高中数学必修5不等式习题
高中数学必修5第3章《不等式》基础训练题
必修5第三章《不等式》基础训练题一、选择题1.若b <0,a +b >0,则a -b 的值( )A .大于0B .小于0C .等于0D .不能确定2.已知M =x 2+y 2-4x +2y ,N =-5,若x ≠2或y ≠-1,则( )A .M >NB .M <NC .M =ND .不能确定3.不等式(x -2)(x +3)>0的解集是( )A .(-3,2)B .(2,+∞)C .(-∞,-3)∪(2,+∞)D .(-∞,-2)∪(3,+∞)4.函数y =x (x -1)+x 的定义域为( )A .{x |x ≥0}B .{x |x ≥1}C .{x |x ≥1}∪{0}D .{x |0≤x ≤1}5.不论x 为何值,二次三项式ax 2+bx +c 恒为正值的条件是( )A .a >0,b 2-4ac >0B .a >0,b 2-4ac ≤0C .a >0,b 2-4ac <0D .a <0,b 2-4ac <06.下列命题中正确的是( )A .不等式x 2>1的解集是{x |x >±1}B .不等式-4+4x -x 2≤0的解集是RC .不等式-4+4x -x 2≥0的解集是空集D .不等式x 2-2ax -a -54>0的解集是R7.若关于x 的不等式2x -1>a (x -2)的解集是R ,则实数a 的取值范围是( )A .a >2B .a =2C .a <2D .a 不存在8.已知点M (x 0,y 0)与点A (1,2)在直线l :3x +2y -8=0的两侧,则( )A .3x 0+2y 0>10B .3x 0+2y 0<0C .3x 0+2y 0>8D .3x 0+2y 0<89.不等式组⎩⎪⎨⎪⎧(x -y +1)(x +y -1)≥00≤x ≤2,表示的平面区域的面积是( )A .2B .4C .6D .810.在直角坐标系内,满足不等式x 2-y 2≤0的点(x ,y )的集合(用阴影表示)是( )二、填空题11.一个两位数个位数字为a ,十位数字为b ,且这个两位数大于50,可用不等关系表示为________.12.已知x <1,则x 2+2与3x 的大小关系为________.13.设集合A ={x |(x -1)2<3x -7,x ∈R },则集合A ∩Z 中有________个元素.14.不等式x +1x -2>0的解集是________.15.原点O (0,0)与点集A ={(x ,y )|x +2y -1≥0,y ≤x +2,2x +y -5≤0}所表示的平面区域的位置关系是________,点M (1,1)与集合A 的位置关系是________.必修5第三章《不等式》基础训练题命题:水果湖高中 胡显义答案1.解析:由题意知a >0,又b <0,∴a -b >0.答案:A2.解析:∵M =x 2+y 2-4x +2y=(x -2)2+(y +1)2-5>-5=N ,∴M >N .答案:A3.解析:不等式(x -2)(x +3)>0的解集是(-∞,-3)∪(2,+∞),故选C.答案:C4.解析:要使函数有意义,需,即x ≥1,或x =0.所以函数的定义域为{x |x ≥1}∪{0},故选C.答案:C5.解析:须a >0且Δ<0.答案:C6.解析:结合三个二次的关系.答案:B7.解析:不等式即为(2-a )x >1-2a ,当a ≠2时,不等式为条件不等式,不合要求;当a =2时,不等式即0·x >-3对一切x 成立,故a 的取值范围是a =2.答案:B8.解析:∵点M 和点A 在直线l 的两侧,又把点A 代入得3×1+2×2-8=-1<0,∴3x 0+2y 0-8>0,即3x 0+2y 0>8,故选C.答案:C9.解析:如图,不等式组⎩⎪⎨⎪⎧ (x -y +1)(x +y -1)≥00≤x ≤2表示的平面区域为一等腰直角三角形,其斜边长为4,斜边上的高为2,得其面积为4.故选B.答案:B10.解析:不等式x 2-y 2≤0可化为(x +y )(x -y )≤0,即⎩⎪⎨⎪⎧ x +y ≥0x -y ≤0或⎩⎪⎨⎪⎧x +y ≤0x -y ≥0,作出直线x +y =0和x -y =0,判定区域,可知选D.答案:D11.答案:50<10b +a <10012.解析:(x 2+2)-3x =(x -1)(x -2).∵x<1,∴x-1<0,x-2<0,∴(x-1)(x-2)>0,∴x2+2>3x.答案:x2+2>3x13.解析:由(x-1)2<3x-7得x2-5x+8<0,∵Δ<0,∴集合A为Ø,因此A∩Z的元素不存在.答案:014.解析:不等式等价于(x+1)·(x-2)>0,∴x>2或x<-1.答案:{x|x<-1,或x>2}15.解析:若点满足各不等式⇒点在不等式组所表示的平面区域内,否则,点不在不等式组所表示的平面区域内,代入原点(0,0),显然0+2×0-1<0.故原点不满足不等式x+2y-1≥0.∴点O在平面区域之外,同理点M在平面区域之内.答案:原点O在集合A所表示的平面区域之外点M在集合A所表示的平面区域之内。
【精品专区】高中数学必修5第三章不等式练习题_高一数学
不等式题组训练一、选择题(六个小题,每题5分,共30分)1.若02522>-+-x x ,则221442-++-x x x 等于 ( )A .54-xB .3-C .3D .x 45- 2.函数y =log21(x +11x --1) (x > 1)取得最大值时x 是 ( )A .-2B .2C .-3D .33.不等式xx --213≥1的解集是 ( )A .{x|43≤x ≤2} B .{x|43≤x <2} C .{x|x >2或x ≤43} D .{x|x <2}4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .ba 11< B .ba11>C .a >b 2D .a 2>2b5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值21和最大值1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值1而无最小值6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小,则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题(五个小题,每题6分,共30分) 1.不等式0212<-+xx 的解集是__________________.2.如果33log log m n +≥4,那么m n +的最小值是__________________.3.已知正项等差数列{}n a 的前10项和为50,则56.a a 的最大值是__________________.4.配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3毫克,乙料5毫克,配一剂B 种药 需甲料5毫克,乙料4毫克.今有甲料20毫克,乙料25毫克,若A 、B 两种药至少各配一剂,应满足的条件 是__________________.5. 0≤x, 0≤y 及x y +≤4所围成的平面区域的面积是__________________. 三、解答题(四个小题,每题10分,共40分) 1.解223log (3)0x x -->2.求y x z +=2的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y3.求证:ca bc ab c b a ++≥++2224.某单位决定投资3200元建一仓库(长方形状),高度很定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌转,每米长造价45元,顶部每平方米造价20元.试求: (1)仓库面积的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计多长?[综合训练B 组]一、选择题(六个小题,每题5分,共30分) 1.一元二次不等式ax 2+bx +2>0的解集是(-21,31),则a +b 的值是_____。
高中数学必修5一元二次不等式及其解法精选题目(附答案)
高中数学必修5一元二次不等式及其解法精选题目(附答案)1.一元二次不等式我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式.2.一元二次不等式的解与解集使一元二次不等式成立的x的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.3.一元二次不等式与相应的二次函数及一元二次方程的关系表题型一:一元二次不等式解法1.解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)4x2+4x+1>0;(4)-x2+6x-10>0.题型二:三个“二次”关系的应用2.若不等式ax 2+bx +2>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,则a +b 的值为( )A .14B .-10C .10D .-143.已知一元二次不等式x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,求不等式qx 2+px +1>0的解集.题型三:解含参数的一元二次不等式4.解关于x 的不等式x 2+(1-a )x -a <0.巩固练习:1.不等式6x 2+x -2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23或x ≥12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥12D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23 2.设a <-1,则关于x 的不等式a (x -a )⎝ ⎛⎭⎪⎫x -1a <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 或x >1a B .{x |x >a } C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >a 或x <1aD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 3.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)4.不等式mx 2-ax -1>0(m >0)的解集可能是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >14 B .R C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13<x <32 D .∅5.函数y =17-6x -x 2的定义域为( )A .[-7,1]B .(-7,1)C .(-∞,-7]∪[1,+∞)D .(-∞,-7)∪(1,+∞)6.已知全集U =R ,A ={x |x 2-1≥0},则∁U A =________.7.若二次函数y =ax 2+bx +c (a <0)的图象与x 轴的两个交点为(-1,0)和(3,0),则不等式ax 2+bx +c <0的解集是________.8.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0.若f (a )≤3,则a 的取值范围是________.9.解关于x 的不等式x 2-3ax -18a 2>0. 10.若函数f (x )=2 018ax 2+2ax +2的定义域是R ,求实数a 的取值范围.参考答案:1.[解] (1)Δ=49>0,方程2x 2+5x -3=0的两根为x 1=-3,x 2=12, 作出函数y =2x 2+5x -3的图象,如图①所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <12.(2)原不等式等价于3x 2-6x +2≥0.Δ=12>0,解方程3x 2-6x +2=0,得x 1=3-33,x 2=3+33,作出函数y =3x 2-6x +2的图象,如图②所示,由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤3-33或x ≥3+33. (3)∵Δ=0,∴方程4x 2+4x +1=0有两个相等的实根x 1=x 2=-12.作出函数y =4x 2+4x +1的图象如图所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-12,x ∈R.(4)原不等式可化为x 2-6x +10<0,∵Δ=-4<0, ∴方程x 2-6x +10=0无实根,∴原不等式的解集为∅. 2.解:由已知得,ax 2+bx +2=0的解为-12,13,且a <0. ∴⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎨⎧a =-12,b =-2,∴a +b =-14.3.解:因为x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根,由根与系数的关系得⎩⎪⎨⎪⎧13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,解得⎩⎪⎨⎪⎧p =16,q =-16 .所以不等式qx 2+px +1>0即为-16x 2+16x +1>0,整理得x 2-x -6<0,解得-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}.4.[解] 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a ,函数y =x 2+(1-a )x -a 的图象开口向上,则当a <-1时,原不等式解集为{x |a <x <-1};当a =-1时,原不等式解集为∅;当a >-1时,原不等式解集为{x |-1<x <a }. 5.设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.5.解:(1)当a =0时, 不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}.(2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a <x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a ,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a 或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 练习:1.解析:选A 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12. 2.解析:选A ∵a <-1,∴a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-1,∴1a >a ,∴x >1a 或x <a .3.解析:选B 由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,所以-2<x <1.4.解析:选A 因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D ,故选A.5.解析:选B 由7-6x -x 2>0,得x 2+6x -7<0,即(x +7)(x -1)<0,所以-7<x <1,故选B.6.解析:∁U A ={x |x 2-1<0}={x |-1<x <1}. 答案:{x |-1<x <1}7.解析:根据二次函数的图象知所求不等式的解集为(-∞,-1)∪(3,+∞). 答案:(-∞,-1)∪(3,+∞)8.解析:当a ≥0时,a 2+2a ≤3,∴0≤a ≤1;当a <0时,-a 2+2a ≤3,∴a <0.综上所述,a 的取值范围是(-∞,1].9.解:将x 2-3ax -18a 2>0变形得(x -6a )(x +3a )>0, 方程(x -6a )(x +3a )=0的两根为6a ,-3a .所以当a >0时,6a >-3a ,原不等式的解集为{x |x <-3a 或x >6a };当a =0时,6a =-3a =0,原不等式的解集为{x |x ≠0}; 当a <0时,6a <-3a ,原不等式的解集为{x |x <6a 或x >-3a }. 10.解:因为f (x )的定义域为R ,所以不等式ax 2+2ax +2>0恒成立. (1)当a =0时,不等式为2>0,显然恒成立;(2)当a ≠0时,有⎩⎨⎧ a >0,Δ=4a 2-8a <0,即⎩⎨⎧a >0,0<a <2,所以0<a <2.综上可知,实数a 的取值范围是[0,2).。
