高一数学(上)单元测试题八

合集下载

高中一年级数学必修一集合与函数的概念单元测试题含答案解析

高中一年级数学必修一集合与函数的概念单元测试题含答案解析

高一数学必修一 集合与函数的概念单元测试 附答案解析(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( ) A .{0} B .{0,2} C .{-2,0} D .{-2,0,2}2.设f :x →|x |是集合A 到集合B 的映射,若A ={-2,0,2},则A ∩B =( ) A .{0} B .{2} C .{0,2} D .{-2,0}3.f (x )是定义在R 上的奇函数,f (-3)=2,则下列各点在函数f (x )图象上的是( ) A .(3,-2) B .(3,2) C .(-3,-2) D .(2,-3)4.已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .5 D .95.若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -46.设f (x )=⎩⎨⎧x +3x >10,f x +5 x ≤10,则f (5)的值为( )A .16B .18C .21D .247.设T ={(x ,y )|ax +y -3=0},S ={(x ,y )|x -y -b =0},若S ∩T ={(2,1)},则a ,b 的值为( )A .a =1,b =-1B .a =-1,b =1C .a =1,b =1D .a =-1,b =-18.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0) D.⎝ ⎛⎭⎪⎫12,19.已知A ={0,1},B ={-1,0,1},f 是从A 到B 映射的对应关系,则满足f (0)>f (1)的映射有( ) A .3个 B .4个 C .5个D .6个10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)[f (x 2)-f (x 1)]>0,则当n ∈N *时,有( )A .f (-n )<f (n -1)<f (n +1)B .f (n -1)<f (-n )<f (n +1)C .f (n +1)<f (-n )<f (n -1)D .f (n +1)<f (n -1)<f (-n ) 11.函数f (x )是定义在R 上的奇函数,下列说法:①f (0)=0; ②若f (x )在[0,+∞)上有最小值为-1,则f (x )在(-∞,0]上有最大值为1;③若f (x )在[1,+∞)上为增函数,则f (x )在(-∞,-1]上为减函数;④若x >0时,f (x )=x 2-2x ,则x <0时,f (x )=-x 2-2x .其中正确说法的个数是( )A .1个B .2个C .3个D .4个12.f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f 2f 1+f 4f 3+f 6f 5+…+f 2014f 2013=( )A .1006B .2014C .2012D .1007二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.函数y =x +1x的定义域为________. 14.f (x )=⎩⎨⎧x 2+1x ≤0,-2xx >0,若f (x )=10,则x =________.15.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.16.在一定围,某种产品的购买量y 吨与单价x 元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R . (1)求A ∪B ,(∁U A )∩B ; (2)若A ∩C ≠∅,求a 的取值围.18.(本小题满分12分)设函数f (x )=1+x 21-x 2.(1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f ⎝ ⎛⎭⎪⎫1x +f (x )=0.19.(本小题满分12分)已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.(1)求当x<0时,f(x)的解析式;(2)作出函数f(x)的图象,并指出其单调区间.20.(本小题满分12分)已知函数f(x)=2x+1 x+1,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.21.(本小题满分12分)已知函数f (x )的定义域为(0,+∞),且f (x )为增函数,f (x ·y )=f (x )+f (y ).(1)求证:f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y );(2)若f (3)=1,且f (a )>f (a -1)+2,求a 的取值围.22.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x (元)与日销售量y (件)之间有如下表所示的关系:x 30 40 45 50 y 60 30 15(1)(x ,y )的对应点,并确定y 与x 的一个函数关系式.(2)设经营此商品的日销售利润为P 元,根据上述关系,写出P 关于x 的函数关系式,并指出销售单价x 为多少元时,才能获得最大日销售利润?1.解析 M ={x |x (x +2)=0.,x ∈R }={0,-2},N ={x |x (x -2)=0,x ∈R }={0,2},所以M ∪N ={-2,0,2}.答案 D2. 解析 依题意,得B ={0,2},∴A ∩B ={0,2}.答案 C3. 解析 ∵f (x )是奇函数,∴f (-3)=-f (3).又f (-3)=2,∴f (3)=-2,∴点(3,-2)在函数f (x )的图象上.答案 A4. 解析 逐个列举可得.x =0,y =0,1,2时,x -y =0,-1,-2;x =1,y =0,1,2时,x -y =1,0,-1;x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知集合B 的元素为-2,-1,0,1,2.共5个.答案 C5. 解析 ∵f (3x +2)=9x +8=3(3x +2)+2,∴f (x )=3x +2.答案 B6. 解析 f (5)=f (5+5)=f (10)=f (15)=15+3=18.答案 B7. 解析 依题意可得方程组⎩⎨⎧2a +1-3=0,2-1-b =0,⇒⎩⎨⎧a =1,b =1.答案 C8. 解析 由-1<2x +1<0,解得-1<x <-12,故函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12.答案 B9. 解析 当f (0)=1时,f (1)的值为0或-1都能满足f (0)>f (1);当f (0)=0时,只有f (1)=-1满足f (0)>f (1);当f (0)=-1时,没有f (1)的值满足f (0)>f (1),故有3个.答案 A10.解析 由题设知,f (x )在(-∞,0]上是增函数,又f (x )为偶函数,∴f (x )在[0,+∞)上为减函数. ∴f (n +1)<f (n )<f (n -1). 又f (-n )=f (n ),∴f (n +1)<f (-n )<f (n -1). 答案 C11. 解析 ①f (0)=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确. 答案 C12. 解析 因为对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,由f (2)=f (1)·f (1),得f (2)f (1)=f (1)=2, 由f (4)=f (3)·f (1),得f (4)f (3)=f (1)=2,……由f (2014)=f (2013)·f (1), 得f (2014)f (2013)=f (1)=2,∴f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)=1007×2=2014.答案 B13. 解析 由⎩⎨⎧x +1≥1,x ≠0得函数的定义域为{x |x ≥-1,且x ≠0}.答案 {x |x ≥-1,且x ≠0}14. 解析 当x ≤0时,x 2+1=10,∴x 2=9,∴x =-3.当x >0时,-2x =10,x =-5(不合题意,舍去). ∴x =-3. 答案 -315. 解析 f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2为偶函数,则2a +ab =0,∴a =0,或b =-2.又f (x )的值域为(-∞,4],∴a ≠0,b =-2,∴2a 2=4. ∴f (x )=-2x 2+4. 答案 -2x 2+416. 解析 设一次函数y =ax +b (a ≠0),把⎩⎨⎧x =800,y =1000,和⎩⎨⎧x =700,y =2000,代入求得⎩⎨⎧a =-10,b =9000.∴y =-10x +9000,于是当y =400时,x =860.答案 86017. 解 (1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.∁U A ={x |x <2,或x >8}. ∴(∁U A )∩B ={x |1<x <2}. (2)∵A ∩C ≠∅,∴a <8.18. 解 (1)由解析式知,函数应满足1-x 2≠0,即x ≠±1.∴函数f (x )的定义域为{x ∈R |x ≠±1}. (2)由(1)知定义域关于原点对称, f (-x )=1+(-x )21-(-x )2=1+x 21-x 2=f (x ).∴f (x )为偶函数.(3)证明:∵f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,f (x )=1+x21-x 2, ∴f ⎝ ⎛⎭⎪⎫1x +f (x )=x 2+1x 2-1+1+x 21-x 2=x 2+1x 2-1-x 2+1x 2-1=0. 19. 解 (1)当x <0时,-x >0,∴f (-x )=(-x )2-2(-x )=x 2+2x . 又f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ).∴当x <0时,f (x )=x 2+2x .(2)由(1)知,f (x )=⎩⎨⎧x 2-2x (x ≥0),x 2+2x (x <0).作出f (x )的图象如图所示:由图得函数f (x )的递减区间是(-∞,-1],[0,1].f (x )的递增区间是[-1,0],[1,+∞).20. 解 (1)函数f (x )在[1,+∞)上是增函数.证明如下:任取x 1,x 2∈[1,+∞),且x 1<x 2,f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),∵x 1-x 2<0,(x 1+1)(x 2+1)>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[1,+∞)上是增函数.(2)由(1)知函数f (x )在[1,4]上是增函数,最大值f (4)=95,最小值f (1)=32.21. 解 (1)证明:∵f (x )=f ⎝ ⎛⎭⎪⎫x y·y =f ⎝ ⎛⎭⎪⎫x y +f (y ),(y ≠0)∴f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ).(2)∵f (3)=1,∴f (9)=f (3·3)=f (3)+f (3)=2. ∴f (a )>f (a -1)+2=f (a -1)+f (9)=f [9(a -1)]. 又f (x )在定义域(0,+∞)上为增函数,∴⎩⎨⎧a >0,a -1>0,a >9(a -1),∴1<a <98.22. 解 (1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y =kx +b ,则⎩⎨⎧50k +b =0,45k +b =15,⇒⎩⎨⎧k =-3,b =150.∴y =-3x +150(0≤x ≤50,且x ∈N *),经检验(30,60),(40,30)也在此直线上. ∴所求函数解析式为y =-3x +150(0≤x ≤50,且x ∈N *). (2)依题意P =y (x -30)=(-3x +150)(x -30)=-3(x -40)2+300.∴当x =40时,P 有最大值300,故销售单价为40元时,才能获得最大日销售利润.。

高一数学必修1第一单元测试题及答案

高一数学必修1第一单元测试题及答案

高一年级数学学科第一单元质量检测试题参赛试卷学校:宝鸡石油中学 命题人:张新会一、选择题:本答题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{0,1}的子集有 A.1个 B. 2个 C. 3个 D. 4个2.已知集合2{|10}M x x =-=,则下列式子正确的是A.{1}M -∈B.1 M ⊂ C . 1 M ∈- D. 1 M ∉-3.已知集合M={},0a N={}1,2且M {2}N =,那么=N MA .{},0,1,2aB .{}1,0,1,2C .{}2,0,1,2D .{}0,1,24.已知集合 A 、B 、C 满足A ⊂B ⊂C ,则下列各式中错误的是A .()ABC ⊂ B .()A B C ⊂ C .()A C B ⊂D .()A C B ⊂5.设集合{(,)|46},{(,)|53}A x y y x B x y y x ==-+==-,则B A =A .{x =1,y =2}B .{(1,2)}C .{1,2}D .(1,2)6.设全集I={16,}x x x N ≤<∈,则满足{1,3,5}∩I B ={1,3,5}的所有集合B 的个数是 A. 1 B. 4 C. 5 D. 87.设{012},{}B A x x B ==⊆,,则A 与B 的关系是A .AB ⊆ B .B A ⊆C .A ∈BD .B ∈A 8.31{|},{|},2m A n Z B m Z A B n +=∈=∈=则 A .B B .A C .φ D .Z9.已知全集I={0,1,2}则满足(){2}I A B =的集合A 、B 共有A .5组B .7组C .9组D .11组10.设集合2{|10}A x x x =+-=,{|10}B x ax =+=,若B A ⊂则实数a 的不同值的个数是 A .0 B. 1 C. 2 D. 311.若2{|10}p m mx mx x R =--<∈,对恒成立,则p =A .空集B .{|0}m m <C .{|40}m m -<< D.{|40}m m -<≤12. 非空集合M 、P 的差集{,}M P x x M x P -=∈∉且,则()M M P --=A .PB .M ∩PC .M ∪PD .M二、填空题:本大题共6小题,每小题5分,共30分.13.已知{}2|2,A y y x x ==+∈R ,则 R A = .【答案】{|2}x x < 14.数集2{2,}a a a +,则a 不可取值的集合为 . 【答案】{0,1}15.集合A 、B 各含12个元素,A ∩B 含4个元素,则A ∪B 含有 个元素.【答案】2016.满足2{1,3,}{1,1}a a a ⊇-+的元素a 构成集合 .【答案】{-1,2}17.已知全集{1,3,},,I a A I B I =⊆⊆,且2{1,1}B a a =-+,I B A =,则A = . 【答案】}2{}1{=-=A A 或18.符合条件{a ,b ,c }⊆P ⊆{a ,b ,c ,d ,e }的集合P 有 个.【答案】4三、解答题:本大题共4小题,共60分.解答应写出文字说明或演算步骤.19.(15分)若集合2{|210}A x ax x =++=中有且仅有一个元素,求a 的取值.解:当0a =时,方程为210x +=,12x =-只有一个解; 当0a ≠时,方程2210ax x ++=只有一个实数根,所以440a ∆=-=,解得1a =故a 的取值为0或120.(本小题满分15分)已知集合A={-1,1},B={x | x ∈A},C={y | y ⊆A}(1)用列举法表示集合B 、C ;(2)写出A 、B 、C 三者间的关系.解:(1)∵A={-1,1} ∴B={-1,1},C={{ }, {-1}, {1}, {-1, 1}}(2)A = B ∈C21.(15分)设全集为R ,{}|25A x x =<≤,{}|38B x x =<<,{|12}C x a x a =-<<.(1)求AB 及()R A B ;(2)若()A BC =∅,求实数a 的取值范围. 解:(1)AB ={}|35x x <≤ ∵ A B ={}|28x x << ∴()R A B ={}|28x x x ≤≥或(2)若()A B C =∅,则有231512a a a a ≤⎧⎪-≥⎨⎪-<⎩得312a -<≤或6a ≥ ∴实数a 的取值范围为{3|12a a -<≤或6a ≥} 22. (本小题满分15分)已知集合22{|0(40)}M x x px q p q =++=->,{13579}A =,,,,,{14710}B =,,,且M A φ=,M B M =,试求p q 、的值.解:M B M =,M B ∴⊂,2240p q ->时,方程20x px q ++=有两个不等的根,且这两个根都在集合B 中, M A φ=,∴ 1,7不是M 的元素,∴4,10是方程20x px q ++=的两个根故14,40p q =-=【试题命制意图分析】考查基本内容:①集合的基本内容包括集合有关概念,集合的三种运算和集合语言和思想的初步应用。

