15年中考数学复习第23讲解直角三角形
中考数学专题复习:解直角三角形
中考数学专题复习:解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而sin A3、几个特殊关系:⑴sinA+cos2A= ,tanA=⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=hl=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO=2211+=2;AC=2213+=10;则sinA=OCAC=25510=.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.对应训练1.(•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.121.A考点:锐角三角函数的定义;坐标与图形性质;勾股定理.专题:计算题.分析:过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.解答:解:如图过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=22OC AC+=5,∴sin∠AOB=1555ACOA==.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值例2 (•孝感)计算:cos245°+tan30°•sin60°= .思路分析:将cos45°=22,tan30°=33,sin60°=32代入即可得出答案.解:cos245°+tan30°•sin60°=12+33×32=12+12=1.故答案为:1.点评:此题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是解答本题的关键.对应训练(•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.解:原式=13322+⨯=1322+=2.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形例3 (•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.6.思路分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=23,∴CD=3,∴BD=CD=3,由勾股定理得:AD=22=3,AC CD∴AB=AD+BD=3+3,答:AB的长是3+3.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练3.(•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.分析:根据等边三角形性质求出∠B=60°,求出∠C=30°,求出BC=4,根据勾股定理求出AC,相加即可求出答案.解答:解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC=2222BC AB-=-=,4223∴△ABC的周长是AC+BC+AB=23+4+2=6+23.答:△ABC的周长是6+23.点评:本题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比较强,是一道比较好的题目.考点四:解直角三角形的应用例4 (•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,2≈1.41436≈2.45)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC ,根据AB =BC =15千米,∠B =90°得到∠BAC =∠ACB =45° AC =152千米,再根据∠D =90°利用勾股定理求得AD 的长后即可求周长和面积; (2)直接利用余弦的定义求解即可. 解:(1)连接AC∵AB =BC =15千米,∠B =90°∴∠BAC =∠ACB =45° AC =152千米 又∵∠D =90°∴AD =22 -AC CD =22(152)(32)123-=(千米)∴周长=AB +BC +CD +DA =30+32+123=30+4.242+20.784≈55(千米) 面积=S △ABC +18 6 ≈157(平方千米) (2)cos ∠ACD =CD 321==AC 5152点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练6.(•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC =75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题.分析:(1)由于A到BC的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,CD=303,BC=60+303≈112(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】1.(•济南)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.31.A考点:锐角三角函数的定义.A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定3考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.分析:首先根据绝对值与偶次幂具有非负性可知cosA-12=0,sinB-22=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.解答:解:∵|cosA-12|+(sinB-22)2=0,∴cosA-12=0,sinB-22=0,∴cosA=12,sinB=22,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°,故答案为:75°.点评:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.5.(•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD==21 3tan303=36.33,在Rt△BDC中,BD=CD==7 3tan303=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。
初三中考数学常用知识点整理
初三中考数学常用知识点整理求学的三个条件是:多观察、多吃苦、多研究。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。
下面是小编给大家整理的一些中考数学常用的知识点,希望对大家有所帮助。
中考数学常用知识点1.解直角三角形1.1.锐角三角函数锐角a的正弦、余弦和正切统称∠a的三角函数。
如果∠a是Rt△ABC的一个锐角,则有1.2.锐角三角函数的计算1.3.解直角三角形在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。
2.直线与圆的位置关系2.1.直线与圆的位置关系当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
直线与圆的位置关系有以下定理:直线与圆相切的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线。
圆的切线性质:经过切点的半径垂直于圆的切线。
2.2.切线长定理从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。
切线长定理:过圆外一点所作的圆的两条切线长相等。
2.3.三角形的内切圆与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。
三角形的内心是三角形的三条角平分线的交点。
3.三视图与表面展开图3.1.投影物体在光线的照射下,在某个平面内形成的影子叫做投影。
光线叫做投影线,投影所在的平面叫做投影面。
由平行的投射线所形成的投射叫做平行投影。
可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。
3.2.简单几何体的三视图物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。
主视图、左视图和俯视图合称三视图。
产生主视图的投影线方向也叫做主视方向。
九年级中考常用数学知识点圆重点①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
中考总复习解直角三角形
解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。
详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。
(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
《解直角三角形》教学设计
《解直角三角形》教学设计(续表)图28-2-5 教师呈现问题并引导学生结合图形,观察已知和的正弦来求∠A的(续表)(续表)【学习目标】 1.知识技能(1)掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.(2) 理解解一个直角三角形的前提条件. 2.解决问题通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3.数学思考 让学生思考:为什么一个直角三角形可以解的前提条件是必须有两个元素(其中一个必须为边).从而让学生理解画一个直角三角形的条件.4.情感态度(1) 通过给定具体的两个条件(其中一个为边),让学生们画直角三角形,培养学生合作交流的意识和探索精神.(2)通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯. 【学习重难点】重点:直角三角形的解法.难点: (1)三角函数在解直角三角形中的灵活运用.(2)学生可能不理解在已知的两个元素中,为什么至少有一个是边.课前延伸【知识梳理】(1) 在Rt △ABC 中,∠C =90°,a =3,c =4,则b =. (2) 在Rt △ABC 中,∠C =90°,∠A =28°,那么∠B =__62°__.(3) 在Rt △ABC 中,∠C =90°,a =4,b =5,则sin A =41,cos A =41,tan A =__45__(4) 在Rt △ABC 中,∠C =90°, ∠A =30°,a =6,则c =__12__,b =. (5) 在Rt △ABC 中,∠C =90°,已知c =6, ∠A =50°,则a =__6_sin50°__. (6) 意大利披萨斜塔在建成的时候就已倾斜,其塔顶中心点偏离垂直中心线2.1米,1972年披萨地区发生地震,这座高54.5米的斜塔在大幅摇摆后依然屹立,但塔顶中心点偏离垂直中心线增至5.2米,请你算出这时塔身中心线与垂直中心线的夹角.课内探究一、 课堂探究1(问题探究,自主学习)(1)在Rt △ABC 中,∠C =90°,c =28, ∠B =60°,解这个直角三角形. (2)在Rt △ACB 中,c =90°,a =30, ∠B =80°, 解这个直角三角形. (3)在Rt △ABC 中,c =90°,a =3,b =3, 解这个直角三角形.二、课堂探究2(分组讨论,合作探究)(1) 画一个直角三角形,使两条直角边分别为3和4.(2) 画一个直角三角形,使一条直角边为3,一个锐角为35°.(3) 画一个直角三角形,使斜边长为8,一个锐角为40°.(4) 画一个直角三角形,使两个锐角分别为30°和60°.各小组比较由(1)(2)(3)(4)画出的直角三角形.讨论1:你觉得给出什么样的条件可以画出一个确定的三角形.讨论2:你觉得确定一个直角三角形需要的元素有什么条件?三、反馈训练1.必做题在Rt△ABC中,∠C=90°,已知b=20, ∠B=35°,解这个直角三角形(结果保留小数);(2)在Rt△ABC中,∠C=90°,已知a=10 3,b=20, 解这个直角三角形.2.选做题在Rt△ABC中,∠C=90°,AC=15, ∠A的平分线AD=10 3,解这个直角三角形.课后提升1. 在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.2. 已知在△ABC中,∠B=60°,∠C=45°,AB=6,求BC长.3. 如图,在两面墙之间有一个底端在点A的梯子,当它靠在一侧墙上时,梯子的顶端在点B处;当它靠在另一侧墙上时,梯子的顶端在点D处.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3 2 m.求点B到地面的垂直距离BC.图28-2-9。
中考数学复习·图形的相似+相似三角形专题(位似、相似、相似三角形证明及应用)名校名师全解全练精品课件
A.12.36 cm C.32.36 cm
5-1 【解析】∵黄金比为 ≈0.618 , ∴ 它 的 宽 约 为 2 0.618×20≈12.36 cm.
【答案】A
上一页
下一页
宇轩图书
考
点
训
a
练
首页
2 . (2010 中考变式题 )已知 = = ,且 a + b+ c≠0 ,则 2 5 7 2a+3b-2c 的值为( a+b+c 5 A. 14 )
的周长与五边形 A′B′C′D′E′的周长的比值为
上一页
下一页
宇轩图书
中考典例精析
(2011·河北)如图所示,在6×8网格图中,每 个小正方形边长均为1.点O和△ABC的顶点均为小正方形
首页
的顶点.
(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和 △ABC位似,且位似比为1∶2. (2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号) 【点拨】位似图形一定是相似图形,可以利用相似图形的性质计算或 证明. 【 解 答 】 (1) 如 图 所 示. (2)AA′ =CC′ = 2. 在
目录
第六章 图形的相似与解直角三角形 第23讲 图形的相似与位似
考点知识精讲
中考典例精析
举一反三
考点训练
宇轩图书
考点知识精讲
考点一 成比例线段与比例的定义及性质
首页
1.对于四条线段 a、b、c、d,如果 做成比例线段,简称比例线段.
