高中数学 3.1.1方程的根与函数的零点(1)学案 新人教A版必修1
高中数学3.1.1方程的根与函数的零点教案新人教A版必修1
(2) 2 x( x 2) 3 ; (3) x 4 x 4 ;
2
尝 试 练 习
(4) 5x 2 x 3x 5 .
2 2
师:结合图象考察零点 所在的大致区间与个 数,结合函数的单调性 说明零点的个数;让学 生认识到函数的图象及 基本性质(特别是单调 性)在确定函数零点中 的重要作用.
组 织 探 究
生:分析函数,按提示 (Ⅰ)观察二次函数 f ( x) x 2 2 x 3 的图象: 探索,完成解答,并认 真思考. 1 ○ 在区间 [2,1] 上有零点______; 师:引导学生结合函数 图象,分析函数在区间 f (2) _______, f (1) _______, 端点上的函数值的符号 情况,与函数零点是否 f (2) · f (1) _____0(<或>) . 存在之间的关系. 生:结合函数图象,思 2 在区间 [2,4] 上有零点______; ○ 考、讨论、总结归纳得 出函数零点存在的条 f (2) · f (4) ____0(<或>) . 件,并进行交流、评析. 师:引导学生理解函数 (Ⅱ)观察下面函数 y f ( x) 的图象 零点存在定理,分析其 中各条件的作用.
函数零点的概念: 师:引导学生仔细体会 左边的这段文字,感悟 其中的思想方法. 的实数 x 叫做函数 y f ( x)(x D) 的零点. 生:认真理解函数零点 函数零点的意义: 的意义,并根据函数零 点的意义探索其求法: 函数 y f ( x) 的零点就是方程 f ( x) 0 实数根, 1 代数法; ○ 2 几何法. ○ 亦即函数 y f ( x) 的图象与 x 轴交点的横坐标. 对于函数 y f ( x)(x D) ,把使 f ( x) 0 成立 组 织 探 究 即: 方程 f ( x) 0 有实数根 函数 y f ( x) 的图 象与 x 轴有交点 函数 y f ( x) 有零点. 函数零点的求法: 求函数 y f ( x) 的零点: 1 (代数法)求方程 f ( x) 0 的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以 ○ 将它与函数 y f ( x) 的图象联系起来,并利用函数的 性质找出零点.
高中数学《3.1.1方程的根与函数的零点(一)》教案 新人教A版必修1
模块必修一第三单元第3.1.1节方程的根与函数零点教学案 课时:第一课时 课型:新授 编者: 日期: 年 月 日 三维目标1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2. 掌握零点存在的判定定理.自主性学习1、旧知识铺垫 复习1:一元二次方程2ax +bx +c =0 (a ≠0)的解法.判别式∆= .当∆ 0,方程有两根,为1,2x = ;当∆ 0,方程有一根,为0x = ;当∆ 0,方程无实根.复习2:方程2ax +bx +c =0 (a ≠0)的根与二次函数y =ax 2+bx +c (a ≠0)的图象之间有什么关2、新知识学习探究任务一:函数零点与方程的根的关系问题:① 方程2230x x --=的解为 ,函数223y x x =--的图象与x 轴有 个交点,坐标为 .② 方程2210x x -+=的解为 ,函数221y x x =-+的图象与x 轴有 个交点,坐标为 .③ 方程2230x x -+=的解为 ,函数223y x x =-+的图象与x 轴有 个交点,坐标为 .根据以上结论,可以得到:一元二次方程20(0)ax bx c a ++=≠的根就是相应二次函数20(0)y ax bx c a =++=≠的图象与x 轴交点的 .你能将结论进一步推广到()y f x =吗?总结:零点的定义反思:函数()y f x =的零点、方程()0f x =的实数根、函数()y f x = 的图象与x 轴交点的横坐标,三者有什么关系?探究任务二:零点存在性定理问题:① 画出二次函数()223f x x x =--的图像,观察函数在区间[-2,1]上有无零点,计算f(-2)与f(1)的乘积,你能发现他们的乘积有什么特点?在区间[2,4]上是否也有这种特点呢?通过函数的图象和计算发现:()()21f f -⋅__0,()223f x x x =--在(-2,1)有零点_______,它是2230x x --=的根。
高中数学3.1.1方程的根与函数的零点教案新人教A版必修1
§3.1函数与方程3.1.1 方程的根与函数的零点教学目标:1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数2.让学生了解函数的零点与方程根的联系3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用4.培养学生动手操作的能力教学重点:确定方程实数根的个数教学难点:通过计算器或计算机做出函数的图象 教学方法:探讨法教学过程:引入问题一元二次方程20(0)ax bx c a ++=≠的根与二次函数2(0)y ax bx c a =++≠的图象有什么关系? 通过复习二者之间的关系引出新课(板书课题):1.函数零点的定义:对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).这样,函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标,故有2.一般结论方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点3.函数变号零点具有的性质对于任意函数()y f x =,只要它的图象是连续不间断的,则有(1)当它通过零点时(不是二重零点),函数值变号。
如函数2()23f x x x =--的图象在零点1-的左边时,函数值取正号,当它通过第一个零点1-时,函数值由正变为负,再通过第二个零点3时,函数值又由负变成正(见教材第102页“探究”题)。
(2)在相邻两个零点之间所有的函数值保持同号。
4.注意点(1)函数是否有零点是针对方程是否有实数根而言的,若方程没有实数根,则函数没有零点。
(2)如方程有二重实数根,可以称函数有二阶零点。
5.勘根定理如果函数()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有()()0f a f b ⋅<那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的实数根。
高中数学 3.1 函数与方程 1 方程的根与函数的零点(一)教学案新人教A版必修1