高一数学单元测试题(附答案)

高一数学单元测试题(附答案)

高一数学单元测试题(附答案)高一数学单元测试题(附答案)1. 计算下列各题:a) 若 a = 3,b = -5,求 a + b。

b) 若 x = 2,y = 4,求 x² + 2xy + y²。

c) 若 m = 6,n = 2,求 m³ - 3mn + n²。

解答:a) a + b = 3 + (-5) = -2。

b) x² + 2xy + y² = 2² + 2(2)(4) + 4² = 4 + 16 + 16 = 36。

c) m³ - 3mn + n² = 6³ - 3(6)(2) + 2² = 216 - 36 + 4 = 184。

2. 将下列各分数化为最简形式:a) 10/15b) 18/24c) 32/48解答:a) 10/15 = (2 × 5)/(3 × 5) = 2/3。

b) 18/24 = (2 × 3 × 3)/(2 × 2 × 2 × 3) = 3/4。

c) 32/48 = (2 × 2 × 2 × 2)/(3 × 2 × 2 × 2 × 2) = 2/3。

3. 求下列各题的百分数表示:a) 25/100b) 5/8c) 3/5解答:a) 25/100 = 25%b) 5/8 ≈ 62.5%c) 3/5 = 60%4. 解方程:a) 2x - 5 = 7b) 3(x + 2) = 15c) 4 - 5x = 14解答:a) 2x - 5 = 72x = 7 + 52x = 12x = 12/2x = 6b) 3(x + 2) = 153x + 6 = 153x = 15 - 63x = 9x = 9/3x = 3c) 4 - 5x = 14-5x = 14 - 4-5x = 10x = 10/(-5)x = -25. 比较下列各组数的大小:(用>、<或=表示)a) 3²,4³b) 2⁴,3⁴解答:a) 3² = 9,4³ = 649 < 64,所以3² < 4³。

(完整word版)北师大高一数学必修一单元测试题附标准答案

(完整word版)北师大高一数学必修一单元测试题附标准答案

高一年级数学学科第一单元质量检测试题参赛试卷学校:宝鸡石油中学 命题人:张新会一、选择题:本答题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.集合{0,1}地子集有A.1个 B. 2个 C. 3个 D. 4个2.已知集合2{|10}M x x =-=,则下列式子正确地是A.{1}M -∈B.1 M ⊂C . 1 M ∈- D. 1 M ∉-3.已知集合M={},0a N={}1,2且M {2}N =,那么=N MA .{},0,1,2aB .{}1,0,1,2C .{}2,0,1,2D .{}0,1,24.已知集合 A 、B 、C 满足A ⊂B ⊂C ,则下列各式中错误地是A .()ABC ⊂B .()A B C ⊂C .()A C B ⊂D .()A C B ⊂5.设集合{(,)|46},{(,)|53}A x y y x B x y y x ==-+==-,则B A =A .{x =1,y =2}B .{(1,2)}C .{1,2}D .(1,2)6.设全集I={16,}x x x N ≤<∈,则满足{1,3,5}∩I B ={1,3,5}地所有集合B 地个数是A. 1B. 4 C. 5 D. 87.设{012},{}B A x x B ==⊆,,则A 与B 地关系是A .AB ⊆B .B A ⊆C .A ∈BD .B ∈A 8.31{|},{|},2m A n Z B m Z A B n +=∈=∈=则 A .B B .A C .φD .Z 9.已知全集I={0,1,2}则满足(){2}I A B =地集合A 、B 共有 A .5组 B .7组 C .9组D .11组 10.设集合2{|10}A x x x =+-=,{|10}B x ax =+=,若B A ⊂则实数a 地不同值地个数是A .0 B. 1 C. 2 D. 311.若2{|10}p m mx mx x R =--<∈,对恒成立,则p =A .空集B .{|0}m m <C .{|40}m m -<<D.{|40}m m -<≤12.非空集合M 、P 地差集{,}M P x x M x P -=∈∉且,则()M M P --=A .PB .M ∩PC .M ∪PD .M二、填空题:本大题共6小题,每小题5分,共30分.13.已知{}2|2,A y y x x ==+∈R ,则 R A =.【答案】{|2}x x < 14.数集2{2,}a a a +,则a 不可取值地集合为.【答案】{0,1}15.集合A 、B 各含12个元素,A ∩B 含4个元素,则A ∪B 含有个元素.【答案】2016.满足2{1,3,}{1,1}a a a ⊇-+地元素a 构成集合.【答案】{-1,2}17.已知全集{1,3,},,I a A I B I =⊆⊆,且2{1,1}B a a =-+,I B A =,则A =. 【答案】}2{}1{=-=A A 或18.符合条件{a ,b ,c }⊆P ⊆{a ,b ,c ,d ,e }地集合P 有个.【答案】4三、解答题:本大题共4小题,共60分.解答应写出文字说明或演算步骤.19.(15分)若集合2{|210}A x ax x =++=中有且仅有一个元素,求a 地取值.解:当0a =时,方程为210x +=,12x =-只有一个解; 当0a ≠时,方程2210ax x ++=只有一个实数根,所以440a ∆=-=,解得1a =故a 地取值为0或120.(本小题满分15分)已知集合A={-1,1},B={x |x ∈A},C={y | y ⊆A}(1)用列举法表示集合B 、C ;(2)写出A 、B 、C 三者间地关系.解:(1)∵A={-1,1}∴B={-1,1},C={{ }, {-1}, {1}, {-1, 1}}(2)A = B ∈C21.(15分)设全集为R ,{}|25A x x =<≤,{}|38B x x =<<,{|12}C x a x a =-<<.(1)求AB 及()R A B ;(2)若()A BC =∅,求实数a 地取值范围.解:(1)AB ={}|35x x <≤ ∵A B ={}|28x x <<∴()R A B ={}|28x x x ≤≥或(2)若()A B C =∅,则有231512a a a a ≤⎧⎪-≥⎨⎪-<⎩得312a -<≤或6a ≥ ∴实数a 地取值范围为{3|12a a -<≤或6a ≥} 22.(本小题满分15分)已知集合22{|0(40)}M x x px q p q =++=->,{13579}A =,,,,,{14710}B =,,,且M A φ=,M B M =,试求p q 、地值.解:M B M =,M B ∴⊂,2240p q ->时,方程20x px q ++=有两个不等地根,且这两个根都在集合B 中, M A φ=,∴ 1,7不是M 地元素,∴4,10是方程20x px q ++=地两个根故14,40p q =-=【试题命制意图分析】考查基本内容:①集合地基本内容包括集合有关概念,集合地三种运算和集合语言和思想地初步应用.②学习中要求能准确理解集合、子集、交集、并集、补集地概念,正确使用各种符号,掌握有关地术语.③对集合地运算要求用文字语言表述.用符号语言做出表示及用图形语言表示做出全面理解.考查重点与难点内容:(1)本节地重点内容是对集合概念地准确理解与应用:①认识集合应从构成集合地元素开始,利用集合中元素地特性(确定性、互异性、无序性)可指导集合地表示.②对集合地三种表示方法(列举、描述、图示法)不仅要求了解不同表示方法地不同要求,还要求能根据不同情况对表示方法进行选择.③求有限集合地子集,应正确运用分类讨论地思想确定子集中元素地选取规律.(2)本节地难点是各种符号地正确理解和使用.正确理解和熟练运用数学符号是提高抽象思维能力地重要途径.数学符号是符号化了地数学概念.以前接触地符号都是有关数、或数与数地关系地,本节中学习地抽象符号是表示元素、集合或集合间关系地,如“∈”,“∉”,“⊆”,“=”等,是全新地一套.对符号地使用不仅要明确其意义,而且还要注意各类符号间不能混用,并能识别和处理用集合中有关符号表述地数学命题.(3)对于集合地应用重点是交并思想在解不等式中地应用,不做过多延伸.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

北师大版高一数学必修第一单元测试题及答案

北师大版高一数学必修第一单元测试题及答案

高一年级数学学科第一单元质量检测试题参赛试卷学校:宝鸡石油中学 命题人:张新会一、选择题:本答题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{0,1}的子集有 个 B. 2个 C. 3个 D. 4个2.已知集合2{|10}M x x =-=,则下列式子正确的是A.{1}M -∈B.1 M ⊂ C . 1 M ∈- D. 1 M ∉-3.已知集合M={},0a N={}1,2且M {2}N =I ,那么=N M YA .{},0,1,2aB .{}1,0,1,2C .{}2,0,1,2D .{}0,1,24.已知集合 A 、B 、C 满足A ⊂B ⊂C ,则下列各式中错误的是A .()ABC ⊂U B .()A B C ⊂I C .()A C B ⊂ID .()A C B ⊂U5.设集合{(,)|46},{(,)|53}A x y y x B x y y x ==-+==-,则B A I =A .{x =1,y =2}B .{(1,2)}C .{1,2}D .(1,2)6.设全集I={16,}x x x N ≤<∈,则满足{1,3,5}∩I B ð={1,3,5}的所有集合B 的个数是 A. 1 B. 4 C. 5 D. 87.设{012},{}B A x x B ==⊆,,则A 与B 的关系是A .AB ⊆ B .B A ⊆C .A ∈BD .B ∈A 8.31{|},{|},2m A n Z B m Z A B n +=∈=∈=I 则A .B B .AC .φD .Z9.已知全集I={0,1,2}则满足(){2}I A B =U ð的集合A 、B 共有A .5组B .7组C .9组D .11组10.设集合2{|10}A x x x =+-=,{|10}B x ax =+=,若B A ⊂则实数a 的不同值的个数是A .0 B. 1 C. 2 D. 311.若2{|10}p m mx mx x R =--<∈,对恒成立,则p =A .空集B .{|0}m m <C .{|40}m m -<< D.{|40}m m -<≤12. 非空集合M 、P 的差集{,}M P x x M x P -=∈∉且,则()M M P --=A .PB .M ∩PC .M ∪PD .M二、填空题:本大题共6小题,每小题5分,共30分.13.已知{}2|2,A y y x x ==+∈R ,则 ðR A = .【答案】{|2}x x <14.数集2{2,}a a a +,则a 不可取值的集合为 . 【答案】{0,1}15.集合A 、B 各含12个元素,A ∩B 含4个元素,则A ∪B 含有 个元素.【答案】2016.满足2{1,3,}{1,1}a a a ⊇-+的元素a 构成集合 .【答案】{-1,2}17.已知全集{1,3,},,I a A I B I =⊆⊆,且2{1,1}B a a =-+,I B A =ð,则A = .【答案】}2{}1{=-=A A 或18.符合条件{a ,b ,c }⊆P ⊆{a ,b ,c ,d ,e }的集合P 有 个.【答案】4三、解答题:本大题共4小题,共60分.解答应写出文字说明或演算步骤.19.(15分)若集合2{|210}A x ax x =++=中有且仅有一个元素,求a 的取值.解:当0a =时,方程为210x +=,12x =-只有一个解; 当0a ≠时,方程2210ax x ++=只有一个实数根,所以440a ∆=-=,解得1a =故a 的取值为0或120.(本小题满分15分)已知集合A={-1,1},B={x | x ∈A},C={y | y ⊆A}(1)用列举法表示集合B 、C ;(2)写出A 、B 、C 三者间的关系.解:(1)∵A={-1,1} ∴B={-1,1},C={{ }, {-1}, {1}, {-1, 1}}(2)A = B ∈C21.(15分)设全集为R ,{}|25A x x =<≤,{}|38B x x =<<,{|12}C x a x a =-<<. (1)求A B I及()R A B U ð;(2)()A B C =∅I I ,求实数a 的取值范围.解:(1)A B I ={}|35x x <≤∵ A B =U {}|28x x << ∴()R A B U ð={}|28x x x ≤≥或(2)若()A B C =∅I I ,则有231512a a a a ≤⎧⎪-≥⎨⎪-<⎩得312a -<≤或6a ≥ ∴实数a 的取值范围为{3|12a a -<≤或6a ≥} 22. (本小题满分15分)已知集合22{|0(40)}M x x px q p q =++=->,{13579}A =,,,,,{14710}B =,,,且M A φ=I ,M B M =I ,试求p q 、的值.解:M B M =Q I ,M B ∴⊂,2240p q ->Q 时,方程20x px q ++=有两个不等的根,且这两个根都在集合B 中,M A φ=Q I ,∴ 1,7不是M 的元素,∴4,10是方程20x px q ++=的两个根故14,40p q =-=【试题命制意图分析】考查基本内容:①集合的基本内容包括集合有关概念,集合的三种运算和集合语言和思想的初步应用。