那么这四条线段叫
2.表示两个比相等的式子叫做比例式,简称比例. 3.连比:连在一起的三个数的比,叫做连比. a c 4.比例的基本性质:如果 = ,那么 ad=bc ,反之也成立.其中 b d a b a 与 d 叫做比例外项,b 与 c 叫做比例内项.特殊地 = ⇔b2=ac. b c
中考数学复习专题15解直角三角形
解直角三角一、单选题1.(2021·浙江温州市)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+B .2sin 1α+C .211cos α+D .2cos 1α+【答案】A【分析】根据勾股定理和三角函数求解.【详解】∵在Rt OAB 中,AOB α∠=,1AB =∴1=sin sin AB OB αα= 在Rt OBC 中,1BC =,2222221111sin sin OC OB BC αα⎛⎫=+=+=+ ⎪⎝⎭故选:A . 【点睛】本题主要考查勾股定理和三角函数.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .2.(2021·浙江金华市)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米【答案】A 【分析】根据等腰三角形的性质得到12BD DC BC ==,根据余弦的定义即可,得到答案. 【详解】过点A 作AD BC ⊥,如图所示:∵AB AC =,AD BC ⊥,∴BD DC =,∵DC co ACα=,∴cos 2cos DC AC αα=⋅=, ∴24cos BC DC α==,故选:A . 【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.3.(2021·湖北随州市)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知3sin cos 5αβ==,则梯子顶端上升了( )A .1米B .1.5米C .2米D .2.5米【答案】C 【分析】根据梯子长分别利用三角函数的正弦定义求出CD =CE sin β与AD =AB sin α,两线段作差即可.【详解】解:如图所示标记字母,根据题意得AB =CE =10米,∵sin β45===, 在Rt △ECD 中,sin 4105CD CD CE β===,∴CD =410=85⨯, 在Rt △ABD 中,sin 3=105AD AD AB α==,∴310=65AD =⨯,∴AC =CD -AD =8-6=2.故选择C .【点睛】本题考查三角函数的定义,解直角三角形,掌握正弦与余弦的平方关系以及锐角三角函数的定义是解题关键.4.(2021·湖南株洲市)某限高曲臂道路闸口如图所示,AB 垂直地面1l 于点A ,BE 与水平线2l 的夹角为()090αα︒≤≤︒,12////EF l l ,若 1.4AB =米,2BE =米,车辆的高度为h (单位:米),不考虑闸口与车辆的宽度.①当90α=︒时,h 小于3.3米的车辆均可以通过该闸口;②当45α=︒时,h 等于2.9米的车辆不可以通过该闸口;③当60α=︒时,h 等于3.1米的车辆不可以通过该闸口.则上述说法正确的个数为( )A .0个B .1个C .2个D .3个【答案】C 【分析】①,,A B E 三点共线,直接计算可得;②做出辅助线,构造直角三角形,利用特殊角的三角函数,求出h ;③方法同②.【详解】如图过E 点作EM AB ⊥交AB 的延长线于点M ,12////EF l l ∴MEB α∠= 则sin h AM AB BE α==+⨯①当90α=︒时,,,A B E 三点共线, 1.42 3.4 3.3h AE AB BE ==+=+=>∴h 小于3.3米的车辆均可以通过该闸口,故①正确.②当45α=︒时,sin 1.42 1.4 1.41 2.81 2.92h AB BE α=+⨯=+⨯≈+=< ∴h 等于2.9米的车辆不可以通过该闸口,故②正确.③当60α=︒时,sin 1.42 1.4 1.73 3.13 3.1h AB BE α=+⨯=+≈+=> ∴ h 等于3.1米的车辆可以通过该闸口,故③错误.综上所述:说法正确的为:①②,共2个.故选:C .【点睛】本题考查了三角函数的应用,二次根式的估值,正确的作图,计算和对比选项是解题关键. 5.(2021·湖南衡阳市)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6,cos370.8,tan370.75︒≈︒≈︒≈)( ).A .7.5米B .8米C .9米D .10米【答案】D 【分析】结合题意,根据三角函数的性质计算,即可得到答案. 【详解】根据题意,得:sin 370.6BC AB ︒=≈ ∵6BC =米∴6100.60.6BC AB ===米故选:D . 【点睛】本题考查了三角函数的知识;解题的关键是熟练掌握三角函数的性质,从而完成求解. 6.(2021·天津)tan30︒的值等于( )A B C .1 D .2【答案】A【分析】根据30°的正切值直接求解即可.【详解】解:由题意可知,tan 30︒=,故选:A . 【点睛】本题考查30°的三角函数,属于基础题,熟记其正切值即可.7.(2021·重庆)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:2.4i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin500.77︒≈;cos500.64︒≈;tan50 1.19︒≈)A .69.2米B .73.1米C .80.0米D .85.7米【答案】D 【分析】作DF ⊥AB 于F 点,得到四边形DEBF 为矩形,首先根据坡度的定义以及DE 的长度,求出CE ,BE 的长度,从而得到DF =BE ,再在Rt △ADF 中利用三角函数求解即可得出结论.【详解】如图所示,作DF ⊥AB 于F 点,则四边形DEBF 为矩形,∴50DE BF ==,∵斜坡CD 的坡度(或坡比)为1:2.4i =,∴在Rt △CED 中,15tan 2.412DE C CE ∠===, ∵50DE =,∴120CE =,∴15012030BE BC CE =-=-=,∴30DF =,在Rt △ADF 中,∠ADF =50°,∴tan tan 50 1.19AF ADF DF∠=︒==, 将30DF =代入解得:35.7AF =,∴AB =AF +BF =35.7+50=85.7米,故选:D .【点睛】本题考查解直角三角形的实际应用,理解坡度的定义,准确构造直角三角形,熟练运用锐角三角函数是解题关键.8.(2021·云南)在ABC 中,90ABC ∠=︒,若s n 3100,5i A A C ==,则AB 的长是( ) A .5003 B .5035 C .60 D .80【答案】D【分析】根据三角函数的定义得到BC 和AC 的比值,求出BC ,然后利用勾股定理即可求解.【详解】解:∵∠ABC =90°,sin ∠A =BC AC =35,AC =100,∴BC =100×3÷5=60,∴AB ,故选D .【点睛】本题主要考查的是解直角三角形,掌握勾股定理和正弦函数的定义是解题的关键.9.(2021·山东泰安市)如图,为了测量某建筑物BC 的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A 点出发,沿斜坡AD 行走130米至坡顶D 处,再从D 处沿水平方向继续前行若干米后至点E 处,在E 点测得该建筑物顶端C 的仰角为60°,建筑物底端B 的俯角为45°,点A 、B 、C 、D 、E 在同一平面内,斜坡AD 的坡度1:2.4i =.根据小颖的测量数据,计算出建筑物BC 的高度约为( )(参1.732≈)A .136.6米B .86.7米C .186.7米D .86.6米【答案】A 【分析】作DF ⊥AB 于F 点,EG ⊥BC 于G 点,根据坡度求出DF =50,AF =120,从而分别在△BEG 和△CEG 中求解即可.【详解】如图,作DF ⊥AB 于F 点,EG ⊥BC 于G 点,则四边形DFBG 为矩形,DF =BG ,∵斜坡AD 的坡度1:2.4i =,∴15tan 2.412DF DAF AF∠===, ∵AD =130,∴DF =50,AF =120,∴BG =DF =50,由题意,∠CEG =60°,∠BEG =45°,∴△BEG 为等腰直角三角形,BG =EG =50,在Rt △CEG 中,CG EG∴6505136.BC BG CG ≈=+=+米,故选:A .【点睛】本题考查解直角三角形的实际应用,正确理解坡度的定义,准确构建合适的直角三角形是解题关键.10.(2021·重庆)如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和N D .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度i =1:1.25.若58ND DE =,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N 的高度差为( )(参考数据:1.73≈≈)A .9.0mB .12.8mC .13.1mD .22.7m【答案】C 【分析】分别解直角三角形Rt DEF △和Rt MBC ,求出NE 和MB 的长度,作差即可.【详解】解:∵50FE m =,DF 的坡度i =1:1.25,∴:1:1.25DE EF =,解得40m DE =, ∴5258ND DE m ==,∴65NE ND DE m =+=,∵60MCB ∠=︒,30m BC =,∴tan 60MB BC =⋅︒=,∴顶端M 与顶端N 的高度差为6513.1NE MB m -=-≈,故选:C .【点睛】本题考查解直角三角形的实际应用,掌握解直角三角形是解题的关键.11.(2021·四川泸州市)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π【答案】A【分析】方法一:先求出∠C ,根据题目所给的定理,2sin c R C = , 利用圆的面积公式S 圆=163π. 方法二:设△ABC 的外心为O ,连结OA ,OB ,过O 作OD ⊥AB 于D ,由三角形内角和可求∠C =60°,由圆周角定理可求∠AOB =2∠C =120°,由等腰三角形性质,∠OAB =∠OBA =30,由垂径定理可求AD =BD =2,利用三角函数可求OA,利用圆的面积公式S 圆=163π. 【详解】解:方法一:∵∠A =75°,∠B =45°,∴∠C =180°-∠A -∠B =180°-75°-45°=60°,有题意可知42=sin sin 6032c R C ===︒,∴3R =,∴S 圆=222163R OA ππππ===⎝⎭. 方法二:设△ABC 的外心为O ,连结OA ,OB ,过O 作OD ⊥AB 于D ,∵∠A =75°,∠B =45°,∴∠C =180°-∠A -∠B =180°-75°-45°=60°,∴∠AOB =2∠C =2×60°=120°,∵OA =OB ,∴∠OAB =∠OBA =()1180120302︒-︒=︒, ∵OD ⊥AB ,AB 为弦,∴AD =BD =122AB =,∴AD =OA cos30°, ∴OA=cos302AD ÷︒==S 圆=2221633R OA ππππ⎛⎫=== ⎪ ⎪⎝⎭.故答案为A .【点睛】本题考查三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式,掌握三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式是解题关键.三、填空题1.(2021·四川广元市)如图,在44⨯的正方形网格图中,已知点A 、B 、C 、D 、O 均在格点上,其中A 、B 、D 又在O 上,点E 是线段CD 与O 的交点.则BAE ∠的正切值为________.