2.3 不等式的解集
第二章2.1-2.3不等关系;不等式的基本性质;不等式的解集
一、考点突破1. 了解不等式的意义,能够根据具体问题中的数量关系理出不等式(组);2. 理解并掌握不等式的基本性质,能够利用不等式的基本性质比较两个数(或式子)的大小;3. 了解一元一次不等式(组)的解的意义,能够利用不等式的基本性质解不等式,且能够在数轴上表示或判定其解集.二、重难点提示重点:不等式的基本性质及应用其解不等式,并在数轴上表示出不等式的解集。
难点:理解方程与不等式之间的区别和联系。
微课程1:不等关系【考点精讲】考点1:不等式的定义:一般地,用不等号连接的式子叫不等式。
考点2:不等号:>,≥,<,≤,≠说明:(1)用“≥”来表示的字眼:“不小于”,“至少”“不低于”……;(2)用“≤”来表示的字眼:“不大于”,“至多”“不超过”……。
考点3:列不等式考点4:不等式和方程的区别:(1)从定义上来看,不等式是表示不等关系的式子;而方程是含有未知数的等式;(2)从符号上来看,不等式是用“>”“<”“≥”或“≤”来表示的;而方程是用“=”来连接两边的式子的;(3)从是否含有未知数上来看,不等式可以含有未知数,也可以不含有未知数;而方程则必须含有未知数。
【典例精析】例题1 用适当的符号表示下列关系:(1)x的13与x的2倍的和是非正数;(2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%; (5)小明的体重不比小刚轻。
思路导航:(1)非正数用“≤”表示;(2)、(4)不小于就是大于等于,用“≥”来表示; (3)不高于就是等于或低于,用“≤”表示;(5)不比小刚轻,就是与小刚一样重或者比小刚重,用“≥”表示。
答案:(1)120;3x x +≤-x )元,则84(10)72x x +-≤点评:本题考查列不等式,解题关键是将现实生活中的事件与数学思想联系起来,列出不等关系式。
注意本题的不等关系为:至少含有4200单位的维生素C ,购买甲、乙两种原料的费用不超过72元。
2024年北师大版数学八年级下册2.3《不等式的解集》教学设计
2024年北师大版数学八年级下册2.3《不等式的解集》教学设计一. 教材分析《不等式的解集》是北师大版数学八年级下册第2.3节的内容,本节课主要让学生掌握不等式的解集及其表示方法,学会求解一元一次不等式组,并能够用数轴表示不等式的解集。
教材通过引入实际问题,引导学生探究不等式的解集,培养学生的逻辑思维能力和解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了不等式的基本性质,具有一定的数学运算能力。
但部分学生对不等式的解集概念理解不深,容易与方程的解集混淆。
因此,在教学过程中,教师需要关注这部分学生的学习情况,通过具体例子和实际问题,帮助他们更好地理解不等式的解集。
三. 教学目标1.知识与技能:(1)了解不等式的解集及其表示方法;(2)学会求解一元一次不等式组;(3)能够用数轴表示不等式的解集。
2.过程与方法:(1)通过实际问题,引导学生探究不等式的解集;(2)利用数形结合,培养学生解决实际问题的能力;(3)培养学生的逻辑思维能力和运算能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的精神。
四. 教学重难点1.重点:不等式的解集及其表示方法,一元一次不等式组的求解。
2.难点:不等式的解集与方程的解集的区别,用数轴表示不等式的解集。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生探究不等式的解集。
2.数形结合法:利用数轴帮助学生直观地理解不等式的解集,培养学生的空间想象能力。
3.引导发现法:教师引导学生发现不等式的解集的性质,培养学生独立思考的能力。
4.小组合作学习:学生分组讨论,共同解决问题,提高学生的合作意识和团队精神。
六. 教学准备1.教学课件:制作课件,展示不等式的解集的性质和表示方法。
2.数轴教具:准备数轴教具,方便学生直观地理解不等式的解集。
3.练习题:准备适量的一元一次不等式组练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,如“某班学生的身高大于160cm,求该班学生的身高范围”,引导学生思考不等式的解集。
整式不等式解法
整式不等式解法1. 引言在数学中,不等式是一种比较两个数或者表达式大小关系的数学语句。
整式不等式指的是由多项式构成的不等式。
解决整式不等式可以帮助我们找到使得不等式成立的变量范围,从而解决实际问题或者进行数学推理。
本文将介绍整式不等式的基本概念、解法和常见技巧,并通过例题详细说明解题过程。
2. 基本概念2.1 不等式符号在整式不等式中,常见的符号有以下几种:•大于:>•小于:<•大于等于:≥•小于等于:≤这些符号用来表示两个数或者表达式之间的大小关系。
2.2 不等关系和相反关系对于任意两个实数a和b,可以根据它们之间的大小关系分为以下四种情况:1.a>b:表示a大于b,也可以说b小于a。
2.a<b:表示a小于b,也可以说b大于a。
3.a≥b:表示a大于等于b,也可以说b小于等于a。
4.a≤b:表示a小于等于b,也可以说b大于等于a。
这些关系的性质可以用来推导解决不等式问题。
2.3 不等式的解集对于一个整式不等式,我们通常需要找到使得不等式成立的变量范围,这个范围称为不等式的解集。
解集可以用数轴上的区间表示,也可以用数集的形式表示。
3. 解法与技巧3.1 移项和合并同类项在解决整式不等式时,我们通常需要将所有项移到一个侧边,并且合并同类项。
这样做是为了将不等式转化为标准形式,方便我们进行进一步的分析和计算。
例如,对于不等式2x+5>3x−1,我们可以通过移项和合并同类项得到2> x−6。
3.2 分析系数和常数项在整理好不等式后,我们需要分析系数和常数项对不等式解集的影响。
具体来说:•对于系数:–当系数大于零时,两个变量之间的大小关系与它们之间的符号相同。
–当系数小于零时,两个变量之间的大小关系与它们之间的符号相反。
•对于常数项:–当常数项大于零时,不等式解集往正无穷方向靠近。
–当常数项小于零时,不等式解集往负无穷方向靠近。
3.3 解集的表示在找到不等式的解集后,我们需要将解集用数轴上的区间表示或者用数集的形式表示。
新北师大版八数下第二章不等式的解集
八年级数学组
学习目标:
1.理解不等式的解与解集的意义。 2.会用数轴表示不等式的解集。 3.会写不等式的特殊解。
自学指导
阅读课本43-44页,回答:
1.什么叫不等式的解? 2.什么叫不等式的解集? 3.什么叫解不等式? 4.不等式x+2>6的解集为 _ __ 5.在数轴上表示x-1<0的解集。
例1. 用数轴表示下列不等式的解集: ⑴ x>-1; ⑵ x< 9
解:
○
。
0 ⑴ 0 ⑵ 9
-1
总结: 用数轴表示不等式的解集的步骤: 第一步:画数轴;
第二步:定界点;
第三步:定方向.