§3.1.1 方程的根与函数的零点(一)【教学目标】1.知识与技能理解函数(二次函数)零点的概念;领会函数零点与相应方程的关系;掌握零点存在的判断条件. 2.过程与方法通过观察二次函数的图像,并计算函数在区间端点处的函数值的积的符号,找到图像连续不断的函数在某个区间上存在零点的判断方法.3. 情感、态度、价值观从函数的零点和方程根的内在联系中体验数学中的转化思想的意义和价值;培养学生观察能力和抽象概括能力【预习任务】阅读P86-88页,完成下列任务1.理解一元二次函数y=ax2+bx+c的图象与相应方程ax2+bx+c=0(a≠0)的根之间的关系.设判别式△=b2-4ac(1)当△>0时,一元二次方程有两不等实数根,写出与相应二次函数的图象间的关系(2)当△=0时,一元二次方程有两相等实数根,写出与相应二次函数的图象间的关系(3)当△<0时,一元二次方程没有实数根,写出与相应二次函数的图象间的关系2.理解函数零点概念并记忆①写出函数的零点定义;②函数的零点与相应方程的根、与相应函数的图象与x轴交点的横坐标之间有什么关系?③如果函数y=f(x)在区间[a,b]上是单调函数且图像是连续不断的,零点c (a,b),判断f(a)·f(b)的符号.3.写出零点存在定理并记忆;【自主检测】1.函数f(x)= x 2-2x -3①判断方程x 2-2x -3=0根的个数.②方程x 2-2x -3=0的根与二次函数f(x)= x 2-2x -3的零点有什么关系?③-1是方程x 2-2x -3=0的一个根,介于-2与0之间,判断f(-2)∙f(0)的符号.2.函数f(x)=lnx -2x的零点所在的大致区间是( ) A.(1,2) B.(2,3) C.(1e ,1)和(3,4) D.(e,+∞)【组内互检】1.写出函数的零点定义;2.函数的零点与相应方程的根、与相应函数的图象与x 轴交点的横坐标之间的关系。
高中数学 3.1.1方程的根与函数的零点(第一课时)导学案 新人教A版必修1
四川省古蔺县中学高中数学必修一 3.1.1方程的根与函数的零点(第一课时)导学案一、教学目标:1.借助二次函数的图象与x轴的交点和相应一元二次方程根的关系,理解函数零点的概念。
体会函数的零点与方程的根及函数图象之间的联系。
2.理解并会用函数的零点存在定理判断函数零点所在区间。
3.在函数与方程的联系中体验数学转化思想的意义和价值.二、教学重难点:1.教学重点:发现和认识函数零点与方程根之间的关系。
2.教学难点:探究和掌握连续函数在某区间上存在零点的判定方法。
三、课时学法指导1.学生自学和教师引导相结合,通过实际例子概括出函数零点的概念,通过观察探讨,学生认识与领会二次函数图象与二次方程根的关系,最终认识函数零点的概念。
2.在认识函数零点概念的基础上,通过观察总结,学生总结概括函数图像与X轴的交点、方程有无实数根这三者之间关系,从而渗透函数与方程思想。
四、预习案: 完成任务情况自评:学科组长评价: .1.任务布置:阅读与思考:小组长组织本小组仔细阅读书上86—88页;找出疑惑之处,完成预习案,思考探究案。
1.函数y=f(x)的零点的概念:2.函数y=f(x)的零点就是,也就是3. 函数122+-=x x y 的零点是(1,0)吗?函数y=f(x)的零点与几何意义上的点有区别吗?2.存在问题:五、探究案探究一:若将特殊的一元二次方程推广到一般的一元二次方程20axbx c ++=(0)a > 及相应的二次函数c bx ax y ++=2(0)a >的图象与x 轴交点的关系,课本上86页最下边结论是否仍然成立?探究二: 函数零点的定义是 探究三:1.零点存在定理:如果函数 y=f(x)在区间[a, b]上的图象是 的一条曲线,并且有 , 那么, 函数y=f(x) 在区间(a, b)内有零点, 即存在 ,使 , 这个c 也就是方程f(x) = 0的根.2.概念辨析:(1)若函数 y=f(x)在区间[a, b]上的图象不连续此定理还成立吗?(2)若函数y=f(x) 在区间(a, b)内有零点,一定能得出f(a)·f(b)<0吗?3.思考:判定函数y=f(x) 在区间(a, b)内是否有零点的方法是:六:训练案课本88页、练习1 92页习题2七:反思与小结:。
高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1
3.1.1 方程的根与函数的零点[学习目标] 1.理解函数零点的定义,会求函数的零点.2.掌握函数零点的判定方法.3.了解函数的零点与方程的根的联系.[知识链接]考察下列一元二次方程与对应的二次函数:(1)方程x2-2x-3=0与函数y=x2-2x-3;(2)方程x2-2x+1=0与函数y=x2-2x+1;(3)方程x2-2x+3=0与函数y=x2-2x+3.你能列表表示出方程的根,函数的图象及图象与x轴交点的坐标吗?答案[1.函数的零点对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.2.方程、函数、图象之间的关系;方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3.函数零点存在的判定方法如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0.那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.温馨提示 判定函数零点的两个条件缺一不可,否则不一定存在零点;反过来,若函数y =f (x )在区间(a ,b )内有零点,则f (a )·f (b )<0不一定成立.要点一 求函数的零点例1 判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=x 2+7x +6; (2)f (x )=1-log 2(x +3); (3)f (x )=2x -1-3;(4)f (x )=x 2+4x -12x -2.解 (1)解方程f (x )=x 2+7x +6=0, 得x =-1或x =-6, 所以函数的零点是-1,-6.(2)解方程f (x )=1-log 2(x +3)=0,得x =-1, 所以函数的零点是-1. (3)解方程f (x )=2x -1-3=0,得x =log 26,所以函数的零点是log 26.(4)解方程f (x )=x 2+4x -12x -2=0,得x =-6,所以函数的零点为-6.规律方法 求函数零点的两种方法:(1)代数法:求方程f (x )=0的实数根;(2)几何法:对于不能用求根公式的方程,可以将它与函数y =f (x )的图象联系起来,并利用函数的性质找出零点.跟踪演练1 判断下列说法是否正确: (1)函数f (x )=x 2-2x 的零点为(0,0),(2,0); (2)函数f (x )=x -1(2≤x ≤5)的零点为x =1.解 (1)函数的零点是使函数值为0的自变量的值,所以函数f (x )=x 2-2x 的零点为0和2,故(1)错.(2)虽然f (1)=0,但1∉[2,5],即1不在函数f (x )=x -1的定义域内,所以函数在定义域[2,5]内无零点,故(2)错. 要点二 判断函数零点所在区间例2 在下列区间中,函数f (x )=e x+4x -3的零点所在的区间为( )A.⎝ ⎛⎭⎪⎫-14,0B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫14,12D.