【答案】12【分析】由题意易得BD =4,BC =2,∠DBC =90°,∠BAE =∠BDC ,然后根据三角函数可进行求解.【详解】解:由题意得:BD =4,BC =2,∠DBC =90°,∵∠BAE =∠BDC ,∴1tan tan 2BC BAE BDC BD ∠=∠==,故答案为12. 【点睛】本题主要考查三角函数及圆周角定理,熟练掌握三角函数及圆周角定理是解题的关键. 2.(2021·浙江衢州市)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE 与地面平行,支撑杆AD ,BC 可绕连接点O 转动,且OA OB =,椅面底部有一根可以绕点H 转动的连杆HD ,点H 是CD 的中点,F A ,EB 均与地面垂直,测得54cm FA =,45cm EB =,48cm AB =.(1)椅面CE 的长度为_________cm .(2)如图3,椅子折叠时,连杆HD 绕着支点H 带动支撑杆AD ,BC 转动合拢,椅面和连杆夹角CHD ∠的度数达到最小值30时,A ,B 两点间的距离为________cm (结果精确到0.1cm ).(参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈)【答案】40 12.5【分析】(1)过点C 作CM 垂直AF ,垂足为M ,MFC AFB ∆∽,列比例求出CM 长度,则CE =AB -CM ;(2)根据图2可得OCD OBA ∽,对应袋图3中求出CD 长度,列比例求AB 即可.【详解】解:(1)过点C 作CM 垂直AF ,垂足为M ,∵椅面CE 与地面平行,∴MFC AFB ∆∽, ∴54454854CM FM FA EB CM AB FA FA --==⇔=,解得:CM =8cm , ∴CE =AB -CM =48-8=40cm ;故答案为:40;(2)在图2中,∵OA OB =,椅面CE 与地面平行,∴BCE ADM ∠=∠,∵90AM BE AMD BEC =∠=∠=︒,,∴AMD BEC ≌,∴DM CE =,∴8MC ED cm ==,∴488832CD cm =--=,∵H 是CD 的中点,∴1162CH HD CD ===, ∵椅面CE 与地面平行,∴COD BOA ∽,∴322483CO CD BO AB ===, 图3中,过H 点作CD 的垂线,垂足为N ,因为1162CH HD CD === ,=30CHD ∠︒, ∴15CHN DHN ∠=∠=︒,∴2sin15=8.32CD CH cm =︒,∴28.323CO CD OB AB AB =⇔=, 解得:12.4812.5AB cm =≈,故答案为:12.5.【点睛】本题主要考查相似三角形的判定与性质,锐角三角函数等知识点,找到对应相似三角形并正确列出比例是解决本题的关键.3.(2021·浙江绍兴市)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上.若30cm AB =,则BC 长为_______cm (结果保留根号).【答案】303 【分析】根据题意即可求得∠MOD =2∠NOD ,即可求得∠NOD =30°,从而得出∠ADB =30°,再解直角三角形ABD 即可.【详解】解:∵时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O , ∴∠MOD =2∠NOD , ∵∠MOD +∠NOD =90°,∴∠NOD =30°,∵四边形ABCD 是矩形,∴AD //BC ,∠A =90°,AD =BC ,∴∠ADB =∠NOD =30°,∴()30==303cm tan 30tan 30==AB BC AD 故答案为:【点睛】本题考查的矩形的性质、解直角三角形等知识;理解题意灵活运用所学知识得出∠NOD =30°是解题的关键.4.(2021·湖北武汉市)如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 到达C 点,这时测得小岛A 在北偏东30方向上.小岛A 到航线BC 的距离是__________n mile 1.73≈,结果用四舍五入法精确到0.1).【答案】10.4【分析】过点A 作AD ⊥BC ,垂足为D ,根据题意,得∠ABC =30°,∠ACD =60°,从而得到AC =BC =12,利用sin 60°=AD AC计算AD 即可 【详解】过点A 作AD ⊥BC ,垂足为D ,根据题意,得∠ABC =30°,∠ACD =60°,∴∠ABC =∠CAB =30°,∴AC =BC =12,∵sin 60°=AD AC ,∴AD =AC sin 60°=122⨯ 1.73610.38≈⨯=≈10.4故答案为:10.4. 【点睛】本题考查方位角,解直角三角形,准确理解方位角的意义,构造高线解直角三角形是解题的关键. 5.(2021·四川乐山市)如图,已知点(4,3)A ,点B 为直线2y =-上的一动点,点()0,C n ,23n -<<,AC BC ⊥于点C ,连接AB .若直线AB 与x 正半轴所夹的锐角为α,那么当sin α的值最大时,n 的值为________.【答案】12【分析】设直线y =﹣2与y 轴交于G ,过A 作AH ⊥直线y =﹣2于H ,AF ⊥y 轴于F ,根据平行线的性质得到∠ABH =α,由三角函数的定义得到sin α5BA =,根据相似三角形的性质得到比例式234GB n n +=-,于是得到GB 14=-(n +2)(3﹣n )14=-(n 12-)22516+,根据二次函数的性质即可得到结论. 【详解】解:如图,设直线y =﹣2与y 轴交于G ,过A 作AH ⊥直线y =﹣2于H ,AF ⊥y 轴于F ,∵BH ∥x 轴,∴∠ABH =α,在Rt △ABH 中,AB =,sin α5BA=,即sin α5BA = ∵sinα随BA 的减小而增大,∴当BA 最小时sinα有最大值;即BH 最小时,sinα有最大值,即BG 最大时,sinα有最大值, ∵∠BGC =∠ACB =∠AFC =90°,∴∠GBC +∠BCG =∠BCG +∠ACF =90°,∴∠GBC =∠ACF ,∴△ACF ∽△CBG ,∴BG CG CF AF=, ∵(4,3)A ,()0,C n 即234BG n n +=-,∴BG 14=-(n +2)(3﹣n )14=-(n 12-)22516+, ∵23n -<<∴当n 12=时,BG 最大值2516=故答案为:12. 【点睛】本题考查了相似三角形的判定和性质,三角函数的定义,平行线的性质,正确的作出辅助线证得△ACF ∽△CBG 是解题的关键.6.(2021·四川乐山市)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30,她朝石碑前行5米到达点D 处,又测得石顶A 点的仰角为60︒,那么石碑的高度AB 的长=________米.(结果保留根号)【分析】先根据已知条件得出△ADC 是等腰三角形,再利用AB =sin 60°×AD 计算即可 【详解】解:由题意可知:∠A =30°,∠ADB =60°∴∠CAD =30°∴△ADC 是等腰三角形,∴DA =DC 又DC =5米故AD =5米在Rt △ADB 中,∠ADB =60°∴AB =sin 60°×AD 5= 【点睛】本题考查等腰三角形的性质、解直角三角形,熟练记忆特殊角的锐角三角函数值是关键 7.(2021·浙江)如图,已知在Rt ABC 中,90,1,2ACB AC AB ∠=︒==,则sin B 的值是______.【答案】12【分析】在直角三角形中,锐角B 的正弦=锐角B 的对边:直角三角形的斜边,根据定义直接可得答案. 【详解】解: 90,1,2ACB AC AB ∠=︒==,1sin ,2AC B AB ∴== 故答案为:12 【点睛】本题考查的是锐角的正弦的含义,掌握锐角的正弦的定义是解题的关键.8.(2021·浙江宁波市)如图,在矩形ABCD 中,点E 在边AB 上,BEC △与FEC 关于直线EC 对称,点B 的对称点F 在边AD 上,G 为CD 中点,连结BG 分别与,CE CF 交于M ,N 两点,若BM BE =,1MG =,则BN 的长为________,sin AFE ∠的值为__________.【答案】2 1【分析】由BEC △与FEC 关于直线EC 对称,矩形,ABCD 证明,BEC FEC ≌再证明,BCN CFD ≌ 可得,BN CD = 再求解2,CD = 即可得BN 的长; 先证明,AFE CBG ∽ 可得:,AE EF CG BG = 设,BM x = 则,1,2,BE BM FE x BG x AE x ====+=- 再列方程,求解,x 即可得到答案. 【详解】解: BEC △与FEC 关于直线EC 对称,矩形,ABCD,BEC FEC ∴≌ 90,ABC ADC BCD ∠=∠=∠=︒90,,,,EBC EFC BEC FEC BE FE BC FC ∴∠=∠=︒∠=∠==,BM BE = ,BEM BME ∴∠=∠ ,FEC BME ∴∠=∠//,EF MN ∴ 90BNC EFC ∴∠=∠=︒, 90,BNC FDC ∴∠=∠=︒90BCD ∠=︒, 90,NBC BCN BCN DCF ∴∠+∠=︒=∠+∠,NBC DCF ∴∠=∠ ,BCN CFD ∴≌ ,BN CD ∴=矩形,ABCD //,//,AB CD AD BC ∴ ,BEM GCM ∴∠=∠,1,BEM BME CMG MG G ∠=∠=∠=为CD 的中点,,GMC GCM ∴∠=∠ 1,2,CG MG CD ∴=== 2.BN ∴=如图,,//,BM BE FE MN EF == 四边形ABCD 都是矩形,,//,90,AB CD AD BC A BCG ∴=∠=∠=︒ ,AEF ABG ∠=∠90,AFE AEF ABG CBG ∠+∠=︒=∠+∠ ,AFE CBG ∴∠=∠,AFE CBG ∴∽ ,AE EF CG BG ∴= 设,BM x = 则,1,2,BE BM FE x BG x AE x ====+=- 2,11x x x -∴=+ 解得:x = 经检验:x =x =2AE EF ∴== sin 1.AE AFE EF ∴∠=== 故答案为: 1. 【点睛】本题考查的是矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数的应用,分式方程的解法,掌握以上知识是解题的关键.9.(2021·四川乐山市)在Rt ABC 中,90C ∠=︒.有一个锐角为60︒,4AB =.若点P 在直线AB 上(不与点A 、B 重合),且30PCB ∠=︒,则CP 的长为________.2【分析】依据题意画出图形,分类讨论,解直角三角形即可.【详解】解:情形1:60A ∠=︒,则30B ∠=︒,,∵30PCB ∠=︒,∴60ACP ∠=︒,∴ACP △是等边三角形,∴122CP AC AB ===;情形2:60B ∠=︒,则30A ∠=︒,2BC =,AC =∵30PCB ∠=︒,∴CP AB ⊥,∴1122AC BC AB CP ⋅=⋅,解得CP =情形3:60B ∠=︒,则30A ∠=︒,2BC =,AC =∵30PCB ∠=︒,∴CP AC ==2.【点睛】本题考查解直角三角形,掌握分类讨论的思想是解题的关键.10.(2021·浙江杭州市)sin30°的值为_____. 【答案】12【详解】根据特殊角的三角函数值计算即可:sin30°=12. 三、解答题1.(2021·青海)如图1是某中学教学楼的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转35︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据sin350.6︒≈,cos350.8︒≈ 1.4≈).【答案】1.4米【分析】作BE ⊥AD 于点E ,作CF ⊥AD 于点F ,延长FC 到点M ,使得BE =CM ,则EM =BC ,在Rt △ABE 、Rt △CDF 中可求出AE 、BE 、DF 、FC 的长度,进而可得出EF 的长度,再在Rt △MEF 中利用勾股定理即可求出EM 的长,此题得解.