2021高一数学必修1第一章集合与函数的概念单元测试题(含答案)

2021高一数学必修1第一章集合与函数的概念单元测试题(含答案)

2021高一数学必修1第一章集合与函数的概念单元测试题(含答案)2021高一数学必修1第一章集合与函数的概念单元测试题(包括答案)第一测试(时间:120分钟,满分:10分)??一、选择题(本大题共12个小题,每小题分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合={x | x2+2x=0,x∈ r} n={x | x2-2x=0,x∈ r} 那么∪ n=()??a、{0}b.{0,2}??。

{-2,0}d.{-2,0,2}解析={x|x(x+2)=0,x∈r}={0,-2},n={x|x(x-2)=0,x∈r}={0,2},所以∪n={-2,0,2}.??答案d2.让f:X→|x |是从集合a到集合B的映射。

如果a={-2,0,2},那么a∩ B=()??a、 {0}b.{2}??。

{0,2}d.{-2,0}解析依题意,得b={0,2},∴a∩b={0,2}.??答案3.F(x)是一个定义在R上的奇数函数,F(-3)=2,那么以下几点在函数F(x)中图象上的是()??a.(3,-2)b.(3,2)??.(-3,-2)d.(2,-3)据分析∵ f(x)是一个奇数函数,∵ f(-3)=-f(3)又f(-3)=2,∴f(3)=-2,∴点(3,-2)在函数f(x)的图象上.??答案a4.给定集合a={0,1,2},集合B中的元素数={X-|X∈ A.∈ a} 是吗??a、1b.3??。

d、九,解析逐个列举可得.x=0,=0,1,2时,x-=0,-1,-2;x=1,=0,1,2时,x-=1,0,-1;x=2,=0,1,2时,x-=2,1,0根据集合中元素的互异性可知集合b的元素为-2,-1,0,1,2共个.??答案.如果函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式为()??a、 f(x)=9x+8??b、 f(x)=3x+2°??。

f(x)=-3x-4d.f(x)=3x+2或f(x)=-3x-4分析∵ f(3x+2)=9x+8=3(3x+2)+2,∵ f(x)=3x+2??答案B6.设f(x)=x+3x>10,fx+十、≤ 那么F()的值是()??a、 16b.18??。

浙江省某校高一(上)数学单元测试:函数(有答案)

浙江省某校高一(上)数学单元测试:函数(有答案)

浙江省某校高一(上)数学单元测试:函数一.选择题(每小题6分,共36分。

)1. 下列各组f(x)与g(x)是同一函数的为()lg x2A.f(x)=x,g(x)=(√x)2B.f(x)=lg|x|,g(x)=123C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=√x32. 温州市市区出租车起步价为10元(起步价内行驶的里程是4Km)以后每1Km价为1.5元,则乘坐出租车的费用y(元)与行驶的里程x(Km)之间的函数图象大致为()A. B.C. D.)x的图象只可能是()3. 二次函数y=ax2−bx与函数y=(abA. B.C. D.4. 如果奇函数f(x)在区间[3, 7]上是增函数且最小值为5,那么f(x)在区间[−7, −3]上是()A.增函数且最小值为−5B.增函数且最大值为−5C.减函数且最小值为−5D.减函数且最大值为−5的值域是()5. 函数y=1−x21+x2A.{y|−1≤y≤1}B.{y|−1≤y<1}C.{y|−1<y≤1}D.{y|0<y≤1}6. 已知f(x2+1)=x4+4x2,则f(x)在其定义域内的最小值为()A.−4B.0C.−1D.1二.填空题(每小题6分,共24分。

)的定义域是________.函数y=lg(2−x)+1x−10.82,20.8,log0.82,log20.8按照从小到大的顺序排列为________.已知f(x),g(x)都是定义域内的非奇非偶函数,而f(x)⋅g(x)是偶函数,写出满足条件的一组函数,f(x)=________;g(x)=________.使log2(−x)<x+1成立的x的取值范围是________.三.解答题(第一小题8分,第二、三小题16分,共40分。

)已知函数f(x)=2x2+2x(x≥−1),求f(x)的反函数.(a>0且a≠1)是奇函数.已知f(x)=log a1−kxx−1(1)求k的值,并求该函数的定义域;(2)根据(1)的结果,判断f(x)在(1, +∞)上的单调性;(3)解关于x的不等式f(x2+2x+2)+f(−2)>0.医学上为研究某种传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的关系记录如下表.已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但注射某种药物,将可杀死其体内该病毒细胞的98%.(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)(参考数据:lg2=0.3010,lg3=0.4771)参考答案与试题解析浙江省某校高一(上)数学单元测试:函数一.选择题(每小题6分,共36分。

高中数学 第三章 函数概念与性质单元测试卷精品练习(含解析)新人教A版必修第一册-新人教A版高一第一

高中数学 第三章 函数概念与性质单元测试卷精品练习(含解析)新人教A版必修第一册-新人教A版高一第一

第三章单元测试卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.函数f(x)=x -1x -2的定义域为( ) A .(1,+∞) B .[1,+∞) C .[1,2) D .[1,2)∪(2,+∞)2.德国数学家狄利克雷在数学上做出了名垂史册的重大贡献,函数D(x)=⎩⎪⎨⎪⎧0,x ∉Q 1,x∈Q是以他名字命名的函数,则D(D(π))=( )A .1B .0C .πD .-13.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=2x 2-2x +1,则f(-1)=( )A .3B .-3C .2D .-24.若函数y =f(x)的定义域是[0,2],则函数g(x)=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域是( )A .[-4,0]B .[-4,0)C .[-4,-1)∪(-1,0]D .(-4,0)5.若幂函数y =(m 2-3m +3)xm -2的图象不过原点,则m 的取值X 围为( )A .1≤m≤2B .m =1或m =2C .m =2D .m =16.已知函数f(x)是定义在R 上的偶函数,x ≥0时,f (x )=x 2-2x ,则函数f (x )在R 上的解析式是( )A .f (x )=-x (x -2)B .f (x )=x (|x |-2)C .f (x )=|x |(x -2)D .f (x )=|x |(|x |-2)7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值X 围是( )A .(-1,+∞) B.(-∞,-1)C .(-1,4)D .(-∞,1)8.甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2),甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半的时间使用速度v 2,关于甲、乙二人从A 地到达B 地的路程与时间的函数图象及关系,有如图所示的四个不同的图示分析(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点),则其中可能正确的图示分析为( )二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.关于函数f (x )=-x 2+2x +3的结论正确的是( )A .定义域、值域分别是[-1,3],[0,+∞) B.单调增区间是(-∞,1] C .定义域、值域分别是[-1,3],[0,2] D .单调增区间是[-1,1] 10.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)211.关于定义在R 上的函数f (x ),下列命题正确的是( ) A .若f (x )满足f (2 018)>f (2 017),则f (x )在R 上不是减函数 B .若f (x )满足f (-2)=f (2),则函数f (x )不是奇函数C .若f (x )在区间(-∞,0)上是减函数,在区间[0,+∞)也是减函数,则f (x )在R 上是减函数D .若f (x )满足f (-2 018)≠f (2 018),则函数f (x )不是偶函数12.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )满足( )A .f (0)=0B .y =f (x )是奇函数C .f (x )在[m ,n ]上有最大值f (n )D .f (x -1)>0的解集为(-∞,1)三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.14.长为4,宽为3的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.15.定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a ,则a =________,f (-3)=________.(本题第一空2分,第二空3分)16.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,3-2a x -1,x ≤1是R 上的单调递增函数,则实数a 的取值X围为________.四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=2x -1x +1,x ∈[3,5].(1)判断f (x )在区间[3,5]上的单调性并证明; (2)求f (x )的最大值和最小值.18.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧1+1x,x >1,x 2+1,-1≤x ≤1,2x +3,x <-1.(1)求f (f (-2))的值; (2)若f (a )=32,求a .19.(本小题满分12分)已知幂函数f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z }满足:(1)在区间(0,+∞)上是增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足条件(1)(2)的幂函数f (x )的解析式,并求当x ∈[0,3]时,f (x )的值域.20.(本小题满分12分)设f(x)为定义在R上的偶函数,当x≥0时,f(x)=-(x-2)2+2.(1)求函数f(x)在R上的解析式;(2)在直角坐标系中画出函数f(x)的图象;(3)若方程f(x)-k=0有四个解,某某数k的取值X围.21.(本小题满分12分)如图所示,A、B两城相距100 km,某天然气公司计划在两地之间建一天然气站D给A、B两城供气.已知D地距A城x km,为保证城市安全,天然气站距两城市的距离均不得少于10 km.已知建设费用y(万元)与A、B两地的供气距离(km)的平方和成正比,当天然气站D距A城的距离为40 km时,建设费用为1300万元.(供气距离指天然气站到城市的距离)(1)把建设费用y(万元)表示成供气距离x(km)的函数,并求定义域;(2)天然气供气站建在距A城多远,才能使建设费用最小,最小费用是多少?22.(本小题满分12分)已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).(1)求f(1),f(4),f(8)的值;(2)若有f(x)+f(x-2)≤3成立,求x的取值X围.第三章单元测试卷1.解析:根据题意有⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2.答案:D2.解析:∵函数D (x )=⎩⎪⎨⎪⎧0,x ∉Q 1,x ∈Q,∴D (π)=0,D (D (π))=D (0)=1.故选A.答案:A3.解析:令x =1,得f (1)+g (1)=1,令x =-1,得f (-1)+g (-1)=5,两式相加得:f (1)+f (-1)+g (1)+g (-1)=6.又∵f (x )是偶函数,g (x )是奇函数,∴f (-1)=f (1),g (-1)=-g (1).∴2f (-1)=6, ∴f (-1)=3,故选A. 答案:A4.解析:∵y =f (x )的定义域是[0,2],∴要使g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1有意义,需⎩⎪⎨⎪⎧0≤-x2≤2,x +1≠0,∴-4≤x ≤0且x ≠-1.∴g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域为[-4,-1)∪(-1,0].答案:C5.解析:由题意得⎩⎪⎨⎪⎧m -2≤0,m 2-3m +3=1,解得⎩⎪⎨⎪⎧m ≤2,m =1或m =2,∴m =1或m =2.答案:B6.解析:设x <0,则-x >0,f (x )=f (-x )=x 2-2(-x )=x 2+2x .故f (x )=|x |(|x |-2).答案:D 7.解析:f (x )的图象如图.由图知, 若f (x -4)>f (2x -3), 则⎩⎪⎨⎪⎧x -4<0,x -4<2x -3,解得-1<x <4.故实数x 的取值X 围是(-1,4). 答案:C8.解析:由题意可知,开始时,甲、乙速度均为v 1,所以图象是重合的线段,由此排除C ,D.再根据v 1<v 2可知两人的运动情况均是先慢后快,图象是折线且前“缓”后“陡”,故图示A 分析正确.答案:A9.解析:f (x )=-x 2+2x +3则定义域满足:-x 2+2x +3≥0解得:-1≤x ≤3 即定义域为[-1,3]考虑函数y =-x 2+2x +3=-(x -1)2+4在-1≤x ≤3上有最大值4,最小值0. 在[-1,1]上单调递增,在(1,3]上单调递减.故f (x )=-x 2+2x +3的定义域为[-1,3],值域为[0,2],在[-1,1]上单调递增,在(1,3]上单调递减.故选CD. 答案:CD10.解析:f (2x -1)=(2x -1)2+2(2x -1)+1,故f (x )=x 2+2x +1,故选项C 错误,选项D 正确;f (3)=16,f (-3)=4,故选项A 错误,选项B 正确.故选BD.答案:BD11.解析:由题意,对于A 中,由2 018>2 017,而f (2 018)>f (2 017),由减函数定义可知,f (x )在R 上一定不是减函数,所以A 正确;对于B 中,若f (x )=0,定义域关于原点对称,则f (-2)=f (2)=-f (2),则函数f (x )可以是奇函数,所以B 错误;对于C 中,由分段函数的单调性的判定方法,可得选项C 不正确;对于D 中,若f (x )是偶函数,必有f (-2 018)=f ( 2018),所以D 正确.故选AD.答案:AD12.解析:令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0,故A 正确;再令y =-x ,代入原式得f (0)=f (x )+f (-x )=0,所以f (-x )=-f (x ),故该函数为奇函数,故B 正确;由f (x +y )=f (x )+f (y )得f (x +y )-f (x )=f (y ),令x 1<x 2,再令x 1=x +y ,x 2=x ,则y =x 1-x 2<0,结合x <0时,f (x )>0,所以f (x 1)-f (x 2)=f (x 1-x 2)>0,所以f (x 1)>f (x 2),所以原函数在定义域内是减函数,所以函数f (x )在[m ,n ]上递减,故f (n )是最小值,f (m )是最大值,故C 错误;又f (x -1)>0,即f (x -1)>f (0),结合原函数在定义域内是减函数可得,x -1<0,解得x <1,故D 正确.故选ABD.答案:ABD13.解析:若a >0,则2a +2=0,得a =-1,与a >0矛盾,舍去;若a ≤0,则a +1+2=0,得a =-3,所以实数a 的值等于-3.答案:-314.解析:由题意,S =(4+x )⎝ ⎛⎭⎪⎫3-x 2,即S =-12x 2+x +12,∴当x =1时,S 最大. 答案:115.解析:由定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a , 可得f (0)=a =0,当x ≥0,f (x )=x 2-2x , 则f (-3)=-f (3)=-(32-2×3)=-3. 答案:0 -316.解析:f (x )=⎩⎪⎨⎪⎧x -12+a -1,x >1,3-2ax -1,x ≤1显然函数f (x )在(1,+∞)上单调递增.故由已知可得⎩⎪⎨⎪⎧3-2a >0,a -1≥3-2a ×1-1,解得1≤a <32.答案:⎣⎢⎡⎭⎪⎫1,32 17.解析:(1)函数f (x )在[3,5]上为增函数,证明如下: 设x 1,x 2是[3,5]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x 1-1x 1+1-2x 2-1x 2+1=3x 1-x 2x 1+1x 2+1.∵3≤x 1≤x 2≤5,∴x 1-x 2<0,x 1+1>0,x 2+1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在[3,5]上为增函数. (2)由(1)知函数f (x )在[3,5]单调递增,所以 函数f (x )的最小值为f (x )min =f (3)=2×3-13+1=54,函数f (x )的最大值为f (x )max =f (5)=2×5-15+1=32.18.解析:(1)因为-2<-1,所以f (-2)=2×(-2)+3=-1, 所以f (f (-2))=f (-1)=2.(2)当a >1时,f (a )=1+1a =32,所以a =2>1;当-1≤a ≤1时,f (a )=a 2+1=32,所以a =±22∈[-1,1]; 当a <-1时,f (a )=2a +3=32,所以a =-34>-1(舍去).综上,a =2或a =±22. 19.解析:因为m ∈{x |-2<x <2,x ∈Z }, 所以m =-1,0,1.因为对任意的x ∈R ,都有f (-x )+f (x )=0, 即f (-x )=-f (x ),所以f (x )是奇函数.当m =-1时,f (x )=x 2只满足条件(1)而不满足条件(2); 当m =1时,f (x )=x 0,条件(1)(2)都不满足; 当m =0时,f (x )=x 3,条件(1)(2)都满足. 因此m =0,且f (x )=x 3在区间[0,3]上是增函数, 所以0≤f (x )≤27,故f (x )的值域为[0,27]. 20.解析:(1)若x <0,则-x >0,f (x )=f (-x ) =-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-x -22+2,x ≥0,-x +22+2,x <0.(2)图象如图所示,(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )图象与直线y =k 的交点情况可知,当-2<k <2时,函数y =f (x )图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.21.解析:(1)由题意知D 地距B 城(100-x )km ,则⎩⎪⎨⎪⎧100-x ≥10,x ≥10,∴10≤x ≤90.设比例系数为k ,则y =k [x 2+(100-x )2](10≤x ≤90). 又x =40时,y =1 300,所以1 300=k (402+602),即k =14,所以y =14[x 2+(100-x )2]=12(x 2-100x +5 000)(10≤x ≤90).(2)由于y =12(x 2-100x +5 000)=12(x -50)2+1 250,所以当x =50时,y 有最小值为1 250万元.所以当供气站建在距A 城50 km 时,能使建设费用最小,最小费用是1 250万元. 22.解析:(1)f (1)=f (1)+f (1),所以f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=1+2=3.(2)因为f (x )+f (x -2)≤3, 所以f [x (x -2)]≤f (8),又因为对于函数f (x ),当x 2>x 1>0时,f (x 2)>f (x 1),所以f (x )在(0,+∞)上为增函数,所以⎩⎪⎨⎪⎧x >0,x -2>0,x x -2≤8,解得2<x ≤4.故x 的取值X 围为(2,4].。