新版高中数学人教A版必修5习题:第三章不等式 3.4.1
3.4基本不等式:√ab≤a+b2第1课时基本不等式课时过关·能力提升基础巩固1若x>0,则x+4x的最小值为().A.2B.3C.2√2D.4答案:D2若x,y满足x+y=40,且x,y都是正数,则xy的最大值是().A.400B.100C.40D.20解析:xy≤(x+y2)2=400,当且仅当x=y=20时,等号成立.答案:A3若0<x<13,则x(1−3x)取最大值时x的值是().A.13B.16C.34D.23解析:∵0<x<13,∴0<1−3x<1.∴y=x(1-3x)=13×3x(1−3x)≤13×(3x+1-3x 2)2=112. 当且仅当3x=1-3x ,即x =16时取等号.答案:B 4设a ,b ∈R ,若a ≠b ,a+b=2,则必有( ).A.1≤ab ≤a 2+b 22B.ab <1<a 2+b22C.ab <a 2+b22<1D.a 2+b 22<ab <1解析:令a=-1,b=3,则ab=-3,a 2+b 22=5,则有ab<1<a 2+b22,所以排除选项A,C,D,故选B .答案:B5若M =a 2+4a (a ∈R ,a ≠0),则M 的取值范围为( ).A.(-∞,-4]∪[4,+∞)B.(-∞,-4]C.[4,+∞)D.[-4,4]解析:当a>0时,M =a 2+4a =a +4a ≥2√a ·4a =4,当且仅当a =4a,即a=2时取“=”; 当a<0时,M =a 2+4a=a +4a =−[(-a )+(-4a )]≤-2√(-a )·(-4a )=−4,当且仅当-a=−4a,即a=-2时取“=”.综上,M的取值范围为(-∞,-4]∪[4,+∞).答案:A6若a>b>1,P=√lgalgb,Q=lga+lgb2,R=lg a+b2,则下列结论正确的是().A.R<P<QB.P<Q<RC.Q<P<RD.P<R<Q 解析:∵a>b>1,∴lg a>0,lg b>0.∴R=lg a+b2>lg√ab=12lg(ab)=lga+lgb2=Q>√lgalgb=P.∴P<Q<R.答案:B7若a>0,b>0,则2ba +ab的最小值是.解析:2ba +ab≥2√2ba·ab=2√2,当且仅当2ba=ab,即a=√2b时取“=”.答案:2√28当函数y=x2(2-x2)取最大值时,x=. 解析:当−√2<x<√2时,y=x2(2-x2)≤(x 2+2-x22)2=1,当且仅当x2=2-x2,即x=±1时,等号成立,当x2≥2时,y=x2(2-x2)≤0,不可能取最大值.所以当x=±1时,y=x2(2-x2)有最大值为1.答案:±19已知2x +3y=2(x>0,y>0),求xy的最小值.解∵x>0,y>0,2x +3y=2,∴2=2x +3y≥2√6xy(当x=2,y=3时,等号成立),即1≥√6xy.∴√xy≥√6,从而xy≥6,即xy的最小值为6.10已知x>-1,试求函数y=x 2+7x+10x+1的最小值.解∵x>-1,∴x+1>0,∴y=x 2+7x+10x+1=(x+1)2+5(x+1)+4x+1=x+1+4x+1+5≥2√(x+1)·4x+1+5=9.当且仅当x+1=4x+1,即x=1时,等号成立.所以函数y=x 2+7x+10x+1的最小值为9.能力提升1若2a+b=1,a>0,b>0,则1a +1b的最小值是().A.2√2B.3−2√2C.3+2√2D.3+√2解析:1a +1b=2a+ba+2a+bb=2+1+ba +2ab=3+ba+2ab.∵a>0,b>0,∴1a +1b =3+b a +2a b ≥3+2√b a ·2a b =3+2√2,当且仅当b a =2a b ,即b =√2a =√2−1时“=”成立.∴1a +1b 的最小值为3+2√2.答案:C 2若x+3y-2=0,则函数z=3x +27y +3的最小值是( ).A.323B.3+2√2C.6D.9解析:z=3x +27y +3≥2√3x ·27y +3=2√3x+3y +3. ∵x+3y-2=0,∴x+3y=2.∴z ≥2√3x+3y +3=2√32+3=9,当且仅当3x =27y ,即x=3y=1时取“=”.答案:D3若a>0,b>0,a+b=2,则y =1a +4b 的最小值是( ).A .72B.4C.92D.5解析:依题意得1a +4b =12(1a +4b )(a +b)=12[5+(b a +4a b )]≥12(5+2√b a ·4a b )=92,当且仅当{a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92. 答案:C4当x >12时,函数y =x +82x -1的最小值为( ).A .92B.4C.5D.9 解析:∵x >12,∴2x −1>0. ∴y=x +82x -1=x +4x -12=x −12+4x -12+12 ≥2√(x -12)·4x -12+12=4+12=92, 当且仅当x −12=4x -12,即x =52时取等号. 答案:A 5设a ,b>0,a+b=5,则√a +1+√b +3的最大值为 .解析:因为a ,b>0,a+b=5,所以(a+1)+(b+3)=9.令x=a+1,y=b+3,则x+y=9(x>1,y>3),于是√a +1+√b +3=√x +√y,而(√x +√y)2=x +y +2√xy ≤x+y+(x+y )=18,所以√x +√y ≤3√2.此时x=y ,即a+1=b+3,结合a+b=5可得a=3.5,b=1.5,故当a=3.5,b=1.5时,√a +1+√b +3的最大值为3√2. 答案:3√2★6函数y=log a (x-1)+1(a>0,且a ≠1)的图象恒过定点A ,若点A 在一次函数y=mx+n 的图象上,其中m ,n>0,则1m +2n 的最小值为 .解析:由题意,得点A (2,1),则1=2m+n.又m ,n>0,所以1m +2n =2m+n m +2(2m+n )n =4+n m +4m n ≥4+2√4=8.当且仅当n m =4m n ,即m =14,n =12时取等号,则1m+2n的最小值为8.答案:8★7若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是.解析:因为x>0,所以x+1x≥2,当且仅当x=1时取等号,所以有xx2+3x+1=1x+1x+3≤12+3=15,即xx2+3x+1的最大值为15,故a≥15.答案:[15,+∞)★8已知f(x)=a x(a>0,且a≠1),当x1≠x2时,比较f(x1+x22)与f(x1)+f(x2)2的大小.解∵f(x)=a x,∴f(x1+x22)=ax1+x22,∴12[f(x1)+f(x2)]=12(a x1+a x2).∵a>0,且a≠1,x1≠x2,∴a x1>0,a x2>0,且a x1≠a x2,∴12(a x1+a x2)>√a x1·a x2=ax1+x22,即f(x1+x22)<f(x1)+f(x2)2.9若正实数x,y满足2x+y+6=xy,求xy与2x+y的最小值.解∵2x+y+6=xy,x>0,y>0,∴xy=2x+y+6≥2√2·√xy +6, 即xy-2√2√xy −6≥0,当且仅当{2x =y ,2x +y +6=xy时,等号成立. ∴(√xy −3√2)(√xy +√2)≥0. ∵√xy +√2>0,∴√xy ≥3√2,xy ≥18.又2x+y+6=12×2xy ≤12·(2x+y 2)2, ∴(2x+y )2-8(2x+y )-48≥0,∴(2x+y-12)(2x+y+4)≥0.∵2x+y+4>0,∴2x+y ≥12.∴xy 的最小值为18,2x+y 的最小值为12.。
高中数学人教版必修5课时练习:第三章 不等式3-2 一元二次不等式及其解法
∴M∩N={x|0≤x≤2},故选 D.
3.若{x|2<x<3}为 x2+ax+b<0 的解集,则 bx2+ax+1>0 的解集为( )
A.{x|x<2 或 x>3}
B.{x|2<x<3}
C.{x|31<x<12}
D.{x|x<31或 x>21}
[答案] D
[解析] 由 x2+ax+b<0 的解集为{x|2<x<3},知方程 x2+ax+b=0 的根分别为 x1=2,x2 =3.
则不等式 ax2+bx+c>0 的解集是________.
[答案] {x|x<-2 或 x>3}
[解析] 由表知 x=-2 时 y=0,x=3 时,y=0. ∴二次函数 y=ax2+bx+c 可化为 y=a(x+2)(x-3),又当 x=1 时,y=-6,∴a=1. ∴不等式 ax2+bx+c>0 的解集为{x|x<-2 或 x>3}. 三、解答题
<x<1},选 D.
2.设集合 M={x|0≤x≤2},N={x|x2-2x-3<0},则 M∩N 等于( )
A.{x|0≤x<1}
B.{x|0≤x≤2}
C.{x|0≤x≤1}
D.{x|0≤x≤2}
[答案] D
[解析] ∵N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x≤2},
C.{x|x<1t 或 x>t}
D.{x|t<x<1t }
[答案] D
[解析] 化为(x-t)(x-1t )<0,
∵0<t<1,∴1t >1>t,∴t<x<1t .
6.已知不等式 x2+ax+4<0 的解集为空集,则 a 的取值范围是( )
新版高中数学人教A版必修5习题:第三章不等式 检测A(1)
第三章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若M=2a(a-2),N=(a+1)(a-3),则有().A.M>NB.M≥NC.M<ND.M≤N解析:∵M-N=2a(a-2)-(a+1)(a-3)=2a2-4a-(a2-2a-3)=2a2-4a-a2+2a+3=a2-2a+3=a2-2a+1+2=(a-1)2+2>0,∴M>N.答案:A<0的解集为().2不等式x-3x+2A.{x|-2<x<3}B.{x|x<-2}C.{x|x<-2,或x>3}D.{x|x>3}解析:原不等式等价于(x-3)(x+2)<0,解得-2<x<3.答案:A3若集合A={x|x2-2x>0},B={x|−√5<x<√5},则().A.A∩B=⌀B.A∪B=RC .B ⊆AD .A ⊆B解析:∵x 2-2x=x (x-2)>0,∴x<0或x>2.∴集合A 与B 在数轴上表示为由图象可以看出A ∪B=R ,故选B . 答案:B4不等式组{x ≥0,x +3y ≥6,3x +y ≤6所表示的平面区域的面积等于( ).A .32B.23C.13D.3答案:D5若2x +2y =1,则x+y 的取值范围是( ). A.[0,2] B.[-2,0]C.[-2,+∞)D.(-∞,-2]解析:∵2x +2y =1≥2√2x+y ,∴(12)2≥2x+y ,即2x+y ≤2-2.∴x+y ≤-2.答案:D6若变量x ,y 满足约束条件{x +y -1≤0,3x -y +1≥0,x -y -1≤0,则z =2x +y 的最大值为( ).A.1B.2C.3D.4解析:画出可行域,如图中的阴影部分所示.由图知,z是直线y=-2x+z在y轴上的截距,当直线y=-2x+z经过点A(1,0)时,z取最大值,此时x=1,y=0,则z的最大值是2x+y=2+0=2.答案:B7若a,b∈R,且ab>0,则下列不等式中恒成立的是().A.a2+b2>2abB.a+b≥2√abC.1a +1b>√abD.3ba +a27b≥23解析:由ab>0,得a,b同号.当a<0,b<0时,B,C不成立;当a=b时,A不成立;∵ba >0,∴3ba+a27b≥2√3ba ·a27b=23.答案:D8在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域{x-2≤0,x+y≥0, x-3y+4≥0中的点在直线x+y−2=0上的投影构成的线段记为AB,则|AB|=().A.2√2B.4C.3√2D.6解析:画出不等式组{x-2≤0,x+y≥0,x-3y+4≥0表示的平面区域如图阴影部分所示.作出直线x+y-2=0.设直线x-3y+4=0与x+y=0的交点为C ,直线x=2与直线x+y=0的交点为D. 过C 作CA ⊥直线x+y-2=0于点A , 过D 作DB ⊥直线x+y-2=0于点B ,则区域中的点在直线x+y-2=0上的投影为AB.∵直线x+y-2=0与直线x+y=0平行, ∴|CD|=|AB|.由{x -3y +4=0,x +y =0,得{x =-1,y =1,∴C 点坐标为(-1,1).由{x =2,x +y =0,得{x =2,y =-2,∴D 点坐标为(2,-2).∴|CD|=√9+9=3√2,即|AB|=3√2.故选C .答案:C9已知正实数a ,b 满足4a+b=30,当1a +1b 取最小值时,实数对(a,b)是( ). A.(5,10) B.(6,6)C.(10,5)D.(7,2)解析:1a +1b =(1a +1b )×130×30=130(1a +1b )(4a +b)=130(5+b a +4a b) ≥130(5+2√b a ·4ab)=310, 当且仅当{ba=4ab ,4a +b =30,即{a =5,b =10时取等号.故选A .答案:A10某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元;乙车间加工一箱原料需耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,则甲、乙两车间每天总获利最大的生产计划为( ).A.甲车间加工原料10箱,乙车间加工原料60箱B.甲车间加工原料15箱,乙车间加工原料55箱C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱 解析:设甲车间加工原料x 箱,乙车间加工原料y 箱,由题意,得{x +y ≤70,10x +6y ≤480,x ≥0,y ≥0,x ,y ∈N ,目标函数z=280x+200y.画出可行域,如图中的阴影部分所示.由图知,目标函数过点A 时,z 取最大值.解方程组{x +y =70,10x +6y =480,得x=15,y=55,即A (15,55).所以甲车间加工原料15箱,乙车间加工原料55箱时,甲、乙两个车间每天总获利最大. 答案:B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11已知x>0,y>0,若x ,y 满足x 3+y4=1,则xy 的最大值为 . 解析:∵x>0,y>0,∴1=x3+y4≥2√x 3·y4=√33√xy,则xy ≤3,当且仅当x3=y4,即x =32,y =2时,等号成立,∴xy 的最大值为3.答案:312若x ,y 满足约束条件{y -x ≤1,x +y ≤3,y ≥1,则z =x +3y 的最大值为 .如图,作出不等式组所表示的可行域.由z=x+3y ,得y=−13x +z 3.取l 0:x+3y=0,在可行域内平移直线l 0,由图可知直线过A 点时z 最大,由{y -x =1,x +y =3,得A (1,2).所以z max =1+3×2=7. 答案:713当x>1时,log 2x 2+log x 2的最小值为 . 解析:当x>1时,log 2x>0,log x 2>0,所以log 2x 2+log x 2=2log 2x +1log 2x≥2√2log 2x ·1log 2x =2√2,当且仅当2log 2x =1log 2x,即x =2√22时,等号成立,所以log 2x 2+log x 2的最小值为2√2. 答案:2√214如果实数x ,y 满足条件{x -y +1≥0,y +1≥0,x +y +1≤0,那么y -1x -1的取值范围是 .解析:画出可行域如图中的阴影部分所示.设P (x ,y )为可行域内的一点,M (1,1),则y -1x -1=kPM. 由于点P 在可行域内,则由图知k MB ≤k PM ≤k MA .又可得A (0,-1),B (-1,0),则k MA =2,k MB =12,则12≤k PM ≤2,即y -1x -1的取值范围是[12,2].答案:[12,2]15若不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是 . 