【详解】解:作BE ⊥AD 于点E ,作CF ⊥AD 于点F ,延长FC 到点M ,使得BE =CM ,如图所示.∵AB =CD ,AB +CD =AD =2,∴AB =CD =1.在Rt △ABE 中,AB =1,∠A =35°,∴BE =AB •sin ∠A=1sin35⨯︒≈0.6,AE =AB •cos ∠A ≈0.8.在Rt △CDF 中,CD =1,∠D =45°,∴CF =CD •sin ∠D ≈0.7,DF =CD •cos ∠D ≈0.7.∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CM ,又∵BE =CM ,∴四边形BEMC 为平行四边形,∴BC =EM ,CM =BE .在Rt △MEF 中,EF =AD -AE -DF =0.5,FM =CF +CM =1.3,∴EM ,∴B 与C 之间的距离约为1.4米.【点睛】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC 的长度是解题的关键.2.(2021·四川成都市)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角33MBC ∠=︒,在与点A 相距3.5米的测点D 处安置测倾器,测得点M 的仰角45MEC ∠=︒ (点A ,D 与N 在一条直线上),求电池板离地面的高度MN 的长.(结果精确到1米;参考数据:sin330.54,cos330.84,tan330.65︒≈︒≈︒≈)【答案】8米【分析】过E 作EF ⊥MN 于F ,连接EB ,设MF =x 米,可证四边形FNDE ,四边形FNAB 均是矩形,设MF =EF =x ,可求FB = x +3.5,由tan ∠MBF =0.653.5MF x FB x =≈+,解得 6.5x ≈米,可求MN =MF +FN =6.5+1.6≈8米.【详解】解:过E 作EF ⊥MN 于F ,连接EB ,设MF =x 米,∵∠EFN =∠FND =∠EDN =∠A =90°, ∴四边形FNDE ,四边形FNAB 均是矩形,∴FN =ED =AB =1.6米,AD =BE =3.5米,∵∠MEF =45°,∠EFM =90°,∴MF =EF =x ,∴FB =FE +EB =x +3.5,∴tan ∠MBF =0.653.5MF x FB x =≈+,∴解得 6.5x ≈米,经检验 6.5x ≈米符合题意, ∴MN =MF +FN =6.5+1.6=8.1≈8米.【点睛】本题考查矩形判定与性质,锐角三角函数,简单方程,掌握矩形判定与性质,锐角三角函数,简单方程是解题关键.3.(2021·山东聊城市)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A 处向正南方向走300米到达革命纪念碑B 处,再从B 处向正东方向走到党史纪念馆C 处,然后从C 处向北偏西37°方向走200米到达人民英雄雕塑D 处,最后从D 处回到A 处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【答案】420米【分析】过D 点分别作DE ⊥BC ,DF ⊥AB ,垂足分别是点E ,点F .由三角函数可求120CE ≈,160DE ≈.可证四边形 BEDF 是矩形,可求AF =140,在Rt △ADF 中,利用三角函数可求DF =AF ·tan65°≈299.60.,可求BC =BE +CE ≈420(米).【详解】解∶过D 点分别作DE ⊥BC ,DF ⊥AB ,垂足分别是点E ,点F .由题意得,CDE ∠=37°.在R △CDE 中∵sin 37,cos37,200CE DE CD CD CD︒=︒==, 200sin372000.60120CE ∴=⋅︒≈⨯=,200cos372000.80160DE =⋅≈⨯=︒.,,AB BC DE BC DF AB ⊥⊥⊥,90B DEB DFB ∴∠=∠=∠=︒.∴四边形 BEDF 是矩形,∴BE =DF ,BF =DE =160,∴AF =AB -BF =300-160=140.在Rt △ADF 中,tan 65DF AF︒=,∴DF =AF ·tan65°≈140×2.14=299.60. ∴BC =BE +CE =299.60+120≈420(米).所以,革命纪念碑与党史纪念馆之间的距离约为 420米.【点睛】本题考查解直角三角形应用,矩形判定与性质,掌握锐角三角函数的定义与矩形判定和性质是解题关键.4.(2021·四川广元市)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为75︒,测得小区楼房BC 顶端点C 处的俯角为45︒.已知操控者A 和小区楼房BC 之间的距离为45米,小区楼房BC 的高度为米.(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB 的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D都在同一平面内.参考数据:tan 752︒=tan152︒=.计算结果保留根号)【答案】(1)()30米;(2)()6秒【分析】(1)通过作辅助线构造直角三角形,解直角三角形即可求出DE 的值,进而得到DH 的值;(2)先利用特殊角的三角函数值求出∠BAC 的度数,接着求出∠GF A 的度数,作辅助线构造直角三角形求出DG 和GF ,进而得到DF 的值,最后除以无人机速度即可.【详解】解:如图1,过D 点作DH ⊥AB ,垂足为点H ,过C 点作CE ⊥DH ,垂足为点E ,可知四边形EHBC 为矩形,∴EH =CB ,CE =HB ,∵无人机测得小区楼房BC 顶端点C 处的俯角为45︒,测得操控者A 的俯角为75︒,DM ∥AB ,∴∠ECD =45°,∠DAB =75°,∴∠CDE =∠ECD =45°,∴CE =DE ,设CE =DE =HB =x ,∴AH =45-x ,DH =DE +EH =x +在Rt △DAH 中,DH =tan75°×AH =(()245x +-,即(()245x x +=-,解得:x =30,∴DH = 30∴此时无人机的高度为()30米; (2)如图2所示,当无人机飞行到图中F 点处时,操控者开始看不见无人机,此时AF 刚好经过点C ,过A 点作AG ⊥DF ,垂足为点G ,此时,由(1)知,AG =30(米),∴°30153===15tan 7523AG DG ++;∵1533tan =453BC CAB AB ∠==,∴°=30CAB ∠∵DF ∥AB ,∴∠DF A =∠CAB =30°,∴°45tan 30GA GF ==,∴=30DF GF DG -=,因为无人机速度为5米/秒,所以所需时间为3065(秒);所以经过()6秒时,无人机刚好离开了操控者的视线.【点睛】本题综合考查了解直角三角形的应用,涉及到了等腰直角三角形的性质、矩形的判定与性质、特殊角的三角函数值、解直角三角形等知识,解决本题的关键是读懂题意,能从题意与图形中找出隐含条件,能构造直角三角形求解等,本题蕴含了数形结合的思想方法等.5.(2021·四川资阳市)资阳市为实现5G 网络全覆盖,2020-2025年拟建设5G 基站七千个.如图,在坡度为1:2.4i =的斜坡CB 上有一建成的基站塔AB ,小芮在坡脚C 测得塔顶A 的仰角为45︒,然后她沿坡面CB 行走13米到达D 处,在D 处测得塔顶A 的仰角为53︒(点A 、B 、C 、D 均在同一平面内)(参考数据:434sin 53,cos53,tan 53553︒≈︒≈︒≈)(1)求D 处的竖直高度;(2)求基站塔AB 的高.【答案】(1)5米;(2)19.25米【分析】(1)过点D 作DE ⊥CM ,根据坡度及勾股定理求DE 的长度;(2)延长AB 交CM 于点F ,过点D 作DG ⊥AF ,则四边形DEFG 是矩形,然后利用锐角三角函数和坡度的概念解直角三角形【详解】解:(1)过点D 作DE ⊥CM∵斜坡CB 的坡度为1:2.4i =∴设DE =x ,则CE =2.4x在Rt △CDE 中,222(2.4)13x x +=解得:x =±5(负值舍去)∴DE =5 即D 处的竖直高度为5米;(2)延长AB 交CM 于点F ,过点D 作DG ⊥AF ,则四边形DEFG 是矩形∴GF =DE =5,CE =2.4DE =12,由题意可得:∠ACF =45°,∠ADG =53°设AF =CF =a ,则DG =EF =a -12,AG =AF -GF =a -5∴在Rt △ADG 中,tan 53AG DG ︒=,54123a a -=-解得:a =33 经检验:33a =符合题意,∴DG =33-12=21, 又∵斜坡CB 的坡度为1:2.4i =∴12.4BG DG =,121 2.4BG =解得:BG =8.75 ∴AB =AF -GF -BG =19.25即基站塔AB 的高为19.25米.【点睛】本题考查解直角三角形、坡度、坡角、仰角、勾股定理、三角函数等知识,熟练掌握这些知识就解决问题的关键,属于中考常考题型.6.(2021·江苏宿迁市)一架无人机沿水平直线飞行进行测绘工作,在点P 处测得正前方水平地面上某建筑物AB 的顶端A 的俯角为30°,面向AB 方向继续飞行5米,测得该建筑物底端B 的俯角为45°,已知建筑物AB 的高为3米,求无人机飞行的高度(结果精确到1≈1.414≈ =1.732).【答案】无人机飞行的高度约为14米.【分析】延长PQ ,BA ,相交于点E ,根据∠BQE =45°可设BE =QE =x ,进而可分别表示出PE =x +5,AE=x -3,再根据sin ∠APE =AE PE ,∠APE =30°即可列出方程35x x -=+ 【详解】解:如图,延长PQ ,BA ,相交于点E ,由题意可得:AB ⊥PQ ,∠E =90°,又∵∠BQE =45°,∴BE =QE ,设BE =QE =x ,∵PQ =5,AB =3,∴PE =x +5,AE =x -3,∵∠E =90°,∴sin ∠APE =AE PE ,∵∠APE =30°,∴sin30°=35x x -=+解得:x =7≈14,答:无人机飞行的高度约为14米.【点睛】本题考查解直角三角形的应用-俯角仰角问题,难度适中,要求学生能借助其关系构造直角三角形并解直角三角形.7.(2021·浙江嘉兴市)一酒精消毒瓶如图1,AB 为喷嘴,BCD ∆为按压柄,CE 为伸缩连杆,BE 和EF 为导管,其示意图如图2,108DBE BEF ∠=∠=︒,6cm BD =,4cm BE =.当按压柄BCD ∆按压到底时,BD 转动到'BD ,此时'//BD EF (如图3).(1)求点D 转动到点'D 的路径长;(2)求点D 到直线EF 的距离(结果精确到0.1cm ).(参考数据:sin360.59︒≈,cos360.81︒≈,tan360.73︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)【答案】(1)65π;(2)点D 到直线EF 的距离约为7.3cm .【分析】(1)根据题目中的条件,首先由108DBE BEF ∠=∠=︒,'//BD EF ,求出'D BE ∠,再继续求出'DBD ∠,点D 转动到点'D 的路径长,是以BD 为半径,B 为圆心的圆的周长的一部分,根据'DBD ∠占360︒的比例来求出路径;(2)求点D 到直线EF 的距离,实际上是过点D 作EF 的垂线交EF 于某点,连接两点所确定的距离即为所求,但这样做不好求解.于是把距离拆成两个部分,放在两个直角三角形中,分别利用直角三角形中锐角三角函数知识求出每段的距离,再求和即为所求.【详解】解:(1)如图,∵'//BD EF ,108BEF ∠=︒,∴'18072D BE BEF ∠=︒-∠=︒.∵108DBE ∠=︒,∴''1087236DBD DBE D BE ∠=∠-∠=︒-︒=︒.