,于是:
,
变式求函数 的值域
例3求函数 的值域
解:因为 ,故此函数值域为
例4求函数 的值域
解:(平方法)函数定义域为:
三、换元法
形如 ( 、 、 、 均为常数,且 )或者 ( 、 、 、 均为常数,且 )的函数常用换元法求解,令 =t,注意新元的取值范围。