⎝ ⎛⎭⎪⎫12,34 答案 C解析 ∵f ⎝ ⎛⎭⎪⎫14=4e -2<0,f (12)=e -1>0,∴f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0,∴零点在⎝ ⎛⎭⎪⎫14,12上. 规律方法 1.判断零点所在区间有两种方法:一是利用零点存在定理,二是利用函数图象. 2.要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用 ,若f (x )图象在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )上必有零点,若f (a )·f (b )>0,则f (x )在(a ,b )上不一定没有零点.跟踪演练2 函数f (x )=e x+x -2所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 答案 C解析 ∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0,∴f (x )在(0,1)内有零点. 要点三 判断函数零点的个数例3 判断函数f (x )=ln x +x 2-3的零点的个数.解 方法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而ln x +x 2-3=0有一个根, 即函数y =ln x +x 2-3有一个零点. 方法二 由于f (1)=ln 1+12-3=-2<0,f (2)=ln 2+22-3=ln 2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点,又f (x )在(0,+∞)上是递增的,所以零点只有一个.规律方法 判断函数零点个数的方法主要有:(1)对于一般函数的零点个数的判断问题,可以先确定零点存在,然后借助于函数的单调性判断零点的个数;(2)由f (x )=g (x )-h (x )=0,得g (x )=h (x ),在同一坐标系下作出y 1=g (x )和y 2=h (x )的图象,利用图象判定方程根的个数;(3)解方程,解得方程根的个数即为函数零点的个数. 跟踪演练3 函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4 答案 B解析 令f (x )=2x|log 0.5x |-1=0,可得|log 0.5x |=⎝ ⎛⎭⎪⎫12x.设g (x )=|log 0.5x |,h (x )=⎝ ⎛⎭⎪⎫12x,在同一坐标系下分别画出函数g (x ),h (x )的图象,可以发现两个函数图象一定有2个交点,因此函数f (x )有2个零点.1.函数y =4x -2的零点是( ) A .2 B .(-2,0) C.⎝ ⎛⎭⎪⎫12,0 D.12 答案 D解析 令y =4x -2=0,得x =12.∴函数y =4x -2的零点为12.2.对于函数f (x ),若f (-1)·f (3)<0,则( ) A .方程f (x )=0一定有实数解 B .方程f (x )=0一定无实数解 C .方程f (x )=0一定有两实根 D .方程f (x )=0可能无实数解 答案 D解析 ∵函数f (x )的图象在(-1,3)上未必连续,故尽管f (-1)·f (3)<0,但未必函数y =f (x )在(-1,3)上有实数解.3.函数y =lg x -9x的零点所在的大致区间是( )A .(6,7)B .(7,8)C .(8,9)D .(9,10) 答案 D解析 因为f (9)=lg 9-1<0,f (10)=lg 10-910=1-910>0,所以f (9)·f (10)<0,所以y =lg x -9x在区间(9,10)上有零点,故选D.4.方程2x -x 2=0的解的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 在同一坐标系画出函数y =2x,及y =x 2的图象,可看出两图象有三个交点,故2x-x 2=0的解的个数为3.5.函数f (x )=x 2-2x +a 有两个不同零点,则实数a 的范围是________. 答案 (-∞,1)解析 由题意可知,方程x 2-2x +a =0有两个不同解, 故Δ=4-4a >0,即a <1.1.在函数零点存在定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.2.方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时化为方程问题,这正是函数与方程思想的基础.一、基础达标1.下列图象表示的函数中没有零点的是( )答案 A解析B,C,D的图象均与x轴有交点,故函数均有零点,A的图象与x轴没有交点,故函数没有零点.2.函数f(x)=(x-1)(x2+3x-10)的零点个数是( )A.1 B.2 C.3 D.4答案 C解析∵f(x)=(x-1)(x2+3x-10)=(x-1)(x+5)(x-2),∴由f(x)=0得x=-5或x=1或x=2.3.根据表格中的数据,可以断定函数f(x)=e x-x-2的一个零点所在的区间是( )A.(-1,0) B.C.(1,2) D.(2,3)答案 C解析由上表可知f(1)=2.72-3<0,f(2)=7.39-4>0,∴f(1)·f(2)<0,∴f(x)在区间(1,2)上存在零点.4.函数f(x)=ln x+2x-6的零点所在的区间为( )A.(1,2) B.(2,3)C.(3,4) D.(4,5)答案 B解析f(1)=ln 1+2-6=-4<0,f(2)=ln 2+4-6=ln 2-2<0,f(3)=ln 3+6-6=ln 3>0,所以f(2)·f(3)<0,则函数f(x)的零点所在的区间为(2,3).5.方程log3x+x=3的解所在的区间为( )A.(0,2) B.(1,2)C.(2,3) D.(3,4)答案 C解析 令f (x )=log 3x +x -3,则f (2)=log 32+2-3=log 323<0,f (3)=log 33+3-3=1>0,那么方程log 3x +x =3的解所在的区间为(2,3).6.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于________. 答案 0解析 ∵奇函数的图象关于原点对称,∴若f (x )有三个零点,则其和必为0. 7.判断函数f (x )=log 2x -x +2的零点的个数. 解 令f (x )=0,即log 2x -x +2=0, 即log 2x =x -2. 令y 1=log 2x ,y 2=x -2.画出两个函数的大致图象,如图所示,有两个不同的交点.所以函数f (x )=log 2x -x +2有两个零点. 二、能力提升8.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内 D .