解析:不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,即(a+2)x 2+4x+a-1>0对一切x ∈R 恒成立. 若a+2=0,则显然不成立;若a+2≠0,则{a +2>0,16-4(a +2)(a -1)<0⇔{a >-2,16-4(a +2)(a -1)<0⇔{a >-2,a <-3或a >2⇔a>2.答案:(2,+∞)三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)解不等式组{3x -2x -6≤1,2x 2-x -1>0.解由3x -2x -6≤1得2x+4x -6≤0,∴-2≤x<6.由2x 2-x-1>0得(2x+1)(x-1)>0,∴x>1或x<−12.∴原不等式组的解集为{x |-2≤x <-12,或1<x <6}.17(8分)某工厂建造一间地面面积为12 m 2的背面靠墙的矩形小房,房屋正面的造价为1 200元/m 2,房屋侧面的造价为800元/m 2,屋顶的造价为5 800元.若墙高为3 m,且不计房屋背面的费用,则建造此小房的最低总造价是多少元?解设房子的长为x m,宽为y m,总造价为t元,则xy=12,且t=3×x×1200+3×y×800×2+5800 =1200(3x+4y)+5800≥1200×2√12xy+5800=34600(当且仅当3x=4y,即x=4,y=3时,等号成立).故最低总造价是34600元.18(9分)已知函数f(x)=x2-2x-8,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.解f(x)=x2-2x-8.当x>2时,f(x)≥(m+2)x-m-15恒成立,则x2-2x-8≥(m+2)x-m-15,即x2-4x+7≥m(x-1).于是对一切x>2,均有不等式x 2-4x+7x-1≥m成立.∵x2-4x+7x-1=(x−1)+4x-1−2≥2√(x-1)·4x-1−2=2(当且仅当x=3时,等号成立), ∴实数m的取值范围是(-∞,2].19(10分)解关于x的不等式x2-(3m+1)x+2m2+m<0.解∵x2-(3m+1)x+2m2+m=(x-m)[x-(2m+1)],∴方程x2-(3m+1)x+2m2+m=0的两解是x1=m,x2=2m+1.当m<2m+1,即m>-1时,原不等式的解为m<x<2m+1;当m=2m+1,即m=-1时,原不等式无解;当m>2m+1,即m<-1时,原不等式的解为2m+1<x<m.综上所述,当m>-1时,原不等式的解集为{x|m<x<2m+1};当m=-1时,原不等式的解集为⌀;当m<-1时,原不等式的解集为{x|2m+1<x<m }.20(10分)某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5 kg,其中动物饲料不能少于谷物饲料的15.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅保证供应谷物饲料50 000 kg,问饲料怎样混合,才使成本最低?解设每周需用谷物饲料x kg,动物饲料y kg,每周总的饲料费用为z 元,那么{x +y ≥35000,y ≥15x ,0≤x ≤50000,y ≥0,而z=0.28x+0.9y ,作出不等式组所表示的平面区域,即可行域如图中阴影部分所示.作一组平行直线0.28x+0.9y=t.其中经过可行域内的点A 时,z 最小,又直线x+y=35000和直线y =15x 的交点A (875003,175003),故当x =875003,y =175003时,饲料费用最低. 答:谷物饲料和动物饲料应按5∶1的比例混合,此时成本最低.。
高中数学必修五:不等式
二.一元二次不等式:
1.已知不等式2kx2 kx 3 0 的解集为R,求k 的范围. 8
2.设函数f (x) x2 (a 4)x 4 2a.(1)对任意x [1,1], f (x) 0恒成立,求a 的范围;(2)若a [1,1],f (x) 0恒 成立,求x 的范围.
7
3.(2018浙江)已知函数f
则m 的取值范围为 ___ .
14
3.已知a b c, (a c)( 1 + 4 ) k 恒成立,则k 的 ab bc
范围是 ___ .
4.设正实数x, y, z ,求(x y z)( 1 1) 的最小值. xy z
15
重点类型四:对等取相等
1.已知正数x, y 满足(2a b)2 1 6ab,求 ab 的 2a b 1
11
3.若b,a R,ab 0,则 a4 b4 1的最小值为 ______ . ab
4.已知k
1,a
0,则k 2a2
(k
4 1)a2
的则xy
的最小
值为 ___ .
12
重点类型二:和与积的转化 1.若b 0,a 0,a b 2ab 4 0,则a b 最小值 为 ______ .
3
9
5.若关于x 的不等式(2x 1)2 ax2 的解集中的整数恰 有3个,求实数a 的取值范围.
10
三.基本不等式:
重点类型一:a 与 1 型最值 a
1.若b a,则 b a 1 b a 的最小值为 ______ . ba
2.已知x y 0,且xy 1,求函数 x2 y2 的 最小值为 ___ . x y
1
一.绝对值不等式的求解:
1.(2018全国1)已知函数f (x)= x 1 ax 1 .(1)当a 2 时, 求不等式f (x) 1 的解集;(2)当a 1 时,求f (x) 的最大值; (3)若x (0,1) 时,不等式f (x) x 成立,求a 的取值范围.
高中数学必修五同步练习题库:基本不等式(选择题:较难)
基本不等式(选择题:较难)1、若正数满足,且的最小值为18,则的值为()A.1 B.2 C.4 D.92、,动直线过定点A,动直线过定点,若与交于点(异于点),则的最大值为A. B. C. D.3、若函数在定义域上单调递增,则实数的取值范围为()A. B. C. D.4、若,,,则的最小值是A. B. C. D.5、如右图所示,已知点是的重心,过点作直线与两边分别交于两点,且,则的最小值为()A.2 B. C. D.6、若,,,则的最小值是A. B. C. D.7、已知实数满足,则的最大值为()A.1 B.2 C.3 D.48、如图,已知抛物线的焦点为,直线过且依次交抛物线及圆于点四点,则的最小值为()A. B. C. D.9、已知,则的最小值为()A. B. C. D.10、已知等差数列的公差,且成等比数列,若,为数列的前项和,则的最小值为()A.3 B.4 C. D.11、半圆的直径AB=4, O为圆心,C是半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值是()A.2 B.0 C. D.12、抛物线的焦点为,已知点为抛物线上的两个动点,且满足,过弦的中点作准线的垂线,垂足为,则的最大值为()A.1 B. C.2 D.13、抛物线的焦点为F,准线为,是抛物线上的两个动点,且满足.设线段的中点在上的投影为,则的最大值是()A. B. C. D.14、已知,且满足,那么的最小值为()A.3﹣ B.3+2 C.3+ D.415、曲线()在点处的切线的斜率为2,则的最小值是()A.10 B.9 C.8 D.16、函数的值域为()A. B. C. D.17、,动直线过定点A,动直线过定点,若与交于点 (异于点),则的最大值为A. B. C. D.18、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.19、已知等差数列的公差,且,,成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.20、已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.21、定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1拆为若干个不同的单位分数之和,如:,,,依此类推,可得:,其中,设,,则的最小值为()A. B. C. D.22、设且,则的最小值是A. B. C. D.23、已知,则的最小值是A.6 B.5 C. D.24、设正实数满足.则当取得最大值时,的最大值为() A.0 B. C.1 D.325、已知函数,若,,使得,则实数的取值范围是()A.(-∞,1] B.[1,+∞) C.(-∞,2] D.[2,+∞)26、已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.27、已知偶函数是定义在上的可导函数,其导函数为.当时,恒成立.设,记,,,则,,的大小关系为()A. B. C. D.28、已知函数,则不等式成立的概率是()A. B. C. D.29、在中,角所对的边分别为,若,则当角取得最大值时,的周长为()A. B. C. D.30、锐角三角形ABC的三边长成等差数列,且,则实数的取值范围是()A. B. C. D.(6,7]31、若,,,则的最小值为()A. B. C. D.32、在平面直角坐标系中,已知抛物线的焦点为是抛物线上位于第一象限内的任意一点,是线段上的点,且满足,则直线的斜率的最大值为()A. B. C. D.33、已知函数,若不等式对任意实数恒成立,则实数的取值范围是()A. B. C. D.34、正项等比数列{a n}中,存在两项a m,a n(m,n)使得a m a n=16a12,且a7=a6+2a5,则+的最小值为()A.5 B.6 C.7 D.835、已知圆的半径为1,为该圆上四个点,且,则的面积最大值为()A.2 B.1 C. D.36、长方体中,,,,点是平面上的点,且满足,当长方体的体积最大时,线段的最小值是( )A. B. C.8 D.37、若直线过点,则的最小值等于()A.6 B.3 C.7 D.438、若直线和直线相交于一点,将直线绕该点依逆时针旋转到与第一次重合时所转的角为,则角就叫做到的角,,其中分别是的斜率,已知双曲线:的右焦点为,是右顶点,是直线上的一点,是双曲线的离心率,,则的最大值为()A. B. C. D.39、中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A. B. C. D.40、若正数满足则的最小值是()A. B. C. D.41、已知函数,对任意的,恒成立,则的最小值为()A.3 B.2 C.1 D.042、已知为双曲线上不同三点,且满足(为坐标原点),直线的斜率记为,则的最小值为()A.8 B.4 C.2 D.143、中,为的中点,点在线段(不含端点)上,且满足,则的最小值为()A. B. C.6 D.844、圆:和圆:有三条公切线,若,,且,则的最小值为()A.1 B.3 C.4 D.545、在中,角,,的对边分别为,,,且,则角的最大值为()A. B. C. D.46、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.47、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.48、设正实数,满足,,不等式恒成立,则的最大值为()A. B. C. D.49、定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1拆为若干个不同的单位分数之和,如:,,,依此类推,可得:,其中,设,,则的最小值为()A. B. C. D.50、已知函数(且)的图象恒过定点,若点在直线上,其中,则的最小值为()A.3 B.C.4 D.851、若正实数满足,且不等式恒成立,则实数的取值范围是()A. B.C. D.52、已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为()A.1 B. C.2 D.53、已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为()A.1 B. C.2 D.54、设均为正实数,且,则的最小值为()A.4 B. C.9 D.1655、已知是内的一点,且,若的面积分别为,则的最小值为()A. B. C. D.56、已知直线ax+by=1(其中a,b为非零实数),与圆x+y2=1相交于A,B两点,O为坐标原点,且△AOB为直角三角形,则+的最小值为()A.4 B.2 C.5 D.857、设,则的最小值为()A.2 B.3 C.4 D.58、设,对于使成立的所有常数M中,我们把M的最小值1叫做的上确界.若,且,则的上确界为()A. B. C. D.59、已知x>0,由不等式x+≥2=2,x+=≥3=3,…,可以推出结论:x+≥n+1(n∈N*),则a=().A.2n B.3n C.n2 D.n n60、已知关于的不等式的解集是,且,则的最小值是()A. B.2 C. D.161、下列推理正确的是()A.如果不买彩票,那么就不能中奖.因为你买了彩票,所以你一定中奖B.因为a>b,a>c,所以a-b>a-cC.若a>0,b>0,则+≥D.若a>0,b<0,则62、对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1 B.2 C.3 D.463、已知,且,成等比数列,则xy( )A.有最大值e B.有最大值 C.有最小值e D.有最小值64、对于函数y=f(x)(x∈I),y=g(x)(x∈I),若对任意x∈I,存在x0使得f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),则称f(x),g(x)为“兄弟函数”,已知f(x)=x2+px+q,g(x)=是定义在区间上的“兄弟函数”,那么函数f(x)在区间上的最大值为()A. B.2 C.4 D.65、已知f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值为()A.5 B.7 C.8 D.966、设第一象限内的点满足约束条件,若目标函数的最大值为40,则的最小值为()A. B. C.1 D.467、定义域为的函数的图象的两个端点为,是图象上任意一点,其中,向量,若不等式恒成立,则称函数在上“阶线性近似”. 若函数上“阶线性近似”,则实数的取值范围为( ) A. B. C. D.68、不等式x2+2x<+对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是( )A.(-2,0) B.(-∞,-2)∪(0,+∞)C.(-4,2) D.(-∞,-4)∪(2,+∞)69、已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC外接的球表面积等于().A.8π B.16π C.48π D.不确定的实数70、在直角坐标系中,定义两点之间的“直角距离”为,现给出四个命题:①已知,则为定值;②用表示两点间的“直线距离”,那么;③已知为直线上任一点,为坐标原点,则的最小值为;④已知三点不共线,则必有.A.②③ B.①④ C.①② D.①②④参考答案1、B2、B3、D4、B5、C6、B7、B8、B9、C10、B11、D12、D13、D14、B15、B16、C17、B18、D19、B20、B21、D22、A23、C24、C25、A26、B27、B28、B29、C30、C31、A32、D33、D34、B35、B36、B37、A38、C39、B40、D41、A42、B43、D44、A45、A46、D47、D48、C49、D50、D51、B52、D53、D54、D55、B56、A57、C58、D59、D.60、A61、D62、A63、C64、B65、B66、B67、C68、C69、B70、C【解析】1、由题意,应用基本不等式可得令则方程,所以是方程的根,所以选B.点睛:(1)应用基本不等式构造关于的不等式.(2)换元法将不等式转化为一元二次不等式.(3)结合二次函数图像知是一元二次方程的根.2、由题意可得:A(1,0),B(2,3),且两直线斜率之积等于﹣1,∴直线x+my﹣1=0和直线mx﹣y﹣2m+3=0垂直,则|PA|2+|PB|2=|AB|2=10≥.即.故选B.点睛:含参的动直线一般都隐含着过定点的条件,动直线,动直线l2分别过A(1,0),B(2,3),同时两条动直线保持垂直,从而易得|PA|2+|PB|2=|AB|2=10,然后借助重要不等式,得到结果.3、函数的定义域为,,由已知有,所以对于恒成立,恒成立,所以,而,当且仅当时等号成立,所以,选D.点睛:本题主要考查用导数研究函数的单调性,基本不等式等,属于中档题。
(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)