例2. 用数轴表示下列不等式的解集:
⑴ x>-1; ⑵ x≥ -1; ⑶ x< -1; ⑷ x≤ -1; (5)-2<x<3.
(3) - 3 x +2 < - 3 y + 2
(5)已知a>b,若a<0,则a2
(4)- 3 x + 2 > - 3y + 2
ab;若a>0,则a2 ab.
如果不等式a>b两边都乘以a2,乘以a2 +1,乘以a2__1呢 (其中a的值不确定) (6)下列各式分别在什么条件下成立?
(1) a > - a
是正还是负?
① ② ③ ④
不等式的基本性质有什么用呢? 例:将下列不等式化成 X > a或 x < a 的形式 (1) x-5 >-1
(2) -2x > 3 (3) 7x <6x -6
将下列不等式化成“x>a”或“x<a”的形式: (1)x-17<-5; 1 (2) 2 x >-3
2.3不等式的解集
既然不等式的解集在通常情况下有很多符合条件的解,那么我们可以用一
种直观的方法利用数轴把不等式的解集表示出来。
22:40 18
2.3不等式的解集
二、探究新知
3.在数轴上表示不等式的解集 (1)请写出下列不等式的解集,并说出它的解集所表示的意思。 x-5≤-1 解: x≤4 x2>25 解: x<-5或x>5 正方向
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
在数轴上表示-3和3的点的位置上画空心圆圈,表示-3和3不在这个 解集内。
22:40 22
2.3不等式的解集
二、探究新知
3.在数轴上表示不等式的解集 【归纳总结】 在数轴上表示 不等式的解集 注意 指示线方向:“>”向右,“<”向左 步骤:画数轴→定界点→走方向 界点:有“=”用实心点,没有“=”用空心圈
22:40 26
界点:有“=”用实心点,没有“=”用空心圈
x 10 > 0.02 100 4
(4)根据实际情况,解不等式,写出符合条件的解
22:40 8ຫໍສະໝຸດ .3不等式的解集二、探究新知
1.创设情境 燃放某种烟花时,为了确保安全,燃放者在点燃引火线后要在燃放 前转移到10m以外的安全区域。已知引火线的燃烧速度为0.02m/s, 燃放者离开的速度为4m/s,那么引火线的长度应为多少厘米?
解:设引火线的长度为xcm,根据题意得
x 10 > 0.02 100 4 根据不等式的基本性质,得
x>5 所以,引火线的长度应大于5cm.
22:40 9
2.3不等式的解集
二、探究新知
2.不等式的解、解集以及解不等式的概念 (1)不等式的解 ①x=5,6,8能使不等式x>5成立吗? ②你还能找出几个使不等式x>5成立的x的值吗?
北师大版数学八年级下册2.3不等式的解集教学设计
-设计不同层次的练习题,从简单的数值替换到字母表达式的转换,逐步引导学生掌握一元一次不等式的解法。
2.针对难点内容的教学设想:
-对于抽象不等式的问题,采用问题驱动的教学方法,鼓励学生先将实际问题转化为数学语言,然后引导学生识别关键信息,建立不等式模型。
-对于解集的表示,通过小组讨论和合作学习,让学生在互动中探索如何在数轴上准确地表示解集,以及如何处理区间端点的包含与排除问题。
-针对不等式组等复杂问题,设计案例分析和综合练习,逐步引导学生学会分析多个不等式之间的关系,并运用逻辑推理和数学技巧解决问题。
为了有效突破重难点,教学设想还包括以下策略:
-利用信息技术,如多媒体课件和数学软件,为学生提供直观的学习工具,帮助他们在视觉和操作层面上更好地理解不等式的解集。
-实施差异化教学,根据学生的学习能力提供不同难度的任务,确保每位学生都能在原有基础上得到提升。
-创设情境教学,将数学问题融入到真实的生活情境中,让学生在实际操作中体验数学建模的过程,提高问题解决的能力。
-强化反馈机制,通过课堂提问、小组互评和课后反思,及时了解学生的学习情况,调整教学策略,确保教学目标的达成。
2.讨论过程:学生通过小组合作,共同探讨问题的解决方法,鼓励学生提出不同的观点和思路。
3.汇报展示:各小组汇报自己的解题过程和结果,其他小组进行评价,教师给予点评和指导。
(四)课堂练习
课堂练习是巩固新知、提高解题能力的重要环节。我将设计以下练习:
1.基础练习:针对一元一次不等式的解法,设计一些基础题目,让学生独立完成。
3.情感态度:强调数学在实际生活中的应用,培养学生的实用主义精神。
不等式的解集知识点总结
不等式的解集知识点总结不等式是数学中常见的一种关系表达式,用来表示两个数或者两个代数式之间的大小关系。
与等式不同的是,不等式可以包含大于、小于、大于等于、小于等于等多种关系符号。
在解不等式时,我们需要确定不等式的解集,即使不等式成立的取值范围。
下面是一些常见的不等式的解集知识点总结:一、一元一次不等式形如 ax + b > 0、ax + b < 0、ax + b ≥ 0、ax + b ≤ 0 的一元一次不等式,其中 a 和 b 为已知数且a ≠ 0。
我们可以通过以下步骤求解:1. 将不等式转化为等式:ax + b = 0。
2. 根据 a 的正负情况讨论解集:- 当 a > 0 时,解集为 x > -b/a 或 x < -b/a;- 当 a < 0 时,解集为 x < -b/a 或 x > -b/a;- 当a ≥ 0 时,解集为x ≥ -b/a 或x ≤ -b/a;- 当a ≤ 0 时,解集为x ≤ -b/a 或x ≥ -b/a。
二、二次函数不等式形如 ax² + bx + c > 0、ax² + bx + c < 0、ax² + bx + c ≥ 0、ax² + bx + c ≤ 0 的二次函数不等式,其中 a、b 和 c 为已知数且a ≠ 0。
我们可以通过以下步骤求解:1. 将不等式转化为等式:ax² + bx + c = 0。
2. 求出函数的零点或者判别式的值,得到二次函数的凹凸性及与 x 轴的交点情况:- 若判别式 D > 0,函数有两个不同的实根,解集为 x < x₁或 x > x₂;- 若判别式 D = 0,函数有一个重根,解集为 x = x₁;- 若判别式 D < 0,函数无实根,解集为空集;- 当 a > 0 时,函数开口向上,解集为全体实数集;- 当 a < 0 时,函数开口向下,解集为空集。