又∵6BD =,∴点D 转动到点'D 的路径长()3666cm 1805ππ⨯⨯==. (2)如图,过点D 作'DG BD ⊥于点G ,过点E 作'EH BD ⊥于点H .在Rt DGC △中,sin DG DBD BD'∠=∴sin36 3.54DG BD =⋅︒≈. 在Rt BHE 中,sin EH EBH BE ∠=∴sin72 3.80EH BE =⋅︒≈. ∴ 3.54 3.807.347.3DG EH +=+=≈.又∵'//BD EF ,∴点D 到直线EF 的距离约为7.3cm .【点睛】本题考查了两点间转动的路径问题、点到直线的距离问题,锐角三角函数知识,解题的关键是:确定路径是在圆上,占圆周长的多少,就转化成角度间的比值问题了;距离问题,当直接求解比较困难的时候,看是否能把所求拆分成几个部分,再逐一突破.8.(2021·江苏连云港市)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB 摆成如图1所示.已知 4.8m AB =,鱼竿尾端A 离岸边0.4m ,即0.4m AD =.海面与地面AD 平行且相距1.2m ,即 1.2m DH =.(1)如图1,在无鱼上钩时,海面上方的鱼线BC 与海面HC 的夹角37BCH ∠=︒,海面下方的鱼线CO 与海面HC 垂直,鱼竿AB 与地面AD 的夹角22BAD ∠=︒.求点O 到岸边DH 的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角53BAD ∠=︒,此时鱼线被拉直,鱼线 5.46m BO =,点O 恰好位于海面.求点O 到岸边DH 的距离.(参考数据:3sin 37cos535︒=︒≈,4cos37sin 535=︒︒≈,3tan 374︒≈,3sin 228︒≈,15cos2216︒≈,2tan 225︒≈)【答案】(1)8.1m ;(2)4.58m【分析】(1)过点B 作BF CH ⊥,垂足为F ,延长AD 交BF 于点E ,构建Rt ABE △和Rt BFC △,在Rt ABE △中,根据三角函数的定义与三角函数值求出BE ,AE ;再用BE EF +求出BF ,在Rt BFC △中,根据三角函数的定义与三角函数值求出FC ,用CF AE AD CH ;(2)过点B 作⊥BN OH ,垂足为N ,延长AD 交BN 于点M ,构建Rt ABM 和Rt BNO ,在Rt ABM 中,根据53°和AB 的长求出BM 和AM ,利用BM +MN 求出BN ,在Rt BNO 中利用勾股定理求出ON ,最后用HN +ON 求出OH .【详解】(1)过点B 作BF CH ⊥,垂足为F ,延长AD 交BF 于点E ,则AE BF ⊥,垂足为E . 由cos AE BAE AB∠=,∴cos 22 4.8︒=AE ,∴1516 4.8=AE ,即 4.5AE =, ∴ 4.50.4 4.1=-=-=DE AE AD ,由sin BE BAE AB ∠=,∴sin 22 4.8︒=BE , ∴38 4.8=BE ,即 1.8BE =,∴ 1.8 1.23=+=+=BF BE EF . 又tan ∠=BF BCF CF ,∴3tan 37︒=CF ,∴334=CF ,即4CF =, ∴4 4.18.1=+=+=+=CH CF HF CF DE ,即C 到岸边的距离为8.1m .(2)过点B 作⊥BN OH ,垂足为N ,延长AD 交BN 于点M ,则AM BN ⊥,垂足为M . 由cos ∠=AM BAM AB ,∴cos53 4.8︒=AM ,∴35 4.8=AM , 即 2.88=AM ,∴ 2.880.4 2.48=-=-=DM AM AD . 由sin ∠=BM BAM AB ,∴sin 53 4.8︒=BM ,∴45 4.8=BM , 即 3.84=BM ,∴ 3.84 1.2 5.04=+=+=BN BM MN .∴ 2.1====ON ,∴ 4.58=+=+=OH ON HN ON DM ,即点O 到岸边的距离为4.58m .【点睛】本题以钓鱼为背景,考查了学生运用三角函数知识解决实际问题的能力,解题关键在于构造合适的直角三角形,运用三角函数的运算,根据一边和一角的已知量,求其他边;再根据特殊的几何位置关系求线段长度.9.(2021·浙江绍兴市)拓展小组研制的智能操作机器人,如图1,水平操作台为l ,底座AB 固定,高AB 为50cm ,连杆BC 长度为70cm ,手臂CD 长度为60cm .点B ,C 是转动点,且AB ,BC 与CD 始终在同一平面内,(1)转动连杆BC ,手臂CD ,使143ABC ∠=︒,//CD l ,如图2,求手臂端点D 离操作台l 的高度DE 的长(精确到1cm ,参考数据:sin530.8︒≈,cos530.6︒≈).(2)物品在操作台l 上,距离底座A 端110cm 的点M 处,转动连杆BC ,手臂CD ,手臂端点D 能否碰到点M ?请说明理由.【答案】(1)106cm ;(2)能碰到,见解析【分析】(1)通过作辅助线构造直角三角形,利用三角函数值解直角三角形即可完成求解;(2)求出端点D 能够到的最远距离,进行比较即可得出结论.【详解】解:(1)过点C 作CP AE ⊥于点P ,过点B 作BQ CP ⊥于点Q ,如图1,143ABC ∠=︒,53CBQ ∴∠=︒,∴在Rt BCQ △中,()sin53700.856CQ BC cm =⋅︒≈⨯=, ()50PQ AB cm ==.//CD l ,()5650106DE CP CQ PQ cm ∴==+=+=.∴手臂端点D 离操作台 l 的高度DE 的长为106cm .。
中考数学复习指导:解直角三角形中的数学思想
1 / 3AD图1E解直角三角形中的数学思想数学思想方法反映了数学的本质特征,是分析和处理数学问题的指导思想,数学思想方法是具体数学知识技能转化为能力的纽带,是知识与技能的升华.下面以解直角三角形为例,谈谈是如何运用数学思想解决问题的.一、转化思想例1 如图1,一游人由山脚A 沿坡角为30的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45,则山高CD 等于 (结果用根号表示)分析:考查作辅助线解非直角三角形的能力.由于涉及的几何图形是非直角三角形可,所以需要作辅助线转化为直角三角形求解.解:过B 点作BF ⊥CD,BE ⊥AD,则四边形BEDF 在Rt △ABE 中,BE=AB sin30°=600×21在Rt △CBF 中, 由于∠C BF =45°,所以CF=BC sin45°=200×22=2100(m), 所以山高CD=DF+CF=BE+CF=(300+2100)(m),评注:非直角三角形通常都要通过作辅助线转化为直角三角形后求解. 二、分类讨论的思想例2 在平面直角坐标系xOy 中,已知一次函图22 / 3图 360数y=kx+b(k ≠0)的图象过点A(1,1),与x 轴交于点B,且tan ∠ABO=31,那么B 点的坐标是_______.分析:本题需要在直角坐标系中画出函数图象,利用平面内点的坐标的几何意义和解直角三角形的知识求解.因为B 点有可能在x 轴正半轴,也有可能在x 轴负半轴,所以画出如图2的函数图象,过点A 作AC ⊥x 轴.由点A 的坐标为(1,1),则AC=1,OC=1. 第一种情况:在Rt △ABC 中,由tan ∠ABO=,31=BC AC 得BC=3,所以OB=OC+BC=1+3=4,即点B 的坐标为(4,0);第二种情况:在Rt △O B A '中,由tan ∠O B A '=,31='C B AC 得C B '=3, 所以B O '=C B '-OC=3-1=2,即点B '的坐标为(-2,0). 评注:本题存在两种情况,需分类讨论,千万不要漏解. 三、数形结合思想例3 如图3,A B ,两镇相距60km ,小山C 在A 镇的北偏东60方向,在B 镇的北偏西30方向.经探测,发现小山C 周围20km 的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A B ,两镇的一条笔直的公路,试分析这条公路是否会经过该区域?分析: 要判断这条公路是否会经过该区域,实际就是计算C 点到直线AB 的距离与20km 进行比较,所以需要作高,求高即可.解:作CD AB ⊥于D ,3 / 3由题意知:30CAB =∠60CBA =∠ 90ACB =∠30DCB ∴=∠ ∴在Rt ABC △中,1302BC AB == 在Rt DBC △中,cos30CD BC=302=⨯20=> 答:这条公路不经过该区域.评注: 解答本题首先结合图形弄清题意,将实际问题转化为解直角三角形的问题来解决,数形结合是顺利解决问题的关键.。
23.2.2 解直角三角形及其应用 第2课时 教案
沪科版数学九年级上册23.2.2 解直角三角形及其应用教学设计例3 如图 23-16,一学生要测量校园内一棵水杉树的高度。
他站在距离水杉树8米的E处,测得树顶端A的仰角∠ACD为52°,已知测角器CE=1.6米,问树高AB为多少米?(精确到0.1m).例4 解决本章引言所提问题。
如图23-17,某校九年级学生要测量当地电视塔的高度AB,因为不能直接到达塔底B处,他们采用在发射台院外与电视塔底B成一直线的C,D两处地面上,用测角器测得电视塔顶部A的仰角分别为45°和30°,同时量得CD为50m,已知测角器高为1m,问电视塔的高度为多少米?(结果精确到1m).例5 如图23-18,一船以20n mile/h的速度向东航行,在A处测得灯塔C在北偏东60°的方向上,老师提示:解决这个问题的方法,我们称为实际问题数学化,这是解决实际问题常用的方法。
通过学生自己的观察、比较、总结出在这些结论。
实际问题数学化,由实际问题画出平面图形,也能有平面图形想像出实际情景,再根据解直角三角形的来解决实际问题。
并且了解了仰角,俯角的概念。
引导学生再次思考。
加强学生的合作意识,使学生养成大胆猜测和想象的能力,积极参与数学问题的谈论,敢于发表自己的见解。
强调易错点,加继续航行1h到达B处,再测得灯塔C在北偏东30°的方向上,已知灯塔C四周10 n mile 内有暗礁,问这船继续向东航行是否安全?分析:这船继续向东航行是否安全,取决于灯塔C 到AB航线的距离是否大于10 n mile解直角三角形应用的基本图形①不同地点看同一点(如图①);②同一地点看不同点(如图②)建筑物BC上有一旗杆AB,由距BC 40m的D处观察旗杆顶部A的仰角54°,观察底部B的仰角为45°,教师再给予点评、引导,然后共同完成问题的解决。
在探索中发现,这样才能理解其中的规律并能加以总结.通过问题的解决和延伸,引发学生自主思考,培养学生解决问题的逻辑思维能力。
中考数学专题复习——解直角三角形的实际应用的基本类型课件
) D.6 3 m
2.(202X·益阳中考)南洞庭大桥是南益 高速公路上的重要桥梁,小芳同学在校 外实践活动中对此开展测量活动.如 图,在桥外一点A测得大桥主架与水面的交汇点C的俯角 为α,大桥主架的顶端D的仰角为β,已知测量点与大桥
主架的水平距离AB=a,则此时大桥主架顶端离水面的高
CD为 ( C )
【核心突破】 【类型一】 仰角俯角问题 例1(202X·天津中考)如图,海面上一艘 船由西向东航行,在A处测得正东方向上 一座灯塔的最高点C的仰角为31°,再向东继续航行30 m
到达B处,测得该灯塔的最高点C的仰角为45°,根据测 得的数据,计算这座灯塔的高度CD(结果取整数). 参考数据:sin 31°≈0.52,cos 31°≈0.86, tan 31°≈0.60.
____2_2____海里(结果保留整数).(参考数据sin 26.5° ≈0.45,cos 26.5°≈0.90,tan 26.5°≈0.50, 5 ≈ 2.24)
5.(202X·上海宝山区模拟)地铁10 号线某站点出口横截面平面图如图 所示,电梯AB的两端分别距顶部9.9 米和2.4米,在距电梯起点A端6米的P处,用1.5米高的测 角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度 与长度.