一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
高中数学必修5基本不等式精选题目(附答案)
高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。
高中数学必修5《基本不等式作业》 二
3.4 基本不等式基础巩固一、选择题1.a 、b 、c 是互不相等的正数,且a 2+c 2=2bc ,则下列关系中可能成立的是( ) A .a >b >c B .c >a >b C .b >a >cD .a >c >b2.设{a n }是正数等差数列,{b n }是正数等比数列,且a 1=b 1,a 21=b 21,则( ) A .a 11=b 11 B .a 11>b 11 C .a 11<b 11D .a 11≥b 113.若正数x 、y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A .245B .285C .5D .64.已知a >1,b >1,且lg a +lg b =6,则lg a ·lg b 的最大值为( ) A .6 B .9 C .12D .185.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与平均到每件产品的仓储费用之和最小,每批应生产产品( ) A .60件 B .80件二、填空题6.已知2x +3y=2(x >0,y >0),则xy 的最小值是________.7.若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是________.一、选择题1.若a 、b 、c 、d 、x 、y 是正实数,且P =ab +cd ,Q =ax +cy ·b x +dy,则有( ) A .P =Q B .P ≥Q C .P ≤QD .P >Q2.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值13.已知y >x >0,且x +y =1,那么( ) A .x <x +y 2<y <2xyB .2xy <x <x +y2<yC .x <x +y 2<2xy <yD .x <2xy <x +y2<y4.设a 、b 是正实数,给出以下不等式:①ab >2ab a +b ;②a >|a -b |-b ;③a 2+b 2>4ab -3b 2;④ab +2ab >2,其中恒成立的序号为( )A .①③B .①④C .②③D .②④二、填空题5.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低总造价为__________元.6.已知在△ABC 中,∠ACB =90°,BC =3,AC =4,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是________. 三、解答题7.若x >0,y >0,x +y =1,求证:(1+1x )·(1+1y )≥9.8.已知a 、b 、c ∈R +,求证:a 2b +b 2c +c 2a≥a +b +c .。
(压轴题)高中数学必修五第三章《不等式》测试题(答案解析)(4)
一、选择题1.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .32.已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( ) A .2a ≤B .2a ≥C .52a ≥D .52a ≤3.已知x ,y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .3B .3-C .1D .324.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6545.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-6.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .327.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .68.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .89.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( )A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<10.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-11.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.设实数s ,t 满足0t >,且24s t +=,则128s s t+的最小值是____________. 15.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________. 16.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.17.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________. 18.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3yx +的最大值为_______.19.实数,x y 满足2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则24z x y =+-的最大值是___.20.非负实数x ,y ,满足360x y +-≥,则521z x y =+-的最小值为__________.三、解答题21.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加()4%x ,技术人员的年人均投入调整为225x a m ⎛⎫-⎪⎝⎭万元.(1)要使这100x -名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m ,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m 的范围;若不存在,说明理由. 22.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 23.已知函数2()()f x x ax a R =-∈. (1)若2a =,求不等式()3f x ≥的解集;(2)若[1,)x ∈+∞时,2()2f x x ≥--恒成立,求a 的取值范围.24.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 25.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 26.已知函数2()(3)2f x ax a x =+-+(其中a ∈R ). (1)当a =-1时,解关于x 的不等式()0f x <; (2)若()1f x ≥-的解集为R ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2.D解析:D 【分析】由题意得分离参数将不等式等价于不等式1a x x ≤+在区间[1,2]上有解,设()1f x x x =+,由函数()1f x x x=+在[1,2]上单调递增,可求得实数a 的取值范围.【详解】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x =+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤,所以实数a 的取值范围为52a ≤, 故选:D. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <. 3.A解析:A 【分析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可. 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:11y x y =-⎧⎨+=⎩,可得点A 的坐标为:()2,1A -,据此可知目标函数的最大值为:max 2213z =⨯-=. 故选:A【点睛】方法点睛:求线性目标函数()0z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.4.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=. 因为1161116116116()()(17)(17)5555n m n mm n m n m n m n m n+=++=++≥⋅+=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.5.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大; 由图象可知,当133zy x =-过点A 时,在y 轴截距最大,由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.6.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()1349362743433325555255x y x y x y y x y x⎛⎫+=++=++≥+=⎪⎝⎭ 故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.8.C解析:C【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;(,0)2a b ab a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.9.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的10.B解析:B 【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值. 【详解】根据题中约束条件1x y ax y +≥⎧⎨-≤-⎩可画出可行域如图所示,两直线交点坐标为:11,22a a A -+⎛⎫⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.11.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.12.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】变换得到利用均值不等式计算得到答案【详解】当且时即时等号成立故答案为:【点睛】本题考查了利用均值不等式求最值意在考查学生的计算能力和转化能力 解析:716【分析】变换得到22816132s t s s s t s s t+=++,利用均值不等式计算得到答案. 【详解】24s t +=,222178321163216162s s s s t s t s s t s s t t +=+=++≥-+=+, 当232t s s t =且0s <时,即23s =-,163t =时等号成立. 故答案为:716. 【点睛】本题考查了利用均值不等式求最值,意在考查学生的计算能力和转化能力. 15.9【分析】首先由已知确定然后利用基本不等式求最小值【详解】因为所以又所以所以当且仅当时等号成立所以的最小值为9故答案为:9【点睛】易错点睛:易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件 解析:9【分析】首先由已知确定1,1a b >>,然后利用基本不等式求最小值.【详解】因为a b x y xy ==,所以1a y x -=,1b x y -=,又1,1x y >>,所以10,10a b ->->, 111(1)(1)()b a b a b x y x x -----===,所以(1)(1)1a b --=,4(1)4(1)559a b a b +=-+-+≥=,当且仅当14(1)a b -=-时等号成立,所以4a b +的最小值为9.故答案为:9.【点睛】易错点睛:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.2【分析】令从而可得再利用基本不等式即可求解【详解】令则且∴∴当且仅当取等号即时成立故答案为:2【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必 解析:2【分析】令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 【详解】令2019a x +=,2020b y +=, 则2019x >,2020y >且4042x y +=, ∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭1111222y x x y⎛⎫=+++⋅ ⎪⎝⎭≥, 当且仅当y x x y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方17.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得解析:12【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值.【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+,∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立,∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan C A C C A C C C A C C C-==++++-, 又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan 3C =等号成立, ∴ ()tan tan tan tan tan tan 1tan =213A C A C C C A C -≤++-=【点睛】 本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.18.【分析】根据约束条件画出可行域目标函数可以看成是可行域内的点和的连线的斜率从而找到最大值时的最优解得到最大值【详解】根据约束条件可以画出可行域如下图阴影部分所示目标函数可以看成是可行域内的点和的连线 解析:78【分析】根据约束条件,画出可行域,目标函数可以看成是可行域内的点(),x y 和()3,0-的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩可以画出可行域,如下图阴影部分所示, 目标函数3y x +可以看成是可行域内的点(),x y 和()3,0-的连线的斜率, 因此可得,当在点A 时,斜率最大联立2801x yx+-=⎧⎨=⎩,得172xy=⎧⎪⎨=⎪⎩即71,2A⎛⎫⎪⎝⎭所以此时斜率为()7072138-=--,故答案为78.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.19.21【分析】画出满足的可行域当目标函数经过点时取得最大值求解即可【详解】画出满足的可行域由解得点则目标函数经过点时取得最大值为【点睛】本题考查的是线性规划问题解决线性规划问题的实质是把代数问题几何化解析:21【分析】画出,x y满足的可行域,当目标函数24z x y=+-经过点()7,9B时,z取得最大值,求解即可.【详解】画出,x y满足的可行域,由20250x yx y-+=⎧⎨--=⎩解得点()7,9B,则目标函数24z x y=+-经过点()7,9B时,z取得最大值为718421+-=.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.20.3【分析】作出不等式组对应的平面区域利用目标函数的几何意义即可得到结论【详解】解:解:不等式组为对应的平面区域为如图阴影所示由得平移直线由图象可知当直线经过点时直线的截距最小此时最小代入目标函数得即 解析:3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.