一元一次方程(调配、分配)
一元一次方程应用_调配问题含答案
一元一次方程应用——分配问题1.课外活动中一些学生分组参加活动.原来每组6人.后来重新编组.每组10人.这样比原来减少4组.问这些学生共有多少人?2.一个车间加工轴杆和轴承.每人每天平均可以加工轴杆12根或者轴承16个.1根轴杆与2个轴承为一套.该车间共有90人.应该怎样调配人力.才能使每天生产的轴承和轴杆正好配套?3.皖蒙食品加工厂收购了一批质量为1000kg的某种山货.根据市场需求对其进行粗加工和精加工处理.已知精加的这种山货质量比粗加工的质量的3倍还多200kg.求粗加工的这种山货的质量.4.马年新年即将来临.七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个.那么比计划多了7个;如果每人做5个.那么比计划少了13个.该小组计划做多少个“中国结”?5.某车间有22名工人.每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母.为使每天生产的螺钉和螺母刚好配套.应安排生产螺钉和螺母的工人各多少名?6.某人原计划用26天生产一批零件.工作两天后因改变了操作方法.每天比原来多生产5个零件结果提前4天完成任务.问原来每天生产多少个零件?这批零件有多少个?7.把一些图书分给某班学生阅读.如果每人分3本.则剩余20本;如果每人分4本.则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?8.《九章算术》中有一道阐述“盈不足术”的问题.原文如下:今有人共买物.人出八.盈三;人出七.不足四.问人数.物价各几何?译文为:现有一些人共同买一个物品.每人出8元.还盈余3元;每人出7元.则还差4元.问共有多少人?这个物品的价格是多少?请解答上述问题.9.某单位计划“五一”期间组织职工到东江湖旅游.如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆.并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆.问有无可能使每辆车刚好坐满?如有可能.两种车各租多少辆?(此问可只写结果.不写分析过程)10.在手工制作课上.老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人.其中男生人数比女生人数少2人.并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底.为了使每小时剪出的筒身与筒底刚好配套.应该分配多少名学生剪筒身.多少名学生剪筒底?11.某校组织学生种植芽苗菜.三个年级共种植909盆.初二年级种植的数量比初一年级的2倍少3盆.初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?12.为迎接6月5日的“世界环境日”.某校团委开展“光盘行动”.倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加.七(1)班参加的人数比七(2)班多10人.请问七(1)班和七(2)班各有多少人参加“光盘行动”?13.列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?14.暑假.某校初一年级(1)班组织学生去公园游玩.该班有50名同学组织了划船活动.如图是划船须知.(1)他们一共租了10条船.并且每条船都坐满了人.那么大、小船各租了几只?(2)他们租船一共花了多少元钱?15.列方程或方程组解应用题:在“五一”期间.小明、小亮等同学随家长一同到某公园游玩.下面是购买门票时.小明与他爸爸的对话(如图).试根据图中的信息.解答下列问题:(1)小明他们一共去了几个成人.几个学生?(2)请你帮助小明算一算.用哪种方式购票更省钱?参考答案与试题解析1.【分析】设这些学生共有x人.先表示出原来和后来各多少组.其等量关系为后来的比原来的少2组.根据此列方程求解.【解答】解:设这些学生共有x人.根据题意.得﹣=4.解得x=60.答:这些学生共有60人.【点评】此题考查的知识点是一元一次方程的应用.其关键是找出等量关系及表示原来和后来各多少组.难度一般.2.【分析】设x个人加工轴杆.(90﹣x)个人加工轴承.才能使每天生产的轴承和轴杆正好配套.根据1根轴杆与2个轴承为一套列出方程.求出方程的解即可得到结果.【解答】解:设x个人加工轴杆.(90﹣x)个人加工轴承.才能使每天生产的轴承和轴杆正好配套.根据题意得:12x×2=16(90﹣x).去括号得:24x=1440﹣16x.移项合并得:40x=1440.解得:x=36.则调配36个人加工轴杆.54个人加工轴承.才能使每天生产的轴承和轴杆正好配套.【点评】此题考查了一元一次方程的应用.找出题中的等量关系是解本题的关键.3.【分析】等量关系为:精加工的山货总质量+粗加工的山货总质量=1000kg.把相关数值代入计算即可.【解答】解:设粗加工的该种山货质量为x千克.则精加工(3x+200)千克.由题意得:x+(3x+200)=1000.解得:x=200.答:粗加工的该种山货质量为200千克.【点评】本题考查一元一次方程的应用.得到山货总质量的等量关系是解决本题的关键.难度一般.4.【分析】设小组成员共有x名.由题意可知计划做的中国结个数为:(6x﹣7)或(5x+13)个.令二者相等.即可求得x的值.可得小组成员个数及计划做的中国结个数.【解答】解:设小组成员共有x名.则计划做的中国结个数为:(6x﹣7)或(5x+13)个∴6x﹣7=5x+13解得:x=20.∴6x﹣7=113.答:计划做113个中国结.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系列出方程.再求解.5.【分析】设分配x名工人生产螺母.则(22﹣x)人生产螺钉.由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系.就可以列出方程求出即可.【解答】解:设分配x名工人生产螺母.则(22﹣x)人生产螺钉.由题意得2000x=2×1200(22﹣x).解得:x=12.则22﹣x=10.答:应安排生产螺钉和螺母的工人10名.12名.【点评】此题主要考查了一元一次方程的应用.列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.6.【分析】设原来每天生产x个零件.