不等式的解集
不等式的解集学建议一、知识结构二、重点、难点剖析本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.1.不等式的解与方程的解的意义的异同点相反点:定义方式相反(使方程成立的未知数的值,叫做方程的解);解的表示方法也相反.不同点:解的个数不同,普通地,一个不等式有有数多个解,而一个方程只要一个或几个解,例如,能使不等式成立,那么是不等式的一个解,相似地等也能使不等式成立,它们都是不等式的解,理想上,当取大于的数时,不等式都成立,所以不等式有有数多个解.2.不等式的解与解集的区别与联络不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的一切的值,不等式的一切解组成了解集,解集中包括了每一个解.留意:不等式的解集必需满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.3.不等式解集的表示方法(1)用不等式表示普通地,一个含未知数的不等式有有数多个解,其解集是某个范围,这个范围可用一个最复杂的不等式表示出来,例如,不等式的解集是 .(2)用数轴表示如不等式的解集,可以用数轴上表示4的点的左边局部表示,由于包括,所以在表示4的点上画实心圆.如不等式的解集,可以用数轴上表示4的点的左边局部表示,由于包括,所以在表示4的点上画实心圈.留意:在数轴上,左边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.一、素质教育目的(一)知识教学点1.使先生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.2.知道不等式的解集与方程解的不同点.(二)才干训练点经过教学,使先生可以正确地在数轴上表示出不等式的解集,并且能把数轴上的某局部数集用相应的不等式表示. (三)德育浸透点经过解说不等式的解集与方程解的关系,向先生浸透统一一致的辩证观念.(四)美育浸透点经过本节课的学习,让先生了解不等式的解集可应用图形来表达,浸透数形结合的数学美.二、学法引导1.教学方法:类比法、引导发现法、实际法.2.先生学法:明白不等式的解与解集的区别和联络,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别留意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.三、重点难点疑点及处置方法(一)重点1.不等式解集的概念.2.应用数轴表示不等式的解集.(二)难点正确了解不等式解集的概念.(三)疑点弄不清不等式的解集与方程的解的区别、联络.(四)处置方法弄清楚不等式的解与解集的概念.四、课时布置一课时.五、教具学具预备投影仪或电脑、自制胶片、直尺.六、师生互动活动设计(一)明白目的本节课重点学习不等式的解集,解不等式的概念并会用数轴表示不等式的解集.(二)全体感知经过枚举法来笼统直观地推出不等式的解集,再给出不等式解集的概念,从而更准确地让先生掌握该概念.再经过师生的互动学习用数轴表示不等式的解集,从而为今后求不等式组的解集打下良好的基础.(三)教学进程1.创设情境,温习引入(1)依据不等式的基本性质,把以下不等式化成或的方式.(2)当取以下数值时,不等式能否成立?l,0,2,-2.5,-4,3.5,4,4.5,3.先生活动:独立思索并说出答案:(1)① ② .(2)当取1,0,2,-2.5,-4时,不等式成立;当取3.5,4,4.5,3时,不等式不成立.大家知道,当取1,2,0,-2.5,-4时,不等式成立.同方程相似,我们就说1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3这些使不等式不成立的数就不是不等式的解.关于不等式,除了上述解外,还有没有解?解的个数是多少?将它们在数轴上表示出来,观察它们的散布有什么规律?先生活动:思索讨论,尝试得出答案,指名板演如下:【教法说明】启示先生用实验方法,结合数轴直观研讨,把已说出的不等式的解2,0,1,-2.5,-4用实心圆点表示,把不是的解的数值3.5,4,4.5,3用空心圆圈表示,似乎是挖去了.师生归结:观察数轴可知,用实心圆点表示的数都落在3的左侧,3和3右侧的数都用空心圆圈表示,从而我们推断,小于3的每一个数都是不等式的解,而大于或等于3的任何一个数都不是的解.可以看出,不等式有有限多个解,这有限多个解既包括小于3的正整数、正小数、又包括0、负整数、负小数;把不等式的有限多个解集中起来,就失掉的解的集会,简称不等式的解集.2.探求新知,讲授新课(1)不等式的解集普通地,一个含有未知数的不等式的一切的解,组成这个不等式的解的集合,简称这个不等式的解集.①以方程为例,说出一元一次方程的解的状况.②不等式的解的个数是多少?能逐一说出吗?(2)解不等式求不等式的解集的进程,叫做解不等式.解方程求出的是方程的解,而解不等式求出的那么是不等式的解集,为什么?先生活动:观察思索,指名回答.教员归结:正是由于一元一次方程只要独一解,所以可以直接求出.例如的解就是,而不等式的解有有限多个,无法逐一罗列出来,因此只能用不等式或提醒这些解的共同属性,也就是求出不等式的解集.实践上,求某个不等式的解集就是运用不等式的基本性质,把原不等式变形为或的方式,或就是原不式的解集,例如的解集是,同理,的解集是 .【教法说明】先生对一元一次方程的解印象较深,而不等式与方程的相反点较多,因此易将不等式的解集与方程的解混为一谈,这里设置上述效果,目的是使先生弄清不等式的解集与方程的解的关系.(3)在数轴上表示不等式的解集①表示不等式的解集:( )剖析:由于未知数的取值小于3,而数轴上小于3的数都在3的左边,所以就用数轴上表示3的点的左边局部来表示解集 .