【详解】解:解:不等式组为00360x y x y ⎧⎪⎨⎪+-≥⎩,对应的平面区域为如图阴影所示,由521z x y =+-得5122z y x +=-+,平移直线5122z y x +=-+, 由图象可知当直线5122z y x +=-+经过点()0,2时, 直线5122z y x +=-+的截距最小,此时z 最小. 代入目标函数521z x y =+-得02213z =+⨯-=.即目标函数521z x y =+-的最小值为3.故答案为:3【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于中档题.三、解答题21.(1)最多75人;(2)存在,{}7m ∈.【分析】(1)根据题意直接列出不等式可求解;(2)由①可得2125x m ≥+,由②可得100325x m x ≤++,分别利用函数单调性和基本不等式即可求解.【详解】(1)依题意可得调整后研发人员的年人均投入为()14%x a +⎡⎤⎣⎦万元,则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >)解得075x ≤≤, 4575x ,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125x m ≥+. ②由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭,两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥-⎪⎪⎝⎭⎝⎭, 整理得100325x m x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤, 又因为4575x ≤≤,当75x =时,225x 取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,使得其范围为{}7m ∈.【点睛】本题考查不等式的应用,解题的关键是正确理解题中数量关系,建立正确的不等式,进而求解.22.(1)3|2x x ⎧<-⎨⎩或}2x a >+;(2)112a <-或51325a <<. 【分析】(1)对一元二次不等式分解因式,通过72a >-得出322a +>-,可得不等式的解集; (2)关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,可得0∆>,设()22(32)38g x x a x a =+--+,则有()10g >且对称轴小于1,解不等式可得实数a 的取值范围.【详解】(1)∵()()()2346f x x a x x =-+>+∴22(12)3(2)0x a x a -+-+>,即()3202x x a ⎛⎫+--> ⎪⎝⎭ 73,222a a >-+>- 3|2x x ⎧∴<-⎨⎩或}2x a >+ (2)解法一:∵22(32)380x a x a +--+=在(–),1∞上有两个不相等实根∴2412550a a ∆=+->112a <-或52a > 设()22(32)38g x x a x a =+--+,则()10g >∴()232380a a +--+> ∴135a <, 又()g x 的对称轴为324a x -=-,∴3214a --<,∴72a < ∴综上112a <-或51325a <<. 解法二: ∵22(32)380x a x a +--+=在(,1)-∞上有两个不相等实根 ∴223823x x a x ++=+ 令2238()23x x g x x ++=+ 令()()23,00,5t x =+∈-∞ 则2316()2t t g t t-+=,即183()22g t t t =+- 由图象可知,该题转化为y a =与18322y t t =+-有两个不同的交点 ∴112a <-或51325a << 【点睛】方法点睛:本题考查一元二次不等式的解法,考查一元二次方程根的分布,考查了学生计算能力,不妨设一元二次方程所对应的二次函数()f x 开口向上,则两根都小于k 时,则()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩; 2.两根都大于k 时,则()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ 3.一根小于k ,一根大于k 时,则()0f k <.23.(1){|1x x ≤-或3}x ≥;(2)(,4]-∞.【解析】试题分析:(1)先对不等式移项并因式分解得()()310x x -+≥,再根据不等号方向得不等式解集,(2)先化简不等式,并分离12a x x ⎛⎫≤+ ⎪⎝⎭,转化为求对应函数最值:()min a h x ≤,其中()12h x x x ⎛⎫=+ ⎪⎝⎭,再根据基本不等式求()h x 最值,即得a 的取值范围.试题(1)若()2,3a f x =≥即()()2230,310x x x x --≥-+≥ 所以原不等式的解集为{|1x x ≤-或3}x ≥(2)()22f x x ≥--即12a x x ⎛⎫≤+ ⎪⎝⎭在[)1,x ∈+∞时恒成立, 令()12h x x x ⎛⎫=+⎪⎝⎭,等价于()min a h x ≤在[)1,x ∈+∞时恒成立,又()124h x x x ⎛⎫=+≥= ⎪⎝⎭,当且仅当1x x =即1x =等号成立,所以4a ≤. 故所求a 的取值范围是(],4-∞. 24.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x =-在区间[]1,2上的最大值求解即可.【详解】(1)由题意得()2102a f x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤, 解得44a -≤≤,∴实数a 的取值范围为[]4,4-.(2)由题意得[]21,2,122a x x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增,∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-.【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替.25.(1)[-4,1];(2)-3.【分析】(1)当m =﹣4时,利用十字相乘法解出不等式的解集;(2)()0f x <的解集为(b ,a ),等价于()0f x =的根即为a ,b ,根据韦达定理判断出a ,b 的符号,利用"1"的代换以及基本不等式求出最大值,并验证取等条件.【详解】(1)当m =﹣4时,不等式f (x )≤0,即为x 2+3x ﹣4≤0,可得:(x +4)(x ﹣1)≤0,即不等式f (x )≤0的解集为[﹣4,1].(2)由题()0f x =的根即为a ,b ,故a +b =-3,ab =m >0,故a ,b 同负,则14a b+=114141()5(53333a b a b a b b a ⎛⎫⎛⎫-++=-++≤-+=- ⎪ ⎪⎝⎭⎝⎭ 当且仅当1,2a b =-=- 等号成立.【点睛】本题考查一元二次不等式,基本不等式在求最值中的应用,使用时要注意“一正,二定,三相等”,属于中档题.26.(1)(2)(62)-∞--+∞,,;(2)99a -+≤【分析】(1)当0a =时,解一元二次不等式求得不等式()0f x <的解集.(2)化简不等式()1f x ≥-,对a 分成0a ≠和0a >两种情况进行分类讨论,结合一元二次不等式恒成立,求得实数a 的取值范围.【详解】(1)当1a =-时,由()0f x <得,2420x x --+<,所以2420x x +->,所以不等式的解集为(2)(62)-∞-+∞,,;(2)因为()1f x ≥-解集为R ,所以2(3)21ax a x +-+-≥在R 恒成立,当0a =时,得321x -+-≥,不合题意;当0a ≠时,由2(3)30ax a x +-+≥在R 恒成立,得()203120a a a >⎧⎪⎨--≤⎪⎩,所以99a -+≤【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题.。
(压轴题)高中数学必修五第三章《不等式》测试题(包含答案解析)(1)
一、选择题1.设正数m ,n ,2m n u +=,222v m n mn =++,则2u v ⎛⎫ ⎪⎝⎭的最大值是( ) A .14B .13C .12D .12.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .33.已知正实数a ,b 满足231a b +=,则12a b+的最小值为( ) A .15B.8+C .16D.8+4.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .75.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.6.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .47.已知实数x y 、满足不等式组21010x x y m x y ≤⎧⎪-+≥⎨⎪+-≥⎩,若目标函数2z x y =-+的最大值不超过4,则实数m 的取值范围是 A.(B.⎡⎣ C.⎡⎤⎣⎦D .[ 8.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.9.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a> 10.设m 1>,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) A.(1,1 B.()1++∞ C .(1,3)D .(3,+∞)11.设变量,x y 、满足约束条件236y xx y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .912.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .21a c +>21b c + D .a |c |>b |c |二、填空题13.123,,x x x 为实数,只要满足条件1230x x x >>>,就有不等式121233log 20202log 2020log 2020x x x x x x k +≥恒成立,则k 的最大值是__________.14.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.15.已知x ,y 满足041x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为________.16.已知实数x ,y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为________.17.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.18.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.19.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.20.已知正实数x ,y 满足22462x y xy ++=,则2x y +的最小值是_________.三、解答题21.设矩形ABCD 的周长为20,其中AB AD >,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AD x =,DP y =.(1)将y 表示成x 的函数,并求定义域; (2)求ADP △面积的最大值. 22.选修4-5 不等式选讲已知函数f (x )=|x -1|-2|x +1|的最大值为m . (1)求m ;(2)若a ,b ,c ∈(0,+∞),a 2+2b 2+c 2=2m ,求ab +bc 的最大值. 23.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围.24.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值. 25.已知函数2()2,,f x x ax x R a R =-∈∈. (1)当1a =时,求满足()0f x <的x 的取值范围;(2)解关于x 的不等式2()3f x a <.26.(1)已知()2f x kx =+,不等式()3f x <的解集为()1,5-,不等式()1xf x ≥的解集为A .求集合A ;(2)解关于x 的不等式()2220ax a x +--≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 化简22211()44u mn vm n mn=+⨯++,再结合基本不等式,即可求解. 【详解】由题意,正数m ,n ,2m nu +=,222v m n mn =++, 则2222222222()12112()444m n u m n mn mn v m n mn m n mn m n mn+++===+⨯++++++ 2111111111444444213()11mnm m m n n n n m=+⨯=+⨯≤+⨯=+++++, 当且仅当m n n m =时,即m n =时,等号成立,所以2u v ⎛⎫ ⎪⎝⎭的最大值是为13.故选:B . 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z =3x -4y 得344z yx =-,它表示斜率为34纵截距为4z-的一系列直线, 当直线经过点A 时,直线的纵截距4z-最小,z 最大.由03x y m x +-=⎧⎨=⎩,解得A (3,m -3),故()max 33439z m =⨯--=,解得3m =. 故选:D. 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数).3.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=,则()12122388282343412843a b a b a b a b a b a b a b⎛⎫+=++=++≥+⋅=+=+ ⎪⎝⎭,当且仅当34b a b a =,即3133,46a b --==时等号成立,故12a b +的最小值为843+. 故选:D. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用2x y xy +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.4.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z =3x ﹣2y 变形为y =32x ﹣2z,由024y x y =⎧⎨-=⎩,解得B (2,0)当此直线经过图中B 时,在y 轴的截距最大,z 最小, 所以z 的最小值为3×2﹣2×0=6; 故选C .【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.C解析:C 【解析】0,tan 02xx π<∴,()21cos28sin sin2x x f x x++=2222cos 8sin 28tan 14tan 42sin cos 2tan tan x x x x x x x x ++===+≥=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x ++=的最小值为4,选C.6.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.7.D解析:D 【分析】将2z x y =-+化为2y x z =+,作出可行域和目标函数基准直线2y x =(如图所示),当直线2y x z =+将左上方平移时,直线2y x z =+在y 轴上的截距z 增大,由图象,得当直线2y x z =+过点A 时,z 取得最大值,联立2010x y m x y ⎧-+=⎨+-=⎩,得2211,22m m A ⎛⎫-+ ⎪⎝⎭,则22112422m m -+-⨯+≤,解得33m -≤≤;故选D.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.8.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