表示出所有零件的个数.进而得出等式求出即可.【解答】解:设原来每天生产x个零件.根据题意可得:26x=2x+(x+5)×20.解得:x=25.故26×25=650(个).答:原来每天生产25个零件.这批零件有650个.【点评】此题主要考查了一元一次方程的应用.根据题意表示出零件的总个数是解题关键.7.【分析】(1)设这个班有x名学生.根据这个班人数一定.可得:3x+20=4x﹣25.解方程即可;(2)代入方程的左边或右边的代数式即可.【解答】解:(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生.这批图书共有155本.【点评】解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系.列出方程.再求解.8.【分析】根据这个物品的价格不变.列出一元一次方程进行求解即可.【解答】解:设共有x人.可列方程为:8x﹣3=7x+4.解得x=7.∴8x﹣3=53(元).答:共有7人.这个物品的价格是53元.【点评】本题考查了一元一次方程的应用.解题的关键是明确题意.找出合适的等量关系.列出相应的方程.9.某单位计划“五一”期间组织职工到东江湖旅游.如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆.并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆.问有无可能使每辆车刚好坐满?如有可能.两种车各租多少辆?(此问可只写结果.不写分析过程)【分析】(1)先设该单位参加旅游的职工有x人.利用人数不变.车的辆数相差1.可列出一元一次方程求出.(2)可根据租用两种汽车时.利用假设一种车的辆数.进而得出另一种车的数量求出即可.【解答】解:(1)设该单位参加旅游的职工有x人.由题意得方程:.解得x=360;答:该单位参加旅游的职工有360人.(2)有可能.因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人.正好坐满.【点评】此题主要考查了一元一次方程的应用.解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系.列出方程再求解.10.【分析】(1)设七年级(2)班有女生x人.则男生(x﹣2)人.根据全班共有44人建立方程求出其解即可;(2)设分配a人生产筒身.(44﹣a)人生产筒底.由筒身与筒底的数量关系建立方程求出其解即可.【解答】解:(1)设七年级(2)班有女生x人.则男生(x﹣2)人.由题意.得x+(x﹣2)=44.解得:x=23.∴男生有:44﹣23=21人.答:七年级(2)班有女生23人.则男生21人;(2)设分配a人生产筒身.(44﹣a)人生产筒底.由题意.得50a×2=120(44﹣a).解得:a=24.∴生产筒底的有20人.答:分配24人生产筒身.20人生产筒底.【点评】本题考查了列一元一次方程解实际问题的运用.一元一次方程的解法的运用.解答时分别总人数为44人和筒底与筒身的数量关系建立方程是关键.11.【分析】设初一年级种植x盆.则初二年级种植(2x﹣3)盆.初三年级种植(2x ﹣3+25)盆.根据“三个年级共种植909盆”列出方程并解答.【解答】解:设初一年级种植x盆.依题意得:x+(2x﹣3)+(2x﹣3+25)=909.解得.x=178.∴2x﹣3=3532x﹣3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆.【点评】本题考查了一元一次方程的应用.利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量.直接设要求的未知量或间接设一关键的未知量为x.然后用含x的式子表示相关的量.找出之间的相等关系列方程、求解、作答.即设、列、解、答.12.【分析】首先确定相等关系:该校七年级(1)、(2)、(3)三个班共128人参加了活动.由此列一元一次方程求解.【解答】解:设七(2)班有x人参加“光盘行动”.则七(1)班有(x+10)人参加“光盘行动”.依题意有(x+10)+x+48=128.解得x=35.则x+10=45.答:七(1)班有45人参加“光盘行动”.七(2)班有35人参加“光盘行动”.【点评】此题考查的知识点是一元一次方程组的应用.关键是先确定相等关系.然后列方程求解.13.【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(元).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.14.【分析】(1)设大船租了x只.则小船租了(10﹣x)只.那么6x+4(10﹣x)就等于该班总人数;(2)他们租船一共花了10x+8×(10﹣5)元.【解答】解:(1)设大船租了x只.则小船租了(10﹣x)只.则6x+4(10﹣x)=50解得:x=5.答:大、小船各租了5只;(2)他们租船一共花了10×5+8×5=90元.答:他们租船一共花了90元.【点评】列方程解应用题的关键是正确找出题目中的相等关系.用代数式表示出相等关系中的各个部分.把列方程的问题转化为列代数式的问题.15.【分析】(1)设去了x个成人.则去了(12﹣x)个学生.根据爸爸说的话.可确定相等关系为:成人的票价+学生的票价=400元.据此列方程求解;(2)计算团体票所需费用.和400元比较即可求解.【解答】解:(1)设去了x个成人.则去了(12﹣x)个学生.依题意得40x+20(12﹣x)=400.解得x=8.12﹣x=4;答:小明他们一共去了8个成人.4个学生.(2)若按团体票购票:16×40×0.6=384∵384<400.∴按团体票购票更省钱.【点评】考查利用方程模型解决实际问题.关键在于设求知数.列方程.此类题目贴近生活.有利于培养学生应用数学解决生活中实际问题的能力.。
一元一次方程的应用(调配问题)
调配后
等量关系
108+x
54-x
牧场面积=林场面积的20%
例2、在甲处劳动的工人有27人,在乙处劳动 的工人有19人,现在另调20人去支援,使得 甲处的人数为乙处的2倍,应调往甲、乙两处 各多少人? 分析:可设调往甲组x人
甲组 乙组 19 19+20-x来自调配前 调配后 等量关系
1、调配问题两种类型: (1)从甲往乙调,此时总人数不变; (2)从外面调人给甲乙,此时总人数增加. 2、调配问题解题策略:
通过列表得到调配后的数量,列出方程.