留意未知数的取值不能为3,所以在数轴上表示3的点的位置上画空心圆圈,表示不包括3这一点,表示如下:②表示的解集:( )先生活动:独立思索,指名板演并说出剖析进程.剖析:由于未知数的取值可以为-2或大于-2的数,而数轴上大于-2的数都在-2左边,所以就用数钢上表示-2的点和它的左边局部来表示.如以下图所示:留意效果:在数轴上表示-2的点的位置上,应画实心圆心,表示包括这一点.【教法说明】应用数轴表示不等式解的解集,增强了解集的直观性,使先生笼统地看到不等式的解有有限多个,这是数形结合的详细表达.教学时,要特别讲清实心圆点与空心圆圈的不同用法,还要重复提示先生弄清究竟是左边局部还是左边局部,这也是学好本节内容的关键.3.尝试反应,稳固知识(1)不等式的解集与有什么不同?在数轴上表示它们时怎样区别?区分在数轴上把这两个解集表示出来.(2)在数轴上表示以下不等式的解集.(3)指出不等式的解集,并在数轴上表示出来.师生活动:首先先生在练习本上完成,然后教员抽查,最后与出示投影的正确答案停止对比.【教法说明】教学时,应强调2.(4)题的正确表示为:我们曾经可以在数轴上准确地表示出不等式的解集,反之假定给出数轴上的某局部数集,还要会写出与之对应的不等式的解集来.4.变式训练,培育才干(1)用不等式表示图中所示的解集.【教法说明】强调在运用、表示上的区别.(2)单项选择:①不等式的解集是( )A. B. C. D.②不等式的正整数解为( )A.1,2B.1,2,3C.1D.2③用不等式表示图中的解集,正确的选项是( )A. B. C. D.④用数轴表示不等式的解集正确的选项是( )先生活动:剖析思索,说出答案.(教员给予纠正或一定) 【教法说明】此题以抢答方式茁现,更能激起先生探求知识的热情.(四)总结、扩展先生小结,教员完善:1. 本节重点:(1)了解不等式的解集的概念.(2)会在数轴上表示不等式的解集.2.本卷须知:弄清还是,是左边局部还是左边局部.七、布置作业必做题:P65 A组 3.(1)(2)(3)(4)八、板书设计6.2 不等式的解集一、1.不等式的解集:普通地,一个含有未知数的不等式的一切的解组成这个不等式的解的集合,简称不等式的解集.2.解不等式:求不等式解的进程二、在数轴上表示不等式的解集1. 2.三、留意:(1) 与 ;(2)左边局部与左边局部.。
新教材高中数学第二章等式与不等式2.3一元二次不等式的解法课件新人教B版必修第一册 课件
分式不等式的解法 其中f(x)、g(x)为关于x的整式,且g(x)≠0.
分式不等式
f (x)
g(x)>0
f (x)
g(x)<0
f (x) g(x)
>a(a≠0)
同解不等式
f (x) g(x)
0,或
0
f (x) g(x)
0, 0
f(x)g(x)>0
f (x) g(x)
0,或
0
f (x) g(x)
2
2.(
)若不等式ax2+2ax-(a+2)≥0的解集是⌀,求实数a的取值范围.
思路点拨:
ax2+2ax-(a+2)≥0的解集是⌀,即ax2+2ax-(a+2)<0在R上恒成立,对a进行分类讨论
求解.
解析 不等式ax2+2ax-(a+2)≥0的解集是⌀,
等价于不等式ax2+2ax-(a+2)<0在R上恒成立.
1 x 4
2.在问题1中出现了分母中含有未知数的不等式,称为分式不等式.请归纳如何解 这个不等式.
提示:移项,通分,得 3x 1 ≤0.
4(x 1)
因为x>0,所以x+1>0,
所以3x-1≤0,即0<x≤1 .
3
所以该不等式的解集为
0,
1 3
.
1.解分式不等式的思路:先转化为整式不等式,再求解.
②求出各因式对应方程的实数根,并在数轴上标出; ③自最右端上方起,用曲线自右向左依次由各根穿过数轴,遇奇次重根穿过,遇偶 次重根穿而不过(即“奇过偶不过”); ④记数轴上方为正,下方为负,根据不等式的符号写出解集.
北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)
创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式
北师大版八年级数学下册2.3不等式的解集教案
二、核心素养目标
1.培养学生逻辑推理能力,通过分析不等式的性质和解法,理解数学逻辑的严谨性;
2.提升学生数学建模素养,学会将现实问题转化为不等式问题,并用数学语言表达;
3.强化学生数据分析能力,掌握数轴、区间等工具表示不等式解集的方法,并能进行有效分析;
此外,在实践活动的设计上,我应尽量让实验操作更贴近生活,让学生能够直观地感受到不等式的解集在生活中的应用。同时,我也将加强对学生的个别辅导,及时发现并解决他们在学习过程中遇到的问题。
在总结回顾环节,我发现大部分学生能够掌握不等式的解集这一知识点,但仍有个别学生存在疑问。在今后的教学中,我将更加关注学生的反馈,及时调整教学方法和节奏,以提高教学效果。
-一元一次不等式的解法:熟练掌握一元一次不等式的解法步骤,包括移项、合并同类项、系数化为1等,并能够正确求解。
-不等式的解集表示方法:学会使用数轴、区间等方式表示不等式的解集,并能够准确地描述解集。
-实际问题的不等式建模:能够将现实生活中的问题转化为不等式问题,并利用不等式解集来解决。
举例:对于不等式3x - 7 > 2,学生需要掌握如何通过移项(加7到两边)、合并同类项(将常数项合并)和系数化为1(除以3)来求解,并能够用数轴或区间表示解集。
在讲授新课的过程中,我发现部分学生在移项和合并同类项时容易出错,这让我意识到这一部分是教学的难点。为此,我通过举例和对比,反复强调注意事项,帮助他们突破这个难点。同时,在实践活动和小组讨论中,我鼓励学生积极参与,提高他们的问题解决能力和团队协作能力。
然而,我也注意到在小组讨论环节,有些学生的参与度不高,可能是因为他们对不等式在实际生活中的应用还不够了解。在今后的教学中,我需要更加关注这部分学生,激发他们的学习兴趣,提高他们的课堂参与度。
