1新高考数学B人教A一轮复习课件:6 对数与对数函数
高考数学一轮复习第6讲 对数与对数函数
第6讲对数与对数函数1.对数的定义如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作01x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的运算法则如果a>0,且a≠1,M>0,N>0,那么(1)log a(MN)=02log a M+log a N,(2)log a MN=03log a M-log a N,(3)log a M n=n log a M(n∈R).3.对数函数的定义函数04y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量.4.对数函数的图象与性质a>10<a<1 图象定义域05(0,+∞)值域R定点过点06(1,0)单调性07增函数08减函数函数值正负当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>05.反函数指数函数y=a x(a>0且a≠1)与对数函数y=09log a x(a>0且a≠1)互为反函数,它们的图象关于直线10y=x对称.1.对数的性质(a>0且a≠1)(1)log a1=0;(2)log a a=1;(3)a log aN=N.2.换底公式及其推论(1)log a b=logcblogca(a,c均大于0且不等于1,b>0);(2)log a b·log b a=1,即log a b=1logba(a,b均大于0且不等于1);(3)log am b n=nm log a b;(4)log a b·log b c·log c d=log a d.3.对数函数的图象与底数大小的比较如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.1.(2020·全国卷Ⅰ)设a log 34=2,则4-a =( ) A .116B .19C .18D .16答案 B解析 由a log 34=2可得log 34a=2,所以4a=9,所以4-a=19,故选B .2.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )答案 B解析 若a >1,则y =a x 是增函数,y =log a (-x )是减函数;若0<a <1,则y =a x 是减函数,y =log a (-x )是增函数,故选B .3.函数f (x )=错误!的定义域是( ) A .(-∞,1)∪(3,+∞) B .(1,3) C .(-∞,2)∪(2,+∞) D .(1,2)∪(2,3)答案 D解析 由题意知⎩⎪⎨⎪⎧-x2+4x -3>0,-x2+4x -3≠1,即⎩⎪⎨⎪⎧1<x<3,x≠2,故函数f (x )的定义域为(1,2)∪(2,3).故选D .4.(2021·菏泽高三月考)已知x =log 52,y =log 25,z =3,则下列关系正确的是( )A .x <z <yB .x <y <zC .z <x <yD .z <y <x答案 A解析 ∵x =log 52<log 55=12,y =log 25>1,z =3=13∈⎝ ⎛⎭⎪⎪⎫12,1.∴x <z <y .故选A .5.函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)答案 D解析 由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,∵y =ln t 为增函数,∴要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间.∵当x ∈(4,+∞)时,函数t =x 2-2x -8为增函数, ∴函数f (x )的单调递增区间为(4,+∞).故选D . 6.计算:log 23×log 34+(3)log 34=________.答案 4解析 log 23×log 34+(3)log 34=lg 3lg 2×2lg 2lg 3+3log 34=2+3log 32=2+2=4.考向一 对数的化简与求值例1 (1)(2020·海口模拟)《千字文》是我国传统的启蒙读物,相传是南北朝时期梁武帝命人从王羲之的书法作品中选取1000个不重复的汉字,让周兴嗣编纂而成的,全文为四字句,对仗工整,条理清晰,文采斐然.已知将1000个不同汉字任意排列,大约有4.02×102567种方法,设这个数为N ,则lg N 的整数部分为( )A .2566B .2567C.2568 D.2569答案 B解析由题可知,lg N=lg (4.02×102567)=2567+lg 4.02.因为1<4.02<10,所以0<lg 4.02<1,所以lg N的整数部分为2567.(2)化简12lg3249-43lg 8+lg 245=________.答案1 2解析12lg3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7)=52lg 2-lg 7-2lg 2+12lg 5+lg 7=12lg 2+12lg 5=12lg (2×5)=12.(3)设2a=5b=m,且1a+1b=2,则m=________.答案10解析因为2a=5b=m>0,所以a=log2m,b=log5m,所以1a+1b=1log2m+1log5m=log m2+log m5=log m10=2.所以m2=10,所以m=10.对数运算的一般思路(1)拆:把底数或真数进行变形,将对数式化为同底数对数的和、差、倍数运算.(2)合:逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.对数的运算性质以及有关公式都是在式子中所有的对数有意义的前提下才成立的,不能出现log212=log2[(-3)×(-4)]=log2(-3)+log2(-4)的错误.1.(2020·青岛质检)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,-⎝ ⎛⎭⎪⎪⎫12x ,x>0,则f (f (log 23))=( )A .-9B .-1C .-13D .-127 答案 B解析 f (log 23)=-⎝ ⎛⎭⎪⎪⎫12log 23=-2log 23-1=-13<0,∴f (f (log 23))=f ⎝ ⎛⎭⎪⎪⎫-13=3×⎝ ⎛⎭⎪⎪⎫-13=-1.2.lg 52+23lg 8+lg 5×lg 20+(lg 2)2的值为________. 答案 3解析 原式=2lg 5+2lg 2+lg 5(1+lg 2)+(lg 2)2=2(lg 5+lg 2)+lg 5+lg 2(lg 2+lg 5)=2+lg 5+lg 2=3.3.若log 147=a,14b =5,则用a ,b 表示log 3528=________. 答案2-a a +b解析 ∵a =log 147,b =log 145,∴a +b =log 1435.又log 1428=log 141427=2-log 147=2-a ,∴log 3528=log1428log1435=2-a a +b.考向二 对数函数的图象及其应用例2 (1)(2020·泰安模拟)对数函数y =log a x (a >0且a ≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是( )答案 A解析 由对数函数y =log a x (a >0且a ≠1)与二次函数y =(a -1)x 2-x 可知,①当0<a <1时,此时a -1<0,对数函数y =log a x 为减函数,而二次函数y =(a -1)x 2-x 的图象开口向下,且其对称轴为x =错误!<0,故排除C ,D ;②当a >1时,此时a -1>0,对数函数y =log a x 为增函数,而二次函数y =(a -1)x 2-x 的图象开口向上,且其对称轴为x =错误!>0,故B 错误,而A 符合题意.故选A .(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎥⎤0,12内有解,则实数a 的取值范围为________.答案 ⎝ ⎛⎦⎥⎥⎤0,22 解析 构造函数f (x )=4x 和g (x )=log a x .当a >1时不满足条件,当0<a <1时,画出两个函数的大致图象,如图所示.可知,只需两图象在⎝ ⎛⎦⎥⎥⎤0,12上有交点即可,则f ⎝ ⎛⎭⎪⎪⎫12≥g ⎝ ⎛⎭⎪⎪⎫12,即2≥log a 12,则0<a ≤22,所以实数a 的取值范围为⎝⎛⎦⎥⎥⎤0,22.利用对数函数的图象可求解的两类热点问题(1)对一些可通过平移、对称变换作出其对数型函数的图象,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.4.函数f (x )=log a |x |+1(0<a <1)的图象大致是( )答案 A解析 由于函数f (x )=log a |x |+1(0<a <1)是偶函数,故其图象关于y 轴对称.当x >0时,f (x )=log a |x |+1(0<a <1)是减函数;当x <0时,f (x )=log a |x |+1(0<a <1)是增函数.再由图象过点(1,1),(-1,1),可知应选A .5.(2020·河南洛阳高三阶段性测试)已知正实数a ,b ,c 满足⎝ ⎛⎭⎪⎪⎫12a =log 3a ,⎝ ⎛⎭⎪⎪⎫14b =log 3b ,c =log 32,则( )A .a <b <cB .c <b <aC .b <c <aD .c <a <b答案 B解析 在坐标系里画出y =⎝ ⎛⎭⎪⎪⎫12x ,y =⎝ ⎛⎭⎪⎪⎫14x 与y =log 3x 的图象,可得a >b >1.而c =log 32<1,故c <b <a .多角度探究突破考向三 对数函数的性质及其应用 角度1 比较对数值的大小例3 (1)(2020·聊城二模)已知a =π,b =ln π,c =log πe ,则a ,b ,c 的大小关系为( )A .a >c >bB .b >a >cC .c >a >bD .a >b >c答案 D解析 因为a =π>π0=1,b =lnπ=ln (π)=12ln π,c =log πe =log π(e )=12log πe ,又log π1<log πe<log ππ,即c ∈⎝ ⎛⎭⎪⎪⎫0,12,ln e<ln π<ln e 2,即b ∈⎝ ⎛⎭⎪⎪⎫12,1,所以a >b >c ,故选D .