宝典训练A:40页练习题
例1、某班学生分为两组参加植树活动,甲组 有17人,乙组有25人.后来由于需要,又从甲 组抽调部分学生去乙组,结果乙组人数是甲组 的2倍,从甲组抽调了多少学生去乙组?
分析:可设从甲组抽调了x人去乙组
甲组 乙组 25 25+x
调配前 调配后 等量关系
17
17-x 乙=2甲
1.某班学生分为两组参加学校活动,第一组有 28人,第二组有38人.现在重新分组,需要从 第二组调多少人到第一组,能使第一组人数是 第二组的2倍?
分析:可设从第二组抽调了x人去第一组
第一组 调配前 28 第二组 38
调配后
等量关系
28+x
38-x
第一组人数=第二组的2倍
2.某生产队有林场108公顷,牧场54公顷,现 要栽培一种新的果树,把一部分牧场改造成林 场,使牧场面积是林场面积的20%,问改为林 场的牧场面积是多少?
分析:可设把x公顷牧场改造为林场
27
27+x
甲处的人数=乙处的2倍
动手试一试
3.甲仓库有粮食72吨,乙仓库原有粮食54吨, 现又调入42吨,问如何分配,能使乙仓库的粮 食是甲仓库的一半? 4.甲队原有68人,乙队有44人,现又调入42 人给这两队,为了使乙队人数是甲队人数的四 分之三,应调往甲、乙两队各多少人?
一元一次方程应用——调配问题含答案
一元一次方程应用——分配问题1.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组10人,这样比原来减少4组.问这些学生共有多少人?2.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆12根或者轴承16个,1根轴杆与2个轴承为一套,该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?3.皖蒙食品加工厂收购了一批质量为1000kg的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多200kg,求粗加工的这种山货的质量.4.马年新年即将来临,七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个.该小组计划做多少个“中国结”?5.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?6.某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?7.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?8.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.9.某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)10.在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?11.某校组织学生种植芽苗菜,三个年级共种植909盆,初二年级种植的数量比初一年级的2倍少3盆,初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?12.为迎接6月5日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?13.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?14.暑假,某校初一年级(1)班组织学生去公园游玩,该班有50名同学组织了划船活动,如图是划船须知.(1)他们一共租了10条船,并且每条船都坐满了人,那么大、小船各租了几只?(2)他们租船一共花了多少元钱?15.列方程或方程组解应用题:在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?参考答案与试题解析1.【分析】设这些学生共有x人,先表示出原来和后来各多少组,其等量关系为后来的比原来的少2组,根据此列方程求解.【解答】解:设这些学生共有x人,根据题意,得﹣=4.解得x=60.答:这些学生共有60人.【点评】此题考查的知识点是一元一次方程的应用,其关键是找出等量关系及表示原来和后来各多少组,难度一般.2.【分析】设x个人加工轴杆,(90﹣x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据1根轴杆与2个轴承为一套列出方程,求出方程的解即可得到结果.【解答】解:设x个人加工轴杆,(90﹣x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据题意得:12x×2=16(90﹣x),去括号得:24x=1440﹣16x,移项合并得:40x=1440,解得:x=36.则调配36个人加工轴杆,54个人加工轴承,才能使每天生产的轴承和轴杆正好配套.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.3.【分析】等量关系为:精加工的山货总质量+粗加工的山货总质量=1000kg,把相关数值代入计算即可.【解答】解:设粗加工的该种山货质量为x千克,则精加工(3x+200)千克,由题意得:x+(3x+200)=1000,解得:x=200.答:粗加工的该种山货质量为200千克.【点评】本题考查一元一次方程的应用,得到山货总质量的等量关系是解决本题的关键,难度一般.4.【分析】设小组成员共有x名,由题意可知计划做的中国结个数为:(6x﹣7)或(5x+13)个,令二者相等,即可求得x的值,可得小组成员个数及计划做的中国结个数.【解答】解:设小组成员共有x名,则计划做的中国结个数为:(6x﹣7)或(5x+13)个∴6x﹣7=5x+13解得:x=20,∴6x﹣7=113,答:计划做113个中国结.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.【分析】设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程求出即可.【解答】解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),解得:x=12,则22﹣x=10,答:应安排生产螺钉和螺母的工人10名,12名.【点评】此题主要考查了一元一次方程的应用,列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.6.【分析】设原来每天生产x个零件,表示出所有零件的个数,进而得出等式求出即可.【解答】解:设原来每天生产x个零件,根据题意可得:26x=2x+(x+5)×20,解得:x=25,故26×25=650(个).答:原来每天生产25个零件,这批零件有650个.【点评】此题主要考查了一元一次方程的应用,根据题意表示出零件的总个数是解题关键.7.【分析】(1)设这个班有x名学生.根据这个班人数一定,可得:3x+20=4x ﹣25,解方程即可;(2)代入方程的左边或右边的代数式即可.【解答】解:(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生,这批图书共有155本.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.8.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53(元),答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.9.