(-∞,a )和(c ,+∞)内 答案 A解析 ∵f (x )=(x -a )(x -b )+(x -b )(x -c )+ (x -c )(x -a ),∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ),f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0, ∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.9.若函数f (x )=ax 2-x -1仅有一个零点,则a =__________. 答案 0或-14解析 a =0时,f (x )只有一个零点-1,a ≠0时,由Δ=1+4a =0,得a =-14.10.设x 0是方程ln x +x =4的解,且x 0∈(k ,k +1),k ∈Z ,则k =________. 答案 2解析 令f (x )=ln x +x -4, 且f (x )在(0,+∞)上递增, ∵f (2)=ln 2+2-4<0,f (3)=ln 3-1>0.∴f (x )在(2,3)内有解,∴k =2.11.已知函数f (x )=x 2-2x -3,x ∈[-1,4]. (1)画出函数y =f (x )的图象,并写出其值域;(2)当m 为何值时,函数g (x )=f (x )+m 在[-1,4]上有两个零点? 解 (1)依题意:f (x )=(x -1)2-4,x ∈[-1,4],其图象如图所示.由图可知,函数f (x )的值域为[-4,5].(2)∵函数g (x )=f (x )+m 在[-1,4]上有两个零点.∴方程f (x )=-m 在x ∈[-1,4]上有两相异的实数根,即函数y =f (x )与y =-m 的图象有两个交点.由(1)所作图象可知,-4<-m ≤0,∴0≤m <4.∴当0≤m <4时,函数y =f (x )与y =-m 的图象有两个交点, 故当0≤m <4时,函数g (x )=f (x )+m 在[-1,4]上有两个零点. 三、探究与创新12.已知二次函数f (x )满足:f (0)=3;f (x +1)=f (x )+2x . (1)求函数f (x )的解析式;(2)令g (x )=f (|x |)+m (m ∈R ),若函数g (x )有4个零点,求实数m 的范围. 解 (1)设f (x )=ax 2+bx +c (a ≠0),∵f (0)=3, ∴c =3,∴f (x )=ax 2+bx +3.f (x +1)=a (x +1)2+b (x +1)+3=ax 2+(2a +b )x +(a +b +3), f (x )+2x =ax 2+(b +2)x +3,∵f (x +1)=f (x )+2x ,∴⎩⎪⎨⎪⎧2a +b =b +2,a +b +3=3,解得a =1,b =-1,∴f (x )=x 2-x +3.(2)由(1),得g (x )=x 2-|x |+3+m ,在平面直角坐标系中,画出函数g (x )的图象,如图所示,由于函数g (x )有4个零点,则函数g (x )的图象与x 轴有4个交点. 由图象得⎩⎪⎨⎪⎧3+m >0,114+m <0,解得-3<m <-114,即实数m 的范围是⎝⎛⎭⎪⎫-3,-114. 13.已知二次函数f (x )=x 2-2ax +4 ,求下列条件下,实数a 的取值范围. (1)零点均大于1;(2)一个零点大于1,一个零点小于1;(3)一个零点在(0,1)内,另一个零点在(6,8)内. 解 (1)因为方程x 2-2ax +4=0的两根均大于1, 结合二次函数的单调性与零点存在定理,得 ⎩⎪⎨⎪⎧-2a 2-16≥0,f 1 =5-2a >0,a >1.解得2≤a <52.(2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,结合二次函数的单调性与零点存在定理,得f (1)=5-2a <0,解得a >52.(3)因为方程x 2-2ax +4=0的一个根在(0,1)内,另一个根在(6,8)内, 结合二次函数的单调性与零点存在定理,得⎩⎪⎨⎪⎧f 0 =4>0,f 1 =5-2a <0,f 6 =40-12a <0,f 8 =68-16a >0,解得103<a <174.。
高中数学3.1.1方程的根与函数的零点教案新人教A版必修1
3.1.1方程的根与函数的零点(教学设计)教学目标:知识与技能:理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.过程与方法:零点存在性的判定.情感、态度、价值观:在函数与方程的联系中体验数学中的转化思想的意义和价值.教学重点:重点:零点的概念及存在性的判定.难点:零点的确定.一、复习回顾,新课导入讨论:一元二次方程ax2 bx c 0(a 0)的根与二次函数y ax2 bx c(a 0)数的图象有什么关系?先观察几个具体的一元二次方程及其相应的二次函数,分别选取方程有两个不同的根、重根和无实数根三种类型.方程x22x30与函数y 2 x2x3;方程 2x2x10与函数y 2 x2x1;方程 2x2x30与函数y 2 x2x3;交点的横坐标.二、师生互动,新课讲解:1、函数的零点对于函数y f (x),我们把使f(x) 0的实数x叫做函数y f (x)的零点(zero point ).显然,函数y f(x)的零点就是方程f(x) 0的实数根,也就是函数y f (x)的图象与x轴的交点的横坐标.一兀二次方程ax bx c0(a0)有两不同根就是相应的—次函数y 2 ax bx c 0的图象与x轴有两个不同交点,且其横坐标就是根;一兀二次方程ax bx c0(a0)有两个重根就是相应的二次函数y 2 ax bx c 0的图象与x轴一个交点,且其横坐标就是根;一兀二次方程ax bx c0(a0)无实数根就是相应的二次函数y 2 ax bx c0的图象与x轴没有交点;总之,一元二次方程ax2bx c0(a 0)的根就是相应的二次函数y 2 ax bx c 0的图象与x轴的再请同学们解方程, 并分别画出三个函数的草图.方程f(x) 0有实数根函数y f(x)的图象与x 轴有交点 函数y f(x)有零点.2、函数零点的判定:第I 组能说明他的行程中一定曾渡过河 ,而第n 组中他的行程就不一定曾渡过河。
高中数学 3.1.1方程的根与函数的零点教案1 新人教A版
课题:§3.1.1方程的根与函数的零点教学内容分析:本节课选自高中数学人教A版必修1第三章《函数与方程》第一节《方程的根和函数的零点》。
函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。
在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。
学生在学习了基本初等函数之后,对于函数的概念已经有了更进一步的认识,并掌握了研究函数性质的一些方法,初步了解数形结合、函数与方程、化归与转化的数学思想方法。
函数作为高中的重点知识,有着广泛的应用,与其他数学有着有机联系。
本节课选取探究具体的一元二次方程的根与其对应的二次函数的图像与x轴的焦点的横坐标之间的关系作为教学的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系,充分体现了函数图像与性质的应用。