北师大版数学八年级下册《3. 不等式的解集》教案
北师大版数学八年级下册《3. 不等式的解集》教案一. 教材分析《北师大版数学八年级下册》中的《3. 不等式的解集》一章主要介绍了不等式的解集及其表示方法。
通过本章的学习,学生能够理解不等式的解集概念,掌握求解不等式解集的方法,并能够用数轴、表格等方式表示不等式的解集。
二. 学情分析学生在学习本章之前,已经掌握了不等式的基本概念和性质,具备了一定的代数基础。
但部分学生对于不等式的解集的理解和表示方法可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行辅导。
三. 教学目标1.知识与技能目标:使学生理解不等式的解集概念,掌握求解不等式解集的方法,能够用数轴、表格等方式表示不等式的解集。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.重点:不等式的解集概念,求解不等式解集的方法。
2.难点:不等式解集的表示方法,尤其是数轴表示方法。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等多种教学方法,引导学生自主学习,培养学生的解决问题的能力。
六. 教学准备1.准备相关的不等式案例,用于课堂分析和练习。
2.准备数轴、表格等表示工具,用于展示不等式的解集。
3.准备课堂提问的问题,激发学生的思考。
七. 教学过程1.导入(5分钟)利用生活中的实例,如温度、身高等,引入不等式的解集概念。
提问学生:不等式的解集是什么意思?引导学生思考并回答。
2.呈现(10分钟)呈现一些不等式案例,让学生尝试求解。
如:(1)2x + 3 > 7(2)x - 5 ≤ 8引导学生通过移项、合并同类项等方法,求解不等式的解集。
3.操练(15分钟)让学生分组合作,解决一些不等式解集的问题。
如:(1)求解不等式 3x - 4 < 2 的解集。
(2)用数轴表示不等式 x > 5 的解集。
高考函数与不等式知识点
高考函数与不等式知识点高考中的函数与不等式知识点高考是中国学生人生中关键的一场考试,考生们需要通过高考来决定自己的未来发展方向。
其中,数学科目是高考的重点考察内容之一,而函数与不等式是数学中的重要知识点之一。
本文将探讨高考中的函数与不等式知识点,并对其应用和解题要点进行分析。
一、函数知识点函数是数学中的重要概念之一,它描述了不同变量之间的关系。
在高考中,函数的定义、性质和图像是常见考点。
1.1 函数的定义函数是一种特殊的关系,它以一组输入值(自变量)和相应的输出值(因变量)之间的对应关系来定义。
函数表示为f(x),其中x为自变量,f(x)为对应的因变量。
函数的定义域是所有自变量可能取值的集合,值域是对应的因变量可能取值的集合。
1.2 函数的性质函数的性质包括奇偶性、周期性、单调性等。
其中,奇偶性指的是函数关于原点的对称性,周期性指的是函数在一定区间内重复出现的性质,单调性指的是函数在定义域内的递增或递减的趋势。
1.3 函数的图像函数的图像是通过绘制函数在直角坐标系中的所有可能点得到的曲线或直线。
图像可以帮助我们直观地理解函数的性质和变化趋势。
二、不等式知识点不等式是数学中的另一个重要概念,它描述了变量之间的大小关系。
在高考中,不等式的解集、性质和应用是常见考点。
2.1 不等式的解集不等式的解集是满足不等式条件的所有可能解的集合。
解集可以是有限集合、无限集合或空集。
2.2 不等式的性质不等式的性质包括加减乘除法则、取绝对值法则和两边平方等。
这些性质可以帮助我们对不等式进行等价变换,从而得到更简洁的形式。
2.3 不等式的应用不等式的应用涉及到实际问题的建模和求解。
例如,利用不等式可以确定某个问题的最优解,或者评估一个系统的稳定性。
三、应用与解题要点高考中的函数与不等式不仅仅是理论知识,更需要学生掌握其应用和解题要点。
3.1 应用学生需要理解函数和不等式在实际问题中的应用,运用数学知识解决实际问题。
例如,可以通过分析函数图像来解释某个实际问题中的变化趋势。
不等式的解集
(1)含绝对值不等式|x|<a 与|x|>a 的解法 ①|x|<a⇔-∅(a<a≤x<0)a(. a>0), ②|x|>a⇔xx∈ ∈RR( 且ax< ≠00) (, a=0),
x>a或x<-a(a>0). (2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法 ①|ax+b|≤c⇔-c≤ax+b≤c. ②|ax+b|≥c⇔ax+b≥c 或 ax+b≤-c.
解:解不等式①,得 x≤3. 解不等式②,得 x>a.因为该不等式组无解, 所以不等式①和②的解集在数轴上的表示如图所示.
所以 a>3. 当 a=3 时,代入不等式组,得 x≤3,且 x>3, 此时,不等式组也无解,满足题意, 所以 a 的取值范围为 a≥3.
含有一个绝对值号不等式的解法
解下列不等式: (1)|2x+5|<7; (2)|2x+5|>7+x; (3)2≤|x-2|≤4.
不等式组的解法
解下列不等式组: x-5>1+2x,① (1)3x+2≤4x;② 23x+5>1-x,① (2)x-1≤34x-18.②
【解】 (1)解不等式①,得 x<-6,解不等式②,得 x≥2.把不等 式①和②的解集在数轴上表示出来:
由图可知,解集没有公共部分,不等式组无解,即不等式组的解集 为∅.
②分类讨论法: |f(x)|<g(x)⇔ff( (xx) )≥ <0g(x)或f-(fx()x< )0<g(x), |f(x)|>g(x)⇔ff( (xx) )≥ >0g(x)或f-(fx()x< )0>g(x).
解不等式:1<|x-2|≤3. 解:原不等式等价于不等式组 ||xx- -22||> ≤13,即-x<1≤1或x≤x>5,3, 解得-1≤x<1 或 3<x≤5, 所以原不等式的解集为[-1,1)∪(3,5].