某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)【分析】(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求出.(2)可根据租用两种汽车时,利用假设一种车的辆数,进而得出另一种车的数量求出即可.【解答】解:(1)设该单位参加旅游的职工有x人,由题意得方程:,解得x=360;答:该单位参加旅游的职工有360人.(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.10.【分析】(1)设七年级(2)班有女生x人,则男生(x﹣2)人,根据全班共有44人建立方程求出其解即可;(2)设分配a人生产筒身,(44﹣a)人生产筒底,由筒身与筒底的数量关系建立方程求出其解即可.【解答】解:(1)设七年级(2)班有女生x人,则男生(x﹣2)人,由题意,得x+(x﹣2)=44,解得:x=23,∴男生有:44﹣23=21人.答:七年级(2)班有女生23人,则男生21人;(2)设分配a人生产筒身,(44﹣a)人生产筒底,由题意,得50a×2=120(44﹣a),解得:a=24.∴生产筒底的有20人.答:分配24人生产筒身,20人生产筒底.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时分别总人数为44人和筒底与筒身的数量关系建立方程是关键.11.【分析】设初一年级种植x盆,则初二年级种植(2x﹣3)盆,初三年级种植(2x﹣3+25)盆,根据“三个年级共种植909盆”列出方程并解答.【解答】解:设初一年级种植x盆,依题意得:x+(2x﹣3)+(2x﹣3+25)=909,解得,x=178.∴2x﹣3=3532x﹣3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆.【点评】本题考查了一元一次方程的应用.利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.12.【分析】首先确定相等关系:该校七年级(1)、(2)、(3)三个班共128人参加了活动,由此列一元一次方程求解.【解答】解:设七(2)班有x人参加“光盘行动”,则七(1)班有(x+10)人参加“光盘行动”,依题意有(x+10)+x+48=128,解得x=35,则x+10=45.答:七(1)班有45人参加“光盘行动”,七(2)班有35人参加“光盘行动”.【点评】此题考查的知识点是一元一次方程组的应用,关键是先确定相等关系,然后列方程求解.13.【分析】可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.【解答】解:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(元),答:买羊人数为21人,羊价为150元.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.【分析】(1)设大船租了x只,则小船租了(10﹣x)只,那么6x+4(10﹣x)就等于该班总人数;(2)他们租船一共花了10x+8×(10﹣5)元.【解答】解:(1)设大船租了x只,则小船租了(10﹣x)只,则6x+4(10﹣x)=50解得:x=5,答:大、小船各租了5只;(2)他们租船一共花了10×5+8×5=90元.答:他们租船一共花了90元.【点评】列方程解应用题的关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.15.【分析】(1)设去了x个成人,则去了(12﹣x)个学生,根据爸爸说的话,可确定相等关系为:成人的票价+学生的票价=400元,据此列方程求解;(2)计算团体票所需费用,和400元比较即可求解.【解答】解:(1)设去了x个成人,则去了(12﹣x)个学生,依题意得40x+20(12﹣x)=400,解得x=8,12﹣x=4;答:小明他们一共去了8个成人,4个学生.(2)若按团体票购票:16×40×0.6=384∵384<400,∴按团体票购票更省钱.【点评】考查利用方程模型解决实际问题,关键在于设求知数,列方程.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.。
一元一次方程——调配和分配问题
一元一次方程应用题——调配和分配问题一、学习重点:调配和分配问题:1、找准调配前后的数量关系;2、找数量关系时可借助列表等形式。
需要注意人或者物品的流向,流动之后形成了一种什么样的关系,例如:从甲队调一些人去乙队,其中甲队要减去这些人,而乙队要加上这些人。
再根据题意中给的关系设未知数表示出来。
二、基础练习:1、有甲乙两个运输队,甲队32人,乙队28人,从甲调走5人到乙队,则甲队_____人,乙队____人。
2、有甲乙两个运输队,甲队32人,乙队28人,从甲调走x人到乙队,〔1〕使甲乙两队人数恰好相等,则x=______;〔2〕假设乙队人数恰好是甲队人数的2倍,则x=_____;〔3〕假设乙队人数比甲队人数的4倍还多5人,则x=_____。
例1、某厂一车间有64人,二车间有56人。
现因工作需要,需求第一车间人数是笫二车间人数的一半。
问需从第一车间调多少人到第二车间?练习:甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下來的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?做题:3、4例2、甲车队有15辆汽车,乙车队有28辆汽年,现调来10辆汽分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?练习:甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?做题:5、6例3、某班同学利用假期参加夏令营活动,分成几个小组,假设每组7人还余1人,假设每组8人还缺6人,问该班分成几个小组,共有多少名同学?练习:学校新进假设干箱教学设备,某班同学去运,假设每人运8箱,还余16箱;假设每人运9箱,还缺少32箱,这批设备共有多少箱?这个班有多少名同学?做题:7、8三、应用题: A卷3、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙车队数比甲车队车数的2倍还多1辆,应从甲车队调多少辆车到乙车队?4、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。
2014初中数学基础知识讲义—一元一次方程(三)
第四类:调配(分配)与比例问题 调配与比例问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等。
调配问题中关键是要认识清楚部分量、总量以及两者之间的关系。
在调配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系。
(第一类):调配问题:这类问题的关键是找对分配的两类物体的数量关系【例1】某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.解:设这一天有x 名工人加工甲种零件,则这天加工甲种零件有5x 个,乙种零件有4(16-x )个.根据题意,得16×5x+24×4(16-x )=1440 解得x=6、 有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?2、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?3、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