因此把握课本要从三方面入手:新旧知识的练习,学生的认知规律,数学思想方法。
学生学习情况分析学生大多来自市区,学生接触面较广,个性较活跃,故采用一些形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。
学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。
再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。
这也为我们归纳函数的零点与方程的根联系提供了知识基础。
但是学生对其他函数的图象与性质认识不深(比如三次函数),对于高次方程还不熟悉,我们缺乏更多类型的例子,让学生从特殊到一般归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应该是学生学习的难点。
人教a版必修1学案:3.1.1方程的根与函数的零点(含答案)
第三章 函数的应用 §3.1 函数与方程3.1.1 方程的根与函数的零点自主学习1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数. 2.理解函数的零点与方程根的关系. 3.掌握函数零点的存在性的判定方法.1.对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的________.2.函数y =f (x )的零点就是方程f (x )=0的__________,也就是函数y =f (x )的图象与x 轴的交点的__________.3.方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有________⇔函数y =f (x )有________.4.函数零点的存在性的判定方法如果函数y =f (x )在[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )________0,那么y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )________0,这个c 也就是方程f (x )=0的根.对点讲练求函数的零点【例1】 求下列函数的零点:(1)f (x )=-x 2-2x +3; (2)f (x )=x 4-1; (3)f (x )=x 3-4x .规律方法 求函数的零点,关键是准确求解方程的根,若是高次方程,要进行因式分解,分解成多个因式积的形式且方程的另一边为零,若是二次方程常用因式分解或求根公式求解.变式迁移1 若函数f (x )=x 2+ax +b 的零点是2和-4,求a ,b 的值.判断函数在某个区间内是否有零点【例2】 (1)函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3) C.⎝⎛⎭⎫1,1e 和(3,4) D .(e ,+∞)(2)f (x )=ln x -2x在x >0上共有________个零点.规律方法 这是一类非常基础且常见的问题,考查的是函数零点的判定方法,一般而言只需将区间端点代入函数求出函数值,进行符号判断即可得出结论,这类问题的难点往往是函数符号的判断,可运用函数的有关性质进行判断,同时也要注意该函数的单调性.变式迁移2 方程x 2-3x +1=0在区间(2,3)内根的个数为( ) A .0 B .1 C .2 D .不确定已知函数零点的特征,求参数范围【例3】 若函数f (x )=ax 2-x -1仅有一个零点,求实数a 的取值范围.变式迁移3 已知在函数f (x )=mx 2-3x +1的图象上其零点至少有一个在原点右侧,求实数m 的范围.1.函数f (x )的零点就是方程f (x )=0的根,但不能将它们完全等同.如函数f (x )=x 2-4x +4只有一个零点,但方程f (x )=0有两个相等实根.2.并不是所有的函数都有零点,即使在区间[a ,b ]上有f (a )·f (b )<0,也只说明函数y =f (x )在(a ,b )上至少有一个零点,但不一定唯一.反之,若f (a )·f (b )>0,也不能说明函数y =f (x )在区间(a ,b )上无零点,如二次函数y =x 2-3x +2在[0,3]上满足f (0)·f (3)>0,但函数f (x )在区间(0,3)上有零点1和2.3.函数的零点是实数而不是坐标轴上的点.课时作业一、选择题1.若函数f (x )唯一的零点在区间(1,3),(1,4),(1,5)内,那么下列说法中错误的是( ) A .函数f (x )在(1,2)或[2,3)内有零点 B .函数f (x )在(3,5)内无零点 C .函数f (x )在(2,5)内有零点D .函数f (x )在(2,4)内不一定有零点2.函数f (x )=log 3x -8+2x 的零点一定位于区间( ) A .(5,6) B .(3,4) C .(2,3) D .(1,2)3.函数f (x )=ax 2+bx +c ,若f (1)>0,f (2)<0,则f (x )在(1,2)上零点的个数为( )A.至多有一个B.有一个或两个C.有且仅有一个D.一个也没有4.已知f(x)是定义域为R的奇函数,且在(0,+∞)内的零点有1 003个,则f(x)的零点的个数为()A.1 003 B.1 004 C.2 006 D.2 0075.若函数y=f(x)在区间[0,4]上的图象是连续不断的曲线,且方程f(x)=0在(0,4)内仅有一个实数根,则f(0)·f(4)的值()A.大于0 B.小于0 C.等于0 D.无法判断二、填空题6.二次函数f(x)=ax2+bx+c中,a·c<0,则函数的零点有________个.7.若函数f(x)=ax+b(a≠0)有一个零点是2,那么函数g(x)=bx2-ax的零点是__________.8.方程2ax2-x-1=0在(0,1)内恰有一个实根,则实数a的取值范围是____________.三、解答题9.判断下列函数在给定区间上是否存在零点.(1)f(x)=x2-3x-18,x∈[1,8];(2)f(x)=x3-x-1,x∈[-1,2];(3)f(x)=log2(x+2)-x,x∈[1,3].10.已知函数f(x)=x2-(k-2)x+k2+3k+5有两个零点.(1)若函数的两个零点是-1和-3,求k的值;(2)若函数的两个零点是α和β,求α2+β2的取值范围.第三章函数的应用§3.1函数与方程3.1.1方程的根与函数的零点答案自学导引1.零点2.实数根横坐标3.交点零点4.< = 对点讲练【例1】 解 (1)由于f (x )=-x 2-2x +3=-(x +3)(x -1). 所以方程-x 2-2x +3=0的两根是-3,1. 故函数的零点是-3,1. (2)由于f (x )=x 4-1=(x 2+1)(x +1)(x -1),所以方程x 4-1=0的实数根是-1,1, 故函数的零点是-1,1.