函数单元测试卷高一数学上学期高教版中职数学基础模块上册

函数单元测试卷高一数学上学期高教版中职数学基础模块上册

第三章 函数 单元测试卷一、单选题(每题3分)1.函数()1f x x =- )A .{}|1x x ≥B .{|1}x x ≤C .{}|1x x >D .{}|1x x < 2.与函数1y x =+相等的函数是( )A .()01y x =+B .1y t =+C .21y x =+D .1y x =+3.设函数f (x )=21,1,2,1,x x x x ⎧+≤⎪⎨>⎪⎩则f (3)=( )A .15 B .3 C .23 D .1394.函数()12x f x x -=-的定义域为( )A .()1,+∞B .[)1,+∞C .[)1,2D .[)()1,22,⋃+∞ 5.已知函数()223f x x x =-- )A .{1x x ≥或}3x ≤-B .{}|13x x -≤≤C .{3x x ≥或}1x ≤-D .{}3|1x x -≤≤6.已知函数()24,0,0x x f x x x ->=≤⎪⎩,则f (f (4))=( )A .-2B .0C .4D .16 7.已知函数3()4f x ax bx =++(a ,b 不为零),且(5)10f =,则(5)f -等于( ) A .-10 B .-2 C .-6 D .14 8.设函数2()2(4)2f x x a x =+-+在区间(,3]-∞上是减函数,则实数a 的取值范围是( )A .7a ≥-B .7a ≥C .3a ≥D .7a ≤-9.已知函数21,0()2,0x x f x x x ⎧+≤=⎨->⎩,若()5f x =,则x 的值是( ).A .-2B .2或52-C .2或-2D .2或-2或52- 10.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( )A .这个函数仅有一个单调增区间B .这个函数有两个单调减区间C .这个函数在其定义域内有最大值是7D .这个函数在其定义域内有最小值是-711.如果偶函数()f x 在区间(0,1)上是减函数且最大值为3,则()f x 在区间(-1,0)上是( )A .增函数且最大值为3B .增函数且最小值为3C .减函数且最大值为3D .减函数且最小值为3二、填空题(每空3分)12.点(-1,-3)关于y 轴的对称点为___________.13.已知函数()622-=x x f ,则f (3)=__________. 14.判断下列函数的奇偶性:(1)()3f x x =___________(2)()225f x x =-___________(3)()f x x =___________(4)()3f x x =+___________15.设(1)2,f x x +=-则()f x =___________. 16.函数235y x x =+-的值域为___________.17.函数()3422+-=x x x f 的单调减区间为____________.三、解答题(每题8分)18.设函数()221,20,3,0 3.x x f x x x +-<≤⎧⎪=⎨-<<⎪⎩(1)求函数的定义域;(2)求()1,(0),(2)f f f -.19.判断下列函数的奇偶性:(1)()f x x =; (2)()232f x x =-+20.如图是定义在区间[5-,5]上的函数()y f x =,根据图象说出函数的单调区间,以及在每一单调区间内的单调性.21.利用函数的单调性定义,证明函数23+=x y 的单调性.22.邢台市出租车的票价按下列规则制定:(1)2公里以内(含2公里),票价6元;(2)超过2公里,每公里收费1.6元.请根据题意,写出票价与里程之间的函数关系式.。

高一数学集合单元测试卷

高一数学集合单元测试卷

高一数学集合单元测试卷一、选择题(每题5分,共40分)1. 下列对象能构成集合的是()A. 很大的数。

B. 聪明的人。

C. 小于10的正整数。

D. 某班跑得快的同学。

2. 设集合A = {xx^2 - 3x + 2 = 0},则集合A中的元素为()A. 1,2.B. -1,-2C. 1,-2D. -1,2.3. 已知集合A={1,2,3},B = {2,3,4},则A∩ B=()A. {1,2,3,4}B. {2,3}C. {1,4}D. varnothing4. 若集合A={xx > 1},B={xx < 3},则A∪ B=()A. {x1 < x < 3}B. {xx > 1}C. {xx < 3}D. R5. 设全集U={1,2,3,4,5},集合A = {1,2,3},则∁_U A=()A. {4,5}B. {1,2,3}C. {2,3,4,5}D. {1,4,5}6. 已知集合A={x - 1,B={x0,则A∩ B=()A. {x1 < x < 0}B. {x0 < x < 2}C. {x2 < x < 3}D. {x1 < x < 3}7. 若集合M={xx = 3k - 2,k∈ Z},N={xx = 3l+1,l∈ Z},则M与N的关系是()A. M = NB. M⊂neqq NC. N⊂neqq MD. M∩ N=varnothing8. 集合A={xx^2 - 5x + 6 = 0},集合B={xax - 1 = 0},若B⊆ A,则a的值为()A. (1)/(2)或(1)/(3)B. (1)/(2)或(1)/(3)或0C. (1)/(3)D. (1)/(2)二、填空题(每题5分,共20分)1. 集合{1,2,3}的所有子集个数为______。