(第二类):比例分配问题比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量地板砖厂的坯料由白土、沙土、石膏、水按25∶2∶1∶6的比例配制搅拌而成。
现已将前三种料称好,共5600千克,应加多少千克的水搅拌?前三种料各称了多少千克?分析:解决比例问题的一般方法是:按比例设未知数,并根据题设中的相等关系列出方程进行求解。
本题中,由四种坯料比例25∶2∶1∶6,设四种坯料分别为25x 、2x 、x 、6x 千克,由前三种坯料共5600千克,有 25x+2x+x=5600 解得:x=200 ∴ 6x=12001500台,已知A 、B 、C 三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?初中数学基础知识讲义—一元一次方程各类题型解法分析: (三)(第三类):配套问题:这类问题的关键是找对配套的两类物体的数量关系:某车间22名工人参加生产一种螺母和螺丝。
一元一次方程的实际问题-调运、配套、行程、工程、图表(答案)
2
4
x 400
答:A 县与 B 市之间的路程为 400 千米
(3)设 AB 的路程为 x 千米时,两种运输方式的费用相同
85 x 2400 = 53 x 1700
4
2
x 400 3
当 x< 400 时,汽车运输划算 3
当 x 400 两种运输方式费用相同 3
x> 400 时,火车运输划算 3
公司每日需付费用 1400 元,在规定的时间内:A、请甲工程队单独完成此项工程;
B、请乙工程队单独完成此项工程;C、请甲、乙两个工程队合作完成此项工程,
试问:以哪一种方案花钱最少?
解:(1) 设甲的工作效率为 x
8x+18( 1 -x)=1,解得 x= 1
12
20
∴1-1 =1
12 20 30
答:甲工程队单独完成需 20 天,乙工程队单独完成需 30 天
B. 4x 18 5x 30
C. 4x 18 5x 30
D. 4x 18 5x 30
例 3.武汉市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上银杏树,
要求路的两端各栽一棵,并且每两棵树的问隔相等.如果每隔 5 米栽 1 棵,则树
苗缺 21 棵;如果每隔 6 米栽 1 棵,则树苗正好用完.设原有树苗 x 棵,则根据
题意列出方程正确的是( A )
A.5(x+21-1)=6(x-1)
B.5(x+21)=6(x-1)
C.5(x+21-1)=6x
D.5(x+21)=6x
例 4.油桶制造厂的某车间生产圆形铁片和长方形铁片,两个圆形铁片和一个长
方形铁片可以制造成一个油桶(如图).已知该车间有工人 42 人,每
个工人平均每小时可以生产圆形铁片 120 片或者长方形铁片 80 片.
实际问题与一元一次方程练习题
实际问题与一元一次方程练习题专题一:一元一次方程分配、调配、配套问题一、【配套问题】1、某车间22名工人生产螺母和螺钉,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?2、某工厂104名工人分别生产甲、乙两种产品,已知每个工人可生产甲种产品8个或乙种产品12个,3个甲种产品与2个乙种产品配成一套,问应分配多少工人生产甲种产品,多少工人生产乙种产品才能使生产的产品配套?3、一张方桌与四张椅子配成一套,如果5个工人每天能制11张椅子,每4个工人每天能制22张方桌,现有工人66人,应怎样合理分配生产椅子和桌子的工人才能使每天生产的方桌和椅子及时配套出厂?4、生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90件;进行第二道工序时,每人每天可完成120件。
今有14名工人分别参加这两道工序工作,问应如何安排人员,才能使每天生产的产品数量最多?5、XXX要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?16、某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装土壤18袋或每2人每小时可抬土壤14袋,如何放置大好人力,才能使装泥和抬泥密切配合,而正好清场洁净。
调配问题】2、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?3、甲堆栈有煤200吨,乙堆栈有煤80吨,假如甲堆栈天天运出15吨,乙堆栈天天运进25吨,问多少天后两堆栈存煤相等?4、甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
一元一次方程方案问题(分配-配套-调配-方案)
1.配套问题例1.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?例2.某车间有28个工人,生产某种螺栓和螺母,已知一个螺栓的两头各配一个螺母组成一套零件。
如果每人每天生产12个螺栓或18个螺母。
安排多少个工人生产螺栓,多少个工人生产螺母,才能使这一天生产的螺栓和螺母正好配套?例3.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢280米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?例4.用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?2.分配问题例1.将若干只鸡放入若干个笼子中,若每个笼子放4只,则有1只鸡无笼可放;若每个笼子放5只鸡,则有1笼无鸡可放,试问有多少只鸡,多少个笼子?例2.用一根绳子测水泥柱一周的尺寸,若绳子绕水泥柱4周,则绳子还多3尺;若绳子绕水泥柱5周,则绳子还少2尺,求绳子及水泥柱一周的长度。
例3.在一条马路旁种树,每隔3米种一棵,到头还剩3棵树;每隔2.5米种一棵,到头还缺77棵树。
问马路有多长?树有多少棵?例4.有人在林中散步,听到几个强盗在商量怎样分抢来布匹,一名强盗说:“没人分6匹,但剩下5匹。
”另一名强盗说:“每人分7匹,可又少8匹。
”问有几个强盗几匹布?3.调配问题例1.甲、乙两盒中各放着一些球,一共有9个,如果从甲盒中拿出5个放入乙盒,乙盒的球数是甲盒的2倍。
问甲、乙两盒中原来各放着多少个球?例2.甲仓库储粮35吨,乙仓库储粮19吨,现调入粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?例3.甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?例4.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数?例5.甲、乙、丙三人同做某种零件,已知在相同的时间内,甲、乙俩的完成零件的个数比是3:4,乙、丙完成零件的个数之比是5:4,现在甲乙丙三人共做了1581个零件,问甲乙丙三人各做了多少个零件?4.方案选择例1.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?例2.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。
第三章 第8课 一元一次方程与实际问题(2)(调配问题)
解方程得 27+x=2(27-x) 27+x=54-2x x+2x=54-27 3x=27,x=9 12-9=3(人) 答:应派往甲地 9 人,派往乙地 3 人.