不等式的解集的含义
不等式的解集的含义
不等式是数学中比较常见的一种关系式,它表示两个数或者两个表达式之间的大小关系。
解不等式就是找到满足这个大小关系的数的集合,这个集合称为不等式的解集。
解集的含义在很大程度上取决于不等式的形式和具体的背景。
不等式可以是线性的,也可以是二次的;可以是单变量的,也可以是多变量的。
例如,对于简单的一元一次不等式 ax+b>0,其解集表示为x>-b/a,其中 a 和 b 是常数。
这个解集的含义是所有使得 ax+b 大于 0 的实数 x 的集合。
在实际应用中,不等式的解集有着广泛的意义。
例如,在经济学中,我们常常需要求出满足某些限制条件下的最优解,这时就需要用到不等式的解集。
在物理学中,不等式的解集可以用来描述某些物理量的范围,并且可以帮助我们判断一些物理过程是否可行。
在工程学中,不等式的解集可以用来限制某些参数的取值范围,以保证系统的稳定性和安全性。
总之,不等式的解集是一个非常重要的概念,它在许多数学和实际应用中都有着广泛的意义。
了解不等式的解集的含义可以帮助我们更好地理解和应用不等式相关的知识。
不等式的解集(分层练习)(解析版)-八年级数学 下册
第二章一元一次不等式和一元一次不等式组2.3不等式的解集一、单选题1.(2022春·安徽亳州·七年级统考阶段练习)下列解集中,包括2的是()A .2xB .3x C .3x D .2x 【答案】C【分析】根据不等式表示的解集范围进行判断即可.【详解】解:A .2x 表示比2小的数,不包含2,故A 不符合题意;B .3x 表示比3大或与3相等的数,不包含2,故B 不符合题意;C .3x 表示比3小或与3相等的数,包含2,故C 符合题意;D .2x 表示比2大的数,不包含2,故D 不符合题意.故选:C .【点睛】本题主要考查了不等式的解集,解题的关键是熟练掌握不等式解集的定义.2.(2022春·甘肃兰州·八年级校考期中)如果关于x 的不等式 11a x a 的解集为1x ,则a 的取值范围是()A .a<0B .1a C .1a D .1a 【答案】B【分析】根据不等式的性质,可得答案.【详解】解:∵关于x 的不等式 11a x a 的解集为1x ,∴10a ,解得1a ,故选:B .【点睛】本题主要考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,解题关键是熟记不等式的性质,正确应用.3.(2022春·四川眉山·七年级统考期末)下列各数中,满足不等式0x 的是()A .4B .0C .1D .3【答案】A【分析】根据各项数据的大小,判断其是否满足不等式的解集即可.【详解】∵-4<0,0<1<3,x <0,∴满足条件的只有-4,故选:A .【点睛】本题考查了不等式解集的知识,关键是明白不等式解的取值范围.4.(2022春·贵州贵阳·八年级统考期中)解集在数轴上表示为如图所示的不等式的是()A .2xB .2xC .2xD .2x 【答案】C【分析】根据数轴可以得到不等式的解集.【详解】解:根据不等式的解集在数轴上的表示,向右画表示>或⩾,空心圆圈表示>,故该不等式的解集为x >2;故选C【点睛】本题要考查的是在数轴上表示不等式的解集,运用数形结合的思想是本题的解题关键5.(2022秋·八年级单元测试)某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,根据题意得()A .10x ﹣5(20﹣x )≥120B .10x ﹣5(20﹣x )≤120C .10x ﹣5(20﹣x )<120D .10x ﹣5(20﹣x )>120【答案】D【分析】根据小明得分要超过120分,列出不等式即可解答;【详解】解:根据题意:小明答对x 道,打错20-x 道,∴10x+(﹣5)(20-x )>120,∴10x ﹣5(20-x )>120,故选:D ;【点睛】本题考查了一元一次不等式的应用,根据题意准确判断不等式符号是解题关键.6.(2022秋·浙江金华·八年级校考阶段练习)A 疫苗冷库储藏温度要求为06℃~℃,B 疫苗冷库储藏温度要求为28℃~℃,若需要将A ,B 两种疫苗储藏在一起,则冷库储藏温度要求为()A .02℃~℃B .08℃~℃C .26℃~℃D .68℃~℃【答案】C【分析】将A ,B 两种疫苗储藏在一起,冷库储藏温度正好是A 疫苗冷库储藏温度的最低度数和B 疫苗冷库储藏温度的最高度数.【详解】解:∵A 疫苗冷库储藏温度要求为06℃~℃,B 疫苗冷库储藏温度要求为28℃~℃,∴A ,B 两种疫苗储藏在一起,冷库储藏温度要求为26℃~℃.故选:C .【点睛】此题考查了不等式,一般地,用不等号表示不相等关系的式子叫做不等式,解题的关键是读懂题意,搞懂A 疫苗冷库储藏温度和B 疫苗冷库储藏温度的要求.二、填空题7.(2023春·七年级课时练习)写出一个解集为3x 的一元一次不等式___________.【答案】30x (答案不唯一)【分析】根据题意写出符合要求的不等式即可.【详解】解:解集为3x 的一元一次不等式可以是30x ,故答案为:30x (答案不唯一).【点睛】本题主要考查了一元一次不等式的定义及解集,解题的关键是理解一元一次不等式解集的定义.8.(2021春·八年级课时练习)在0,4 ,3,3 ,15,5 ,4,10 中,_______是方程40x 的解;_____是不等式40x 的解;_____是不等式40x 的解.9.(2020春·八年级统考课时练习)一个数x 的3与-4的差不小于这个数的2倍加上5所得的和,则可列不等式为________.10.(2021春·八年级课时练习)有下列说法:①x=4是不等式4x-5>0的解;②x=2是不等式4x-5>0的一个解;③x>54是不等式4x-5>0的解集;④x>2中任何一个数都可以使不等式4x-5>0成立,所以x>2也是它的解集.其中正确的是__.(填序号)三、解答题11.(2021春·八年级课时练习)将下列不等式的解集分别表示在数轴上:(1)0x ;(2) 2.5x ;(3)23 x ;(4)4x .【答案】画图见解析.【分析】根据在数轴上表示不等式的解集的方法分别画出所求范围即可.【详解】解:(1)如图所示:;(2)如图所示:;(3)如图所示:;(4)如图所示:.【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.12.(2021春·八年级课时练习)某弹簧测力计的测量范围是0至50N ,小明未注意弹簧测力计的测量范围,用弹簧测力计测量了一个物体,取下物体后,发现弹簧没有恢复原状.你知道这个物体的重力在什么范围吗?【答案】这个物体的重力大于50N .【分析】根据已知得出弹簧测力计的测量范围是0至50N ,再根据已知用弹簧测力计测量一个物体,取下物体后,发现弹簧没有恢复原状得出答案即可.【详解】解:∵弹簧测力计的测量范围是0至50N ,用弹簧测力计测量一个物体,取下物体后,发现弹簧没有恢复原状,∴这个物体的重力大于50N .