2. 已知集合A = {xx < - 1或x > 3},B={xx < a},若A∪ B = A,则a的取值范围是______。

高一(上)数学第二章函数单元测试题7-8 人教版

高一(上)数学第二章函数单元测试题7-8 人教版

高一(上)数学第二章函数单元测试题7-8(时间:45分钟 满分100分)一、 选择题1.若3a=2,则log 38-2log 36用a 的代数式可表示为( )(A )a-2 (B )3a-(1+a)2 (C )5a-2 (D )3a-a 22.2log a (M-2N)=log a M+log a N,则NM的值为( ) (A )41(B )4 (C )1 (D )4或1 3.已知x 2+y 2=1,x>0,y>0,且log a (1+x)=m,logaya n xlog ,11则=-等于( ) (A )m+n (B )m-n (C )21(m+n) (D )21(m-n)4.如果方程lg2x+(lg5+lg7)lgx+lg5·lg7=0的两根是α、β,则α·β的值是( ) (A )lg5·lg7(B )lg35(C )35 (D )351 5.已知log 7[log 3(log 2x)]=0,那么x 21-等于( )(A )31(B )321 (C )221 (D )331 6.函数y=lg (112-+x)的图像关于( ) (A )x 轴对称 (B )y 轴对称 (C )原点对称 (D )直线y=x 对称 7.函数y=log 2x-123-x 的定义域是( )(A )(32,1)⋃(1,+∞) (B )(21,1)⋃(1,+∞) (C )(32,+∞) (D )(21,+∞)8.函数y=log 21(x 2-6x+17)的值域是( )(A )R (B )[8,+∞](C )(-∞,-3) (D )[3,+∞] 9.函数y=log 21(2x 2-3x+1)的递减区间为( )(A )(1,+∞) (B )(-∞,43] (C )(21,+∞) (D )(-∞,21]10.函数y=(21)2x +1+2,(x<0)的反函数为( )(A )y=-)2(1log )2(21>--x x (B ))2(1log )2(21>--x x(C )y=-)252(1log )2(21<<--x x (D )y=-)252(1log )2(21<<--x x11.若log m 9<log n 9<0,那么m,n 满足的条件是( )(A )m>n>1 (B )n>m>1 (C )0<n<m<1 (D )0<m<n<112.log a132<,则a 的取值X 围是( ) (A )(0,32)⋃(1,+∞) (B )(32,+∞)(C )(1,32) (D )(0,32)⋃(32,+∞)13.若1<x<b,a=log 2b x,c=log a x,则a,b,c 的关系是( )(A )a<b<c (B )a<c<b (C )c<b<a (D )c<a<b 14.下列函数中,在(0,2)上为增函数的是( ) (A )y=log 21(x+1) (B )y=log 212-x(C )y=log 2x 1(D )y=log 21(x 2-4x+5) 15.下列函数中,同时满足:有反函数,是奇函数,定义域和值域相同的函数是( )(A )y=2x x e e -+(B )y=lg xx+-11(C )y=-x3(D )y=x16.已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值X 围是( )(A )(0,1) (B )(1,2) (C )(0,2) (D )[2,+∞) 17.已知g(x)=log a 1+x (a>0且a ≠1)在(-1,0)上有g(x)>0,则f(x)=a1+x 是( )(A )在(-∞,0)上的增函数 (B )在(-∞,0)上的减函数 (C )在(-∞,-1)上的增函数 (D )在(-∞,-1)上的减函数18.若0<a<1,b>1,则M=a b ,N=log b a,p=b a的大小是( ) (A )M<N<P (B )N<M<P (C )P<M<N (D )P<N<M19.“等式log 3x 2=2成立”是“等式log 3x=1成立”的( ) (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件 20.已知函数f(x)=x lg ,0<a<b,且f(a)>f(b),则( )(A )ab>1 (B )ab<1 (C )ab=1 (D )(a-1)(b-1)>0 二、填空题1.若log a 2=m,log a 3=n,a 2m+n=。

湖北省某校高一(上)数学单元测试卷(有答案)

湖北省某校高一(上)数学单元测试卷(有答案)

湖北省某校高一(上)数学单元测试卷一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各组对象解构不成集合的有()(1)所有的长方体(2)英德市区内的所有大超市(3)所有的数学难题(4)函数y=x图象上所有的点(5)英德华侨茶场2003年生产的所有茶叶(6)2014附近的数.A.(1)(4)(5)B.(1)(2)(4)C.(1)(5)(6)D.(2)(3)(6)2. 如果M={x|x+1>0},则()A.⌀∈MB.0⊊MC.{0}∈MD.{0}⊆M3. 设全集为R,函数f(x)=√x2−1的定义域为M,则M为()A.(−∞, −1)∪(1, +∞)B.[0, 1)C.(0, 1]D.(−∞, −1]∪[1, +∞)4. 已知U={x|−1≤x≤3},A={x|−1≤x<3},B={x|x2−2x−3=0},C= {x|−1<x<3},则有()A.A⊇CB.C∪B=CC.B∩U=CD.C∪A=B5. 设集合P={立方后等于自身的数},那么集合P的真子集的个数是()A.3B.4C.7D.86. 已知集合A={y|y=−x2+3,x∈R},B={x|y=√x+3},则A∩B=()A.{(0, 3), (1, 2)}B.(−3, −3)C.[−3, 3]D.{y|y≤3}7. 与y=|x|为相等函数的是( )A.y=(√x)2B.y=√x2C.y={x,(x>0)−x,(x<0) D.y=√x 338. 如果函数f(x)=x2+2(a−1)x+2在区间(−∞, 2]上单调递减,那么实数a的取值A.a ≤−2B.a ≥−2C.a ≤−1D.a ≥19. 若偶函数f(x)在(−∞, −1]上是增函数,则下列关系式中成立的是( )A.f(−32)<f(−1)<f(2)B.f(−1)<f(−32)<f(2)C.f(2)<f(−1)<f(−32)D.f(2)<f(−32)<f(−1)10. 已知函数f(x)={x 2,x ≥0x +1,x <0,则f[f(−2)]的值为( ) A.0B.1C.2D.311. 下列各图中,可表示函数y =f(x)的图象的只可能是( )A. B.C.D.12. 图中阴影部分所表示的集合是( )A.B ∩[∁U (A ∪C)]B.(B ∪C)∩(∁U A)C.(A ∪C)∩(∁U B)D.(∁U A)∩B二、填空题(本大题共4小题,每小题5分,共20分)若函数f(x)=x 2−2x(x ∈[0, 4]),则f(x)的最小值是________.奇函数f(x)在(−∞, 0)上的解析式为f(x)=2x +1,则f(x)在(0, +∞)上的解析式为________.已知f(x)=x5+ax3+bx−8,若f(−2)=10,则f(2)=________.对于定义域为D的函数f(x),若存在x0∈D,使f(x0)=x0,则称点(x0, x0)为f(x)图象上的一个不动点.由此函数f(x)=4x的图象上不动点的坐标为________.三、解答题(本大题共6小题,共70分)求下列函数的定义域(1)y=√1−x+√x+3−1;(2)y=12−|x|+√x2−1.已知集合A={x|a−1<x<2a+1},B={x|0<x<1},(1)若A∩B=⌀,求a的取值范围;(2)若A∪B=B,求a的取值范围.(1)判断函数f(x)=x3+1x3的奇偶性;(2)判断函数f(x)=xx2−1在(−1, 1)内的单调性并用单调性的定义证明.已知集合P={x|x2+6x+9=0},Q={x|ax+1=0}满足Q⊆P,求a的一切值.已知函数f(x)={4−x2(x>0) 2(x=0)1−2x(x<0)求:(2)求f(f(3))的值;(3)当−4≤x<3时,求f(x)取值的集合.,x∈(0, +∞)取最小值时x的值,列表如下:探究函数f(x)=x+4x请观察表中y值随x值变化的特点,完成以下的问题:(1)函数(x)=x+4(x>0)在区间(0, 2)上递减;函数f(x)在区间________上递增.当xx=________ 时,y min=________.(2)证明:函数f(x)=x+4(x>0)在区间(0, 2)上递减.x参考答案与试题解析湖北省某校高一(上)数学单元测试卷一、选择题(本大题共12小题,每小题5分,共60分)1.【答案】D【考点】集合的含义与表示【解析】通过对选项判断集合中元素是否具有确定性即可判断.【解答】解:(1)所有的长方体,其中的对象是明确的,能构成集合;(2)英德市区内的所有大超市,其中的对象大超市不是明确的,不能构成集合;(3)所有的数学难题,其中的对象难题不是明确的,不能构成集合;(4)函数y=x图象上所有的点,其中的对象是明确的,能构成集合;(5)英德华侨茶场2003年生产的所有茶叶,其中的对象是明确的,能构成集合;(6)2014附近的数.其中的对象附近的数不是明确的,不能构成集合;故选:D.2.【答案】D【考点】子集与真子集【解析】由于M={x|x+1>0}={x|x>−1}.利用元素与集合、集合之间的关系可得:⌀⊊M,0∈M,{0}⊆M.【解答】解:M={x|x+1>0}={x|x>−1}.可得⌀⊊M,0∈M,{0}⊆M.因此A,B,C不正确,只有D正确.故选:D.3.【答案】D【考点】函数的定义域及其求法【解析】根据函数成立的条件即可求函数的定义域.【解答】解:要使函数有意义,则x2−1≥0,解得x≥1或x≤−1,故函数的定义域为(−∞, −1]∪[1, +∞),故选:D4.【答案】【考点】交集及其运算并集及其运算【解析】求出B中方程的解确定出B,利用集合间的包含关系,并集以及交集的定义判断即可.【解答】解:由B中方程变形得:(x−3)(x+1)=0,解得:x=3或x=−1,即B={−1, 3},∵U={x|−1≤x≤3},A={x|−1≤x<3},B={−1, 3},C={x|−1<x<3},∴C⊆A,C∪B={x|−1≤x≤3}≠C,B∩U=B,C∪A=A,故选:A.5.【答案】C【考点】子集与真子集【解析】先根据立方后等于自身的数写出集合P,再根据集合的元素数目与真子集个数的关系,而P有3个元素,计算可得答案.【解答】解:根据题意得:x3=x,则x(x2−1)=0,即x(x−1)(x+1)=0,∴P={0, 1, −1},那么集合P真子集的个数为23−1=7.故选C.6.