(2)(多选)若实数a ,b ,c 满足log a 2<log b 2<log c 2,则下列关系中可能成立的是( )A .a <b <cB .b <a <cC .c <b <aD .a <c <b答案 BCD解析 由log a 2<log b 2<log c 2的大小关系,可知a ,b ,c 有如下四种可能:①1<c <b <a ;②0<a <1<c <b ;③0<b <a <1<c ;④0<c <b <a <1.作出函数的图象(如图所示).由图象可知选项B ,C ,D 可能成立.(3)(2020·全国卷Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则() A.a<b<c B.b<a<cC.b<c<a D.c<a<b答案 A解析∵a,b,c∈(0,1),ab=log53log85=lg 3lg 5·lg 8lg 5<错误!·错误!2=错误!2=错误!2<1,∴a<b.由b=log85,得8b=5,由55<84,得85b<84,∴5b<4,可得b<45.由c=log138,得13c=8,由134<85,得134<135c,∴5c>4,可得c>45.综上所述,a<b<c.故选A.比较对数值大小的方法6.(2021·长郡中学高三月考)已知实数a,b,c满足lg a=10b=1c,则下列关系式中不可能成立的是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a 答案 D解析设lg a=10b=1c=t,t>0,则a=10t,b=lg t,c=1t,在同一坐标系中分别画出函数y=10x,y=lg x,y=1x的图象,如图,当t=x3时,a>b>c;当t=x2时,a>c >b ;当t =x 1时,c >a >b .故选D .7.(2020·全国卷Ⅱ)若2x -2y <3-x -3-y ,则( ) A .ln (y -x +1)>0 B .ln (y -x +1)<0 C .ln |x -y |>0 D .ln |x -y |<0答案 A解析 由2x -2y <3-x -3-y ,得2x -3-x <2y -3-y .令f (t )=2t -3-t ,∵y =2x 为R 上的增函数,y =3-x 为R 上的减函数,∴f (t )为R 上的增函数.∴x <y ,∴y -x >0,∴y -x +1>1,∴ln (y -x +1)>0,故A 正确,B 错误.∵|x -y |与1的大小关系不确定,故C ,D 无法确定.故选A .角度2 解简单的对数不等式例4 (1)设函数f (x )=错误!若f (a )>f (-a ),则实数a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(1,+∞) D .(-∞,-1)∪(0,1) 答案 C解析 由题意可得⎩⎪⎨⎪⎧a>0,log2a>-log2a或错误!解得a >1或-1<a <0.故选C .(2)(2020·泰安四模)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0]时,f (x )=-x 2+2x ,若实数m 满足f (log 2m )≤3,则m 的取值范围是( )A .(0,2]B .12,2C .(0,8]D .18,8答案 A解析 根据题意,当x ∈(-∞,0]时,f (x )=-x 2+2x =-(x -1)2+1,则f (x )在区间(-∞,0]上为增函数,且f (-1)=(-1)+2×(-1)=-3,又f (x )为奇函数,则f (x )在区间[0,+∞)上为增函数,且f (1)=-f (-1)=3,故f (x )在R 上为增函数,f (log 2m )≤3⇒f (log 2m )≤f (1)⇒log 2m ≤1,解得0<m ≤2,即m 的取值范围为(0,2].故选A .解对数不等式的类型及方法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式.8.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x≤1,1-log2x ,x>1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)答案 D解析 当x ≤1时,由21-x ≤2得1-x ≤1,∴0≤x ≤1.当x >1时,由1-log 2x ≤2得x ≥12,∴x >1.综上,x 的取值范围为[0,+∞).故选D .9.(2020·北京模拟)已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f ⎝ ⎛⎭⎪⎪⎫12=0,则“不等式f (log 4x )>0的解集”是“⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|0<x <12”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件答案 C解析 ∵定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f ⎝ ⎛⎭⎪⎪⎫12=0,∴f (log 4x )>0,即f (log 4x )>f ⎝ ⎛⎭⎪⎪⎫12,即f (|log 4x |)>f ⎝ ⎛⎭⎪⎪⎫12,即|log 4x |>12,即log 4x >12或log 4x <-12,解得x >2或0<x <12.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x >2或0<x <12是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|0<x <12的必要不充分条件.故选C .考向四 与对数有关的复合函数问题例5 (1)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.答案 ⎝⎛⎭⎪⎪⎫1,83解析 当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-2a )>1,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数, 由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-a )>1,得8-2a <0,a >4.a 不存在. 综上可知,实数a 的取值范围是⎝⎛⎭⎪⎪⎫1,83.(2)(2020·海南省高三第一次联考)已知函数f (x )=3+log 2x ,x ∈[1,16],若函数g (x )=[f (x )]2+2f (x 2).①求函数g (x )的定义域; ②求函数g (x )的最值.解 ①函数g (x )=[f (x )]2+2f (x 2)满足⎩⎪⎨⎪⎧1≤x≤16,1≤x2≤16,解得1≤x ≤4,即函数g (x )=[f (x )]2+2f (x 2)的定义域为[1,4].②因为x ∈[1,4],所以log 2x ∈[0,2]. g (x )=[f (x )]2+2f (x 2) =(3+log 2x )2+6+2log 2x 2=(log 2x )2+10×log 2x +15=(log 2x +5)2-10, 当log 2x =0时,g (x )min =15, 当log 2x =2时,g (x )max =39,即函数g (x )的最大值为39,最小值为15.利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.10.若f (x )=lg (x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)答案 A解析 令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为直线x =a ,要使函数在(-∞,1]上单调递减,则有错误!即错误!解得1≤a <2,即a ∈[1,2).故选A .11.已知函数f (x )=log a (x +2)+log a (4-x )(a >0且a ≠1). (1)求函数f (x )的定义域;(2)若函数f (x )在区间[0,3]上的最小值为-2,求实数a 的值.解 (1)依题意得⎩⎪⎨⎪⎧x +2>0,4-x>0,解得-2<x <4,∴f (x )的定义域为(-2,4).(2)f (x )=log a (x +2)+log a (4-x ) =log a [(x +2)(4-x )],令t =(x +2)(4-x ),则变形得t =-(x -1)2+9, ∵0≤x ≤3,∴5≤t ≤9.若a >1,则log a 5≤log a t ≤log a 9,∴f (x )min =log a 5=-2,则a 2=15<1(舍去),若0<a <1,则log a 9≤log a t ≤log a 5, ∴f (x )min =log a 9=-2, 则a 2=19,又0<a <1,∴a =13.综上,a =13.一、单项选择题1.函数f (x )=错误!的定义域是( ) A .(-3,0)B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)答案 A解析 因为f (x )=错误!,所以要使函数f (x )有意义,需使错误!即-3<x <0. 2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=()A.log2x B.1 2xC.log12x D.2x-2答案 A解析由题意知f(x)=log a x(x>0).∵f(2)=1,∴log a2=1.∴a=2.∴f(x)=log2x.3.(2020·北京市平谷区二模)溶液酸碱度是通过pH计算的,pH的计算公式为pH =-lg [H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,若人体胃酸中氢离子的浓度为2.5×10-2摩尔/升,则胃酸的pH是(参考数据:lg 2≈0.3010)() A.1.398 B.1.204C.1.602 D.2.602答案 C解析由题意可得,pH=-lg (2.5×10-2)=-(lg 2.5+lg 10-2)=-(1-2lg 2-2)=1+2lg 2≈1.6020.