高中数学必修五第三章《不等式》单元测试题含答案
高中数学必修五第三章单元测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个命题:①若a >b ,则1a <1b; ②若ac 2>bc 2,则a >b ;③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( )A .②④B .②③C .①②D .①③2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0D .a 2-b 2<03.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A .M =PB .PMC .MP D .∁U M ∩P =∅4.设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞)5.在下列函数中,最小值是2的是( )A .y =x 2+2xB .y =x +2x +1(x >0)C .y =sin x +csc x ,x ∈(0,π2)D .y =7x +7-x6.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B .(12,1)C .(0,12)D .(1,+∞)7.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]8.不等式(x -2y +1)(x +y -3)<0表示的区域为( )9.f (x )=ax 2+ax -1在R 上满足f (x )<0,则a 的取值范围是( ) A .(-∞,0] B .(-∞,-4) C .(-4,0)D .(-4,0]10.由⎩⎪⎨⎪⎧x +2y +1≤0,x +y +2≥0,y ≥0组成的平面区域的面积为( )A .2B .1C.4 D.1 211.函数y=3x2+6x2+1的最小值是( )A.32-3 B.-3 C.6 2 D.62-312.设a>0,b>0.若3是3a与3b的等比中项,则1a+1b的最小值为( )A.8 B.4C.1 D.1 4二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.点(-2,t)在直线2x-3y+6=0的上方,则t的取值范围是________.14.函数y=13-2x-x2的定义域是________.15.如下图,有一张单栏的竖向张贴的海报,它的印刷面积为72 dm2(图中阴影部分),上下空白各2 dm,左右空白各1 dm,则四周空白部分面积的最小值是________dm2.16.已知当x >0时,不等式x 2-mx +4>0恒成立,则实数m 的取值范围是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.18.(12分)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.19.(12分)已知a ,b ,c 都是正数,且a +b +c =1. 求证:(1-a )(1-b )(1-c )≥8abc .20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A厂每小时可完成1辆甲型车和2辆乙型车;B厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工时最少?21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/时)与汽车的平均速度v(千米/时)之间的函数关系为y=144v(v>0).v2-58v+1 225(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(2)若要求在该时段内车流量超过9千辆/时,则汽车的平均速度应在什么范围内?22.(12分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f(x)和g(x),当甲公司投入x万元作宣传时,若乙公司投入的宣传费小于f(x)万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x万元作宣传时,若甲公司投入的宣传费小于g(x)万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)试解释f(0)=10,g(0)=20的实际意义;(2)设f (x )=14x +10,g (x )=x +20,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?高中数学必修五第三章单元测试题《不等式》参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个命题:①若a >b ,则1a <1b; ②若ac 2>bc 2,则a >b ;③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( )A .②④B .②③C .①②D .①③答案 B2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0 D .a 2-b 2<0 答案 C解析 由a -|b |>0⇒|b |<a ⇒-a <b <a ⇒a +b >0,故选C.3.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A .M =PB .P MC .MP D .∁U M ∩P =∅答案 C4.设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞)答案 B解析 ∵x -1x -4<0⇔(x -1)(x -4)<0,∴1<x <4,即B ={x |1<x <4},∴A ∩B =(3,4),故选B.5.在下列函数中,最小值是2的是( )A .y =x 2+2xB .y =x +2x +1(x >0) C .y =sin x +csc x ,x ∈(0,π2)D .y =7x +7-x 答案 D解析 y =x 2+2x 的值域为(-∞,-2]∪[2,+∞);y =x +2x +1=x +1+1x +1>2(x >0);y =sin x +csc x =sin x +1sin x>2(0<sin x <1);y =7x +7-x ≥2(当且仅当x =0时取等号).6.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B .(12,1)C .(0,12)D .(1,+∞)答案 B7.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]答案 C解析 画可行域如图:当直线y =x -z 过A 点时,z min =-1. 当直线y =x -z 过B 点时,z max =2. ∴z ∈[-1,2].8.不等式(x -2y +1)(x +y -3)<0表示的区域为( )答案 C9.f (x )=ax 2+ax -1在R 上满足f (x )<0,则a 的取值范围是( ) A .(-∞,0] B .(-∞,-4) C .(-4,0) D .(-4,0]答案 D10.由⎩⎪⎨⎪⎧x +2y +1≤0,x +y +2≥0,y ≥0组成的平面区域的面积为( )A .2B .1C .4D.12答案 D 11.函数y =3x 2+6x 2+1的最小值是( ) A .32-3B .-3C .6 2D .62-3答案 D 12.设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b的最小值为( ) A .8B .4C .1D.14 答案 B解析 3是3a 与3b 的等比中项⇒3a ·3b =3a +b =3⇒a +b =1,∵a >0,b >0,∴ab ≤a +b 2=12⇒ab ≤14. ∴1a +1b =a +b ab =1ab ≥114=4. 二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________.答案 (23,+∞) 14.函数y =13-2x -x2的定义域是________. 答案 {x |-3<x <1}15.如下图,有一张单栏的竖向张贴的海报,它的印刷面积为72 dm 2(图中阴影部分),上下空白各2 dm ,左右空白各1 dm ,则四周空白部分面积的最小值是________dm 2.答案 56解析 设阴影部分的高为x dm ,宽为72xdm ,则四周空白部分面积是y dm 2,由题意,得y =(x +4)(72x +2)-72=8+2(x +144x )≥8+2×2x ×144x =56.16.已知当x >0时,不等式x 2-mx +4>0恒成立,则实数m 的取值范围是________.答案 (-∞,4)解析 由题意得当x >0时,恒有m <x +4x 成立.设f (x )=x +4x,x >0,则有f (x )=x +4x ≥2x ×4x =4,当且仅当x =4x ,即x =2时,等号成立.所以f (x )=x +4x ,x >0的最小值是4.所以实数m 的取值范围是(-∞,4).三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.答案 (1)(2,+∞) (2)[1,2]18.(12分)已知x >0,y >0,且1x +9y=1,求x +y 的最小值. 答案 16解析 由于x >0,y >0,1x +9y=1, 所以x +y =(x +y )(1x +9y )=y x +9x y+10 ≥2y x ·9x y +10=16. 当且仅当y x =9x y 时,等号成立,又由于1x +9y=1. 所以当x =4,y =12时,(x +y )min =16.19.(12分)已知a ,b ,c 都是正数,且a +b +c =1.求证:(1-a )(1-b )(1-c )≥8abc .证明 ∵a 、b 、c 都是正数,且a +b +c =1,∴1-a =b +c ≥2bc >0,1-b =a +c ≥2ac >0,1-c =a +b ≥2ab >0.∴(1-a )(1-b )(1-c )≥2bc ·2ac ·2ab =8abc .∴原不等式成立.20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工时最少?解析 设A 厂工作x 小时,B 厂工作y 小时,总工作时数为t 小时,则目标函数t =x +y ,x ,y 满足⎩⎪⎨⎪⎧ x +3y ≥40,2x +y ≥20,x ≥0,y ≥0.可行域如图所示,而符合题意的解为此内的整点,于是问题变为要在此可行域内,找出整点(x ,y ),使t =x +y 的值最小.由图知当直线l :y =-x +t 过Q 点时,纵截距t 最小.解方程组⎩⎪⎨⎪⎧ x +3y =40,2x +y =20,得Q (4,12).答:A 厂工作4小时,B 厂工作12小时,可使所费的总工时最少.21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =144v v 2-58v +1 225(v >0). (1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(2)若要求在该时段内车流量超过9千辆/时,则汽车的平均速度应在什么范围内?思路分析 (1)利用基本不等式求最大车流量,(2)转化为解不等式.解析 (1)依题意,有y =144v +1 225v-58≤1442 1 225-58=12, 当且仅当v =1 225v,即v =35时等号成立, ∴y max =12,即当汽车的平均速度v 为35千米/时,车流量最大为12.(2)由题意,得y =144v v 2-58v +1225>9. ∵v 2-58v +1225=(v -29)2+384>0,∴144v >9(v 2-58v +1225).∴v 2-74v +1225<0.解得25<v <49.即汽车的平均速度应在(25,49)内.22.(12分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f (x )和g (x ),当甲公司投入x 万元作宣传时,若乙公司投入的宣传费小于f (x )万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x 万元作宣传时,若甲公司投入的宣传费小于g (x )万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)试解释f (0)=10,g (0)=20的实际意义;(2)设f (x )=14x +10,g (x )=x +20,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?解析 (1)f (0)=10表示当甲公司不投入宣传费时,乙公司要避免新产品的开发有失败风险,至少要投入10万元宣传费;g (0)=20表示当乙公司不投入宣传费时,甲公司要避免新产品的开发有失败的风险,至少要投入20万元宣传费.(2)设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,依题意,当且仅当⎩⎪⎨⎪⎧ y ≥f x =14x +10, ①x ≥g y =y +20, ②成立,双方均无失败的风险.由①②得y ≥14(y +20)+10⇒4y -y -60≥0, ∴(y -4)(4y +15)≥0.∵4y +15>0,∴y ≥4.∴y ≥16.∴x ≥y +20≥4+20=24.∴x min =24,y min =16.即要使双方均无失败风险,甲公司至少要投入24万元,乙公司至少要投入16万元.。
高一数学必修5_基本不等式练习题
高一数学(必修5)不等式测试题一、选择题:1、若R c b a ∈,,,且b a >,则下列不等式一定成立的是( )A .c b c a -≥+B .bc ac >C .02>-ba c D .0)(2≥-cb a 2、函数)12lg(21)(-+-=x xx f 的定义域为( )A .),21(+∞ B .)2,21( C .)1,21(D .)2,(-∞3、已知01<<-a ,则( )A .a aa 2212.0>⎪⎭⎫ ⎝⎛> B .aa a ⎪⎭⎫⎝⎛>>212.02C .a a a22.021>>⎪⎭⎫ ⎝⎛ D .a aa 2.0212>⎪⎭⎫⎝⎛>4、不等式21≥-xx 的解集为( )A .)0,1[-B .),1[∞+-C .]1,(--∞D .),0(]1,(∞+--∞5、已知正数y x 、满足811x y+=,则2x y +的最小值是( ) A .18 B .16 C .8 D .10 6、下列命题中正确的是( )A .当2lg 1lg ,10≥+≠>x x x x 时且B .当0>x ,21≥+x xC .当20πθ≤<,θθsin 2sin +的最小值为22 D .当xx x 1,20-≤<时无最大值 7、在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当53≤≤s 时,目标函数32z x y =+的最大值的变化范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]二、填空题8、设y x ,满足,404=+y x 且,,+∈R y x 则y x lg lg +的最大值是 .9、已知变量y x ,满足约束条件22,41≤-≤-≤+≤y x y x .若目标函数(0)z ax y a =+>仅在点)1,3(处取得最大值,则a 的取值范围为___________.10、设0>a ,且1≠a ,函数)12lg()(2+-=a x a x f 有最小值,则不等式0)75(log 2>+-x x a 的解集为___________.11、某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =_____________班级 姓名 座号 成绩 一、选择题二、填空题8、 9、10、 11、三、解答题12、已知b a ,都是正数,并且b a ≠,求证:233255b a b a b a +>+.17.已知函数3222)(a b x a ax x f -++=,当)6()2(∞+--∞∈,, x 时,0)(<x f ;当)62(,-∈x 时,0)(>x f .①求b a 、的值;②设)16(2)1(4)(4)(-+++-=k x k x f kx F , 则当k 取何值时, 函数)(x F 的值恒为负数?。