【答案】C【考点】交集及其运算【解析】由二次函数的性质求出集合A,由偶次根号下被开方数大于等于零求出集合B,由交集的运算求出A∩B.【解答】解:由y=−x2+3≤3得,则集合A={y|y≤3}=(−∞, 3],由x+3≥0得x≥−3,则集合B=[−3, +∞),所以A∩B=[−3, 3],故选:C.7.【答案】B【考点】判断两个函数是否为同一函数【解析】先求y=|x|的定义域与值域,再分别求出所给的四个函数的定义域与值域,进行对比得出答案.解:易知函数y =|x|的定义域为R ,值域为[0, +∞).A ,函数的定义域为[0, +∞),不是同一个函数,故A 不符合题意;B ,√x 2=|x|,两者是同一个函数,故B 符合题意;C ,定义域中无实数0,定义域不同,故C 不符合题意;D 中,函数值可以取负值,值域不同,故D 不符合题意.故选B .8.【答案】C【考点】二次函数的性质【解析】求出二次函数的对称轴,根据单调区间与对称轴之间的关系建立条件,即可求出a 的取值范围.【解答】解:∵ 函数f(x)=x 2+2(a −1)x +2∴ 二次函数的对称轴为x =−2(a−1)2=1−a ,抛物线开口向上,∴ 函数在(−∞, 1−a]上单调递减,要使f(x)在区间(−∞, 2]上单调递减,则对称轴1−a ≥2,解得a ≤−1.故选:C .9.【答案】D【考点】函数单调性的性质函数奇偶性的性质【解析】题目中条件:“f(x)为偶函数,”说明:“f(−x)=f(x)”,将不在(−∝, −1)上的数值转化成区间(−∝, −1)上,再结合f(x)在(−∝, −1)上是增函数,即可进行判断.【解答】解:∵ f(x)是偶函数,∴ f(−32)=f(32),f(−1)=f(1),f(−2)=f(2), 又f(x)在(−∞, −1)上是增函数,∴ f(−2)<f(−32)<f(−1),即f(2)<f(−32)<f(−1),故选D .10.【答案】A将x=−2代入函数的表达式,求出f(−2)=−1,从而求出f(−1)的值即可.【解答】解:∵f(−2)=−2+1=−1,∴f(−1)=−1+1=0,∴f[f(−2)]=f(−1)=0,故选:A.11.【答案】D【考点】函数的图象变换【解析】根据函数的概念得:因变量(函数),随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应,结合图象特征进行判断即可.【解答】解:根据函数的定义知:自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应.∴从图象上看,任意一条与x轴垂直的直线与函数图象的交点最多只能有一个交点.从而排除A,B,C,故选:D.12.【答案】D【考点】Venn图表达集合的关系及运算【解析】根据Venn图和集合的关系进行判断即可.【解答】解:由Venn图可知元素属于B但不属于A,即对于的集合为(∁U A)∩B,故选:D.二、填空题(本大题共4小题,每小题5分,共20分)【答案】−1【考点】二次函数在闭区间上的最值【解析】二次函数开口向上,对称轴x=1,函数在[0, 1]上递减,在[1, 4]递增,得到最小值为f(1).【解答】解:由已知函数的对称轴为x=1,所以f(x)=x2−2x在[0, 1]上递减,在[1, 4]递增,所以最小值为f(1)=1−2=−1;故答案为:−1.函数奇偶性的性质【解析】求f(x)在(0, +∞)上的解析式,所以设x ∈(0, +∞),便有−x ∈(−∞, 0),所以便有f(−x)=−2x +1=−f(x),从而可求得f(x),即求出f(x)在(0, +∞)上的解析式.【解答】解:设x ∈(0, +∞),−x ∈(−∞, 0);∴ f(x)=−f(−x)=−(−2x +1)=2x −1;即f(x)在(0, +∞)上的解析式为f(x)=2x −1.故答案为:f(x)=2x −1.【答案】−26【考点】函数的求值【解析】把f(x)=x 5+ax 3+bx −8,转化为令g(x)=f(x)+8=x 5+ax 3+bx 是一个奇函数,即可计算出.【解答】解:由f(x)=x 5+ax 3+bx −8,可令g(x)=f(x)+8=x 5+ax 3+bx ,可知:g(−x)=f(−x)+8=−g(x),∴ f(−2)+8=−[f(2)+8].∴ f(2)=−18−8=−26.故答案为:−26.【答案】(2, 2),(−2, −2)【考点】函数的求值【解析】根据定义解方程f(x)=4x =x ,即可.【解答】解:根据不动点的定义,由f(x)=4x =x 得x 2=4,解得x =2或x =−2,即不动点的坐标为(2, 2),(−2, −2),故答案为:(2, 2),(−2, −2)三、解答题(本大题共6小题,共70分)【答案】解:(1)由题意得:{1−x ≥0x +3≥0,解得:−3≤x ≤1, ∴ 定义域是[−3, 1];(2)由题意得:{2−|x|≠0√x 2−1≥0,解得:x ≥2且x ≠2或x ≤−1且x ≠−2, ∴ 定义域是{x|x ≥2且x ≠2或x ≤−1且x ≠−2}.函数的定义域及其求法【解析】(1)(2)结合二次根式的性质得到不等式组,从而求出函数的定义域.【解答】解:(1)由题意得:{1−x ≥0x +3≥0,解得:−3≤x ≤1, ∴ 定义域是[−3, 1];(2)由题意得:{2−|x|≠0√x 2−1≥0,解得:x ≥2且x ≠2或x ≤−1且x ≠−2, ∴ 定义域是{x|x ≥2且x ≠2或x ≤−1且x ≠−2}.【答案】解:(1)若A =⌀,即a −1≥2a +1,解得a ≤−2,此时满足A ∩B =⌀, 若A ≠⌀,若A ∩B =⌀,则{a −1<2a +1a −1≥1或{a −1<2a +12a +1≤0, 即{a >−2a ≥2或{a >−2a ≤−12, 解得a ≥2或−2<a ≤−12,综上a ≥2或a ≤−12;(2)若A ∪B =B ,则A ⊆B ,若A =⌀,即a −1≥2a +1,解得a ≤−2,此时满足A ⊆B ,若A ≠⌀,A ⊆B ,则{a −1<2a +1a −1≥02a +1≤1,即{a >−2a ≥1a ≤0,解得0≤a ≤1即a 的取值范围[0, 1].【考点】并集及其运算交集及其运算【解析】(1)根据A ∩B =⌀,建立条件关系即可求a 的取值范围;(2)若A ∪B =B ,则A ⊆B ,求a 的取值范围.【解答】解:(1)若A =⌀,即a −1≥2a +1,解得a ≤−2,此时满足A ∩B =⌀, 若A ≠⌀,若A ∩B =⌀,则{a −1<2a +1a −1≥1或{a −1<2a +12a +1≤0, 即{a >−2a ≥2或{a >−2a ≤−12, 解得a ≥2或−2<a ≤−12,1(2)若A ∪B =B ,则A ⊆B ,若A =⌀,即a −1≥2a +1,解得a ≤−2,此时满足A ⊆B ,若A ≠⌀,A ⊆B ,则{a −1<2a +1a −1≥02a +1≤1,即{a >−2a ≥1a ≤0,解得0≤a ≤1即a 的取值范围[0, 1].【答案】解:(1)函数的定义域为(−∞, 0)∪(0, +∞),则f(−x)=−x 3−1x 3=−(x 3+1x 3)=−f(x),故函数f(x)是奇函数;(2)函数f(x)=x x 2−1在(−1, 1)内的单调递减,设1>x 1>x 2>−1,则f(x 1)−f(x 2)=x 1x 12−1−x 2x 22−1=(x 2−x 1)(1+x 1x 2)(x 12−1)(x 22−1),∵ 1>x 1>x 2>−1,∴ x 2−x 1>0,且x 12<1,x 22<1,x 1x 2<1,∴ f(x 1)−f(x 2)<0,即f(x 1)<f(x 2),故函数f(x)在区间(−1, 1)上是减函数.【考点】函数奇偶性的判断函数单调性的判断与证明【解析】(1)利用函数奇偶性的定义即可判断函数f(x)=x 3+1x 3的奇偶性;(2)根据函数单调性的定义进行证明即可.【解答】解:(1)函数的定义域为(−∞, 0)∪(0, +∞),则f(−x)=−x 3−1x 3=−(x 3+1x 3)=−f(x),故函数f(x)是奇函数;(2)函数f(x)=xx 2−1在(−1, 1)内的单调递减,设1>x 1>x 2>−1,则f(x 1)−f(x 2)=x 1x 12−1−x 2x 22−1=(x 2−x 1)(1+x 1x 2)(x 12−1)(x 22−1),∵ 1>x 1>x 2>−1,∴ x 2−x 1>0,且x 12<1,x 22<1,x 1x 2<1,∴ f(x 1)−f(x 2)<0,即f(x 1)<f(x 2),故函数f(x)在区间(−1, 1)上是减函数.【答案】解:∵ P ={x|x 2+6x +9=0}={−3},又∵Q⊆P,当a=0,ax+1=0无解,故Q=⌀,满足条件,若Q≠⌀,则Q={−3},,即a=13故满足条件的实数a=0,或a=1.3【考点】集合的包含关系判断及应用【解析】由Q⊆P,可分Q=⌀和Q≠⌀两种情况进行讨论,根据集合包含关系的判断和应用,分别求出满足条件的a值,并写成集合的形式即可得到答案【解答】解:∵P={x|x2+6x+9=0}={−3},又∵Q⊆P,当a=0,ax+1=0无解,故Q=⌀,满足条件,若Q≠⌀,则Q={−3},,即a=13.故满足条件的实数a=0,或a=13【答案】解:(1)由分段函数可知,函数f(x)简图为:(2)∵f(3)=4−32=4−9=−5,∴f(f(3))=f(−5)=1−2(−5)=1+10=11;(3)当−4≤x<0时,1<f(x)≤9,当x=0时,f(0)=2,当0<x<3时,−5<f(x)<4,综上:−5<f(x)≤9.【考点】分段函数的解析式求法及其图象的作法函数的值域及其求法函数的求值【解析】(1)根据分段函数的表达式,画出函数f(x)简图即可;(2)利用分段函数直接代入求f(f(3))的值;(3)当−4≤x<3时,求f(x)的值域即可.【解答】解:(1)由分段函数可知,函数f(x)简图为:(2)∵f(3)=4−32=4−9=−5,∴f(f(3))=f(−5)=1−2(−5)=1+10=11;(3)当−4≤x<0时,1<f(x)≤9,当x=0时,f(0)=2,当0<x<3时,−5<f(x)<4,综上:−5<f(x)≤9.【答案】[2, +∞),2,4【考点】函数单调性的判断与证明【解析】(1)直接通过观察图表得到结论;(2)利用函数单调性的定义,在(0, 2)内任取两个不同的值,规定大小后,对相应的函数值作差判符号.【解答】解:①由表格可知,函数f(x)在[2, +∞)上递增,当x=2时函数取得最小值4.故答案为[2, +∞);2;4.②证明:设x1,x2∈(0, 2),且x1<x2,则f(x1)−f(x2)=(x1+4x1)−(x2+4x2)=(x1−x2)+(4x1−4x2)=(x1−x2)(x1x2−4)x1x2∵x1,x2∈(0, 2),x1<x2,∴x1−x2<0,x1x2∈(0, 4)∴f(x1)−f(x2)>0,即f(x1)>f(x2)∴f(x)=x+4x在区间(0, 2)上递减.。