故选C.4.(2020·滨州二模)设a=0.30.1,b=log 15,c=log526,则a,b,c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a 答案 D解析∵0<0.30.1<0.30=1,∴0<a<1,∵b=log 15=log35,log33<log35<log39,∴1<b<2,∵c=log526>log525=2,∴c>2,∴c>b>a.故选D.5.在同一直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()答案 A解析 由题意,知函数f (x )=2-ax (a >0,且a ≠1)为单调递减函数,当0<a <1时,函数f (x )=2-ax 的零点x =2a >2,且函数g (x )=log a (x +2)在(-2,+∞)上为单调递减函数;当a >1时,函数f (x )=2-ax 的零点x =2a <2,且x =2a >0,又g (x )=log a (x+2)在(-2,+∞)上是增函数.综上只有A 满足.6.若log a 23<1(a >0且a ≠1),则实数a 的取值范围是( )A .⎝⎛⎭⎪⎪⎫0,23B .⎝ ⎛⎭⎪⎪⎫23,+∞C .⎝ ⎛⎭⎪⎪⎫23,1∪(1,+∞)D .⎝⎛⎭⎪⎪⎫0,23∪(1,+∞)答案 D解析 因为log a 23<1,所以log a 23<log a a .若a >1,则上式显然成立;若0<a <1,则应满足0<a <23.所以实数a 的取值范围是⎝⎛⎭⎪⎪⎫0,23∪(1,+∞).故选D .7.(2020·泰安一模)已知定义在R 上的函数f (x )的周期为4,当x ∈[-2,2)时,f (x )=⎝ ⎛⎭⎪⎪⎫13x -x -4,则f (-log 36)+f (log 354)=( ) A .32B .32-log 32C .-12D .23+log 32答案 A解析 因为函数f (x )的周期为4,当x ∈[-2,2)时,f (x )=⎝ ⎛⎭⎪⎪⎫13x -x -4,∴f (-log 36)=f ⎝ ⎛⎭⎪⎪⎫log316=⎝ ⎛⎭⎪⎪⎫13log 3-log 316-4=2+log 36,f (log 354)=f (3+log 32)=f (log 32-1)=f ⎝ ⎛⎭⎪⎪⎫log323=⎝ ⎛⎭⎪⎪⎫13log 3-log 323-4=32-log 32+1-4=-32-log 32,∴f (-log 36)+f (log 354)=2+log 36-32-log 32=32.故选A .8.(2020·枣庄模拟)已知a >b >0,若log a b +log b a =52,a b=b a,则ab=( )A .2B .2C .22D .4答案 B解析 对a b =b a 两边取以a 为底的对数,得log a a b =log a b a ,即b =a log a b ,同理有a =b log b a ,代入log a b +log b a =52,得ba +ab =52,因为a >b >0,所以ab >1,所以ab =2,ba =12,故选B .9.(2020·海南模拟)函数f (x )=log 2x4·log 4(4x 2)的最小值为( )A .-94B .-2C .-32D .0答案 A解析 由题意知f (x )的定义域为(0,+∞).所以f (x )=(-2+log 2x )(1+log 2x )=(log 2x )2-log 2x -2=⎝⎛⎭⎪⎪⎫log2x -122-94≥-94.当x =2时,函数取得最小值.故选A .10.(2020·全国卷Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )( ) A .是偶函数,且在⎝ ⎛⎭⎪⎪⎫12,+∞单调递增B .是奇函数,且在⎝ ⎛⎭⎪⎪⎫-12,12单调递减C .是偶函数,且在⎝ ⎛⎭⎪⎪⎫-∞,-12单调递增D .是奇函数,且在⎝ ⎛⎭⎪⎪⎫-∞,-12单调递减答案 D解析 f (x )=ln |2x +1|-ln |2x -1|的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x≠±12,关于坐标原点对称,又f (-x )=ln |1-2x |-ln |-2x -1|=ln |2x -1|-ln |2x +1|=-f (x ),∴f (x )为定义域上的奇函数,可排除A ,C ;当x ∈⎝ ⎛⎭⎪⎪⎫-12,12时,f (x )=ln (2x +1)-ln (1-2x ),∵y =ln (2x +1)在⎝ ⎛⎭⎪⎪⎫-12,12上单调递增,y =ln (1-2x )在⎝ ⎛⎭⎪⎪⎫-12,12上单调递减,∴f (x )在⎝ ⎛⎭⎪⎪⎫-12,12上单调递增,排除B ;当x ∈⎝⎛⎭⎪⎪⎫-∞,-12时,f (x )=ln (-2x -1)-ln (1-2x )=ln 2x +12x -1=ln⎝ ⎛⎭⎪⎪⎫1+22x -1,∵μ=1+22x -1在⎝ ⎛⎭⎪⎪⎫-∞,-12上单调递减,f (μ)=ln μ在定义域内单调递增,∴根据复合函数单调性可知f (x )在⎝⎛⎭⎪⎪⎫-∞,-12上单调递减,D 正确.故选D .二、多项选择题11.(2020·海南省普通高中高考调研测试)若10a =4,10b =25,则( ) A .a +b =2 B .b -a =1 C .ab >8(lg 2)2 D .b -a >lg 6答案 ACD解析 由10a =4,10b =25,得a =lg 4,b =lg 25,∴a +b =lg 4+lg 25=lg 100=2,∴b -a =lg 25-lg 4=lg254,∵b -a =lg254>lg 6,∴b -a >lg 6,∴ab =4lg 2×lg 5>4lg 2×lg 4=8(lg 2)2.故选ACD .12.(2020·泰安三模)已知直线y =-x +2分别与函数y =e x 和y =ln x 的图象交于点A (x 1,y 1),B (x 2,y 2),则下列结论正确的是( )A .x 1+x 2=2B .e x 1+e x 2>2eC .x 1ln x 2+x 2ln x 1<0D .x 1x 2>e 2答案 ABC解析 函数y =e x 与y =ln x 互为反函数,则y =e x 与y =ln x 的图象关于y =x 对称,将y =-x +2与y =x 联立,得x =1,y =1,由直线y =-x +2分别与函数y =e x 和y =ln x 的图象交于点A (x 1,y 1),B (x 2,y 2),作出函数图象如图:则A (x 1,y 1),B (x 2,y 2)的中点坐标为(1,1),对于A ,由x1+x22=1,解得x 1+x 2=2,故A 正确;对于B ,e x 1+e x 2≥2ex1·ex2=2ex1+x2=2e2=2e ,因为x 1≠x 2,即等号不成立,所以e x 1+e x 2>2e ,故B 正确;对于C ,将y =-x +2与y =e x 联立可得-x +2=e x ,即e x +x -2=0,设f (x )=e x +x -2,则函数为单调递增函数,因为f (0)=1+0-2=-1<0,f ⎝ ⎛⎭⎪⎪⎫12=e +12-2=e -32>0,故函数的零点在⎝ ⎛⎭⎪⎪⎫0,12上,即0<x 1<12,由x 1+x 2=2,则32<x 2<2,x 1ln x 2+x 2ln x 1=x 1ln x 2-x 2ln 1x1<x 1ln x 2-x 2ln x 2=(x 1-x 2)ln x 2<0,故C 正确;对于D ,x 1x 2=x 1(2-x 1)=2x 1-x 21,又x 1∈⎝ ⎛⎭⎪⎪⎫0,12,所以x 1x 2∈⎝⎛⎭⎪⎪⎫0,34,故D 错误.故选ABC .三、填空题13.计算:lg 5(lg 8+lg 1000)+(lg 2)2+lg 16+lg 0.06=________. 答案 1解析 原式=lg 5(3lg 2+3)+3(lg 2)2+lg ⎝ ⎛⎭⎪⎪⎫16×0.06=3lg 5·lg 2+3lg 5+3(lg 2)2-2=3lg 2+3lg 5-2=1.14.(2020·南昌三模)已知函数f (x )=2|x |+x 2,m =f ⎝ ⎛⎭⎪⎪⎫log213,n =f (7-0.1),p =f (log 425),则m ,n ,p 的大小关系是________.答案 p >m >n解析 因为f (x )=2|x |+x 2,则f (-x )=2|-x |+(-x )2=f (x ),即f (x )为偶函数,当x >0时,f (x )=2x+x 2单调递增,m =f ⎝⎛⎭⎪⎪⎫log213=f (log 23),n =f (7-0.1),p =f (log 425)=f (log 25),又log 25>2>log 23>1>7-0.1>0,故p >m >n .15.函数y =log 0.6(-x 2+2x )的值域是________. 答案 [0,+∞)解析 -x 2+2x =-(x -1)2+1≤1,又-x 2+2x >0,则0<-x 2+2x ≤1.函数y =log 0.6x 为(0,+∞)上的减函数,则y =log 0.6(-x 2+2x )≥log 0.61=0,所以所求函数的值域为[0,+∞).16.如图,已知过原点O 的直线与函数y =log 8x 的图象交于A ,B 两点,分别过A ,B 作y 轴的平行线与函数y =log 2x 图象交于C ,D 两点,若BC ∥x 轴,则四边形ABDC 的面积为________.答案433log 23解析 设点A ,B 的横坐标分别为x 1,x 2,由题设知,x 1>1,x 2>1.则点A ,B 的纵坐标分别为log 8x 1,log 8x 2.因为A ,B 在过点O 的直线上,所以log8x1x1=log8x2x2,点C ,D 的坐标分别为(x 1,log 2x 1),(x 2,log 2x 2).由BC 平行于x 轴,知log 2x 1=log 8x 2,即log 2x 1=13log 2x 2,∴x 2=x 31.代入x 2log 8x 1=x 1log 8x 2得x 31log 8x 1=3x 1log 8x 1.由x 1>1知log 8x 1≠0,∴x 31=3x 1.考虑x 1>1,解得x 1=3.