6. 在甲处劳动的工人有 35 人,在乙处劳动的工人有 19 人,现 在另调 21 人去支援,使得在甲处的人数为在乙 x 人到第二组去,则调派后第一组人数 为(25-x),第二组人数为(23+x),依调派后第二组人数是 第一组人数的 3 倍列方程 23+x=3(25-x)
解方程得 23+x=75-3x x+3x=75-23 4x=52,x=13 答:应从第一组调 13 人到第二组去.
4. 甲渔场库存鱼 30 吨,乙渔场库存鱼 60 吨,要再往这两个渔 场运送 50 吨,使这两个渔场的库存一样,问应往甲、乙两 渔场分别运送多少吨鱼?
解:设需从乙仓库调动 x 吨存粮到甲仓库,那么这时甲仓库 有存粮(32+x)吨,乙仓库有存粮(28-x)吨,根据甲仓库存 粮是乙仓库存粮的两倍列方程 32+x=2(28-x)
解方程得 32+x=56-2x x+2x=56-32 3x=24,x=8 答:需从乙仓库调 8 吨存粮到甲仓库.
3. 学校大扫除,某班原分成两个小组,第一组 25 人打扫教室, 第二组 23 人打扫包干区,这次根据工作需要,要使第二组 人数是第一组人数的 3 倍,那么应从第一组调多少人到第二 组去?
解:设应调往甲处 x 人,则调往乙处(21-x)人, 这时,甲处人数为(35+x)人,乙处人数为[19+(21-x)]人, 根据甲处人数为乙处人数的32倍列方程. 35+x=32[19+(21-x)] 解方程得 35+x=32(40-x)
2(35+x)=3(40-x) 70+2x=120-3x 2x+3x=120-70 5x=50,x=10 21-10=11(人) 答:应调往甲处 10 人,调往乙处 11 人.
七年级数学上册《列一元一次方程解应用题调配问题》教案、教学设计
3.个性化教学设想:
a.关注学生个体差异,针对不同学生的学习需求提供个性化指导。
b.鼓励学生提出自己的疑问,培养学生的批判性思维。
c.注重情感教育,鼓励学生克服困难,增强自信心。
四、教学内容与过程
(一)导入新课
1.教学内容:以学生熟悉的生活场景为背景,如学校的运动会筹备,引入调配问题。
3.培养学生的批判性思维和创新意识,鼓励学生在解决问题时提出不同的观点和方法,尊重每个学生的个性和创造性,让学生在数学学习中建立自信,形成正确的数学观。
二、学情分析
七年级的学生已经具备了一定的数学基础,掌握了一元一次方程的基本概念和解法,但在将现实问题抽象成数学模型方面仍需加强。学生对数学应用题的兴趣和信心各不相同,部分学生可能对应用题感到恐惧和困惑,需要教师耐心引导和鼓励。此外,学生在小组合作学习中,团队协作和交流表达能力有待提高。因此,本章节教学应注重激发学生的学习兴趣,加强学生对实际问题的分析指导,培养学生将现实问题转化为数学问题的能力,同时,关注学生个体差异,提供个性化指导,使每位学生都能在数学学习中得到成长和提升。
2.完成课本练习题:第5题、第6题和第7题。这三题分别涵盖了不同类型的调配问题,旨在让学生熟悉各种应用场景,提高解题技巧。
3.小组合作:请同学们以小组为单位,共同探讨以下问题:在实际生活中,还有哪些问题可以用一元一次方程来解决?请举例说明,并列出解题步骤。
4.写一篇数学日记,记录在本节课学习过程中,你是如何从实际问题中抽象出一元一次方程的?在解题过程中遇到了哪些困难?又是如何克服这些困难的?