最新人教A版高一数学必修一单元测试题全册带答案解析

最新人教A版高一数学必修一单元测试题全册带答案解析

最新人教A版高一数学必修一单元测试题全册带答案解析章末综合测评(一)集合与函数的概念(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={x|x∈N*,x<6},集合A={1,3},B={3,5},则∁U(A∪B)等于()A.{1,4}B.{1,5}C.{2,5}D.{2,4}【解析】由题意得A∪B={1,3}∪{3,5}={1,3,5}.又U={1,2,3,4,5},∴∁U(A∪B)={2,4}.【答案】 D2.下列各式:①1∈{0,1,2};②∅⊆{0,1,2};③{1}∈{0,1,2};④{0,1,2}={2,0,1},其中错误的个数是()A.1个B.2个C.3个D.4个【解析】①1∈{0,1,2},正确;②空集是任何集合的子集,正确;③因为{1}⊆{0,1,2},故不正确;④根据集合的无序性可知正确.故选A.【答案】A3.下列各图形中,是函数的图象的是()【解析】函数y=f(x)的图象与平行于y轴的直线最多只能有一个交点,故A,B,C均不正确,故选D.【答案】 D4.集合A={x|y=x-1},B={y|y=x2+2},则如图1阴影部分表示的集合为()图1A .{x |x ≥1}B .{x |x ≥2}C .{x |1≤x ≤2}D .{x |1≤x <2}【解析】 易得A =[1,+∞),B =[2,+∞),则题图中阴影部分表示的集合是∁A B =[1,2).故选D.【答案】 D5.已知函数f (2x +1)=3x +2,则f (1)的值等于( ) A .2 B .11 C .5D .-1【解析】 由2x +1=1得x =0,故f (1)=f (2×0+1)=3×0+2=2,故选A . 【答案】 A6.下列四个函数:①y =x +1;②y =x -1;③y =x 2-1; ④y =1x ,其中定义域与值域相同的是( ) A .①②③ B .①②④ C .②③D .②③④【解析】 ①y =x +1,定义域R ,值域R ;②y =x -1,定义域R ,值域R ;③y =x 2-1,定义域R ,值域[-1,+∞);④y =1x ,定义域(-∞,0)∪(0,+∞),值域(-∞,0)∪(0,+∞).∴①②④定义域与值域相同,故选B .【答案】 B7.若函数f (x )=⎩⎨⎧x +1,(x ≥0),f (x +2),(x<0),则f (-3)的值为( )A .5B .-1C .-7D .2【解析】 依题意,f (-3)=f (-3+2)=f (-1) =f (-1+2)=f (1)=1+1=2,故选D. 【答案】 D8.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ) A .(-∞,-3)B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)【解析】 因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3.【答案】 C9.定义在R 上的奇函数f (x ),当x >0时,f (x )=3,则奇函数f (x )的值域是( ) A .(-∞,-3] B .[-3,3] C .[-3,3]D .{-3,0,3}【解析】 ∵f (x )是定义在R 上的奇函数, ∴f (-x )=-f (x ),f (0)=0,设x <0,则-x >0,f (-x )=-f (x )=3, ∴f (x )=-3,∴f (x )=⎩⎨⎧3,x >0,0,x =0,-3,x <0,∴奇函数f (x )的值域是{-3,0,3}.【答案】 D10.已知f (x )=x 5-ax 3+bx +2且f (-5)=17,则f (5)的值为( ) A .-13 B .13 C .-19D .19【解析】 ∵g (x )=x 5-ax 3+bx 是奇函数,∴g (-x )=-g (x ).∵f (-5)=17=g (-5)+2,∴g (5)=-15,∴f (5)=g (5)+2=-15+2=-13. 【答案】 A11.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .4【解析】 ∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎨⎧ a 2-4a =-2,b 2-4b +1=-1,即⎩⎨⎧a 2-4a +2=0,b 2-4b +2=0,∴a ,b 为方程x 2-4x +2=0的两根, ∴a +b =4. 【答案】 D12.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)【解析】 任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,∴f (x )在[0,+∞)上单调递减.又f (x )是偶函数,故f (x )在(-∞,0]上单调递增.且满足n ∈N *时,f (-2)=f (2),3>2>1>0,由此知,此函数具有性质:自变量的绝对值越小,函数值越大,∴f (3)<f (-2)<f (1),故选A .【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________. 【解析】 由A ={-2,2,3,4},B ={x |x =t 2,t ∈A },得B ={4,9,16}. 【答案】 {4,9,16}14.若函数f (x )=(a -2)x 2+(a -1)x +3是偶函数,则f (x )的增区间是________. 【解析】 ∵函数f (x )=(a -2)x 2+(a -1)x +3是偶函数,∴a -1=0,∴f (x )=-x 2+3,其图象是开口方向朝下,以y 轴为对称轴的抛物线.故f (x )的增区间为(-∞,0].【答案】 (-∞,0]15.已知函数f (x )=⎩⎨⎧2x ,x>0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.【解析】 ∵f (1)=2×1=2, 若a >0,则f (a )=2a ,由2a +2=0,得a =-1舍去, 若a ≤0,则f (a )=a +1,由a +1+2=0得a =-3,符合题意. ∴a =-3. 【答案】 -316.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数,例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数; ②函数f (x )=xx -1是单函数; ③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数. 其中的真命题是________.(写出所有真命题的序号)【解析】 ①函数f (x )=x 2(x ∈R )不是单函数,例如f (1)=f (-1),显然不会有1和-1相等,故为假命题;②函数f (x )=x x -1是单函数,因为若x 1x 1-1=x 2x 2-1,可推出x 1x 2-x 2=x 1x 2-x 1,即x 1=x 2,故为真命题;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2)为真,可用反证法证明:假设f (x 1)=f (x 2),则按定义应有x 1=x 2,与已知中的x 1≠x 2矛盾; ④在定义域上具有单调性的函数一定是单函数为真,因为单函数的实质是一对一的映射,而单调的函数也是一对一的映射,故为真.【答案】 ②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设全集U =R ,集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求∁U (A ∩B );(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.【解】 (1)由集合B 中的不等式2x -4≥x -2,解得x ≥2,∴B ={x |x ≥2},又A ={x |-1≤x <3},∴A ∩B ={x |2≤x <3},又全集U =R ,∴∁U (A ∩B )={x |x <2或x ≥3}. (2)由集合C 中的不等式2x +a >0,解得x >-a2,∴C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-a 2. ∵B ∪C =C ,∴B ⊆C ,∴-a2<2,解得a >-4.18.(本小题满分12分)设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},且A ∩B ={2}. (1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(∁U A )∪(∁U B );(3)写出(∁U A )∪(∁U B )的所有子集.【解】 (1)由交集的概念易得2是方程2x 2+ax +2=0和x 2+3x +2a =0的公共解,则a =-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={-5,2}. (2)由并集的概念易得U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2.由补集的概念易得∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12,所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12.(3)(∁U A )∪(∁U B )的所有子集即为集合⎩⎨⎧⎭⎬⎫-5,12的所有子集:∅,⎩⎨⎧⎭⎬⎫12,{-5},⎩⎨⎧⎭⎬⎫-5,12. 19.(本小题满分12分)已知f (x )是R 上的奇函数,当x >0时,解析式为f (x )=2x +3x +1. (1)求f (x )在R 上的解析式;(2)用定义证明f (x )在(0,+∞)上为减函数. 【解】 (1)设x <0,则-x >0,∴f (-x )=-2x +3-x +1.又∵f (x )是R 上的奇函数,∴f (-x )=-f (x )=-2x +3-x +1,∴f (x )=-2x +3x -1.又∵奇函数在0点有意义,∴f (0)=0,∴函数的解析式为f (x )=⎩⎪⎨⎪⎧-2x +3x -1,x <0,0,x =0,2x +3x +1,x >0.(2)证明:设∀x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=2x 1+3x 1+1-2x 2+3x 2+1=(2x 1+3)(x 2+1)-(2x 2+3)(x 1+1)(x 1+1)(x 2+1)=-x 1+x 2(x 1+1)(x 2+1).∵x 1,x 2∈(0,+∞),x 1<x 2,∴x 1+1>0,x 2+1>0,x 2-x 1>0, ∴f (x 1)-f (x 2)>0,∴f (x 1)>f (x 2),∴函数f (x )在(0,+∞)上为减函数.20.(本小题满分12分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,其中x 是仪器的月产量.当月产量为何值时,公司所获得利润最大?最大利润是多少?【解】 由于月产量为x 台,则总成本为20 000+100x , 从而利润f (x )=R (x )=⎩⎪⎨⎪⎧300x -12x 2-20 000,0≤x ≤400,60 000-100x ,x >400,当0≤x ≤400时,f (x )=-12(x -300)2+25 000, 所以当x =300时,有最大值25 000; 当x >400时,f (x )=60 000-100x 是减函数, 所以f (x )=60 000-100×400<25 000. 所以当x =300时,有最大值25 000,即当月产量为300台时,公司所获利润最大,最大利润是25 000元.21.(本小题满分12分)已知f (x )在R 上是单调递减的一次函数,且f (f (x ))=4x -1. (1)求f (x );(2)求函数y =f (x )+x 2-x 在x ∈[-1,2]上的最大值与最小值.【解】 (1)由题意可设f (x )=ax +b ,(a <0),由于f (f (x ))=4x -1,则a 2x +ab +b =4x -1,故⎩⎨⎧a 2=4,ab +b =-1,解得a =-2,b =1.故f (x )=-2x +1. (2)由(1)知,函数y =f (x )+x 2-x =-2x +1+x 2-x =x 2-3x +1,故函数y =x 2-3x +1的图象开口向上,对称轴为x =32,则函数y =f (x )+x 2-x 在⎣⎢⎡⎦⎥⎤-1,32上为减函数,在⎣⎢⎡⎦⎥⎤32,2上为增函数.又由f ⎝ ⎛⎭⎪⎫32=-54,f (-1)=5,f (2)=-1,则函数y =f (x )+x 2-x 在x ∈[-1,2]上的最大值为5,最小值为-54. 22.(本小题满分12分)已知函数f (x )=x +b1+x 2为奇函数. (1)求b 的值;(2)证明:函数f (x )在区间(1,+∞)上是减函数; (3)解关于x 的不等式f (1+x 2)+f (-x 2+2x -4)>0.【解】 (1)∵函数f (x )=x +b1+x 2为定义在R 上的奇函数,∴f (0)=b =0.(2)由(1)可得f (x )=x1+x 2,下面证明函数f (x )在区间(1,+∞)上是减函数. 证明:设x 2>x 1>1,则有f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=x 1+x 1x 22-x 2-x 2x 21(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). 再根据x 2>x 1>1,可得1+x 21>0,1+x 22>0,x 1-x 2<0,1-x 1x 2<0,∴(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)>0, 即f (x 1)>f (x 2),∴函数f (x )在区间(1,+∞)上是减函数. (3)由不等式f (1+x 2)+f (-x 2+2x -4)>0, 可得f (1+x 2)>-f (-x 2+2x -4)=f (x 2-2x +4),再根据函数f (x )在区间(1,+∞)上是减函数,可得1+x 2<x 2-2x +4,且x >1, 求得1<x <32,故不等式的解集为(1,32).章末综合测评(二) 第二章 基本初等函数(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=1log 0.5(2x +1),则函数f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,+∞ B .(0,+∞)C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎦⎥⎤-12,0 【解析】 要使函数有意义,只需⎩⎨⎧2x +1>0,log 0.5(2x +1)>0,即⎩⎪⎨⎪⎧x >-12,2x +1<1,解得⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <0.故选C.【答案】 C2.已知函数t =-144lg ⎝ ⎛⎭⎪⎫1-N 100的图象可表示打字任务的“学习曲线”,其中t(小时)表示达到打字水平N (字/分钟)所需的学习时间,N 表示打字速度(字/分),则按此曲线要达到90字/分钟的水平,所需的学习时间是( )A .144小时B .90小时C .60小时D .40小时【解析】 t =-144lg ⎝ ⎛⎭⎪⎫1-N 100=-144lg 110=144.【答案】 A3.下列函数中,在区间(0,1)上为增函数的是( ) A .y =2x 2-x +3 B .y =⎝ ⎛⎭⎪⎫13xC .y =x 23D .y =log 12x【解析】 ∵y =2x 2-x +3的对称轴x =14,∴在区间(0,1)上不是增函数,故A 错; 又y =⎝ ⎛⎭⎪⎫13x及y =log 12x 为减函数,故B ,D 错;y =x 23中,指数23>0,在[0,+∞)上单调递增,故C 正确.【答案】 C4.如图1为函数y =m +log n x 的图象,其中m ,n 为常数,则下列结论正确的是( )图1A .m <0,n >1B .m >0,n >1C .m >0,0<n <1D .m <0,0<n <1【解析】 当x =1时,y =m ,由图形易知m<0,又函数是减函数,所以0<n <1. 【答案】 D5.已知f (x )=a -x (a >0且a ≠1),且f (-2)>f (-3),则a 的取值范围是( ) A .a >0 B .a >1 C .a <1D .0<a <1【解析】 ∵f (-2)>f (-3),∴f (x )=a -x =⎝ ⎛⎭⎪⎫1a x 是增函数,∴1a >1,∴0<a <1,则a 的取值范围是0<a <1,故选D.【答案】 D6.(2015·山东高考)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c<b C .b <a <cD .b <c<a【解析】 因为函数y =0.6x 是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b <a <1.因为函数y =x 0.6在(0,+∞)上是增函数,1<1.5,所以1.50.6>10.6=1,即c >1.综上,b <a <c .【答案】 C7.已知函数f (x )=lg (1-x )的值域为(-∞,1],则函数f (x )的定义域为( ) A .[-9,+∞) B .[0,+∞) C .(-9,1)D .[-9,1)【解析】 因为函数f (x )=lg (1-x )的值域为(-∞,1],所以lg (1-x )≤1,即0<1-x ≤10,解得-9≤x <1,所以函数f (x )的定义域为[-9,1).