【点睛】本题考查了不等式的定义,能根据题意得出不等式是解此题的关键.一、填空题1.(2023春·八年级课时练习)若关于x ,y 的二元一次方程组428321x y a y x的解满足2x +y >5,则a 的取值范围是_______.【答案】4a 【分析】将两根方程相加可得29x y a ,根据25x y 得出关于a 的不等式,解之可得答案.【详解】解:将两个方程相加可得29x y a ,∵25x y ,∴95a ,解得4a ,故答案为:4a .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数时,不等号方向要改变.2.(2023春·七年级课时练习)若关于x的不等式32的正整数解是1,2,3,4,则x a整数a的最小值是______.k ________(填“是”或“不是”)不等式2211的解.x x∴k +1=-5+1=-4,把x =k +1=-4代入不等式左边得-4+2=-2,把x =k +1=-4代入不等式右边得2×(-4)-1=-9,∵-2>-9,∴k +1不是不等式221x x 的解,故答案为:不是.【点睛】本题考查二元一次方程的定义,判定一个数是否是不等式的解,求出k 值是解题的关键.4.(2021秋·江西景德镇·七年级景德镇一中校考期中)以下说法正确的是:_______.①由ab bc ,得a c ;②由22ab cb ,得a c ③由b a b c ,得a c ;④由20212021a c ,得a c ⑤n a 和()n a 互为相反数;⑥3x 是不等式21x 的解【答案】②③④【分析】根据不等式的基本性质得出结论即可.【详解】解:①由ab bc ,当0b <时,得a c <,故结论①错误;②由22ab cb ,得a c ,故结论②正确;③由b a b c ,得a c ;故结论③正确;④由20212021a c ,得a c ;故结论④正确;⑤n a 和()n a 互为相反数,当n 为奇数时,()n n a a ,故结论⑤错误;⑥1x 是不等式21x 的解,故结论⑥错误;故正确的结论为:②③④.【点睛】本题考查了不等式的基本性质,熟知不等式的基本性质是解本题的关键.5.(2023春·八年级课时练习)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是______.【答案】8【分析】已知从甲地到乙地共需支付车费15.5元,从甲地到乙地经过的路程为x 千米,首先去掉前3千米的费用,从而根据题意列出不等式,从而得出答案.【详解】解:设他乘此出租车从甲地到乙地行驶的路程是x 千米,依题意,可得:8 1.5315.5x (),解得:8x .即:他乘此出租车从甲地到乙地行驶路程不超过8千米.故答案为:8.【点睛】此题主要考查了一元一次不等式的应用,根据题意明确其收费标准分两部分是解本题的关键.二、解答题6.(2023春·八年级课时练习)解不等式并在数轴上表示它们的解集:(1)2110x x (2)225232x x 【答案】(1)3x ,图见解析(2)1x ,图见解析【分析】(1)根据一元一次不等式的解法:移项、合并同类项、系数化为1即可得到答案,再结合不等式解集在数轴上的表示作出图形即可;(2)根据一元一次不等式的解法:去分母、去括号、移项、合并同类项、系数化为1即可得到答案,再结合不等式解集在数轴上的表示作出图形即可.【详解】(1)解:2110x x ,移项:2101x x ,合并同类项:39x ,系数化为1:3x ,不等式的解集为3x ,在数轴上表示不等式的解集:;(2)解:去分母: 2221235x x ,去括号:4412315x x ,移项:4312154x x ,合并同类项:77x ,系数化为1:1x ,不等式的解集为1x ,在数轴上表示不等式的解集:.【点睛】本题考查一元一次不等式的解法和在数轴上表示不等式的解集,掌握一元一次不等式的解法步骤是解决问题的关键,注意:在数轴上表示不等式解集时,①分清实心点与空心点;②解集作图的方向.7.(2023春·八年级课时练习)已知关于x 的方程23x a ,(1)若该方程的解满足1x ,求a 的取值范围;(2)若该方程的解是不等式 32541x x 的最小整数解,求a 的值.【答案】(1)1a (2)5a 【分析】(1)先求出方程的解,再根据方程的解满足1x ,得到关于x 的不等式,即可求解;的最小整数解,可A和3台B花费1650元;购进1台A和2台B花费1000元.(1)求A和B两种型号的压力锅每台进价分别是多少元.(2)为了满足市场需求,超市决定用不超过19150元采购A、B两种型号的压力锅共60台,且B型号压力锅的数量的2倍不低于A型号压力锅,该商场有几种进货方式.(3)在(2)的条件下A型号压力锅促销期间售价是389元,B型号压力锅促销期间售价是469元,该超市选择哪种进货方式利润最大.【答案】(1)A型号压力锅的进价为300元/台,B型号压力锅的进价为350元/台(2)有4种进货方式(3)购进37台A 型号压力锅、23台B 型号压力锅时,全部销售完后获得的利润最大【分析】(1)设A 型号压力锅的进价为x 元/台,B 型号压力锅的进价为y 元/台,根据“购进2台A 和3台B 花费1650元;购进1台A 和2台B 花费1000元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进m 台B 型号压力锅,则购进(60-m )台A 型号压力锅,根据“购进B 型号压力锅的数量的2倍不低于A 型号压力锅,且采购60台压力锅时总费用不超过19150元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为整数,即可得出进货方案的种数;(3)设该商场将两种压力锅全部售出后获得的利润为w 元,根据总利润=每台的销售利润×销售数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质,即可解决最值问题.【详解】(1)设A 型号压力锅的进价为x 元/台,B 型号压力锅的进价为y 元/台,依题意得:23165021000x y x y,解得:300350x y.答:A 型号压力锅的进价为300元/台,B 型号压力锅的进价为350元/台.(2)设购进m 台B 型号压力锅,则购进(60)m 台A 型号压力锅,依题意得:260300(60)3501915m m m m ,解得:2023m .又∵m 为整数,∴m 可以取20,21,22,23,∴该商场有4种进货方式.(3)设该商场将两种压力锅全部售出后获得的利润为w 元,则(389300)(60)(469350)305340w m m m ,∵300k ,∴w 随m 的增大而增大,∴当23m 时,w 取得最大值,此时6037m ,∴该超市购进37台A 型号压力锅、23台B 型号压力锅时,全部销售完后获得的利润最大.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找出不等量关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w 关于m 的函数关系式.。