于是点A 的坐标为(3,log 83),即A ⎝⎛⎭⎪⎪⎫3,16log23,∴B ⎝⎛⎭⎪⎪⎫33,12log23,C ⎝⎛⎭⎪⎪⎫3,12log23,D ⎝⎛⎭⎪⎪⎫33,32log23.∴梯形ABDC 的面积为S =12(AC +BD )×BC =12×⎝ ⎛⎭⎪⎪⎫13log23+log23×23=433log 23.四、解答题17.已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=log a (x +1)(a >0,且a ≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围. 解 (1)当x <0时,-x >0, 由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,∴f (-x )=f (x ). ∴当x <0时,f (x )=log a (-x +1), ∴函数f (x )的解析式为f (x )=错误! (2)∵-1<f (1)<1,∴-1<log a 2<1, ∴log a 1a<log a 2<log a a .①当a >1时,原不等式等价于⎩⎪⎨⎪⎧1a<2,a >2,解得a >2;②当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧1a>2,a <2,解得0<a <12.综上,实数a 的取值范围为⎝ ⎛⎭⎪⎪⎫0,12∪(2,+∞).18.已知函数f (x )=log 2⎝ ⎛⎭⎪⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.解 (1)若函数f (x )是R 上的奇函数,则f (0)=0, ∴log 2(1+a )=0,∴a =0.当a =0时,f (x )=-x 是R 上的奇函数.所以a =0. (2)若函数f (x )的定义域是一切实数,则12x +a >0恒成立.即a >-12x 恒成立,由于-12x∈(-∞,0), 故只要a ≥0,则a 的取值范围是[0,+∞).(3)由已知得函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝ ⎛⎭⎪⎪⎫12+a .由题设得log 2(1+a )-log 2⎝ ⎛⎭⎪⎪⎫12+a ≥2,则log 2(1+a )≥log 2(4a +2). ∴⎩⎪⎨⎪⎧1+a≥4a+2,4a +2>0,解得-12<a ≤-13.故实数a 的取值范围是⎝ ⎛⎦⎥⎥⎤-12,-13.19.(2021·荆州月考)已知函数f (x )=log 13(x 2-2mx +5).(1)若f (x )的值域为R ,求实数m 的取值范围;(2)若f (x )在(-∞,2]内为增函数,求实数m 的取值范围.解 (1)由f (x )的值域为R ,可得u =x 2-2mx +5能取得(0,+∞)内的一切值, 故函数u =x 2-2mx +5的图象与x 轴有公共点, 所以Δ=4m 2-20≥0,解得m ≤-5或m ≥5.故实数m 的取值范围为(-∞,-5]∪[5,+∞).(2)因为f (x )在(-∞,2]内为增函数,所以u =x 2-2mx +5在(-∞,2]内单调递减且恒正, 所以⎩⎪⎨⎪⎧m≥2,9-4m>0,解得2≤m <94.故实数m 的取值范围为2,94.20.已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.解 (1)因为f (1)=1,所以log 4(a +5)=1, 因此a +5=4,a =-1, 此时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0得-1<x <3, 即函数f (x )的定义域为(-1,3). 令t =-x 2+2x +3,则t =-x 2+2x +3在(-1,1]上单调递增,在(1,3)上单调递减. 又y =log 4t 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1],单调递减区间是(1,3). (2)存在.令h (x )=ax 2+2x +3,则h (x )有最小值1,因此应有⎩⎪⎨⎪⎧a>0,12a -44a =1,解得a =12.。
新高考一轮复习人教A版第二章第六讲对数与对数函数课件(58张)
【名师点睛】对数运算的一些结论 (1)logam bn=mn logab. (2)logab·logba=1. (3)logab·logbc·logcd=logad.
3.对数函数的图象与性质
y=logax
a>1
图象
0<a<1
定义域 值域
(0,+∞) R
(续表)
y=logax
a>1
0<a<1
过定点(1,0),即 x=1 时,y=0
题组一 走出误区 1.(多选题)下列结论错误的是( )
A.2lg 3≠3lg 2 B.若 MN>0,则 loga(MN)=logaM+logaN C.y=log2x2 不是对数函数,而 y=log2(-x)是对数函数 D.函数 y=ln 11+-xx与 y=ln(1+x)-ln(1-x)的定义域 相同 答案:ABC
解析:原式=1-2log63+log63lo2g+64log663×log66×3 =1-2log63+lologg63642+1-log632=212-lolgo6g263 =log6l6o-g6l2og63=lloogg6622=1.
答案:1
3.已知 2x=12,log231=y,则 x+y 的值为________. 答案:2 4.设 2a=5b=m,且1a+1b=2,则 m=________.
[例 4](1)(2020 年新高考Ⅱ)已知函数 f(x)=lg(x2-4x-
5)在(a,+∞)单调递增,则 a 的取值范围是( )
A.(-∞,-1]
B.(-∞,2]
C.[2,+∞)
D.[5,+∞)
解析:由 x2-4x-5>0,得 x<-1 或 x>5,即函数 f(x)的定义域为(-∞,-1)∪(5,+∞).令t=x2-4x-5, 则t=(x-2)2-9,所以函数t在(-∞,-1)上单调递减, 在(5,+∞)上单调递增,又函数y=lg t在(0,+∞)上 单调递增,从而函数f(x)的单调递增区间为(5,+∞), 由题意知(a,+∞)⊆(5,+∞),∴a≥5.
数学一轮课标通用课件对数与对数函数
对数的定义和性质
回顾对数的定义,理解对数的性质, 如对数的乘法、除法、指数和换底法 则。
复合函数中的对数运算
对数运算的化简与求值
掌握对数运算的化简方法,如利用对 数的性质进行化简、利用换底公式进 行化简等,以及求值方法,如代入法 、换元法等。
分析复合函数中涉及的对数运算,如 对数函数的复合、对数函数与其他函 数的复合等。
增长过程。
指数衰减模型
描述数量随时间呈指数衰减的现 象,如药物代谢、放射性物质衰 变等。通过对数变换,可将指数 衰减模型转化为线性模型,便于
求解和分析。
经济学中复利、贴现等问题建模分析
复利问题
描述本金和利息随时间呈指数增长的现象。在复利计算中,通过对数函数可求 得未来某一时点的本金和利息总额,以及达到某一目标金额所需的时间。
对数式转指数式
将对数式中的底数和真数分别作 为指数式的底数和指数,根据对 数的性质进行转换。
利用指数幂进行化简和计算
幂的乘方
根据指数幂的运算法则, 将同底数的幂相乘,指数 相加。
幂的混合运算
根据指数幂的运算法则和 运算顺序,进行幂的混合 运算。
幂的乘除
根据指数幂的运算法则, 将同底数的幂相除,指数 相减。
02
单调递减
当0<a<1时,对数函数在其定义域内单调递减。
对数函数奇偶性和周期性
奇偶性
对数函数既不是奇函数也不是偶函数,因为其图 像不关于原点或y轴对称。
周期性
对数函数不具有周期性,因为其图像不呈现周期 性的变化。
03
指数与对数关系及互化
指数式与对数式互化方法
指数式转对数式
将指数式中的底数和指数分别作 为对数式的底数和真数,根据对 数的定义进行转换。
高考数学一轮总复习 2.6 对数与对数函数精品课件 理 新人教版
shù)函数
第一页,共28页。
考纲要求
(yāoqiú)
考纲要求
1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自
然对数或常用对数;了解
对数的发现历史以及对简化运算的作用.
2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的
∴f(a2)+f(b2)=lg a2+lg b2=lg(a2b2)=2lg(ab)=2×1=2.
2
关闭
解析
考点(kǎo diǎn)一
考点(kǎo diǎn)二
考点(kǎo
diǎn)三
第十三页,共28页。
误区警示
答案
答案
(dá àn)
探究
(tànjiū)突
破
方法提炼
对数式化简求值的基本思路:
n
(1)利用换底公式及 loa m Nn= logaN 尽量地转化为同底的和、差、积、
形结合思想.由已知函数 f(x)=loga(x+b)的图象可得 0<a<1,0<b<1.则
关闭
x
B
g(x)=a
+b 的图象由 y=ax 的图象沿 y 轴向上平移 b 个单位而得到,故选 B.
点(kǎo diǎn)一
解析
考点(kǎo diǎn)二
考点(kǎo diǎn)三
第十六页,共28页。
误区警示
答案
一般先研究函数的周期性.
3.已知函数的最值或求函数的最值,往往探究函数的单调性.
点(kǎo diǎn)一
考点(kǎo diǎn)二
考点(kǎo diǎn)三
2025届高中数学一轮复习课件《对数函数》PPT
由图可知 a<b<c.故选 A.
高考一轮总复习•数学
比较对数值大小的方法
第22页
高考一轮总复习•数学
第23页
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
1.对数函数的图象与性质 a>1
0<a<1
图 象
定义域 值域 定点 单调性 在(0,+∞)上 单调递增 函数值 当 x>1 时,y>0; 正负 当 0<x<1 时,y<0
第18页
对点练 1(1)(多选)已知函数 f(x)=loga(x-b)(a>0,且 a≠1)的图象如图所示,则以下说 法正确的是( )
A.-1<b<0
B.a+b>0
C.0<a<1
D.loga|b|<0
(2)已知 f(x)=lg x,作出函数 y=-f(x),y=f(-x),y=-f(-x),y=f(|x|),y=|f(x)|,y
3
2x-1的定义域为12,1.