【高中数学新人教B版必修5】3.1.2《不等式的性质》测试
【高中数学新人教B 版必修5】3.1.2《不等式的性质》测试一.选择题:1.已知a 、b 、c 、d 均为实数,有下列命题①若ab>0,bc -ad>0,则a c -bd >0 ②若ab>0,a c -bd >0,则bc -ad>0 ③若bc -ad>0, a c >b d >0,则ab>0.其中真命题的个数是( )A.0 B.1 C.2 D.32.若a>b>c ,则一定成立的不等式是( )A.a │c │>b │c │ B.ab>ac C.a -│c │>b -│c │ D.a 1 <b 1<c 1 3.若a 、b ∈(0,+∞),且a>b ,则( )A.a 2>b 2 B.a b <1 C.lg(a -b)>0 D.a )21(< b )21( 4.若a>b>c ,则下列不等式成立的是( )A.c a -1>c b -1 B.c a -1<cb -1 C.ac>bc D.ac<bc 5.若a<b<0,则下列不等关系中不能成立的是( ) A.a 1 >b 1 B.b a -1>a1 C.│a │>│b │ D.a 2>b2 6.若a 、b 为实数,则a>b>0是a 2>b 2的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.若1<a 1 <b1,则下列结论中不正确的是( ) A .log b a > log a b B .│log b a +log a b │>2C .(log a b )2<1 D .│log b a │+ │ log a b │>│ log b a + log a b │ 8. “a>b>0” 是“ab< 222b a +”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件9.设a>0,b>0,则不等式-b<x1<a 等价于( ) A .-b 1 < x <0或0<x<a 1 B .-a 1<x<b1 C .x<-a 1或x>b 1 D .x<-b 1或x>a1 二.填空题:10.设a>1,-1<b<0,则a ,b ,-a ,-b ,-ab 按由大到小的顺序排列为_________________.11.以下结论:(1)a>b ⇒│a │>b ;(2)a>b ⇒a 2>b 2;(3)│a │>b ⇒a>b ;(4)a>│b │⇒a>b ,其中正确结论的序号是___________________.12.已知-2π≤α<β≤2π,则2βα-的范围为 . 三.解答题: 13.已知a>b>0,c>d>0,(1)求证:ac>bd (2)试比较d a 与c b 的大小.14.设f(x)=3ax 2+2bx+c ,若a+b+c=0,f(0)>0,f(1)>0求证:(1)a>0,-2<ab <-1 (2)函数f(x)在(0,1)内有零点.参考答案:1.D 解析:①∵bc -ad>0∴bc>ad 同时除以ab ∵ab>0∴a c >b d ∴ac -bd >0 ②∵a c -b d >0∴a c >bd ∵ab>0同时乘以ab 得bc>ad ∴bc -ad>0 ③ a c >b d >0 ∴a c -b d >0得abad bc ->0又bc -ad>0 ∴ab>0 2. C 解析:A 需要c ≠0,B 需要a>0,D 需要a 、b 、c 同号3.D4.B 解析:∵a-c>b-c>0∴c a -1<cb -1; 5.B 解析:∵a<b<0∴a 1 >b 1;∵a<b<0∴―b>―a>0∴│a │>│b │ ,a 2>b 2 6.A7.D 解析:∵1<a 1 <b1∴0<a<b<1∴0< log a b < log b a <1∴A 、B 、C 正确.∴D 不成立.实际上,D 应该取等号.8.A 解析:ab< 222b a +即a 2+b 2-2ab>0即(a-b)2>0,只能得到a ≠b 9.D 解析:若x>0,则由x 1<a 知x>a 1;若x<0,则由-b<x 1知x<-b1 二.填空题:10.a>-ab>-b>b>-a 解析:依题意知a>-b>b>-a ,只需考虑-ab ,它是个正数,依题意│b │<-ab<│a │即-b<-ab<a .11.(1)(4)解析:(1)∵│a │≥a 而a>b ∴│a │>b (2)必须均正(3)如a=-3,b=2(4)∵│b │≥b 而a>│b │∴a>b12.022≤-≤-βαπ解析:∵-2π≤β≤2π∴-2π≤-β≤2π,同向可加性得πβαπ≤-≤-,从而得到结论.三.解答题:13.证明:(1)∵a>b>0,c>d>0∴ac>bc,bc>bd ∴ac>bd(2)∵a>b>0,c>d>0∴d b d a >>0,c b d b >>0∴c b d a >>0 ∴d a >cb 14.证明:(1)∵f(0)>0,f(1)>0∴c>0,3a+2b+c>0再由a+b+c=0,消去b ,得a>c>0;消去c ,得a+b<0,2a+b>0.故-2<a b <-1 (2)抛物线f(x)=3ax 2+2bx+c 的顶点坐标为(a b 3-,a b ac 332-).∵-2<a b <-1∴32331<-<a b .由于f(a b 3-)=ab ac 332-=a c a ac 3)(32+-=a ac c a 322-+-<0而f(0)>0,f(1)>0,所以函数f(x)在(0,a b 3-)和(ab 3-,1)内各有一个零点.。
人教A版高中数学必修5第三章不等式3.2一元二次不等式及其解法习题
精选文档课时作业一一、选择题1.不等式- 6x2-x+ 2≤ 0 的解集是 ()A. x|-2≤ x≤1B.x|x≤-2或 x≥1 3232C. x|x≥1D.x|x≤-3 222.一元二次方程ax2+ bx+ c= 0 的根为2,- 1,则当 a<0 时,不等式ax2+ bx+c≥ 0的解集为 ()A. { x|x<-1 或 x>2}B. { x|x≤- 1 或 x≥ 2} [根源:www ]C. { x|- 1<x<2}D. { x|- 1≤x≤ 2}3.函数 y= lg(x2- 4)+x2+ 6x的定义域是 ()A. (-∞,- 2)∪ [0,+∞ ) B . (-∞,- 6]∪ (2,+∞ )C. ( -∞,- 2]∪ [0 ,+∞ ) D . (-∞,- 6)∪ [2,+∞ )4.若不等式 mx2+ 2mx- 4<2x2+ 4x 的解集为 R ,则实数 m 的取值范围是 ()A. (- 2,2) B . (- 2,2]C. ( -∞,- 2)∪ [2 ,+∞ )D.( -∞, 2)22)x+k2+3k+ 5= 0(k∈ R)的两个实数根,则225.已知 x1、x2是方程 x - (k-x1+ x2的最大值为 ()5A. 18B. 19C.59 D .不存在二、填空题6.二次函数 y=ax2+ bx+ c 的部分对应点以下表:x-3- 2- 101234y60- 4-6- 6- 406则不等式 ax2+ bx+c>0 的解集是 ______________ .7.不等式- 1<x2+2x- 1≤ 2 的解集是 ________.8.若函数f(x) = lg(ax2- x+ a)的定义域为 R ,则实数a 的取值范围是 ________.三、解答题119.已知 x2+ px+ q<0 的解集为x|-2<x<3,求不等式qx2+ px+1>0 的解集.10.解对于x 的不等式: ax2- 2x+ 1>0.课时作业二一、选择题[根源 :]1.不等式 (x- 1) x+ 2≥ 0 的解集是 ()A. { x|x>1}B. { x|x≥ 1}C. { x|x≥ 1 或 x=- 2} D .{ x|x≥- 2 或 x= 1}x2- 2x-22.不等式x2+x+1 <2 的解集为 ()A. { x|x≠- 2} B . RC. ?1D. { x|x<-2 或 x>2}3.若 a>0 , b>0,则不等式-b<x<a 等价于 ()[根源:].1111A .- b <x<0 或 0< x<aB .- a <x<bC . x<- 1或 x>1D . x<-1或 x>1a bb ax 2- 4x + 6,x ≥ 0, 则不等式 f(x)>f(1) 的解集是 ()4.设函数 f(x) =x + 6, x<0,A . (- 3,1)∪ (3,+∞ )B . (- 3,1)∪(2 ,+∞ )C . ( -1,1)∪ (3,+∞ )D . (-∞,- 3)∪ (1,3)5.对随意 a ∈ [- 1,1] ,函数 f(x) =x 2 + (a -4)x +4- 2a 的值恒大于零,则 x 的取值范围是 ()A . 1<x<3B . x<1 或 x>3C . 1< x<2D . x<1 或 x>2二、填空题6.假如 A ={ x|ax 2- ax + 1<0} = ?,则实数 a 的取值范围为 ________.7.已知 x = 1 是不等式 k 2x 2- 6kx +8≥ 0 的解,则 k 的取值范围是 ________.2x 2- 3x -5 8.不等式 3x 2- 13x + 4≥ 1 的解集为 ________________ .三、解答题x 212= 0 有两个实根为 129.已知函数 f(x)= ax + b (a ,b 为常数 ),且方程 f(x)- x +x =3, x= 4.(1)求函数 f(x)的分析式;(k + 1)x - k(2)设 k>1,解对于 x 的不等式: f(x)<.2- x10.已知函数 f(x)= lg[( a 2- 1)x 2+ (a + 1)x +1] .(1)若 f(x)的定义域为 (-∞,+∞ ),务实数 a 的取值范围; (2)若 f(x)的值域为 (-∞,+∞ ),务实数 a 的取值范围.课时作业一答案1. 答案 B2. 答案 D3. 答案 B4. 答案 B5. 答案 A二、填空题6. 答案 { x|x<- 2 或 x>3} 7. 答案 { x|- 3≤ x<- 2 或 0< x ≤ 1}1 8. 答案 a>2三、解答题9. 解 ∵ x 2+ px +q<0 的解集为1 1,x|- <x< 32∴ -1, 1是方程 x 2+ px + q =0 的两实数根,2 31113-2=- pp = 6由根与系数的关系得, ∴, 1× - 1= q132q =- 621 2 1∴ 不等式 qx+ px +1>0 可化为-6 x + x + 1>0,6即 x 2- x -6<0 , ∴ -2<x<3, ∴不等式 qx 2+px + 1>0 的解集为 { x|- 2<x<3} . 10. 解 ① 当 a = 0 时,不等式即-2x + 1>0, ∴ 解集 为 x|x<1;2② 当 a<0 时, = 4- 4a>0 ,此时不等式为 x 2-2x + 1<0,因为方程 x 2- 2x + 1= 0 的两a aa a 1- 1- a 1+ 1- a 1- 1- a 1+ 1- a根分别为a 、 ,且a > a,a.1+ 1- a1- 1- a; ∴ 不等式的解集为 x|a<x<a2 1③ 当 a>0 时,若 0<a<1,则>0,此时不等式即>0.x 2- x +aa∵ 1- 1- a 1+ 1- aa <a,∴ 当 0<a<1 时,不等式解集为x|x<1- 1-a或 x>1+ 1- a.若 a =1,则不等式为 (x - 1)2>0, aa∴ 当 a = 1 时,不等式解集为 { x|x ∈ R 且 x ≠ 1} ;若 a>1 时,则 <0,不等式解集为 R .综上所述,当a<0 时,不等式的解集为1+ 1- a1- 1- a ;xa<x<a当 a =0 时,不等式的解集为x x< 1;2当 0<a<1 时,不等式的解集为x x< 1- 1- a1+ 1- a或 x> a;a当 a =1 时,不等式的解集为 { x |x ∈R 且 x ≠ 1 } ;当 a>1 时,不等式的解集为R.课时作业二答案一、选择题1. 答案 C 分析 当 x =- 2 时, 0≥0 建立.当 x>- 2 时,原不等式变成 x - 1≥ 0,即 x ≥ 1.∴ 不等式的解集为 { x|x ≥1 或 x =- 2} .2. 答案 A分析 原不等式 ? x 2- 2x - 2<2x 2+ 2x + 2? x 2+ 4x + 4>0? (x + 2)2>0 ,∴ x ≠ - 2. ∴ 不等式的解集为 { x|x ≠- 2} . 3. 答案Dx>0x<0x>0x<0分析 - b<1<a? 11?? x>1或 x<- 1.或 1 或xx <ax >- bx>abx<- 1ab4. 答案 A 分析 f(1) = 12- 4× 1+ 6=3, 当 x ≥0 时, x 2- 4x +6>3 ,解得 x>3 或 0≤ x<1 ; 当 x<0 时, x + 6>3,解得- 3< x<0.因此 f(x)>f(1)的解集是 x ∈ (- 3,1)∪(3,+ ∞ ).5. 答案B 分析 设 g(a)= (x - 2)a + (x 2- 4x +4)g(a)>0 恒建立且 a ∈ [-1,1] ? g(1)= x 2- 3x + 2>0 x<1或x>2? x<1 或 x>3.? x<2或x>3g(- 1)= x 2- 5x + 6>0 二、填空题 6. 答案0≤ a ≤ 4分析 a = 0 时, A = ?;当 a ≠ 0 时, A = ?? ax2- ax + 1≥ 0 恒建立 ?a>0 ? 0<a ≤ 4,Δ≤ 0综上所述,实数 a 的取值范围为 0≤ a ≤ 4. 7.答案k ≤ 2 或 k ≥ 4分析 x = 1 是不等式 k 2x 2- 6kx + 8≥ 0 的解,把 x = 1 代入不等 式得 k 2- 6k + 8≥0,解得 k ≥ 4 或 k ≤2..8. 答案1,1 ∪ (4,9] [根源:]3x 2- 10x + 9分析原不等式化为3x 2-13x +4≤0即 (x 2- 10x + 9)(3x 2- 13x + 4)<0 或 x 2- 10x + 9= 0. 即 (x - 1)(x - 9)(3x - 1)(x - 4)<0 或 (x - 1)(x - 9)= 0, 由下列图可知,原不等式的解为1 3<x ≤1 或 4<x ≤ 9.三、解答题 x 29. 解1 2-x + 12= 0(1)将 x = 3, x = 4 分别代入方程 ax + b9 =- 9,a =- 13a + b 2得解得 ,因此 f( x)= x16 =- 8, b = 22- x (x ≠ 2). 4a + bx 2 (k + 1)x - k x 2-( k +1) x + k(2)不等式即为 2- x < 2-x ,可转变成 2- x <0.即 (x - 2)(x - 1)(x - k)>0.① 当 1< k<2 时,原不等式的解集为 { x|1<x<k 或 x>2} ;② 当 k = 2 时,不等式为 (x - 2) 2(x - 1)>0 ,原不等式的解集为 { x|1<x<2 或 x>2} ; ③ 当 k>2 时,原不等式的解集为 { x|1<x<2 或 x>k} . 综上知, 当 1<k<2 时,不等式的解集为 { x|1<x<k 或 x>2} ; 当 k =2 时,不等式的解集为 { x|1<x<2 或 x>2} ;当 k>2 时,不等式的解集为{ x|1<x<2 或 x>k} .a 2- 1>0, 得 a<- 1 或 a>5.[根源 :]10. 解 (1)当 a 2- 1≠ 0 时,由= (a + 1)2- 4(a 2- 1)<0 ,3 又 a 2- 1= 0 时,得 a = ±=- 1 时,知足题意. a =1 时,不合题意.∴ 实数 a 的取值范围为 5a ≤ - 1 或 a> .(2)只需 t = (a 2- 1)x 2+ ( a + 1)x + 1 3能取到 (0,+ ∞)上的任何值,则 f(x)的值域为 R ,故当 a 2- 1≠ 0 时,有 a 2- 1>0, 得 1<a ≤5.Δ≥ 0,3又当 a 2- 1= 0,即 a = 1 时, t = 2x + 1 切合题意. a =- 1 时不合题意.5全品最新精选资料..。
北师大版高中数学必修5第三章不等式测试题集锦