(3)令f (x )=0,即x 3-4x =0,∴x (x 2-4)=0,即x (x +2)(x -2)=0. 解得:x 1=0,x 2=-2,x 3=2,所以函数f (x )=x 3-4x 有3个零点,分别是-2,0,2. 变式迁移1 解 ∵2,-4是函数f (x )的零点, ∴f (2)=0,f (-4)=0. 即⎩⎪⎨⎪⎧ 2a +b =-4-4a +b =-16,解得⎩⎪⎨⎪⎧a =2b =-8. 【例2】 (1)B (2)1解析 (1)∵f (1)=-2<0, f (2)=ln 2-1<0,∴在(1,2)内f (x )无零点,A 不对;又f (3)=ln 3-23>0,∴f (2)·f (3)<0,∴f (x )在(2,3)内有一个零点.(2)f (x )=ln x -2x在x >0上是增函数,且f (2)·f (3)<0,故f (x )有且只有一个零点.变式迁移2 B [令f (x )=x 2-3x +1,∴其对称轴为x =32,∴f (x )在(2,3)内单调递增,又∵f (2)·f (3)<0, ∴方程在区间(2,3)内仅有一个根.]【例3】 解 ①若a =0,则f (x )=-x -1,为一次函数,易知函数仅有一个零点; ②若a ≠0,则函数f (x )为二次函数,若其只有一个零点,则方程ax 2-x -1=0仅有一个实数根,故判别式Δ=1+4a =0,则a =-14.综上,当a =0或a =-14时,函数仅有一个零点.变式迁移3 解 (1)当m =0时,f (0)=-3x +1,直线与x 轴的交点为⎝⎛⎭⎫13,0,即函数的零点为13,在原点右侧,符合题意.图①(2)当m ≠0时,∵f (0)=1, ∴抛物线过点(0,1).若m <0,f (x )的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.图②若m >0,f (x )的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当9-4m ≥0即可,解得0<m ≤94,综上所述,m 的取值范围为 ⎝⎛⎦⎤-∞,94. 课时作业 1.C2.B [f (3)=log 33-8+2×3=-1<0, f (4)=log 34-8+2×4=log 34>0. 又f (x )在(0,+∞)上为增函数, 所以其零点一定位于区间(3,4).]3.C [若a =0,则f (x )=bx +c 是一次函数, 由f (1)·f (2)<0得零点只有一个;若a ≠0,则f (x )=ax 2+bx +c 为二次函数,如有两个零点,则必有f (1)·f (2)>0,与已知矛盾.故f (x )在(1,2)上有且仅有一个零点.]4.D [因为f (x )是奇函数,则f (0)=0,又在(0,+∞)内的零点有1 003个,所以f (x )在 (-∞,0)内的零点有1 003个.因此f (x )的零点共有1 003+1 003+1=2 007个.] 5.D [考查下列各种图象上面各种函数y =f (x )在(0,4)内仅有一个零点, 但是(1)中,f (0)·f (4)>0, (2)中f (0)·f (4)<0,(3)中f (0)·f (4)=0.] 6.2解析 ∵Δ=b 2-4ac >0,∴方程ax 2+bx +c =0有两个不等实根,即函数f (x )有2个零点.7.0,-12解析 由2a +b =0,得b =-2a ,g (x )=bx 2-ax =-2ax 2-ax ,令g (x )=0,得x =0或x =-12,∴g (x )=bx 2-ax 的零点为0,-12.8.(1,+∞)解析 令f (x )=2ax 2-x -1,a =0时不符合题意;a ≠0且Δ=0时,解得a =-18,此时方程为-14x 2-x -1=0,也不合题意;只能f (0)·f (1)<0,解得a >1.9.解 (1)方法一 ∵f (1)=-20<0,f (8)=22>0, ∴f (1)·f (8)<0.故f (x )=x 2-3x -18在[1,8]上存在零点.方法二 令x 2-3x -18=0,解得x =-3或x =6, ∴函数f (x )=x 2-3x -18在[1,8]上存在零点. (2)∵f (-1)=-1<0,f (2)=5>0, ∴f (-1)·f (2)<0.故f (x )=x 3-x -1在[-1,2]上存在零点. (3)∵f (1)=log 2(1+2)-1>log 22-1=0, f (3)=log 2(3+2)-3<log 28-3=0, ∴f (1)·f (3)<0.故f (x )=log 2(x +2)-x 在[1,3]上存在零点.10.解 (1)∵-1和-3是函数f (x )的两个零点,∴-1和-3是方程x 2-(k -2)x +k 2+3k +5=0的两个实数根. 则⎩⎪⎨⎪⎧-1-3=k -2,-1×(-3)=k 2+3k +5, 解得k =-2.(2)若函数的两个零点为α和β,则α和β是方程x 2-(k -2)x +k 2+3k +5=0的两根,∴⎩⎪⎨⎪⎧α+β=k -2,αβ=k 2+3k +5,Δ=(k -2)2-4×(k 2+3k +5)≥0.则⎩⎪⎨⎪⎧α2+β2=(α+β)2-2αβ=-k 2-10k -6,-4≤k ≤-43, ∴α2+β2在区间⎣⎡⎦⎤-4,-43上的最大值是18,最小值是509, 即α2+β2的取值范围为⎣⎡⎦⎤509,18.。
广东省佛山市顺德区高中数学《3.1.1方程的根与函数的零点》学案 新人教A版必修1
§3.1.1 函数与方程编制人 陈剑斌 审核人 张志勇 使用时间一、 学习目标1.了解函数的零点与方程根的关系.2.会用函数观点处理问题3. 激情投入,形成严谨的科学的数学思维和品质。
二、 重难点分析 重点: 理解函数的零点及零点存在性定理2. 难点: 零点存在性的理解与应用三、 问题导学1:完成下列表格1. 函数零点的概念 对于函数y=f(x),我们把使__________的_______叫做函数y=f(x)的零点3. 方程f(x)=0有实数根⇔函数y=f(x)的图像与x 轴有交点⇔函数y=f(x)有零点4.零点与方程的根的关系:求方程f(x)=0的实数根,就是确定函数y=f(x)的零点,一般地,对于不能用公式法求根的方程f(x)=0来说,我们可以讲它与函数y=f(x)联系起来,利用数的性质找出零点,从而求出方程的根四、预习自测1. 二次函数()2237f x x x =+-在R 上有 个零点 ,在(0,3)上有 个零点。