北师大版数学八年级下册2.3《不等式的解集》教案
北师大版数学八年级下册2.3《不等式的解集》教案一. 教材分析《不等式的解集》是北师大版数学八年级下册第2.3节的内容,本节主要让学生了解不等式的解集及其表示方法,学会通过图像和表格来表示不等式的解集,并能够求解一些简单的不等式组。
教材内容安排合理,由浅入深,通过具体的例子引导学生理解和掌握不等式的解集。
二. 学情分析学生在学习本节内容前,已经学习了不等式的基本性质和一元一次不等式,对不等式的概念和运算法则有一定的了解。
但学生对不等式的解集概念可能较难理解,需要通过具体的例子和实践活动来帮助学生掌握。
三. 教学目标1.让学生了解不等式的解集及其表示方法。
2.培养学生通过图像和表格来表示不等式的解集的能力。
3.使学生能够求解一些简单的不等式组。
四. 教学重难点1.教学重点:不等式的解集及其表示方法。
2.教学难点:不等式的解集的求解和表示。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过观察、思考、讨论和操作来掌握不等式的解集。
六. 教学准备1.准备相关的教学PPT和教学案例。
2.准备黑板和粉笔,用于板书。
3.准备练习题,用于巩固所学内容。
七. 教学过程导入(5分钟)通过一个实际问题引入本节内容:某班有男生和女生共50人,其中男生人数是女生人数的3倍,求男生和女生各有多少人?呈现(10分钟)1.引导学生列出相应的不等式:x + y = 50,x = 3y。
2.通过解这个不等式组,引导学生思考解集的概念。
操练(10分钟)让学生分组讨论,每组找出一个不等式,求解其解集,并用图像或表格表示出来。
巩固(10分钟)1.让学生独立完成教材上的练习题。
2.引导学生总结解集的表示方法。
拓展(10分钟)1.引导学生思考:不等式的解集与方程的解集有什么关系?2.让学生举例说明,并进行讨论。
小结(5分钟)对本节内容进行总结,强调不等式的解集的表示方法和求解方法。
家庭作业(5分钟)布置一些有关不等式的解集的练习题,让学生巩固所学内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学练优八年级数学下(BS) 教学课件
第二章 一元一次不等式与 一元一次不等式组
2.3 不等式的解集
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解不等式的解、解集和解不等式的概念; 2.准确掌握不等式的解集在数轴上的表示方法,能 正确地在数轴上表示出不等式的解集.(重点、难 点)
导入新课
其中正整数解有1和2.
当堂练习
1. 不等式x>-2与x ≥-2的解集有什么不同?在数 轴上表示它们时怎样区别?分别在数轴上把这两个解 集表示出来.
2. 用不等式表示图中所示的解集.
x<2 x≤2 x≥ -7.5
3. a≥1的最小正整数解是m,b≤8的最大正整数 解是n,求关于x的不等式(m+n)x>18的解集. 解:∵a≥1的最小正整数解是m,∴m=1.
典例精析
例1:已知方程ax+12=0的解是x=3,求关于x不等式 (a+2)x>-6的解集,并在数轴上表示出来,其
中正整数解有哪些?
解:由方程的定义,把x=3代入ax+12=0中,
得 a=-4.
把a=-4代入(a+2)x>-6中,
得-2x>-6,
解得x<3.
-1 0 1 2 3 4 5 6
在数轴上表示如图:
(× )
(2) 不等式x+1<2的解有无穷多个; (√ )
(3) x=3是不等式3x<9的解
(× )
(4) x=2是不等式3x<7的解集; ( ×)
二 在数轴上表示不等式的解集
问题1 如何在数轴上表示出不等式x>2的解集呢?
则都点点大表因不A于示此等右2的可式,边数以的而所都像解点有小图集A的于左那x点>2边样2表. 所表示有示的的数 先在数轴上标出表示2的点A
把表示2 的点A
画成空心圆圈,表 示解集不包括2.
A -1 0 1 2 3 4 5 6
画一画: 利用数轴来表示下列不等式的解集.
(1) x>-1
(2) x<
1 2
-1 0
01
用数轴表示不等式的解集,应记住下面的规律: 大于向右画,小于向左画; >,<画空心圆.
问题2 在数轴上表示x ≤ 5的解集.
不等式的解
不等式的解集
定义 满足一个不等式的 满足一个不等式的
区别
未知数的某个值 未知数的所有值
特点
个体
Байду номын сангаас
形式 如:x=3是2x-3<7 的一个解
联系 某个解定是解集中
的一员
全体 如:x<5是2x-3<7 的解集
解集一定包括了 某个解
练一练
1.判断下列说法是否正确?
(1) x=2是不等式x+3<4的解;
解:设引火线的长度为xcm,根据题意,得
x
>10 .
0.02 100 4
根据不等式的基本性质,得x>5. 所以,引火线的长度应大于5cm.
想一想
下列各数中,哪些能使不等式x>5成立? 3,4, 5, 6,7.2,8.5, 9.
你还能找出一些使不等式x>5成立的x的值吗?
有( 无数 ) 个.
概括总结
-1 0 1 2 3 4 5 6
解集x≤5中包含5,所以在数轴上将表示5的点画成
实心圆点.
符号“≤”表示
“小于等于”,“≥”
表示“大于等于”.
归纳总结
用数轴表示不等式解集的方法:
(1)画数轴; (2)定边界点:若这个点包含于解集之中,则用实心点
表示;不包含在解集中,则用空心点表示. (3)定方向:相对于边界点,大于向右画,小于向左画.
观察与思考
思考:我们在燃放烟花 时,为了确保安全,我 们需要注意哪些呢?
在安全距离、引火线的 燃烧速度和燃放着离开 的速度为一定时,还应 注意引火线的长度,那 引火线究竟需要多长呢? 这节课我们一起讨论一 下吧!
讲授新课
一 不等式的解集的概念
合作探究
问题:燃放某种烟花时,为了确保安全,燃放者在点 燃引火线后要在燃放前转移到10m以外的安全区域.已 知引火线的燃烧速度为0.02m/s,燃放者离开的速度为 4m/s,那么引火线的长度应满足什么条件?
能使不等式成立的未知数的值,叫做不等式的解.
一个含有未知数的不等式的所有解,组成这个不 等式的解的解集,简称为这个不等式的解集.
不等式的解集必须满足两个条件: 1.解集中的任何一个数值都使不等式成立; 2.解集外的任何一个数值都不能使不等式成立.
求不等式的解集的过程,叫做解不等式.
概念区分
不等式的解与不等式的解集的区别与联系
∵b≤8的最大正整数解是n,∴n=8. ∴m+n=9 把m+n=9代入不等式(m+n)x>18中, 得 9x>18, 解得x>2.
课堂小结
不等式的 解集
将解集在数 轴上表示
↑ → 不等式解集的表示
课后作业
见《学练优》本课时练习