第三章 不等式习题集锦一、选择题1. 设a= 3-x, b=x-2,则a 与b 的大小关系为( )A . a>b B. a=b C . a<b D. 与x 有关2.已知,,a b c R ∈,则下列选项正确的是 ( )A.22a b am bm >⇒> B.a b a b c c>⇒> C .11,0a b ab a b >>⇒< D.2211,0a b ab a b >>⇒< 3.已知a ,b ,c ,d ∈R ,则下列命题中必然成立的是()A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a 2>b 2,则-a <-bD .若a >b ,c >d ,则>a b c d4.若m<n ,p<q 且(p-m)(p-n)>0,(q-m)(q-n)<0,则m 、n 、p 、q 的大小顺序是()A .m<p<q<nB .p<m<q<nC .p<m<n<qD .m<p<n<q5.若110a b<<,则下列不等式中,正确的不等式有 () ①a b ab +< ②a b > ③a b < ④2b a a b+> A .1个 B .2个 C .3个 D .4个6.对于任意实数a 、b 、c 、d ,命题①bc ac c b a >≠>则若,0,;②22,bc ac b a >>则若 ③b a bc ac >>则若,22;④ba b a 11,<>则若;⑤bd ac d c b a >>>>则若,,0.其中真命题的个数是(A)1 (B)2 (C)3 (D)47.下列不等式中,对任意x ∈R 都成立的是 ()A .2111x <+B .x 2+1>2xC .lg(x 2+1)≥lg2xD .244x x +≤1 8.下列不等式的解集是空集的是( )A.x 2-x+1>0B.-2x 2+x+1>0C.2x -x 2>5D.x 2+x>29.不等式022>++bx ax 的解集是)31,21(-,则a +b 的值是( ) A.10 B.-10 C.14D.-14 10. 若不等式022>++bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是 A.-10 B.-14 C. 10 D. 1411.不等式0322≥-+x x 的解集为( )A 、{|13}x x x ≤-≥或B 、}31|{≤≤-x xC 、{|31}x x x ≤-≥或D 、}13|{≤≤-x x12.不等式11(-x)(x -)023>的解集为( ) 11. 32A x x ⎧⎫<<⎨⎬⎩⎭ 1. 2⎧⎫>⎨⎬⎩⎭B x x 1. |3⎧⎫<⎨⎬⎩⎭C x x 11. |32⎧⎫<>⎨⎬⎩⎭或D x x x 13.关于x 的不等式)1,(0-∞>+的解集为b ax ,则关于x 的不等式02>+-x a bx 的解集为( )A .(-2,1)B .),1()2,(+∞-⋃--∞C .(-2,-1)D .),1()2,(+∞⋃--∞14. 若全集U=R,集合M ={}24x x >,S =301x x x ⎧-⎫>⎨⎬+⎩⎭,则()U M S ð= A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤< 15.{}202,023ax b ax b x x x x ++>>>--不等式的解集为则不等式的解集为( ) A. {}213x x x -<<->或 B .{}321x x x -<<->或 C. {}123x x x -<<>或 D .{}231x x x <<<-或16.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是A .11a -<<B .02a <<C .1322a -<<D .3122a -<< 17.()()222240a x a x x R -+--<∈若不等式对一切恒成立,则a 的取值范围是( )A .(]2-∞,B .(]22-,C .[]22-,D .()2-∞, 18.在R 上定义运算a cad bc b d =-,若32012xx x <-成立,则x 的取值范围是(A.(4,1)-B.(1,4)-C.(,4)(1,)-∞-+∞D.(,1)(4,)-∞-+∞19.已知函数20()20x x f x x x +⎧=⎨-+>⎩,≤,,,则不等式2()f x x ≥的解集为( )A .[]11-,B .[]22-,C .[]21-,D .[]12-, 20. 0,0a b ≥≥,且2a b +=,则 ( ) (A )12ab ≤ (B )12ab ≥ (C )222a b +≥ (D )223a b +≤ 21. 已知310<<x ,则)31(x x -取最大值时x 的值是( ) A .31 B .61 C .43 D .32 22. 已知正数,x y 满足1x y +=,则12x y+的最小值( )A .3+B .C .2D .4 23. 若实数b a ,满足1=+b a ,则b a 33+的最小值是( )A .18B .32C .6D .3624. 若实数a 、b 满足a +b =2,是3a +3b 的最小值是( )A .18B .6C .23D .24325. 如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( )A .最大值1和最小值43 B .最小值21和最大值1 C .最小值43而无最大值 D .最大值1而无最小值 26. 已知x y xy +=,则y x +的取值范围是()A .]1,0(B .),2[+∞C .]4,0(D .),4[+∞27. ()()21x y x y x x ⊕=-⊕+定义运算,则的最大值是( )A .1B .12C .2D .1428.已知12=+y x ,则y x 42+的最小值为A .8B .6C .22D .2329.下列函数中,最小值为2的是( )A .)0(1<+=x x x y B .)1(11≥+=x xy C .)0(24>-+=x x x y D .2322++=x x y 30.下列结论正确的是(A)当2lg 1lg ,10≥+≠>xx x x 时且 ;(B)21,0≥+>x x x 时当; (C)21,2的最小值为时当xx x +≥; (D)无最大值时当xx x 1,20-≤< 31. 设x>0,y>0,a 、b 为正常数,且1=+y b x a ,则x+y 的最小值为( ) A .ab 4 B .ab b a 2++C .2(a+b)D .以上都不对32.63x y -<不在4表示的平面区域内的点是()A .()00,B .()12,C .()21,D .()31, 33.已知点(3,1)和(-4,6)在直线320x y a -+=的两侧,则a 的取值范围是( )A.a <-7或a >24B.a =7或a =24C.-7<a <24D.-24<a <734.已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]35.如图, 不等式(x+y)(x-y)<0表示的平面区域是( )36.如图7-27,022<-y x 表示的平面区域是( )37. ⎪⎪⎩⎪⎪⎨⎧≥≥-<-<+0011234x y y x y x 表示的平面区域内的整点的个数是( ) A .8个 B .5个 C .4个 D .2个38. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有A .3,12m in m ax ==z zB .,12m ax =z z 无最小值C .z z ,3m in =无最大值D .z 既无最大值,也无最小值39. 00,23x y x y x y x y y a -≤⎧⎪+≥+⎨⎪≤⎩若实数、满足且z=的最大值是,则a =( )A .1B .1-C .0D .240.不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是 ( )(A ) 矩形 ( B ) 三角形 (C ) 直角梯形 (D ) 等腰梯形41.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A 、B两种规格的金属板,每张面积分别为2m 2、3 m 2,用A 种金属板可造甲产品3个,乙产品5个,用B 种金属板可造甲、乙产品各6个,则A 、B 两种金属板各取多少张时,能完成计划并能使总用料面积最省?(A) A 用3张,B 用6张 (B)A 用4张,B 用5张(C)A 用2张,B 用6张 (D)A 用3张,B 用5张二、填空题1.当x 取值范围是____ 时,函数122-+=x x y 的值大于零2.b 克糖水中有a 克糖(b>a >0),若再加入m 克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为 .3.不等式0)3)(5)(1(>+--x x x 的解集为:4.若不等式02<--b ax x 的解集是2<x<3,则不等式012>--ax bx 的解集是:________ 5.140,0,1x y x y>>+=若且,则x y +的最小值是 6. 已知0,0>>y x ,且191=+y x ,则y x +的最小值为 _____ 7. 已知232a b +=,则48a b +的最小值是 .(8. 数224y =x +x +1的最小值是___ 9. 若x 、y ∈R +,x +4y =20,则xy 有最______值为______. 10.某校要建造一个容积为38m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。
高中数学必修5不等式单元检测试题
高中数学必修5不等式单元检测试题一、选择题(每小题只有一个符合题意的答案,请将其答案代号填入答题表内)1.已知a<b<0,则下列不等式中不能成立....的是 A .b a > B .ba 11> C .a 2>b 2 D .b a -<- 2.若x –y>x ,x + y<y ,则A .x<y<0B .x>0,y>0C .x<0,y<0D .y<x 3.A = {x | ax >1} = {x | x a1<},则a 为 A .正数 B .负数 C .非正数 D .非负数4.当x<–2时,|1–|x +1||等于A .2+xB .–2–xC .xD .–x5.下列不等式中与3x <等价的是A .1x 2x 131x 2x 1x 22+-+<+-+B .4x 34x x -+<-+C .22)4x (3)4x (x +<+D .22)4x (3)4x (x -<- 6.若a>b+1,下列各式中正确的是A .a 2>b 2B .1ba > C .lg(a –b)>0 D .lga>lgb 7.若0<x<21, 函数y=x(1–2x)的最大值是 A .41 B .81, C .161 D .没有最大值 8.设A={x||x+1|≤2},B={x|x 2–5x+6≥0},则A 、B 间的关系是A .B A B .A=BC .A BD .φ=B A9.设a 、b 、c 为非零实数,且|a –c|<|b|,则必有A .a<b+cB .a>c –bC .|a|>|b|–|c|D .|a|<|b|+|c|10.下列不等式在a>0,b>0时一定成立的是 A .b a ab 2+≤ab ≤2b a +≤2b a 22+ B .ab ≤b a ab 2+≤2b a +≤2b a 22+ C .ab ≤2b a +≤ba ab 2+≤2b a 22+ D .ab ≤b a ab 2+≤2b a 22+≤2b a + 二、填空题(将最简结果直接填于横线上,18分)⊂≠⊂≠11.已知a<b<0,c<0,则(a –2)c (b –2)c 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 ,求函数 y 4 x 2 1 的最大值。 4 4x 5
ab ab 2
*
(2)若 a, b R , 则ab
*
时取“=” )
(3)若 a, b R ,则 ab
a b 2
2
(当且仅当 a
b 时取“=” )
1 3.若 x 0 ,则 x 2 x x 1 时取“=” )
3.若 ab
0 ,则 a b 2
b a
(当且仅当 a
b 时取“=” )
(当且仅当 a
3 ,求函数 y 4 x(3 2 x) 的最大值。 2
若 ab
0 ,则
a b a b a b 2即 2或 -2 b a b a b a
b 时取“=” )
技巧三: 分离
故
错解 : x 0, y 0 ,且 ..
(3)
y 2sin x
1 , x (0, ) sin x
x y min 12
。
2.已知 0 x 1 ,求函数
y x(1 x) 的 最 大 值 . ; 3 . 0 x
2 ,求函数 3
变式: (1)若 x, y R 且 2 x
变式: 求函数 y 2 x 1 5 2 x ( 1 x 5 ) 的最大值。
2 2
应用四:均值定理在比较大小中的应用: 例:若 a b 1, P 小关系是 应用二:利用基本不等式证明不等式 1.已知 a, b, c 为两两不相等的实数,求证: a
2
lg a lg b , Q
=
3 4
即 x 1+y
2
=
1 y + 2 2
≤
3 4
技巧九、取平方 5、已知 x,y 为正实数,3x+2y=10,求函数 W= 3x + 2y 的最值.
应用三:基本不等式与恒成立问题 例:已知 x 0, y 0 且 围。
1 9 1 ,求使不等式 x y m 恒成立的实数 m 的取值范 x y
a b 2 a2 b2 4.若 a, b R ,则 ( (当且仅当 a b 时取“=” ) ) 2 2
注: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大” . (2)求最值的条件“一正,二定,三取等” ( 3 )均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广 泛的应用.
基本不等式应用
一.基本不等式 1.(1)若 a, b R ,则 a 时取“=”) 2. (1)若 a, b R , 则
*
2
解题技巧: 技巧一:凑项
b 2 2ab
(2)若 a, b R ,则 ab
a2 b2 (当且仅当 a b 2
(当且仅当 a b 2 ab
例 1:已知 x
1 x 3x 1 ,x 3 , ( x 0) (2) y 2 x x 3 x
2
2:已知 x 0, y 0 ,且
1 9 1 ,求 x y 的最小值。 x y
1 9 1 , x y 1 9 x y 2 9 2 xy 12 x y x y xy
y x(2 3x) 的最大值.
y 1 ,求 1 1 的最小值
x y
(2)已知 a, b, x, y R 且 a b 1 ,求 x x y
y 的最小值
条件求最值
a b 1.若实数满足 a b 2 ,则 3 3 的最小值是
.
技巧七、已知 x,y 为正实数,且 x +
x 2 7 x 10 ( x 1) 的值域。 例 3. 求 y x 1
解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x+1)的项,再 将其分离。
应用一:求最值 例 1:求下列函数的值域 (1)y=3x + 2 2x
2
1
1 (2)y=x+
x
技巧四:换元 解析二:本题看似无法运用基本不等式,可先换元,令 t=x+1,化简原式在分离求 最值。
1 ab (lg a lg b), R lg( ) ,则 P, Q, R 的大 2 2
.
b 2 c 2 ab bc ca
技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数
a f ( x) x 的单调性。 x
例:求函数 y
变式:若 log4 x log4 y 2 ,求
1 1 的最小值.并求 x,y 的值 x y
x2 5 x2 4
的值域。
技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否 则就会出错。 。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1) y
2
y2
2
=1,求 x 1+y
2
的最大值. 。 1+y 2· 2
2
2.正数 -b)(1-c)≥8abc
分析:因条件和结论分别是二次和一次,故采用公式 ab≤ 同时还应化简 1+y 2 x· 1 y + 2 2 1 y + 2 2
2 2 2
a 2+b 2
若x
1 (当且仅当 x 1 时取“=” );若 x 0 ,则 x 2 x
(当且仅当 a
技巧二:凑系数 例 1. 当
(当且仅当
时,求 y x(8 2 x) 的最大值。
0 ,则 x 1 2即x 1 2或x 1 -2
x x x
b 时取“=” )
变式:设 0 x
2
2
1 中 y 前面的系数为 , 2
2
x 1+y
=x
= 例 6:已知 a、b、c R ,且 a b c 1 。求证:
.下面将 x, x +(
2
1 y + 2 2
2
2
分别看成两个因式:
2
x·
2 ·x
≤
2
1 y + 2 2 2 2
)
2
y 1 2 x + + 2 2 = 2
1 1 1 1 1 1 8 a b c