5.预习下一节课内容:二元一次方程组的解法及应用。提前了解相关知识,为课堂学习做好准备。
(完整版)一元一次方程实际问题归纳
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,配套问题,工程问题,调配问题,分配问题,比例问题,和差倍分问题,销售问题,储蓄问题,积分问题,年龄问题,几何问题、数字问题,增长率问题,古代数学问题,分段问题,方案选择问题等。
列一元一次方程解应用题的一般步骤1. 审:审题,分析题目中的数量关系;2. 设:设适当的未知数,并表示未知量;3. 列:根据题目中的数量关系列方程;4. 解:解这个方程求未知数的值;5. 检验:检验是否符合实际;6. 答:作答.(一)行程问题(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行、环形跑道问题、行船问题、火车过隧道(桥)的问题。
(3)解此类题常常借助画草图来分析,理解行程问题。
①相遇问题(同时出发“两段”)1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?分析:快车路程+慢车路程=总路程或(快车速度+慢车速度)×相遇时间=相遇路程①相遇问题(不同时出发“三段”)2.西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为90km/h,若两车相向而行,慢车先开5小时,快车行驶几小时后两车相遇?分析:慢车先行路程+慢车后行路程+快车路程=总路程②追及问题(同时出发)3.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?②追及问题(不同时出发)4.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?②追及问题5.敌我两军相距32km,乱军以每小时6km的速度逃窜,我军同时以每小时16km的速度追击,在相距2km的时候发生战斗,则战斗是从开始追击后几小时发生的?③相背而行6.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
一元一次方程的应用之调配问题
一元一次方程的应用之调配问题1.有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数,应从乙队调x人到甲队,可得方程的122.某车间的钳工班,分两队参加植树劳动,甲队人数是乙队人数的2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,设乙队有x人,则可得方程3.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为4.甲队原有工人68人,乙队原有工人44人,又有42名工人调入这两队,为了,设应该调往甲队x人,则可得方程让乙队人数是甲队人数的345.两个厂家共有水泥40吨,甲水泥厂调入水泥4吨,乙水泥厂调出水泥8吨,两个水泥厂现在的水泥吨数相等,设甲水泥厂原来有水泥x吨,则可得方程6.两个仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个仓库中粮食的5,设第二个仓库原来有粮食x吨,则可得方程77.某厂第一车间有64人,第二车间有56人,现因工作需要,要求第一车间人数是第二车间人数的一半,则需从第一车间调多少人到第二车间?8.已知甲有图书80本,乙有图书48本,要使甲、乙两人的图书一样多,应从甲调到乙多少本图书?9.甲面粉厂有面粉34吨,乙面粉厂有面粉18吨,现在两个面粉厂同时往外调运面粉,都是平均每小时往外调运2吨,多少小时后,甲面粉厂的面粉是乙面粉厂面粉的3倍?10.甲、乙两班共90人,期中考试后,由甲班转入乙班4人,这时甲班人数是乙班人数的80%,则期中考试前甲班有多少人?11.在甲处劳动的有27人,在乙处劳动有19人,现另外调20人去支援,使在甲处工作的人数是乙处的2倍,则往甲处调多少人?12.甲队有32人,乙队有28人,如果要使甲队的人数是乙队人数的2倍,那么需从乙队抽调多少人到甲队?13.甲厂有91名工人,乙厂有49名工人,为了赶制这批产品又调来了100名工人,使甲厂的人数比乙厂人数的3倍少12人,应往甲、乙两厂各调多少名工人?14.某车间有27名工人,每人每天可以生产22个螺母或16个螺栓,1个螺栓配2个螺母,为使每天生产的螺栓和螺母刚好配套,则应分配多少名工人生产螺栓?答案1. ()11832852x x -=+ 2. ()12161632x x -=+- 3. ()100268x x +=- 4. ()()34442684x x +-=+ 5. 4408x x +=-- 6. ()5203207x x +=- 7. ()26456x x -=+;24 8. 8048x x -=+;16 9. ()3423182x x -=-;5 10. ()480%904x x -=-+;44 11. ()2721920x x +=+-⎡⎤⎣⎦;1712. ()32228x x +=-;813. 91+x =3(49+100-x)-12;应往甲厂调86名工人,往乙厂调14名工人 14. 应分配11名工人生产螺栓。
调配、分配问题
(调配、分配问题) 调配、分配问题)
调配问题: 调配问题:
例1:学校组织植树活动,已知在甲处植树的有27人,在 学校组织植树活动,已知在甲处植树的有 人 乙处植树的有18人 如果要使在甲处植树的人数是乙处植树 乙处植树的有 人.如果要使在甲处植树的人数是乙处植树 人数的2倍 需要从乙队调多少人到甲队? 人数的 倍,需要从乙队调多少人到甲队? 从乙处调x人到甲处,则乙处减少x 从乙处调x人到甲处,则乙处减少x人,甲处增加x人, 甲处增加x 但两处总人数不变 等量关系:甲处人数=2× 等量关系:甲处人数=2×乙处人数 =2 解:设从乙处调x人到甲处,依题意得: 设从乙处调x人到甲处,依题意得: 2(18- 27 +x = 2(18-x) x=3 人到甲处。 答:应从乙处调3人到甲处。 从乙处调 人到甲处
= =8 7 7 数学兴趣班共有59人 答:数学兴趣班共有 人, 准备分成8组 准备分成 组。
练一练: 练一练:
1、有甲、乙两支队伍,乙队有14人,现从甲队调12人到 有甲、乙两支队伍,乙队有1比乙队人数的一半多3 乙队,这时甲队人数比乙队人数的一半多3人,求甲队原 来的人数。 来的人数。 2、学生到礼堂参加活动,有长凳若干,如果每条坐5人, 学生到礼堂参加活动,有长凳若干,如果每条坐5 那么差8 那么差8条,如果每条坐6人,那么还空2条,求礼堂的长 如果每条坐6 那么还空2 凳数和学生数。 凳数和学生数。 3、一笼内有鸡和兔若干,共有头25个,有腿 条,问 、一笼内有鸡和兔若干,共有头 个 有腿80条 有鸡和兔各多少只? 有鸡和兔各多少只?