解直角三角形的实际 应用的基本类型
【主干必备】 解直角三角形的实际应用的基本类型
应用 类型
图示
测量方式
解答要点
仰角 俯角 问题
(1)运用仰角测距离. (2)运用俯角测距离. (3)综合运用仰角俯 角测距离.
水平线与竖直 线的夹角是 90°,据此构 造直角三角形.
应用 类型
坡度 (坡 比)、 坡角 问题
A.asinα+asinβ C.atanα+aβ D. a a
中考数学复习专题,解直角三角形的应用
中考数学复习专题,解直角三角形的应用知识点一、仰角、俯角问题仰角:指从下往上看,视线与水平线的夹角。
俯角:指从上往下看,视线与水平线的夹角。
解题方法:仰角、俯角问题一般是通过作水下的垂线,构造一个直角三角形,然后再把仰角、俯角转化为直角三角形的内角解题。
经典例题:(2018年,广西中考)。
如图所示,从甲楼底部A处测得乙楼顶部C处,的仰角是30度,从甲楼顶部B处测得乙楼底部D处的俯角是45度,已知甲楼的高AB是120m,则乙楼的高是多少米?(结果保留根号)知识点二、坡度、坡角问题坡度:我们通常把坡面的铅直高度h与水平的宽度l的比值h/l叫作坡面的坡度(或坡比),坡度一般用i来表示,即i=h/l。
坡度、坡角的转化:tan=i=h/l解题方法:坡度、坡角问题,我们要把这两个概念弄清楚,不要混淆了。
坡度是一个比值,而坡角是一个锐角。
(2018年绍兴期中考试)水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡的坡比为1:2,大坝高DE=30O米,坝顶宽CD=10O米,求大坝的截面的周长和面积。
A知识点三、方向角问题方向角我一般用“南偏××”或“北偏××”表示。
方向角具有互逆性。
解题方法:把方向角要能转化成直角三角形的内角,如果没有直角三角形要先做辅助线构造直角三角形。
(2018眉山中考)知识改变世界,科技改变生活。
导航装备的不断更新极大方便了人们的出行。
如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A在13千米,导航显示车辆应沿北偏东60度方向行驶至B地,再沿北偏西37度方向行驶一段距离才能到达C地,求B,C两地之间的距离。
(sin53度≈0.8,cos53度≈0.6, tan53度≈1.3。
结果保留根号)。
初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)
教学过程解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rtz\ABCt\ /C=9d, /A、ZEk /C的对边分别为a、b、c,则/A的正弦可表示为:sinA= , /A的余弦可表示为cosA= /A的正切: tanA= ,它们统称为/ A的锐角三角函数二、特殊角的三角函数值:三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角i视线水平线⑵坡度坡角:如图:斜坡AB的垂直度h和水平宽度l的比叫做坡度,用i表示, 即1= 坡面与水平面得夹角为用字母%表示,则i=tan %=上。
11 T⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA^Z K OB 表木OC 表木O味示(也可称东南方向)北_ A南例2 在Rtz\ABOt\ /C=90° , AB=2BC现给出下歹U结论:①sinA= § ;②cosB=■1 ;③tanA=殍;④tanB=#,其中正确的结论是(只需填上正确结论的序号)解:如图所示:故答案为:②③④.对应训练2.计算6tan45 -2cos60 °的结果是()A. 4 3B. 4C. 5 3D. 52. D考点三:化斜三角形为直角三角形例3 在△ABC^, AB=AC=5 sin /ABC=0.8,贝U BC=故答案为:6.对应训练3.如图,四边形ABCD勺对角线AG BD相交于点Q且B阡分AC若BD=8 AC=6/BOC=120,则四边形ABCD勺面积为 .(结果保留根号)3.12 .3考点四:解直角三角形的应用4.如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AR现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,/PAB=38.5 , / PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A, B为参照点,结果精确到0.1米)(参考数据:sin38.5 =0.62 , cos38.5 =0.78 , tan38.5 =0.80 , sin26.5 =0.45, cos26.5 =0.89 , tan26.5 =0.50)4.解:设PD=x^,・.PDL AB,・•・/ADPN BDP=90 ,在Rt^PAD中,tan / PAD=^ ,AD・•・ AD=-—= 5x, tan38.5o0.8 4在RtWBD中,tan/PBD-DB又.78=80.0 米,55x+2x=80.0 ,4解得:x=24.6,即P[> 24.6 米,・•. DB=2x=492答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.【聚焦中考】1.6cos30 °的值是1,但22.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:收,则AB的长为( )A.12B.4石米C. 5痣米D. 673米B2. A3.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处处,望见渔船D在南偏东60方向,若海监船的速度为50海里/小时,则A, B之间的距离为(取4=1.7,结果精确到0.1海里).5. 67.56.如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里, A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37 =0.8, sin37 =0.6, sin66 =0.9, cos66 =0.4)6.解:如图,作ADLBC的延长线于点D.北D C B在Rt^ADB中,AD=ABcos/BAD=72< cos66 =72X 0.4=28.8 (海里),BD=ABsin / BAD=72 sin66 =72X 0.9=64.8 (海里).在Rt/XADC^, AC=—AD— ^88- 空=36(海里),cos DAC cos37o0.8CD=ACsin / CAD=36 sin37 =36X 0.6=21.6 (海里).BC=BD-CD=64.8-21.6=43.2 (海里).A岛上维修船需要时间t A=^ ^=1.8 (小时).20 20B岛上维修船需要时间t B=坨432=1.5 (小时).28.8 28.8- t A> t B,.•・调度中心应该派遣B岛上的维修船.10.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CDW l垂直,测得CD的长等于21米,在l上点D的同侧取点A B,使/ CAD=30 , / CBD=60 .(1)求AB的长(精确到0.1米,参考数据:石=1.73, 72=1.41 );(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒, 这辆校车是否超速?说明理由.S DC10.解:(1)由题意得,在Rtz\ADC^, AD= CD”马=21 阴=36.33 (米),tan30o .33在Rt^BDC^ , BD=_CD V=Z1 =75/3 = 12.11 (米),tan60 3贝U AB=AD-BD=36.33-12.11=24.22= 24.2 (米)。
中考数学复习《解直角三角形》 知识讲解
《解直角三角形》全章复习与巩固(提高) 知识讲解【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA 、cotA 表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦、正切和余切的三角函数值,并能由一个特殊角的三角函数值说出这个角的度数.2.能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、直角三角形斜边上中线等于斜边的一半,以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题.4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想;5.通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识网络】【要点梳理】要点一、直角三角形的性质(1) 直角三角形的两个锐角互余.(2) 直角三角形两直角边的平方和等于斜边的平方.(勾股定理)如果直角三角形的两直角边长分别为,斜边长为,那么.(3) 直角三角形斜边上的中线等于斜边的一半. 要点二、锐角三角函数1.正弦、余弦、正切、余切的定义如右图,在Rt △ABC 中,∠C=900,如果锐角A 确定:(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA= ∠A 的对边斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边(3)∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边∠A 的邻边a b ,c 222a b c +=(4)∠A 的邻边与对边的比值是∠A 的余切,记作cotA = ∠A 的邻边∠A 的对边要点诠释:(1)正弦、余弦、正切、余切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA 、cosA 、tanA 、cotA 是一个整体符号,即表示∠A 四个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin ·A ,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC ,而不能写出sinBAC.(3)sin 2A 表示(sinA)2,而不能写成sinA 2. (4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角∠A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数. 要点诠释:1. 函数值的取值范围对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是∠A 的函数.同样,cosA 、tanA 、cotA 也是∠A 的函数,其中∠A 是自变量,sinA 、cosA 、tanA 、cotA 分别是对应的函数.其中自变量∠A 的取值范围是0°<∠A <90°,函数值的取值范围是0<sinA <1,0<cosA <1,tanA >0,cotA >0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式” 如∠A+∠B=90°,那么:sinA=cosB ; cosA=sinB ; tanA=cotB, cotA=tanB. 同角三角函数关系:sin 2A +cos 2A=1;3.30°、45°、60°角的三角函数值∠A 30°45°60°sinAcosAtanA1cotA1在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半.sin cos 1tanA=,cot ,tan .cos sin cot A A A A A A A==30°、45°、60°角的三角函数值和解含30°、60°角的直角三角形、含45°角的直角三角形为本章的重中之重,是几何计算题的基本工具. 要点三、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°; 边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形: (1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.Rt △ABC由求∠A ,∠B=90°-∠A ,由求∠A ,∠B=90°-∠A ,sin ,cos ,tan ,cot a b a b A A A A c c b a====sin ,cos ,tan ,cot b a b a B B B B c c a b====,∠B=90°-∠A,,∠B=90°-∠A,,要点四、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见的应用问题类型(1) 仰角与俯角:(2)坡度:;坡角:.(3)方向角:要点诠释:1.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.2.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。
中考数学复习专题(五)解直角三角形的实际应用(含答案)
(湖南株洲第23题)如图示一架水平飞行的无人机AB 的尾端点A 测得正前方的桥的左端点P 的俯角为α其中tanα=23,无人机的飞行高度AH 为5003米,桥的长度为1255米. ①求点H 到桥左端点P 的距离;②若无人机前端点B 测得正前方的桥的右端点Q 的俯角为30°,求这架无人机的长度A B .【答案】①求点H 到桥左端点P 的距离为250米;②无人机的长度AB 为5米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC =AH =5003,∠BQC =30°, ∴CQ =tan 30BC︒=1500米,∵PQ =1255米,∴CP =245米,∵HP =250米,∴AB =HC =250﹣245=5米.答:这架无人机的长度AB 为5米..考点:解直角三角形的应用﹣仰角俯角问题.(内蒙古通辽第22题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角030=⊥EOA ,在OB 的位置时俯角060=∠FOB .若EF OC ⊥,点A 比点B 高cm 7.求(1)单摆的长度(7.13≈);(2)从点A 摆动到点B 经过的路径长(1.3≈π).【答案】(1)单摆的长度约为18.9cm(2)从点A摆动到点B经过的路径长为29.295cm则在Rt△AOP中,OP=OAcos∠AOP=12 x,在Rt△BOQ中,OQ=OBcos∠BOQ=32x,由PQ=OQ﹣OP 3﹣12x=7,解得:x3(cm),.答:单摆的长度约为18.9cm;(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB3,∴∠AOB=90°,则从点A摆动到点B经过的路径长为907+73180π⨯()≈29.295,答:从点A摆动到点B经过的路径长为29.295cm.考点:1、解直角三角形的应用﹣仰角俯角问题;2、轨迹.(湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD 两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【答案】4.2m.考点:解直角三角形的应用.(海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度B C.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.(乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救≈≈≈,结果取整数)援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】试题分析:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在Rt△BCE中,根据三角函数可求CE,EB,在Rt△AFC中,根据勾股定理可求AC,再根据路程÷时间=速度求解即可.试题解析:辅助线如图所示:答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题(浙江省绍兴市)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)【答案】(1)38°;(2)20.4m.【解析】试题分析:(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.试题解析:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.考点:1.解直角三角形的应用﹣仰角俯角问题;2.应用题;3.等腰三角形与直角三角形.(·湖北随州·8分)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.解:如图,过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=1620×=810,∵BC=857.5,CF=EG,∴BF=BC﹣CF=47.5,在Rt△BEF中,tan∠BEF=,∴EF=BF,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=,∴AF=EF×tan∠AEF,∴x+47.5=3×47.5,∴x=95,答:雕像AB的高度为95尺.2. (·吉林·7分)如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)解:如图,∠B=α=43°,在Rt△ABC中,∵sinB=,∴AB=≈1765(m).答:飞机A与指挥台B的距离为1765m.3.(·江西·8分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)解:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.4. (·辽宁丹东·10分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.5.(·四川宜宾)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A 点的仰角β=60°,求树高AB(结果保留根号)解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.6.(·湖北黄石·8分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米.(·湖北荆门·6分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小和小明同时分别从A处和B 处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小的行走速度为米/秒.若小明与小同时到达山顶C处,则小明的行走速度是多少?解:过点C 作CD ⊥AB 于点D ,设AD =x 米,小明的行走速度是a 米/秒, ∵∠A =45°,CD ⊥AB ,∴AD =CD =x 米, ∴AC =x .在Rt △BCD 中, ∵∠B =30°, ∴BC ===2x ,∵小的行走速度为米/秒.若小明与小同时到达山顶C 处,∴=,解得a =1米/秒.答:小明的行走速度是1米/秒.8.(·四川内江)(9分)如图,禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B 两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).[考点]三角函数、解决实际问题。
第23讲直线与圆的位置关系考点聚焦-中考数学一轮复习作业课件
(1)求证:BF 是⊙O 的切线;
(2)若⊙O 的直径为 3,sin
∠CBF=
3 3
,求 BC 和 BF 的长.