高考一轮总复习•数学
第11页
4.(2024·吉林长春月考)函数 f(x)=lg(x2-2x-3)的单调递增区间为__(_3_,__+__∞_)__.
解析:设 g(x)=x2-2x-3,可得函数 g(x)在(-∞,1)上单调递减,在(1,+∞)上单调 递增,又由函数 y=lg(x2-2x-3)满足 x2-2x-3>0,解得 x<-1 或 x>3,根据复合函数的单 调性,可得函数 f(x)的单调递增区间为(3,+∞).
高考数学一轮复习 第6讲 对数与对数函数课件 理 新人教B版
考点突破 考点一 对数的运算
规律方法 在对数运算中,要熟练掌握对数式的定义,灵活使用对 数的运算性质、换底公式和对数恒等式对式子进行恒等 变形,多个对数式要尽量化成同底的形式.
考点突破 考点一 对数的运算
【训练 1】(1)设 2a=5b=m,且1a+1b=2,则 m 等于(
)
A. 10 B.10 C.20 D.100
利用换底公式化为 同底的对数
lg2+lg5=1
解析 (1)(log29)·(log34)=llgg92·llgg43 =2llgg23·2llgg32 =4.
(2)原式=(lg2)2+(1+lg5)lg2+lg52 =(lg2+lg5+1)lg2+2lg5=(1+1)lg2+2lg5 =2(lg2+lg5)=2. 答案 (1)D (2)2
考点突破 考点二 对数函数的图象及其应用
规律方法 在解决对数函数图象的相关问题时,要注意: (1)底数a的值对函数图象的影响; (2)增强数形结合的解题意识,使抽象问题具体化.
考点突破 考点二 对数函数的图象及其应用
【的训图练象如2】图(1所)已示知,函则数a,f(xb)满=足log的a(关2x+系b是-( 1)(a>) 0,a≠1) A.0<a-1<b<1 B.0<b<a-1<1 C.0<b-1<a<1 D.0<a-1<b-1<1
考点突破 考点二 对数函数的图象及其应用
【例2】 (2)(2015·石家庄模拟)设方程10x=|lg(-x)|的两个根分别 为x1,x2,则( ) A.x1x2<0 B.x1x2=1 C.x1x2>1 D.0<x1x2<1
(2)构造函数y=10x与y=|lg(-x)|,并作出它们的图象, 如图所示.
(4)对数函数 y=logax(a>0 且 a≠1)的图象过定点(1,0),且
2025年高考数学一轮复习 第三章-第六节 对数与对数函数【课件】
01
强基础 知识回归
知识梳理
一、对数的概念与性质
1.对数的概念
=
log
如果________(
> 0,且 ≠ 1),那么数叫作以为底的对数,记作 =_______,
真数
其中叫作对数的底数,叫作______.
常用对数
两个重要对数:以10为底的对数lg 称为__________;以无理数e
B.(2,3]
C.[3, +∞)
D.[2,3]
[解析] 由− + − > ,得 < < .设函数 = − + − = ,
= − + − ,则抛物线 = − + − 的对称轴方程是 = ,∴ 函数
= − + − 的单调递增区间是(, ],单调递减区间是[, ). ∵ = 是减函
B.
C.
D.
ቤተ መጻሕፍቲ ባይዱ
[解析] = + ,函数的定义域为 −, +∞ ,有 = ,函数图象过
原点,A,D选项不符合, = +
≥ ,B选项不符合.故选C.
4.函数 = log 1 − 2 + 6 − 8 的单调递减区间为( B )
2
A.[3,4)
典例1 化简或求值:
(1)
2
3
lg 3+5lg 9+5lg 27−lg 3
lg 81−lg 27
;
解 原式
4
=
1
4lg 3−3lg 3
4
=
9
log − log
=_______________;
2024届高考一轮复习数学课件(新教材新高考新人教A版) 对数与对数函数
所以a+2b>3, 所以a+2b的取值范围为(3,+∞).
思维升华
对数函数图象的识别及应用方法 (1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的 特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项. (2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利 用数形结合法求解.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若M=N,则logaM=logaN.( × )
(2)函数y=loga2x(a>0,且a≠1)是对数函数.( × )
(3)对数函数y=logax(a>0,且a≠1)在(0,+∞)上是增函数.( × )
(4)函数y=log2x与y=log 1
C.(0,1)
B.(1,3) D.(1,+∞)
令t(x)=6-ax,因为a>0,所以t(x)=6-ax为减函数. 又由函数f(x)=loga(6-ax)在(0,2)上单调递减, 可得函数t(x)=6-ax>0在(0,2)上恒成立,且a>1, 故有a6>-12,a≥0, 解得 1<a≤3.
(2)(2022·惠州模拟)若函数f(x)=logax2-ax+12 (a>0,且a≠1)有最小值, 则实数a的取值范围是_(_1_,___2_)_.
命题点3 对数函数的性质及应用 例5 (2023·郑州模拟)设函数f(x)=ln|x+3|+ln|x-3|,则f(x)
√A.是偶函数,且在(-∞,-3)上单调递减
B.是奇函数,且在(-3,3)上单调递减 C.是奇函数,且在(3,+∞)上单调递增 D.是偶函数,且在(-3,3)上单调递增
函数f(x)的定义域为{x|x≠±3}, f(x)=ln|x+3|+ln|x-3|=ln|x2-9|, 令g(x)=|x2-9|, 则f(x)=ln g(x), 函数g(x)的单调区间由图象(图略)可知, 当x∈(-∞,-3),x∈(0,3)时,g(x)单调递减, 当x∈(-3,0),x∈(3,+∞)时,g(x)单调递增, 由复合函数单调性同增异减得单调区间. 由f(-x)=ln|(-x)2-9|=ln|x2-9|=f(x)得f(x)为偶函数.