2.若函数()b ax x f +=只有一个零点2,那么函数()ax bx x g -=2的零点是() A、2,0 B、 21,0 C、 21,0- D、21-3.对于函数2()f x x mx n =++若()0,()0f a f b >>则函数()f x 在区间(,)a b 内( )A、一定有1个零点 B、一定没有零点 C、可能有两个零点 D、至多一个零点4.对于函数2()f x x mx n =++若()0,()0f a f b ><则函数()f x 在区间(,)a b 内( )A、一定有1个零点 B、一定没有零点 C、可能有两个零点 D、至多一个零点 五、我的疑问观察二次函数f(x)=x 2-2x-3的图象,我们发现f(x)在区间[-2,1]上有零点,计算f(-2)与f(1)的乘积,你能发现这个乘积有什么特点?在区间[2,4]上是否也具有这种特点呢?例3.(1)、求证:函数32()1f x x x =++在区间()2,1-- 上存在零点. (2)当m = (给出一个实数值即可)时,函数32()f x x x m =++ 在区间()2,1--上存在零点.例4.(1)对于函数3()21f x x x =+-,能否给出一个区间[a,b],使得函数()f x 在(a,b)上有零点?(2)判断函数()238xf x x =+-是否存在零点,若存在,有几个,并指出其零点所在的大概区间八、当堂检测1、对于函数()2f x x bx c =++,若()()0,0f m f n ><(m<n),则函数 ()x f 在区间(),m n 内 ( )A 、一定没有零点B 、可能有两个零点C 、有且只有一个零点D 、一个或两个零点2、已知二次函数()x f y =有两个相异零点21,x x ,且函数()x f y =的对称轴为x=3,则=+21x x ______3:已知函数2y ax bx c =++,如果a b c >>,且0a b c ++=,则它的函数图象是哪个( )A B C D九、课后作业1.函数f(x)=x 2-3x+2的零点是( )A. (1,0)B. (2,0)C.(1,0)和(2,0)D. 1与22.观察下面四个函数图象,在(0,+∞)内,其图象对应的函数有零点的是( )3.若函数f(x)=x 2+2x+a 没有零点,则实数a 的取值范围是____________4.设函数222,[1,)()2,(1,1)x x f x x x x -∈+∞⎧=⎨-∈-⎩则函数1()4y f x =-的零点是________5、已知R a ∈,讨论关于x 的方程2x a -=的实数解的个数。
高中数学 3.1.1《方程的根与函数的零点1》教案 新人教A版必修1
高中数学 3.1.1《方程的根与函数的零点1》教案 新人教A 版必修1四、教学过程【环节一:揭示意义,明确目标】揭示本章意义,指明课节目标【环节二:巧设疑云,轻松渗透】设置问题情境,渗透数学思想教师活动:请同学们思考这个问题。
用屏幕显示判断下列方程是否有实根,有几个实根?(1)2230x x --=;(2)062ln =-+x x .学生活动:回答,思考解法。
教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题。
对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?学生活动:思考作答。
教师活动:用屏幕显示函数223y x x =--的图象。
学生活动:观察图像,思考作答。
教师活动:我们来认真地对比一下。
用屏幕显示表格,让学生填写2230x x --=的实数根和函数图象与x 轴的交点。
学生活动:得到方程的实数根应该是函数图象与x 轴交点的横坐标的结论。
教师活动:我们就把使方程成立的实数x 称做函数的零点.【环节三:形成概念,升华认知】引入零点定义,确认等价关系教师活动:这是我们本节课的第一个知识点。
板书(一、函数零点的定义:对于函数y=f(x),使方程f(x)=0的实数x 叫做函数y=f(x)的零点)。
教师活动:我可不可以这样认为,零点就是使函数值为0的点?学生活动:对比定义,思考作答。
教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?学生活动:思考作答。
教师活动:这是我们本节课的第二个知识点。
板书(方程的根与函数零点的等价关系)。
教师活动:检验一下看大家是否真正理解了这种关系。
如果已知函数y=f(x)有零点,你怎样理解它?学生活动:思考作答。
高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1
“方程的根与函数的零点”【教学过程设计】 (一)设问激疑,引出新知方程解法史话:在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月.对于方程的求解问题,古今中外的数学家已经作了大量的工作,取得辉煌的成果,比如花拉子米公元825年左右编辑著成了《代数学》,比较完整地讨论了一次、二次方程的一般原理;我国南宋数学家秦九绍在《数书九章》中提出了“正负开方术”,此法可以求出任意次代数方程的正根;1824年,挪威数学家阿贝尔成功地证明了五次以上一般方程没有根式解。
随着计算机技术的发展,方程的数值解法得到了广泛的运用,如二分法,牛顿法、弦截法等,今天我们将沿着前人走过的足迹一起探索对于一般方程的求解方法. 【设计意图:了解数学史,激发学生学习兴趣。
】 问题1 求下列方程的根.(1)023=+x ; (2)0652=+-x x ; (3)062ln =-+x x .问题2 观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数图象与x 轴交点的坐标。
方 程 0322=--x x 0122=+-x x 0322=+-x x函 数 322--=x x y 122+-=x x y 322+-=x x y函 数 图 象 (简图)方程的实数根函数的图象与轴的交点提出疑问:方程的根与函数图象与x 轴交点的横坐标之间有什么关系?结论:方程的根就是函数图象与x 轴交点的横坐标。
问题 3 若将上面特殊的一元二次方程推广到一般的一元二次方程20ax bx c ++=(0)a >及相应的二次函数c bx ax y ++=2(0)a >的图象与x轴交点的关系,上述结论是否仍然成立?)0(02>=++a c bx ax方 程 的 根函数的图象(简图)图象与x 轴 的交点0>∆0=∆0<∆【设计意图:让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.为引出函数零点的概念做准备。
高中数学 3.1.1方程的根与函数的零点导学案 新人教A版必修1
课题:3.1.1方程的根与函数的零点一、三维目标:知识与技能:结合二次函数的图象,理解函数的零点概念,领会函数零点与相应方程根的关系;过程与方法:掌握判定函数零点存在的条件,并能简单应用;情感态度与价值观:通过学习,体会数形结合的思想从特殊到一般的思考问题的方法。
二、学习重、难点:函数的零点的概念以及零点存在的判定方法。
三、学法指导:认真阅读教材,在熟练掌握二次函数的有关知识的基础上,结合二次函数图象,由特殊到一般逐渐理解零点的概念,并会判断零点的存在。
四、知识链接:五、学习过程:(一)、认真阅读教材P86---P87页内容,思考:1.通过书中三个具体一元二次方程的根与相应的二次函数的图像与x 轴的交点的关系归纳一元二次方20ax bx c ++=)0(≠a 的根与相应的二次函数c bx ax y ++=2)0(≠a 的图象有什么关系?2.函数的零点的概念:对于函数y =f (x ),把 叫做函数y =f (x )的零点。