【分析】(1)连接 AE,利用直径所对的圆周角是直角,从而判定直角三角
形,利用直角三角形两锐角之和等于 90°.从而证明∠ABF=90°,进而得出结论;
(2)解直角三角形即可得到结论.
(1)证明:如解图,连接AE, ∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°. ∵AB=AC,∴∠CAB=2∠1. ∵∠BAC=2∠CBF,∴∠1=∠CBF, ∴∠CBF+∠2=90°,即∠ABF=90°, ∵AB是⊙O的直径,∴直线BF是⊙O的切线;
(1)证明:如解图,连接OC,∵CE与⊙O相切于点C, ∴∠OCE=90°,∵∠ABC=45° ,∴∠AOC=90°,∵∠AOC+∠OCE=180°, ∴AD∥EC;
(2)解:如解图,过点 A 作 AF⊥EC 交 EC 于点 F,∵∠BAC=75°,∠ABC=
45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin
∠ADB=AADB
=
3 2
,
∴AD=8 3 ,∴OA=OC=4 3 ,∵AF⊥EC,∠OCE=90°,∠AOC=90°, ∴四边形 OAFC 是矩形,又∵OA=OC,∴四边形 OAFC 是正方形,
∴CF=AF=4 3 ,∵∠BAD=90°-∠D=30°,∴∠EAF=180°-90°-30°
=60°,∵tan ∠EAF=EAFF = 3 ,∴EF= 3 AF=12, ∴CE=CF+EF=12+4 3 .
7. (2019·十堰)如图,在△ABC 中,AB=AC,以 AC 为直径的⊙O 交 BC 于点 D,点 E 为 AC 延长线上一点,且∠CDE=12 ∠BAC.
中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)
中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)知识点一:锐角三角函数的定义 1.锐角三角函数 正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.来源:学&科&网]2.特殊角的三角函数值[来 度数三角函数[来源:Z 。
xx 。
]30°[来源:学#科#网] 45° 60°sinA1222 32 cosA32 2212tanA 331 33、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 变式练习1:如图,在平面直角坐标系中,点A 的坐标为注意:根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.[(4,3),那么cos α的值是( ) A. 34 B. 43 C. 35 D. 45【解析】D 如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.变式练习2:在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sinA =________. 【解析】∵在Rt △ABC 中,由勾股定理得AC =22AB BC +=32+42=5,∴sin A =BC AC =45. 变式练习3:在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( D )A .4B .6C .8D .10变式练习4:如图,若点A 的坐标为(1,3),则sin ∠1=__32__. ,知识点二 :解直角三角形 1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:a 2+b 2=c 2;(2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:,tan ,cos ,sin ;,tan ,cos ,sin abB c a B c b B b a A c b A c a A ======(sinA==cosB=ac,c osA=sinB=bc,tanA=ab.)变式练习1:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.变式练习2:如图,Rt△ACB中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI =90°.若AC=a,求CI的长.解:在Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB,∴∠A=60°,∵AC=a,∴CD=AC·sin60°=32a,依此类推CH=(32)3a=338a,在Rt△CHI中,∵∠CHI=60°,∴CI=CH·tan60°=338a×3=98a.变式练习3:如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( D )A.433B.4 C.8 3 D.4 3,灵活选择解直角三角形的方法顺口溜:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.变式练习4:如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了__100__米., ,变式练习5:一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为___40+4033___海里/小时.知识点三:解直角三角形的应用1.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)2.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.注意:解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解变式练习1:如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,点B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈ 1.732)解:如解图,由题意可知∠CAB =30°,∠CBD =60°,AB =10 m ,∵∠CBD =∠CAB +∠BCA ,∴∠BCA =∠CBD -∠CAB =60°-30°=30°=∠CAB , ∴BC =AB =10 m . 在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin60°=10×32=53≈5×1.732≈8.7 m . 答:这棵树CD 的高度大约是8.7 m .变式练习2:如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50).解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =tan 26.6x≈2x ,在Rt △ABC 中,tan α=AB BC =34,∴BC =43x ,∵BD -BC =CD ,CD =200,∴2x-43x=200,解得x=300.答:小山岗的高AB约为300米.变式练习3:如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B 处测得M的仰角为30°,已知每层楼的窗台离该层的地面高度均为1 m,求旗杆MN的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)解:如解图,过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=30°,AB=3.5 m,设MH=x m,则AH=x m,BH=x·tan30°=33x≈0.58x m,∴AB=AH-BH=x-0.58x=0.42x=3.5 m,解得x≈8.3,则MN=x+1=9.3 m.答:旗杆MN的高度约为9.3 m.变式练习4:小明去爬山,如图,在山脚看山顶的角度为30°,小明在坡比为5∶12的山坡上走了1300米,此时小明看山顶的角度为60°,则山高为( )A. (600-2505)米B. (6003-250)米C. (350+3503)米D. 500 3 米【解析】B如解图,∵BE∶AE=5∶12,∴设BE=5k,AE=12k,∴AB=2()5K+(12k)2=13k,∴BE∶AE∶AB=5∶12∶13,∵AB=1300米,∴AE=1200米,BE =500米,设EC=FB=x米,∵∠DBF=60°,∴DF=3x米,则DC=(3x+500)米,又∵∠DAC=30°,∴AC=3CD,即1200+x=3(3x+500),解得x=600-2503,∴DF=3x=(6003-750)米,∴CD=DF+CF=(6003-250)米,即山高CD为(6003-250)米.变式练习5:某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)解:如解图,过点A作AD⊥BC交BC于点D,过点B作BH⊥水平线交水平线于点H,由题意∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=4×8=32米,∴CD=AD=AB·sin30°=16米,BD=AB·cos30°=32×32=163米,∴BC=CD+BD=(16+163)米,∴BH=BC·sin30°=(16+163)×12=(8+83)米.答:这架无人飞机的飞行高度为(8+83)米.变式练习6:如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中3≈1.732) 解:∵CD∥BE,∴∠EBC+∠DCB=180°.∵∠ABE=60°,∠DCB=30°,∴∠ABC=90°.…………(4分)由题知,BC=80×12=40(海里),∠ACB=60°.在Rt△ABC中,AB=BC·tan60°=403≈40×1.732≈69.3(海里).答:此时渔政船距钓鱼岛A的距离AB的长约为69.3海里.。
江西省2015中考数学解直角三角形经典试题
江西省2015中考数学解直角三角形经典试题1.阳台窗外活动伸缩衣架如图1所示,其示意图如图2所示.当动点G由点A滑动到点B 时,伸缩衣架完全张开,其中CA垂直于地面,点C,F,P在同一水平线上,侧面活动支架均相互平分,测得BC = 20 cm, GF = CE =36 cm,点D为支架GF,CE的中点。
(1) 求伸缩衣架完全张开时,∠CDG的度数;(2) 求伸缩衣架完全张开时CP的长.(结果精确到0.1,可使用科学计算器)(参考数据:sin 33.75°≈0.555 6, cos 33.75°≈0.831 5)2.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)3. 图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点O到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格,现在用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是弧CD,其余是线段),O是AF 的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC=∠FED=149°.请通过计算判断这个水桶提手是否合格.(参考数据:314≈17.72,tan73.6°≈3.40,sin75.4°≈0.97.)4、图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米.设AP=x分米.(1)求x的取值范围;(2)若∠CPN=60º,求x的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留).5、图1是一辆自行车的侧面图,图2是它的示意图.经测量:车轮直径..为66cm ,车座B 到地面的距离BE 为90cm ,中轴轴心C 到地面的距离C F 为33cm ,车架中立管BC 的 长为60cm .(可以使用规定品牌的计算器)(1)后轴轴心A 与中轴轴心C 所在直线AC 与地面l 是否平行?说明理由;(2)求∠ACB 的大小(精确到1度);(3)如果希望车座B 到地面的距离B ´E ´为93.8cm ,问车架中立管BC 拉长长度BB ´应是多少cm ?6.如图是一种躺椅及其简化结构示意图,扶手AB 与座板CD 都平行于地面,靠背DM 与支架OE 平行,前支架OE 与后支架OF 与CD 分别交于点G 和点D ,AB 与DM 交于点N ,量得∠EOF =90°, ∠ODC =30°,ON =40㎝,EG =30㎝.(1)求两支架落点E 、F 之间的距离;(2)若MN =60㎝,求躺椅的高度(点M 到地面的距离,结果取整数).(参考数据:,73.1360tan ,2160cos ,2360sin ≈===可使用科学计算器.)。
沪科版九年级数学上册第23章解直角三角形复习课件
B
FE
A
FE
B
DC
B
FE
近几年安徽中考真题
202X年15题: 202X年15题: 2013年15题:
2013年第19题:如图,防洪大堤的横截面是梯形ABCD,其中 AD∥BC,α=60°,汛期来临前对其进行了加固,改造后的背 水面坡角β=45°.若原坡长AB=20m,求改造后的坡长AE.( 结果保留根号)
独立完成作业的良好习惯,是成长过程中的良师益友。
边角之间的关系:
B
c
a
┏ bC
sin A a ,cos A b ,tan A a ;
c
c
b
正切值随着锐角的度数的增大而_增__大__; 正弦值随着锐角的度数的增大而_增__大__; 余弦值随着锐角的度数的增大而_减__小__.