解法一: 解法一:
等量关系: 等量关系:总人数不变
解法二: 解法二:
设数学兴趣班共有x人,依题意 得: 设准备分成y组,依题意得: 设数学兴趣班共有 人 依题意 设准备分成y 依题意得 x-3 x+5 - + 7y+3=8y- 7y+3=8y-5 = 7 8 y=8 x=59 则分组数为: 则分组数为: x-3 - 则总人数为:7y+3=7× 则总人数为:7y+3=7×8+3=59 59 - 3 答:数学兴趣班共有59人, 数学兴趣班共有59人 59 准备分成8 准备分成8组。
第3章 第39课时 实际问题与一元一次方程(2)(调配问题)
★三、四基三级练 一级
►答案见:D12
甲仓库有粮 120 吨,乙仓库有粮 90 吨.从甲仓库调运 1155 吨
到乙仓库,调剂后甲仓库存粮和乙仓库一样多.
甲仓库存粮 108 吨,乙仓库存粮 140 吨,要使甲仓库存粮数是
乙仓库的 3 倍,必须从乙仓库运出 7788 吨放入甲仓库.
二级 某厂一车间有 64 人,二车间有 56 人.现因工作需要,要求第 一车间人数是第二车间人数的一半.问需从第一车间调多少人 到第二车间?
解:设应往甲处调去 x 名武警部队战士 根据题意,得 130+x=2(70+200-x)+10 解得 x=140,则 200-x=60. 答:应往甲处调去 140 名,往乙处调去 60 名武警 部队战士.
有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一 同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴 子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋, 那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮 的一样多!”,那么驴子原来所驮货物有多少袋?
在一次美化校园活动中,先安排 31 人去拔草,18 人去植树, 后又增派 20 人去支援他们,增援后拔草人数是植树人数的 2 倍,求支援拔草和植树的人分别有多少人.
解:设支援拔草的有 x 人,由题意得: 31+x=2[18+(20-x)] 即:31+x=2(38-x) x=15 ∴20-x=5 答:支援拔草和植树的人分别有 15 人和 5 人.
解:设驴子原来驮 x 袋,根据题意 得到方程:2(x-1)-1-1=x+1 解得:x=5. 答:驴子原来所驮货物的袋数是 5.
谢谢您的观看与聆听
解:设乙仓库有 x 吨,甲仓库就有 3x 吨. 3x-28=x+28+4, 2x=60, x=30. 答:原来乙仓库存粮 30 吨.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.甲队人数是乙队人数的2倍,从甲队 调12人到乙队后,甲队剩下来的人数 是原乙队人数的一半还多15人。求甲、 乙两队原有人数各多少人?
解:设乙队原有x人,则甲队有2x人,
由题意得:
1 2
x
15
2x
12
解之,得
x=18 ∴2x=2×18=36(人)
答:甲、乙两队原来分别有36人、
18人。
3.甲、乙两车间各有工人若干,如果从 乙车间调100人到甲车间,那么甲车 间的人数是乙车间剩余人数的6倍; 如果从甲车间调100人到乙车间,这 时两车间的人数相等,求原来甲乙车 间的人数。
一元一次方程的应用(调配)
一、调配问题
1.某厂一车间有64人,二车间有56人。 现因工作需要,要求第一车间人数是 第二车间人数的一半。问需从第一车 间调多少人到第二车间?
解:设需从第一车间调x人到第二车 间,由题意得:
2(64-x)=56+x 解之,得
x=24 答:需从第一车间调24人到第二车间。
解:设共有x辆汽车,则共有(45x+28)
名学生,由题意得:
50(x-2)+38=45x+28 解之,得
x=18 ∴45x+28=45×18+28=838(名) 答:共有18辆汽车,有838名学生。
3.小明看书若干日,若每日读书32页, 尚余31页;若每日读36页,则最后一 日需要读39页,才能读完,求书的页 数。
解:设甲车间原有x人,则乙车间原有 (x-200)人,由题意得: x+100=6(x-200-100) 解之,得 x=380 ∴x-200=380-200=180(人)
答:甲车间原有380人,乙车间原有
180人。
二、分配问题
1.学校分配学生住宿,如果每室住8 人,还少12个床位,如果每室住9 人,则空出两个房间。求房间的个 数和学生的人数。
解:设需要x天看完书,则共有
(32x+31)页,由题意得:
36(x-1)+39=32x+31 解之,得
x=7 ∴32x+31=32×7+31=255(页) 答:书共有255页。
作业:
把课本第102页第10题,第103 页第12、14题,第108页第3、5题。
解:设房间数为x间,则学生人数为 (8x+12)人,由题意得:
9(x-2)=8x+12 解之,得
x=30 ∴8x+12=8×30+12=252(人) 答:房间数为30间,学生人数为252
人。
2.学校春游,如果每辆汽车坐45人,则 有28人没有上车;如果每辆坐50人, 则空出一辆汽车,并且有一辆车还可 以坐12人,问共有多少学生,多少汽 车?