新高考数学一轮复习教师用书:第2章 6 第6讲 对数与对数函数
第6讲对数与对数函数1.对数概念如果a x=N(a>0,a≠1),那么数x叫做以a为底N的对数,记作x=log a N.其中a叫做对数的底数,N叫做真数性质底数的限制:a>0,且a≠1对数式与指数式的互化:a x=N⇒log a N=x负数和零没有对数1的对数是零:log a1=0 底数的对数是1:log a a=1 对数恒等式:alog a N=N运算性质log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=nlog a M(n∈R)换底公式公式:log a b=log c blog c a(a>0,且a≠1;c>0,且c≠1;b>0) 推广:log am b n=nmlog a b;log a b=1log b a2.对数函数的图象与性质a>1 0<a<1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x>1时,y>0当0<x<1时,y<0当x>1时,y<0当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数3.对数函数的变化特征在同一平面直角坐标系中,分别作出对数函数y =log a x,y =log b x,y =log c x,y =log d x(a >1,b >1,0<c <1,0<d <1)的图象,如图所示.作出直线y =1,分别与四个图象自左向右交于点A(c,1),B(d,1),C(a,1),D(b,1),得到底数的大小关系是:b >a >1>d >c >0.根据直线x =1右侧的图象,单调性相同时也可以利用口诀:“底大图低”来记忆.4.反函数指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)log a (MN)=log a M +log a N.( ) (2)log a x ·log a y =log a (x +y).( )(3)函数y =log 2x 及y =log 133x 都是对数函数.( )(4)对数函数y =log a x(a>0且a≠1)在(0,+∞)上是增函数.( ) (5)函数y =ln 1+x1-x与y =ln(1+x)-ln(1-x)的定义域相同.( )(6)对数函数y =log a x(a>0且a≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只经过第一、四象限.( )答案:(1)× (2)× (3)× (4)× (5)× (6)√ [教材衍化]1.(必修1P68练习T4改编)(log 29)·(log 34)=________. 解析:(log 29)·(log 34)=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.答案:42.(必修1P73探究改编)若函数y =f(x)是函数y =2x的反函数,则f(2)=________. 解析:由题意知f(x)=log 2x, 所以f(2)=log 22=1. 答案:13.(必修1P71表格改编)函数y =log a (4-x)+1(a >0,且a≠1)的图象恒过点________. 解析:当4-x =1即x =3时,y =log a 1+1=1. 所以函数的图象恒过点(3,1). 答案:(3,1)4.(必修1P82A 组T6改编)已知a =2-13,b =log 213,c =log 1213,则a,b,c 的大小关系为________.解析:因为0<a<1,b<0,c =log 1213=log 23>1.所以c>a>b.答案:c>a>b [易错纠偏](1)对数函数图象的特征不熟致误; (2)忽视对底数的讨论致误; (3)忽视对数函数的定义域致误.1.已知a>0,a ≠1,函数y =a x与y =log a (-x)的图象可能是________.(填序号)解析:函数y =log a (-x)的图象与y =log a x 的图象关于y 轴对称,符合条件的只有②. 答案:②2.函数y =log a x(a>0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.解析:分两种情况讨论:①当a>1时,有log a 4-log a 2=1,解得a =2;②当0<a<1时,有log a 2-log a 4=1,解得a =12.所以a =2或12.答案:2或123.函数y =log 23(2x -1)的定义域是________. 解析:由log 23(2x -1)≥0,得0<2x -1≤1.所以12<x ≤1.所以函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1. 答案:⎝ ⎛⎦⎥⎤12,1对数式的化简与求值(1)(2020·杭州市七校联考)计算:log 212=______,2log 23+log 43=________.(2)若a =log 43,则2a+2-a=________. 【解析】 (1)log 212=log 22-12=-12;2log 23+log 43=2log 23+12log 23=2log 2(3·312)=3 3.(2)因为a =log 43=log 223=12log 23=log 23,所以2a+2-a=2log 23+2-log 2 3 =3+2log 233=3+33=433. 【答案】 (1)-12 3 3 (2)433对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数的运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.计算:2log 510+log 514=________,2log 43=________.解析:2log 510+log 514=log 5⎝ ⎛⎭⎪⎫102×14=2,因为log 43=12log 23=log 23,所以2log 43=2log 23= 3.答案:232.2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1=________. 解析:原式=2(lg 2)2+lg 2·lg 5+(1-lg 2)=2(lg 2)2+2lg 2·lg 5+1-lg 2 =2lg 2(lg 2+lg 5)+1-lg 2 =lg 2+1-lg 2=1. 答案:1对数函数的图象及应用(1)函数y =2log 4(1-x)的图象大致是( )(2)函数y =log a (x +4)-1(a>0,a ≠1)的图象恒过定点A,若点A 在直线x m +yn =-1上,且m>0,n>0,则3m +n 的最小值为( )A .13B .16C .11+6 2D .28【解析】 (1)函数y =2log 4(1-x)的定义域为(-∞,1),排除A,B ;又函数y =2log 4(1-x)在定义域内单调递减,排除D.(2)函数y =log a (x +4)-1(a>0,a ≠1)的图象恒过A(-3,-1), 由点A 在直线x m +y n =-1上可得,-3m +-1n =-1,即3m +1n=1,故3m +n =(3m +n)×⎝ ⎛⎭⎪⎫3m +1n =10+3⎝ ⎛⎭⎪⎫n m +m n ,因为m>0,n>0,所以n m +mn≥2n m ×m n =2(当且仅当n m =mn,即m =n 时取等号), 故3m +n =10+3⎝ ⎛⎭⎪⎫n m +m n ≥10+3×2=16,故选B.【答案】 (1)C (2)B利用对数函数的图象可求解的两类热点问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.已知函数y =log a (x +c)(a,c 为常数,其中a>0,a ≠1)的图象如图所示,则下列结论成立的是( )A .a>1,c>1B .a>1,0<c<1C .0<a<1,c>1D .0<a<1,0<c<1解析:选D.由对数函数的性质得0<a<1,因为函数y =log a (x +c)的图象在c>0时是由函数y =log a x 的图象向左平移c 个单位得到的,所以根据题中图象可知0<c<1.2.已知函数f(x)=log a (x +b)(a>0且a≠1)的图象过两点(-1,0)和(0,1),则log b a =________. 解析:f(x)的图象过两点(-1,0)和(0,1).则f(-1)=log a (-1+b)=0且f(0)=log a (0+b)=1,所以⎩⎪⎨⎪⎧b -1=1,b =a ,即⎩⎪⎨⎪⎧b =2,a =2.所以logb a =1. 答案:1对数函数的性质及应用(高频考点)对数函数的性质是每年高考的必考内容之一,多以选择题或填空题的形式考查,难度低、中、高档都有.主要命题角度有:(1)求对数型函数的定义域; (2)比较对数值的大小; (3)解对数不等式;(4)与对数函数有关的复合函数问题. 角度一 求对数型函数的定义域函数f(x)=log 13(4x -5)的定义域为( )A.⎝ ⎛⎭⎪⎫54,+∞B.⎝⎛⎭⎪⎫-∞,54 C.⎝ ⎛⎦⎥⎤54,32 D.⎝ ⎛⎭⎪⎫54,32 【解析】 要使函数有意义,应满足⎩⎪⎨⎪⎧4x -5>0,log 13(4x -5)≥0,所以0<4x -5≤1,54<x ≤32.故函数f(x)的定义域为⎝ ⎛⎦⎥⎤54,32.【答案】 C角度二 比较对数值的大小(1)已知奇函数f(x)在R 上是增函数.若a =-f(log 215),b =f(log 24.1),c =f(20.8),则a,b,c 的大小关系为( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b(2)设a =log 3π,b =log 23,c =log 32,则( ) A .a>b>c B .a>c>b C .b>a>cD .b>c>a【解析】 (1)由f(x)是奇函数可得,a =-f ⎝ ⎛⎭⎪⎫log 215=f(log 25),因为log 25>log 24.1>log 24=2>20.8,且函数f(x)是增函数,所以c<b<a.(2)因为a =log 3π>log 33=1,b =log 23<log 22=1,所以a>b,又b c =12log 2312log 32=(log 23)2>1,c>0,所以b>c,故a>b>c.【答案】 (1)C (2)A 角度三 解对数不等式设函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,log 12(-x ),x<0.若f(a)>f(-a),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)【解析】 由题意,得⎩⎪⎨⎪⎧a>0,log 2a>-log 2a或⎩⎪⎨⎪⎧a<0,log 12(-a )>log 2(-a ), 解得a>1或-1<a<0.故选C. 【答案】 C角度四 与对数函数有关的复合函数问题(1)(2020·金丽衢十二校联考)函数y =lg|x|( ) A .是偶函数,在区间(-∞,0)上单调递增 B .是偶函数,在区间(-∞,0)上单调递减 C .是奇函数,在区间(0,+∞)上单调递增D .是奇函数,在区间(0,+∞)上单调递减(2)若f(x)=lg(x 2-2ax +1+a)在区间(-∞,1]上递减,则a 的取值范围为________.【解析】 (1)因为lg|-x|=lg|x|,所以函数y =lg|x|为偶函数,又函数y =lg|x|在区间(0,+∞)上单调递增,由其图象关于y 轴对称可得,y =lg|x|在区间(-∞,0)上单调递减,故选B.(2)令函数g(x)=x 2-2ax +1+a =(x -a)2+1+a -a 2,对称轴为x =a,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a>0,a ≥1,解得1≤a<2,即a∈[1,2). 【答案】 (1)B (2)[1,2)(1)比较对数值的大小的方法①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.②若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. ③若底数与真数都不同,则常借助1,0等中间量进行比较. (2)解对数不等式的类型及方法①形如log a x>log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a>1与0<a<1两种情况讨论.②形如log a x>b 的不等式,需先将b 化为以a 为底的对数式的形式再进行求解. (3)解决与对数函数有关的函数的单调性问题的步骤1.(2020·宁波模拟)已知a>0,a ≠1,函数f(x)=log a |ax 2-x|在[3,4]上是增函数,则a 的取值范围是( )A.16≤a<14或a>1 B .a>1 C.18≤a<14 D.15≤a ≤14或a>1 解析:选A.