特殊角的三角函数值表
三角函 数
正弦
锐角α sinα
30°
1 2
45°
∵DF⊥AF,
∴∠DFB=90°,
∴AC∥DF,
由已知l1∥l2,
∴CD∥AF, ∴四边形ACDF为矩形, CD=AF=AE+EF=30, 答:C、D两点间的距离为30m.
∵四边形BCEF是矩形, ∴EF=BC=156, ∴DE=DF+EF=423+156=579m. 答:DE的长为579m.
方法小结:
2 2
60°
3
2
余弦 cosα
3 2 2 2 1 2
正切 tanα
3 3 1
3
几个常见的应用
1.仰角和俯角
在进行测量时, 从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(
)
A.
【解析】选D.tanA= BC 4 .
AB 3
4 5 D. 4 3
B.
【变式训练】如图,∠AOB是放置在正 方形网格中的一个角,则cos∠AOB的 值是 .
【解析】连接AC.由网格图知△AOC是等腰直角三角形,设小正 方形的边长为1,则OC= 5 ,OA= 10, ∴cos∠AOB= OC = 5 = 2 .
【解析】过点A作AE⊥BD,垂足为点E,如图, 则∠AOB=60°,OA=3, 则AE=3×sin 60°= 3 3 , ∴SΔABD= 1 BD·AE=
2 1 ×8× 3 3 = 6 3, 2 2
2
同理SΔBCD= 6 3, ∴四边形ABCD的面积为 12 3. 答案:12 3
3.(2014·济宁中考)如图,在△ABC中,∠A=30°, ∠B=45°,AC=2 3 ,则AB的长为 .
3
.
【解析】在Rt△ABC中, CA=CB,AB=9 2 . 由勾股定理,得CA2+CB2=AB2,即2CA2=2CB2=(9 2 )2, 解得CA=CB=9. 如图,在Rt△CAD中, tan∠CAD= CD 1 .
AC 3
∴CD=3,∴DB=9-3=6. 答案:6
【知识归纳】解直角三角形的类型 图形 已知 类型 已知条件 解法步骤 (1)b= c2 a 2
2.(2014·凉山州中考)在△ABC中,若 | cos A | +(1-tanB)2 =0,则∠C的度数是 A.45° ( ) C.75°
2
1 2
B.60°
D.105°
1 2
【解析】选C.由题意得,cosA- 1 =0,1-tanB=0,cosA= , tanB=1,∠A=60°,∠B=45°, 故∠C=180°-∠A-∠B=75°.
【规律方法】解直角三角形的两点注意 1.尽量用已知条件中的数据,防止误差积累. 2.遵循“有弦用弦、无弦用切,宁乘勿除”的原则.
【真题专练】 1.(2014·连云港中考)如图,若△ABC和△DEF的面积分别为S1, S2,则
2
(
)
7 S2 2 D.S1= 8 S2 5
A.S1= 1 S2 C.S1=S2
第二十三讲
解直角三角形
一、特殊角的三角函数值
三角函数
锐角α 30°
sinα
1 2
cosα
3 2 2 2 1 2
tanα
3 3
cotα
3
45°
60°
2 2 3 2
1
3
1
3 3
二、直角三角形中的边角关系 在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对 边. a2+b2=c2 1.三边之间的关系:________. ∠A+∠B=90° 2.两锐角之间的关系:_____________.
AD 12 . AC 13
热点考向二
特殊角三角函数值的计算
【例2】(2013·重庆中考)计算6tan45°-2cos60°的结果是 ( A.4 3 B.4 C.5 3 D.5 )
【思路点拨】将cos60°,tan45°的值分别代入计算,即可得 出答案. 【自主解答】选D.6tan 45°-2cos 60°=6×1-2× 1 =6-1=5.
斜边,一直 角边(如c,a)
两 边 两直角 边(a,b)
(2)由sinA= a ,求∠A
c
(3)∠B=90°-∠A (1)c= a 2 b2
a (2)由tanA= ,求∠A b
(3)∠B=90°-∠A
图形
已知 类型
已知条件
解法步骤
(1)∠B=90°-∠A
a ,求a c 角(如c,∠A) b (3)由cosA= ,求b c
【思路点拨】根据坡比与BC求AC,再根据勾股定理求AB. 【自主解答】选B.∵河坝横断面迎水坡AB的坡比是1∶ 3 , ∴BC∶AC=1∶ 3 . ∵BC=3m,∴ AC 3 3m, ∴AB=
BC2 AC2 =6m.
【规律方法】直角三角形解决实际问题的方法及注意点 1.利用直角三角形或构造直角三角形解决实际问题,一般先把 实际问题转化为数学问题,若题中无直角三角形,需要添加辅 助线(如作三角形的高等)构造 32- 12=2 2 .
在Rt△ADC中,∠C=45°,∴CD=AD=1. ∴BC=BD+CD=2 2 +1.
(2)∵AE是BC边上的中线,
2 2- 1 ∴DE= 1 BC-DC= 1 (2 2+ 1) 1= .
2
2
2
2 2- 1 DE 2 2- 1 ∴在Rt△ADE中,tan∠DAE= = 2 = . AD 1 2
4 5 3 , 5
( B. 3
5
) C. 3
4
D. 4
3
【解析】选B.∵∠C=90°,∴∠A+∠B=90°, ∴cosB=sinA,∵sinA=
3 3 ,∴cosB= . 5 5
2.(2014·广州中考)如图,在边长为1 的小正方形组成的网格中,△ABC的三 个顶点均在格点上,则tanA=
3 5 C. 3 4
(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°
≈0.93,tan68°≈2.48)
【解析】如图,过点 C 作 CM平行于 AB,过点 A 作AF⊥CM于点 F , 过点C作CG⊥ED于点G, ∵CM∥AB,∴CM∥ED, ∵∠CDE=12°,∴∠DCM=12°, ∵∠ACD=80°,∴∠ACF=68°, ∵在Rt△CDG中,CD=1.6m,∠CDE=12°, ∴sin∠CDE=
B.S1=
【解析】选C.如图,若都以长度为8的边为底,则高都等于 5sin40°,所以两三角形的底相等,高相等,所以S1=S2.
2.(2013·陕西中考)如图,四边形ABCD 的对角线AC,BD相交于点O,且BD平分AC, 若BD=8,AC=6,∠BOC=120°,则四边形 ABCD的面积为 .(结果保留根号)
OA 10 2
答案: 2
2
3.(2014·重庆中考)如图,△ABC中,AD⊥BC,垂足是D,若 BC=14,AD=12,tan∠BAD=
3 ,求sinC的值. 4
【解析】∵AD⊥BC,∴tan∠BAD= BD ,
AD
∵tan∠BAD= 3 ,AD=12,∴BD=9,
4
∴CD=BC-BD=14-9=5. ∴在Rt△ADC中,AC= AD2 CD2 122 52 =13, ∴sinC=
【解析】过点C作CD⊥AB于点D,在Rt△ACD中,AC=2 3 , ∠A=30°, ∴CE= 3 ,AD= AC2 CD2 =3. 在Rt△BCD中,CD= 3 ,∠B=45°, ∴BD= 3 ,∴AB=AC+BD=3+ 3 . 答案:3+ 3
4.(2013·牡丹江中考)在Rt△ABC中,CA=CB,AB=9 2 ,点D 在BC边上,连接AD,若tan∠CAD= 1 ,则BD的长为
3- 1 3 1 3 - 4 - 2 . 2 2 2 2
热点考向三
解直角三角形
【例3】(2013·常德中考)如图, 在△ABC中,AD是BC边上的高, AE是BC边上的中线,∠C=45°,sinB= (1)求BC的长. (2)求tan∠DAE的值.
1 ,AD=1. 3
【解题探究】(1)求BC的长的两个思考: ①图中有直角三角形吗?若有,请写出来. ②能求出BD,DC的长吗? 提示:①图中的直角三角形分别是Rt△ABD,Rt△ADC, Rt△ADE. ②分别在Rt△ABD,Rt△ADC中,求BD,DC的长.
形的知识求解.
2.解直角三角形时结合图形分清图形中哪个三角形是直角三角
形,哪条边是角的对边、邻边、斜边.此外正确理解俯角、仰
角等名词术语是解答此类题目的前提.
【真题专练】 1.(2014·株洲中考)孔明同学在距某电视塔塔底水平距离500 米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为 米.(结果保留整数,参考数据:sin20°≈0.3420, sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475)
b b a 3.边角之间的关系:sinA= c ,sinB= c ,cosA= c , b b a a a cosB= c ,tanA= b ,tanB= a ,cotA= a ,cotB= b .
【思维诊断】(打“√”或“×”) 1.锐角三角函数是一个比值. (√) (√) (×)
2.锐角三角函数中,角度是自变量.
3.直角三角形各边长扩大3倍,其正弦值也扩大3倍. 4.由cosα = 1 ,得锐角α =60°.
2
(√ ) (√) (×)
5.锐角α 的正弦值随角度的增大而增大. 6.坡比是坡面的水平宽度与铅直高度之比.
热点考向一
锐角三角函数概念
【例1】(2014·巴中中考)在Rt△ABC中, ∠C=90°,sinA= 5 ,则tanB的值为
(2)求tan∠DAE值的两个思考:
①∠DAE在哪个直角三角形中?
②如何求∠DAE的对边DE的长?
提示:①在Rt△AED中. ②先由AE是BC边上的中线求出CE的长,再由DE=CE-CD求得DE的 长.
【尝试解答】(1)∵AD是BC边上的高,
∴∠ADB=∠ADC=90°.
在Rt△ABD中,sinB= AD =1 ,AD=1,∴AB=3.
【规律方法】根据定义求三角函数值的方法 1.分清直角三角形中的斜边与直角边. 2.正确地表示出直角三角形的三边长,常设某条直角边长为k( 有时也可以设为1),在求三角函数值的过程中约去k. 3.正确应用勾股定理求第三条边长. 4.应用锐角三角函数定义,求出三角函数值.