注: 函数的零点是一个实数,而不是一个点。
3.方程、函数、图象之间的关系:方程f (x )=0 ⇔函数y =f (x )的图象 ⇔函数y =f (x ) 。
练习:Al .函数y =x -1的零点是 ( )A .(1,0)B .(0,1)C .0D .1A2.函数f (x )=x 2-3x -4的零点是________B3.若函数f (x )=x 2+2x +a 没有零点,则实数a 的取值范围是 ( )A .a <1B .a >1C .a ≤1D .a ≥1C4.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于 ( )A .0B .1C .-1D .不能确定(二)、认真阅读教材P87---P88页内容,探究:函数y =f(x)在某个区间上是否一定有零点?怎样的条件下,函数y =f(x)一定有零点?1观察二次函数223y x x =--的图象 我们发现函数223y x x =--在区间]1,2[-上有零点。
高中-数学-人教A版-数学必修一3.1.1 方程的根与函数的零点 教案
§3.1.1方程的根与函数的零点教案一.教材分析:函数的应用是学习函数的一个重要方面,与其他数学知识有着广泛的联系。
学生学习函数的应用,目的是利用已有的知识分析问题和解决问题。
本节内容是函数应用的第一节课。
课本选取探究具体的一元二次方程的根与其对应的二次函数的图像与x轴的交点的横坐标之间的关系作为本节的入口,其目的是让学生从熟悉的知识发现新知识,使新知识与原有知识形成联系。
教材内容由易到难,循序渐进,符合学生的认知心理和认知规律。
二.学情分析:在初中学生已经学习了二次方程和二次函数的有关内容,已经具备了判断根的个数以及求根的知识能力,本节课从学生熟悉的知识入手,符合学生的认知规律。
但在学习中学生较多对知识的理解不够深刻,而且缺乏对探究问题的描述以及对知识的总结能力。
三 .教学目标:1.知识与技能(1)结合二次函数图像,使学生准确判断出一元二次方程根的存在性及个数;(2)通过探究让学生准确说出函数的零点与方程根的联系;(3)通过实例探究使学生能够完整说出零点存在性定理。
2.过程与方法通过观察二次函数图像,并由函数在区间端点上的函数值之积的特点,让学生能够找到连续函数在某个区间上存在零点的判断方法,进一步体会数形结合思想的应用。
3.情感、态度与价值观通过本节课的学习,使学生体会数形结合的数学思想,从一般到特殊的思想,化归与转化的思想。
从直观感受、师生合作交流、自主探索使学生体会到学会数学所带来的成功的喜悦。
四 .教学重点.难点:重点:函数的零点与方程根之间的关系,连续函数零点的存在性定理。
难点:零点存在性的判定及数形结合的思想﹑转化思想在数学中的应用。
五、教学方法主要采用引导探究的教学方式,运用观察、引导、多媒体辅助教学等形式展开教学,让学生在“探究问题——尝试练习——探索研究——总结归纳”的过程中,体会数学基本思想的应用,从探究的过程中获取知识。
六、教具准备:三角板多媒体七、教学过程即:方程0)(=x f 有实数根⇔函数)(x f y =的图像与x 轴有交点⇔函数)(x f y =有零点.尝 试 练 习 (1)试试: (1)函数y =x+1的零点是 ( ) A(-1,0) B .(0,-1) C .0 D .-1 (2)函数243y x x =-+的零点为 .师:给出问题,提示学生用代数法来解决问题。
高中数学3.1.1方程的根与函数的零点教学设计1新人教A版必修1
二、方程的根与函数的零点的关系 四、播种小结
十、帮助与总结
本节课探求式的教学和图形计算器的运用是本节课的最大特点,先生经过对于图形计算器软件的运用,获得更多的信息,进行分析,总结归纳相关定义,并经过运用图形计算器软件提取出数学学习的相应方法,进而解决今后的成绩。本节整合课提供了一个数学图形世界,培养了先生观察归纳能力,先生的自在发挥空间大,便于师生的交流,信息技术比较巧妙的融进了课堂,帮助先生解决了感性认知,使感性上升到理性变得更加容易。
PPT展现
板书
(七)作业
1.
2.
3.
4.
各有几个零点?并指出零点的大致区间。
1、2、3全班作业
4作为能力提升作业
分层作业使不同先生获得不同播种
巩固本节课程所学内容
PPT展现
八、教学评价设计
课下完成评价量表
评价
项目
评价标准
等级(分)
自我评价
小组评价
教师评价
优秀
良好
普通
差
知识与技能
理解函数零点的意义,了解方程的根与函数的零点的关系
成绩设置:系数选择,相应解析式,函数的大致图象,函数的零点的个数。
师:提出探求,请一个小组到大屏前进行探求过程,巡查各小组完成情况,帮助先生解决相应成绩,参与小组内的讨论,给予恰当及时的评价与鼓励,小组成果展现后教师对每个小组的成果进行点评总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省平江县第三中学高中数学 3.1.1方程的根与函数的零点(1)
学案 新人教A 版必修1
教学目标
1. 理解函数零点的意义,了解函数零点与方程根的关系
2. 由方程的根与函数的零点的探究,体会转化化归思想和数形结合思想.
※ 学习重点、难点:
重点:理解函数零点的概念,掌握函数零点与方程根的求法
难点:利用数形结合思想理解零点与方程根的联系
学习过程
创设情境,引入新课
1.函数)0(2≠++=a c bx ax y 的图象与x 轴的交点和相应的一元二次方程
2的根的关系怎样?
2. 函数图象与轴交点坐标是什么?
3.方程的根与函数之间有什么联系?
探索新知:函数的零点:
1、定义:一般地, 我们把使0)(=x f 的实数称为函数的零点.
2、说明:(1)函数的零点不是点,是个实数.
(2)函数的零点就是相应方程的根,也是函数图象与轴交点的横坐标.
函数的零点问题方程的根的问题图象与轴的交点问题
3.二次函数零点的判定:
学生练习一:
1. 函数x x y 1-
=的零点是 。
2.试判断函数562
+-=x x y 有没有零点?如果有,求出零点.
3.求函数y = –x 2 – 2x + 3的零点,并指出y >0的x 的取值范围
4.已知函数d cx bx ax x f +++=23)(
的图象如右图所示,求函数)(x f y =的零点,
和方程0)(=x f 的实根.
学生练习二:
5.二次函数 n x mx y ++=2中m ·n ﹤0,则函数的零点有 个
6.若函数a x x x f --=2)(2没有零点,则实数
a 的取值范围是
( )
(A )a >-1 (B )a <-1
(C )a ≥-1 (D )a ≤-1 7.函数b ax x x f --=2)(的两个零点是2和3,求函数1)(2--=ax bx x g 的零点。
拓展提高:
1、关于的方程的根满足下列条件时,分别求实数的取值范围
(1)一个根大于1,一个根小于1 (2)一个根在内,另一个根在内
(3)一个根小于2,一个根大于4 (4)两个根都在内
课堂小结
1. 零点的概念、求法、判定
2 数学思想方面
函数与方程的相互转化,即转化思想
借助图象探寻规律,即数形结合思想
作业:教材P88页:1。