令t =|ax 2-x|,y =log a t,当a>1时,外函数为递增函数,所以内函数t =|ax 2-x|,x ∈[3,4],要为递增函数,所以1a <3或4≤12a ,解得a>13或a≤18,所以a>1,当0<a<1时,外函数为递减函数,所以内函数t=|ax 2-x|,x ∈[3,4],要为递减函数,12a ≤3<4<1a ,解得16≤a<14,综上所述,16≤a<14或a>1,故选A.2.(2020·绍兴一中高三期中)已知f(x)=lg(2x -4),则方程f(x)=1的解是________,不等式f(x)<0的解集是________.解析:因为f(x)=1,所以lg(2x -4)=1,所以2x -4=10,所以x =7;因为f(x)<0,所以0<2x -4<1,所以2<x<2.5,所以不等式f(x)<0的解集是(2,2.5).答案:7 (2,2.5)思想方法系列1 分类讨论思想研究指数、对数函数的性质已知函数f(x)=log a (2x -a)(a>0且a≠1)在区间[12,23]上恒有f(x)>0,则实数a 的取值范围是( )A .(13,1)B .[13,1)C .(23,1)D .[23,1)【解析】 当0<a<1时,函数f(x)在区间[12,23]上是减函数,所以log a (43-a)>0,即0<43-a<1,解得13<a<43,故13<a<1;当a>1时,函数f(x)在区间[12,23]上是增函数,所以log a (1-a)>0,即1-a>1,解得a<0,此时无解.综上所述,实数a 的取值范围是(13,1).【答案】 A本题利用了分类讨论思想,在研究指数、对数函数的性质时,常对底数a 的值进行分类讨论,实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.已知函数y =b +ax2+2x(a,b 是常数且a>0,a ≠1)在区间[-32,0]上有y max =3,y min =52,试求a,b 的值.解:令t =x 2+2x =(x +1)2-1, 因为x∈[-32,0],所以t∈[-1,0].(1)若a>1,函数f(x)=a t在[-1,0]上为增函数, 所以a t∈[1a,1],则b +ax2+2x ∈[b +1a ,b +1],依题意得⎩⎪⎨⎪⎧b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧a =2,b =2.(2)若0<a<1,函数f(x)=a t在[-1,0]上为减函数, 所以a t∈[1,1a],则b +ax2+2x ∈[b +1,b +1a ],依题意得⎩⎪⎨⎪⎧b +1a =3,b +1=52,解得⎩⎪⎨⎪⎧a =23,b =32.综上,a,b 的值为⎩⎪⎨⎪⎧a =2,b =2或⎩⎪⎨⎪⎧a =23,b =32.[基础题组练]1.实数lg 4+2lg 5的值为( ) A .2 B .5 C .10D .20解析:选A.lg 4+2lg 5=2lg 2+2lg 5=2(lg 2 +lg 5)=2lg (2×5)=2lg 10=2.故选A. 2.函数f(x)=ln (x +3)1-2x的定义域是( ) A .(-3,0) B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)解析:选A.因为f(x)=ln (x +3)1-2x,所以要使函数f(x)有意义,需使⎩⎪⎨⎪⎧x +3>0,1-2x >0,即-3<x<0. 3.(2020·浙江省名校新高考研究联盟联考)若log 83=p,log 35=q,则lg 5(用p 、q 表示)等于( ) A.3p +q5 B.1+3pqp +qC.3pq1+3pqD .p 2+q 2解析:选C.因为log 83=p,所以lg 3=3plg 2,又因为log 35=q,所以lg 5=qlg 3,所以lg 5=3pqlg2=3pq(1-lg 5),所以lg 5=3pq1+3pq,故选C.4.若函数f(x)=ax -1的图象经过点(4,2),则函数g(x)=log a1x +1的图象是( )解析:选D.由题意可知f(4)=2,即a 3=2,a =32. 所以g(x)=log 321x +1=-log 32(x +1).由于g(0)=0,且g(x)在定义域上是减函数,故排除A,B,C.5.(2020·瑞安四校联考)已知函数f(x)=log 12|x -1|,则下列结论正确的是( )A .f ⎝ ⎛⎭⎪⎫-12<f(0)<f(3)B .f(0)<f ⎝ ⎛⎭⎪⎫-12<f(3)C .f(3)<f ⎝ ⎛⎭⎪⎫-12<f(0)D .f(3)<f(0)<f ⎝ ⎛⎭⎪⎫-12 解析:选C.f ⎝ ⎛⎭⎪⎫-12=log 1232,因为-1=log 122<log 1232<log 121=0,所以-1<f ⎝ ⎛⎭⎪⎫-12<0;f(0)=log 121=0;f(3)=log 122=-1,所以C 正确.6.设函数f(x)=log 12(x 2+1)+83x 2+1,则不等式f(log 2x)+f(log 12x )≥2的解集为( )A .(0,2] B.⎣⎢⎡⎦⎥⎤12,2C .[2,+∞)D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 解析:选B.因为f(x)的定义域为R,f(-x)=log 12(x 2+1)+83x 2+1=f(x),所以f(x)为R 上的偶函数.易知其在区间[0,+∞)上单调递减,令t =log 2x,所以log 12x =-t,则不等式f(log 2x)+f(log 12x )≥2可化为f(t)+f(-t)≥2,即2f(t)≥2,所以f(t)≥1,又因为f(1)=log 122+83+1=1,f(x)在[0,+∞)上单调递减,在R 上为偶函数,所以-1≤t≤1,即log 2x∈[-1,1],所以x∈⎣⎢⎡⎦⎥⎤12,2,故选B. 7.(2020·瑞安市高三四校联考)若正数a,b 满足log 2a =log 5b =lg(a +b),则1a +1b 的值为________.解析:设log 2a =log 5b =lg(a +b)=k, 所以a =2k,b =5k,a +b =10k,所以ab =10k, 所以a +b =ab,则1a +1b =1.答案:18.设函数f(x)=|log a x|(0<a<1)的定义域为[m,n](m<n),值域为[0,1],若n -m 的最小值为13,则实数a的值为________.解析:作出y =|log a x|(0<a <1)的大致图象如图,令|log a x|=1. 得x =a 或x =1a ,又1-a -⎝ ⎛⎭⎪⎫1a -1=1-a -1-a a =(1-a )(a -1)a <0, 故1-a <1a-1,所以n -m 的最小值为1-a =13,a =23.答案:239.(2020·台州模拟)已知函数f(x)=log a (8-ax)(a>0,a ≠1),若f(x)>1在区间[1,2]上恒成立,则实数a 的取值范围为________.解析:当a>1时,f(x)=log a (8-ax)在[1,2]上是减函数, 由f(x)>1恒成立,则f(x)min =log a (8-2a)>1, 解得1<a<83,当0<a<1时,f(x)在x∈[1,2]上是增函数, 由f(x)>1恒成立,则f(x)min =log a (8-a)>1, 且8-2a<0,所以a>4,且a<1,故不存在.综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫1,83. 答案:⎝ ⎛⎭⎪⎫1,83 10.已知函数f(x)=⎩⎪⎨⎪⎧|log 3x|,0<x≤3,2-log 3x ,x >3,若a <b <c,且f(a)=f(b)=f(c),则a +b +c 的取值范围为________.解析:由f(a)=f(b)=f(c),可知-log 3a =log 3b =2-log 3c,则ab =1,bc =9,故a =1b ,c =9b ,则a +b+c =b +10b ,又b∈(1,3),位于函数f(b)=b +10b 的减区间上,所以193<a +b +c <11.答案:⎝⎛⎭⎪⎫193,1111.函数f(x)=log 12(a x-3)(a>0且a≠1).(1)若a =2,求函数f(x)在(2,+∞)上的值域;(2)若函数f(x)在(-∞,-2)上单调递增,求a 的取值范围.解:(1)令t =a x-3=2x-3,则它在(2,+∞)上是增函数,所以t>22-3=1, 由复合函数的单调性原则可知,f(x)=log 12(2x-3)在(2,+∞)上单调递减,所以f(x)<f(2)=log 12 1=0,即函数f(x)在(2,+∞)上的值域为(-∞,0).(2)因为函数f(x)在(-∞,-2)上单调递增,根据复合函数的单调性法则,所以t =a x-3在(-∞,-2)上单调递减且恒为正数,即⎩⎪⎨⎪⎧0<a<1,t min>a -2-3≥0,解得0<a≤33. [综合题组练]1.设x,y,z 为正数,且2x=3y=5z,则( ) A .2x<3y<5z B .5z<2x<3y C .3y<5z<2xD .3y<2x<5z解析:选D.设2x=3y=5z =k>1, 所以x =log 2k,y =log 3k,z =log 5k.因为2x -3y =2log 2k -3log 3k =2log k 2-3log k 3=2log k 3-3log k 2log k 2·log k 3=log k 32-log k 23log k 2·log k 3=log k98log k 2·log k 3>0,所以2x>3y ;因为3y -5z =3log 3k -5log 5k =3log k 3-5log k 5=3log k 5-5log k 3log k 3·log k 5=log k 53-log k 35log k 3·log k 5=log k 125243log k 3·log k 5<0,所以3y<5z ;因为2x -5z =2log 2k -5log 5k =2log k 2-5log k 5=2log k 5-5log k 2log k 2·log k 5=log k 52-log k 25log k 2·log k 5=log k2532log k 2·log k 5<0,所以5z>2x.所以5z>2x>3y,故选D.2.(2020·宁波高三模拟)两个函数的图象经过平移后能够重合,称这两个函数为“同形”函数,给出四个函数:f 1(x)=2log 2(x +1),f 2(x)=log 2(x +2),f 3(x)=log 2x 2,f 4(x)=log 2(2x),其中“同形”函数是( )A .f 2(x)与f 4(x)B .f 1(x)与f 3(x)C .f 1(x)与f 4(x)D .f 3(x)与f 4(x)解析:选A.f 3(x)=log 2x 2是偶函数,而其余函数无论怎样变换都不是偶函数,故其他函数图象经过平移后不可能与f 3(x)的图象重合,故排除选项B,D ;f 4(x)=log 2(2x)=1+log 2x,将f 2(x)=log 2(x +2)的图象沿着x 轴先向右平移两个单位得到y =log 2x 的图象,再沿着y 轴向上平移一个单位可得到f 4(x)=log 2(2x)=1+log 2x 的图象,根据“同形”函数的定义可知选A.3.(2020·浙江新高考冲刺卷)已知函数f(x)=ln(e 2x+1)-mx 为偶函数,其中e 为自然对数的底数,则m =________,若a 2+ab +4b 2≤m,则ab 的取值范围是________.解析:由题意,f(-x)=ln(e-2x+1)+mx =ln(e 2x +1)-mx,所以2mx =ln(e 2x +1)-ln(e-2x+1)=2x,所以m =1,因为a 2+ab +4b 2≤m,所以4|ab|+ab≤1,所以-13≤ab ≤15,故答案为1,⎣⎢⎡⎦⎥⎤-13,15.答案:1 ⎣⎢⎡⎦⎥⎤-13,154.(2020·宁波诺丁汉大学附中高三调研)已知函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)单调递减,若实数a 满足f(log 3a)+f(log 13a )≥2f(1),则a 的取值范围是________.解析:由于函数f(x)是定义在R 上的偶函数,则f(-x)=f(x),即有f(x)=f(|x|), 由实数a 满足f(log 3a)+f(log 13a )≥2f(1),则有f(log 3a)+f(-log 3a )≥2f(1), 即2f(log 3a )≥2f(1)即f(log 3a )≥f(1), 即有f(|log 3a|)≥f(1),由于f(x)在区间[0,+∞)上单调递减, 则|log 3a|≤1,即有-1≤log 3a ≤1, 解得13≤a ≤3.答案:⎣⎢⎡⎦⎥⎤13,3。
新人教A版高考数学一轮复习对数与对数函数课件
A.(2,+∞)
B.0,12∪(2,+∞)
C.0, 22∪( 2,+∞)
D.( 2,+∞)
(2)已知函数 f(x)=loga(8-ax)(a>0,且 a≠1),若 f(x)>1 在区间[1,2]上恒成立,则实
数 a 的取值范围是________.
解析 (1)因为偶函数 f(x)在(-∞,0]上是减函数,所以 f(x)在(0,+∞)上是增函数,
诊断自测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)log2x2=2log2x.( )
(2)函数 y=log2(x+1)是对数函数.( )
(3)函数 y=ln 11+-xx与 y=ln(1+x)-ln(1-x)的定义域相同.(
)
(4)当 x>1 时,若 logax>logbx,则 a<b.( )
规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特 殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项. 2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法 求解.
【训练 2】 (1)若函数 f(x)=log2(x+1),且 a>b>c>0,则f(aa),f(bb),f(cc)的大
A.a<c<b
B.a<b<c
C.b<c<a
D.c<a<b
解析 (1)因为 a=log23+log2 3=log23 3=32log23>1,b=log29-log2 3=log23 3=a, c=log32<log33=1.所以 a=b>c. (2)因为 y=log5x 是增函数,所以 a=log52<log5 5=0.5. 因为y=log0.5x是减函数, 所以b=log0.50.2>log0.50.5=1. 因为y=0.5x是减函数,所以0.5=0.51<c=0.50.2<0.50=1, 即0.5<c<1.所以a<c<b. 答案 (1)B (2)A
高考数学一轮复习课件_2.6对数与对数函数
1.解答本题(1)时,可假设一个图象正确,然后看另一 个图象是否符合要求;对于本题(2)根据|lg a|=|lg b|得到ab= 1是解题的关键.
2.对一些可通过平移、对称变换能作出其图象的对数 型函数,在求解其单调性(单调区间)、值域(最值)、零点时, 常利用数形结合求解.
3.一些对数型方程、不等式问题的求解,常转化为相 应函数图象问题,利用数形结合法求解.
【答案】 (1)A (2)(-∞,-1) (-1,+∞)
【思路点拨】 (1)利用真数大于0构建不等式,但要注 意分类讨论,(2)先由条件求出a的值,再讨论奇偶性和单调 性.
1.利用对数函数的性质比较对数值大小: (1)同底数(或能化为同底的)可利用函数单调性处理; (2)底数不同,真数相同的对数值的比较,可利用函数图 象或比较其倒数大小来进行. (3)既不同底数,又不同真数的对数值的比较,先引入中 间量(如-1,0,1等),再利用对数函数性质进行比较. 2.利用对数函数性质研究对数型函数性质,要注意三 点,一是定义域;二是底数与1的大小关系;三是复合函数 的构成.
【提示】 作直线y=1,则该直线与四个函数图象交点 的横坐标为相应的底数.∴0<c<d<1<a<b.由此我们可得 到以下规律:在第一象限内从左到右底数逐渐增大.
2.当对数logab的值为正数或负数时,a,b满足什么条 件?
【提示】 若logab>0,则a,b∈(1,+∞)或a,b∈(0, 1).
若logab<0,则a∈(1,+∞)且b∈(0,1)或a∈(0,1)且 b∈(1,+∞).
3.利用对数运算法则,在积、商、幂的对数与对数的 和、差、倍之间进行转化.
A.(1,10) B.(5,6)
C.(10,12)
D.(20,24)
人教A版高考总复习一轮文科数学精品课件 第2章 函数的概念与性质 第6节 对数与对数函数
逐渐增大.
4.反函数
对数函数y=logax(a>0,且a≠1)和指数函数y=ax(a>0,且a≠1)互为反函数,函数
y=ax(a>0,且a≠1)与y=logax(a>0,且a≠1)的图象关于 直线y=x 对称.
常用结论
1.logab·
logba=1,即
1
logab=
(a,b 均大于
lo g
0 且不等于 1).
2.logab·
logbc·
logcd=logad(a,b,c均大于0且不等于1,d>0).
研考点 精准突破
考点一
对数的运算
例1计算:(1)lg 25+lg 2·lg 50+(lg 2)2;
(lg3 )2 -lg9 +1·(lg 27+lg8 -lg 1 000)
log 2 ≤ 2,
1
0,
2
2
,即
2
上有交点.
a 的取值范围为 0,
2
2
.
考点三
对数函数的性质及应用(多考向探究)
考向1 比较对数值的大小
例3 (1)设a=log26,b=log312,c=log515,则(
A.a<b<c
B.c<b<a
C.b<a<c
D.c<a<b
a
(2)已知 3 =log 1 a,
性(单调区间)、值域(最值)、零点时,常利用数形结合思想.
(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形
结合法求解.
对点训练2(1)函数y=2log4(1-x)的图象大致是(
人教版高三数学一轮复习精品课件6:2.6 对数与对数函数
答案:(-∞,2]
1.对数值的大小比较的基本方法 (1)化同底后利用函数的单调性;(2)作差或作商法;
(3)利用中间量(0 或 1);(4)化同真数后利用图像比较. 2.明确对数函数图像的基本点 (1)当 a>1 时,对数函数的图像“上升”; 当 0<a<1 时,对数函数的图像“下降”. (2)对数函数 y=logax(a>0,且 a≠1)的图像过定点(1,0),且
如果 a>0 且 a≠1,M>0,N>0,那么
①loga(M·N)= logaM+logaN , ②logaMN= logaM-logaN , ③logaMn=nlogaM(n∈R).
3.对数函数的图像与性质
a>1
0<a<1
图像
ቤተ መጻሕፍቲ ባይዱ
定义域 值域 定点
单调性
函数值 正负
__(0_,__+__∞__)___
过点(a,1)1a,-1,函数图像只在第一、四象限.
[练一练] 1.函数 y=loga(3x-2)(a>0,a≠1)的图像经过定点 A,则 A 点
坐标是________. 答案:(1,0) 2.(2013·全国卷Ⅱ改编)设 a=log32,b=log52,c=log23,则
a,b,c 的大小关系为________.
标为________.
(2)当 0<x≤12时,4x<logax,则 a 的取值范围是________.
[解析]
(1)由条件得,点
A
在函数
y=log
2 2x
的图像上,从而由
2=log
2 2x
得 xA=12.而点 B 在函数 y=x12上,从而 2=x21,解得 xB=4.于是点 C 的横坐标为