【答案】 D8.已知函数f (x )是奇函数,当x >0时,f (x )=a x(a >0且a ≠1),且f (log 124)=-3,则a的值为( )A.3 B .3 C .9D.32【解析】 ∵f (log 124)=f ⎝ ⎛⎭⎪⎫log 214=f (-2)=-f (2)=-a 2=-3,∴a 2=3,解得a =±3,又a >0,∴a = 3.【答案】 A9.已知f (x )=a x ,g(x )=log a x (a >0且a ≠1),若f (3)·g(3)<0,则f (x )与g(x )在同一坐标系里的图象是( )【解析】 ∵a >0且a ≠1,∴f (3)=a 3>0,又f (3)·g(3)<0,∴g(3)=log a 3<0,∴0<a <1,∴f (x )=a x 在R 上是减函数,g (x )=log a x 在(0,+∞)上是减函数,故选C.【答案】 C10.设偶函数f (x )=log a |x +b |在(0,+∞)上具有单调性,则f (b -2)与f (a +1)的大小关系为( )A .f (b -2)=f (a +1)B .f (b -2)>f (a +1)C .f (b -2)<f (a +1)D .不能确定【解析】 ∵函数f (x )是偶函数,∴b =0,此时f (x )=log a |x |.当a >1时,函数f (x )=log a |x |在(0,+∞)上是增函数,∴f (a +1)>f (2)=f (b -2);当0<a <1时,函数f (x )=log a |x |在(0,+∞)上是减函数,∴f (a +1)>f (2)=f (b -2).综上可知f (b -2)<f (a +1).【答案】 C11.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2]D.⎣⎢⎡⎭⎪⎫138,2 【解析】 由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝ ⎛⎭⎪⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,138,选B .【答案】 B12.若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是( ) A .0<a <1 B .0<a <2,a ≠1 C .1<a <2D .a ≥2【解析】 令g (x )=x 2-ax +1(a >0,且a ≠1),①当a >1时,g (x )在R 上单调递增,∴Δ<0,∴1<a <2;②当0<a <1时,g (x )=x 2-ax +1没有最大值,从而函数y =log a (x 2-ax +1)没有最小值,不符合题意.综上所述:1<a <2.故选C.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知lg 2=a ,lg 3=b ,则用a ,b 表示log 125的值为________. 【解析】 ∵lg 2=a ,lg 3=b ,∴log 125=lg 5lg 12=1-lg 22lg 2+lg 3=1-a 2a +b .【答案】1-a2a +b14.方程log 2(9x -1-5)=log 2(3x -1-2)+2的解为________.【解析】 依题意log 2(9x -1-5)=log 2(4·3x -1-8),所以9x -1-5=4·3x -1-8, 令3x -1=t (t >0),则t 2-4t +3=0,解得t =1或t =3,当t =1时,3x -1=1,所以x =1,而91-1-5<0,所以x =1不合题意,舍去; 当t =3时,3x -1=3,所以x =2,92-1-5=4>0,32-1-2=1>0,所以x =2满足条件. 所以x =2是原方程的解. 【答案】 215.已知当x >0时,函数f (x )=(2a -1)x ⎝ ⎛⎭⎪⎫a >0,且a ≠12的值总大于1,则函数y =a 2x -x 2的单调增区间是________.【解析】 由题意知:2a -1>1,解得a >1,设t =2x -x 2,则函数y =a t 为增函数,∵函数t =2x -x 2的增区间为(-∞,1),∴函数y =a 2x -x 2的单调增区间是(-∞,1).【答案】 (-∞,1)(或(-∞,1]) 16.给出下列结论:①4(-2)4=±2; ②y =x 2+1,x ∈[-1,2],y 的值域是[2,5]; ③幂函数图象一定不过第四象限;④函数f (x )=a x +1-2(a >0,且a ≠1)的图象过定点(-1,-1); ⑤若ln a <1成立,则a 的取值范围是(-∞,e ).其中正确的序号是________.【解析】 ①4(-2)4=2,因此不正确;②y =x 2+1,x ∈[-1,2],y 的值域是[1,5],因此不正确;③幂函数图象一定不过第四象限,正确;④当x =-1时,f (-1)=a 0-2=-1,∴函数f (x )=a x +1-2(a >0,a ≠1)的图象过定点(-1,-1),正确;⑤若l n a <1成立,则a 的取值范围是(0,e),因此不正确.综上所述:只有③④正确.【答案】 ③④三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求值: (1)⎝ ⎛⎭⎪⎫21412-(-9.6)0-⎝ ⎛⎭⎪⎫338-23+(1.5)-2;(2)log 2512·log 45-log 133-log 24+5log 52. 【解】 (1)⎝ ⎛⎭⎪⎫21412-(-9.6)0-⎝ ⎛⎭⎪⎫338-23+(1.5)-2=⎝ ⎛⎭⎪⎫9412-1-⎝ ⎛⎭⎪⎫278-23+⎝ ⎛⎭⎪⎫32-2 =32-1-⎝ ⎛⎭⎪⎫32-2+⎝ ⎛⎭⎪⎫232=32-1-49+49=12.(2)log 2512·log 45-log 133-log 24+5log 52=-14+1-2+2=34.18.(本小题满分12分)已知函数f (x )=a 2x +2a x -1(a >1,且a 为常数)在区间[-1,1]上的最大值为14.(1)求f (x )的表达式;(2)求满足f (x )=7时,x 的值.【解】 (1)令t =a x >0.∵x ∈[-1,1],a >1,∴t ∈⎣⎢⎡⎦⎥⎤1a ,a ,f (x )=t 2+2t -1=(t +1)2-2,故当t =a 时,函数f (x )取得最大值为a 2+2a -1=14,解得a =3,∴f (x )=32x +2×3x -1. (2)由f (x )=7,可得32x +2×3x -1=7,即(3x +4)·(3x -2)=0,求得3x =2,∴x =log 32. 19.已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=⎝ ⎛⎭⎪⎫12x .图2(1)画出函数f (x )的图象;(2)根据图象写出f (x )的单调区间,并写出函数的值域.【解】 (1)先作出当x ≥0时,f (x )=⎝ ⎛⎭⎪⎫12x 的图象,利用偶函数的图象关于y 轴对称,再作出f (x )在x ∈(-∞,0)时的图象.(2)函数f (x )的单调递增区间为(-∞,0),单调递减区间为[0,+∞),值域为(0,1]. 20.(本小题满分12分)已知函数f (x )=log a (x -1),g (x )=log a (3-x )(a >0且a ≠1). (1)求函数h (x )=f (x )-g (x )的定义域;(2)利用对数函数的单调性,讨论不等式f (x )≥g (x )中x 的取值范围. 【解】 (1)由⎩⎨⎧x -1>0,3-x >0,得1<x <3.∴函数h (x )的定义域为(1,3). (2)不等式f (x )≥g (x ),即为log a (x -1)≥log a (3-x ).(*)①当0<a <1时,不等式(*)等价于⎩⎨⎧1<x <3,x -1≤3-x ,解得1<x ≤2.②当a >1时,不等式(*)等价于⎩⎨⎧1<x <3,x -1≥3-x ,解得2≤x <3.综上,当0<a <1时,原不等式解集为(1,2]; 当a >1时,原不等式解集为[2,3).21.(本小题满分12分)若函数y =f (x )=a ·3x -1-a3x -1为奇函数.(1)求a 的值; (2)求函数的定义域; (3)求函数的值域.【解】 ∵函数y =f (x )=a ·3x -1-a 3x -1=a -13x -1,(1)由奇函数的定义,可得f (-x )+f (x )=0, 即2a -13x-1-13-x -1=0,∴a =-12. (2)∵y =-12-13x -1,∴3x -1≠0,即x ≠0.∴函数y =-12-13x -1的定义域为{x |x ≠0}.(3)∵x ≠0,∴3x -1>-1.∵3x -1≠0,∴0>3x -1>-1或3x -1>0. ∴-12-13x -1>12或-12-13x -1<-12.即函数的值域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y >12或y <-12. 22.(本小题满分12分)已知函数f (x )=lg ⎝⎛⎭⎪⎫1-x 1+x . (1)求证:f (x )是奇函数; (2)求证:f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ; (3)若f ⎝⎛⎭⎪⎫a +b 1+ab =1,f ⎝ ⎛⎭⎪⎫a -b 1-ab =2,求f (a ),f (b )的值. 【解】 (1)证明:由函数f (x )=lg ⎝ ⎛⎭⎪⎫1-x 1+x ,可得1-x 1+x >0,即x -11+x <0,解得-1<x <1,故函数的定义域为(-1,1),关于原点对称.再根据f (-x )=lg 1+x 1-x =-lg 1-x1+x =-f (x ),可得f (x )是奇函数.(2)证明:f (x )+f (y )=lg1-x 1+x +lg 1-y 1+y =lg (1-x )(1-y )(1+x )(1+y ), 而f ⎝ ⎛⎭⎪⎫x +y 1+xy =lg 1-x +y 1+xy 1+x +y 1+xy=lg 1+xy -x -y 1+xy +x +y =lg (1-x )(1-y )(1+x )(1+y ),∴f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy 成立. (3)若f ⎝⎛⎭⎪⎫a +b 1+ab =1,f ⎝ ⎛⎭⎪⎫a -b 1-ab =2, 则由(2)可得f (a )+f (b )=1,f (a )-f (b )=2, 解得f (a )=32,f (b )=-12.章末综合测评(三) -第三章 函数的应用(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则函数f (x )的图象与x 轴在区间[a ,b ]内( )A .至多有一个交点B .必有唯一一个交点C .至少有一个交点D .没有交点【解析】 ∵f (a )f (b )<0,∴f (x )在[a ,b ]内有零点, 又f (x )在区间[a ,b ]上单调,所以这样的点只有一个,故选B . 【答案】 B2.若方程f (x )-2=0在(-∞,0)内有解,则y =f (x )的图象是( )【解析】 要使方程f (x )-2=0在(-∞,0)内有解,只需y =f (x )与直线y =2在(-∞,0)上有交点,故D 正确.故选D.【答案】 D3.已知下列四个函数图象,其中能用“二分法”求出函数零点的是( )【解析】 由二分法的定义与原理知A 选项正确. 【答案】 A 4.函数f (x )=(x -1)ln (-x )x -3的零点个数为( )A .1个B .2个C .3个D .4个【解析】 ∵函数f (x )=(x -1)ln (-x )x -3的零点个数即为f (x )=0的根的个数,∴f (x )=(x -1)ln (-x )x -3=0,即(x -1)ln(-x )=0,∴x -1=0或ln(-x )=0,∴x =1或x =-1,∵⎩⎨⎧-x >0,x -3≠0,解得x <0,∵函数f (x )的定义域为{x |x <0},∴x =-1,即方程f (x )=0只有一个根,∴函数f (x )=(x -1)ln (-x )x -3的零点个数为1个.故选A .【答案】 A5.甲、乙两人在一次赛跑中,从同一地点出发,路程s 与时间t 的函数关系如图1所示,则下列说法正确的是 ( )图1A .甲比乙先出发B .乙比甲跑的路程多C .甲、乙两人的速度相同D .甲比乙先到达终点【解析】 由题图可知,甲到达终点用时短,故选D.【答案】 D6.拟定从甲地到乙地通话m 分钟的电话费由f (m )=1.06(0.50×[m ]+1)给出,其中m >0,[m ]是大于或等于m 的最小整数(例如[2.72]=3,[3.8]=4,[3.1]=4),则从甲地到乙地通话时间为5.5分钟的电话费为多少元.( )A .3.71B .3.97C .4.24D .4.77【解析】 由[m ]是大于或等于m 的最小整数,可得[5.5]=6,所以f (5.5)=1.06×(0.50×6+1)=1.06×4=4.24.故选C .【答案】 C7.函数f (x )=3x +12x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)【解析】 由已知可知,函数f (x )=3x +12x -2单调递增且连续,∵f (-2)=-269<0,f (-1)=-136<0,f (0)=-1<0,f (1)=32>0,∴f (0)·f (1)<0,由函数的零点判定定理可知,函数f (x )=3x +12x -2的一个零点所在的区间是(0,1),故选C .【答案】 C8.函数f (x )=⎩⎨⎧x 2+2x -3,x ≤0,-2+ln x ,x >0,的零点个数为( )A .0B .1C .2D .3【解析】 当x ≤0时,令x 2+2x -3=0,得x =-3;当x >0时,令-2+ln x =0,得x =e 2,所以函数有两个零点.故选C .【答案】 C9.函数f (x )=|x |+k 有两个零点,则( ) A .k =0 B .k >0 C .0≤k <1D .k <0【解析】 在同一平面直角坐标系中画出y 1=|x |和y 2=-k 的图象,如图所示.若f (x )有两个零点,则必有-k >0,即k <0.【答案】 D10.已知f (x )=(x -a )(x -b )-2,并且α,β是函数f (x )的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a <α<b <βB .a <α<β<bC .α<a <b <βD .α<a <β<b【解析】 ∵α,β是函数f (x )的两个零点, ∴f (α)=f (β)=0.又f (a )=f (b )=-2<0,结合二次函数的图象(如图所示)可知a ,b 必在α,β之间.故选C .【答案】 C11.已知函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2x ,若实数x 0是函数f (x )的零点,且0<x 1<x 0,则f (x 1)的值为( )A .恒为正值B .等于0C .恒为负值D .不大于0【解析】 ∵函数f (x )在(0,+∞)上为减函数,且f (x 0)=0,∴当x ∈(0,x 0)时,均有f (x )>0,而0<x 1<x 0,∴f (x 1)>0.【答案】 A12.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的利润分别为P (万元)和Q (万元),且它们与投入资金x (万元)的关系是:P =x 4,Q =a 2x (a >0);若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a 的最小值应为( )A.5 B .5 C .±5D .- 5【解析】 设投放x 万元经销甲商品,则经销乙商品投放(20-x )万元,总利润y =P +Q =x 4+a 2·20-x ,令y ≥5,则x 4+a 2·20-x ≥5.∴a 20-x ≥10-x 2,即a ≥1220-x 对0≤x <20恒成立,而f (x )=1220-x 的最大值为5,且x =20时,a 20-x ≥10-x2也成立,∴a min = 5.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.如果函数f (x )=x 2+mx +m +3的一个零点为0,则另一个零点是________. 【解析】 函数f (x )=x 2+mx +m +3的一个零点为0,则f (0)=0,∴m +3=0,∴m =-3,则f (x )=x 2-3x ,于是另一个零点是3.【答案】 314.用二分法求方程ln x -2+x =0在区间[1,2]上零点的近似值,先取区间中点c =32,则下一个含根的区间是________.【解析】 令f (x )=ln x -2+x ,则f (1)=ln 1-2+1<0, f (2)=ln 2-2+2=ln 2>0,f ⎝ ⎛⎭⎪⎫32=ln 32-2+32=ln 32-12=ln 32-ln e =ln 32e =ln 94e <ln 1=0,∴f ⎝ ⎛⎭⎪⎫32·f (2)<0,∴下一个含根的区间是⎝ ⎛⎭⎪⎫32,2. 【答案】 ⎝ ⎛⎭⎪⎫32,215.将进货单价为8元的商品按10元一个销售,每天可卖出100个.若每个涨价1元,则日销售量减少10个.为获得最大利润,则此商品日销售价应定为每个________元.【解析】 设每个涨价x 元,则实际销售价为10+x 元,销售的个数为100-10x , 则利润为y =(10+x )(100-10x )-8(100-10x )=-10(x -4)2+360(0≤x <10,x ∈N ).因此,当x =4,即售价定为每个14元时,利润最大.【答案】 1416.已知函数f (x )=log ax +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.【解析】 ∵2<a <3<b <4,∴f (2)=log a 2+2-b <1+2-b =3-b <0,f (3)=log a 3+3-b >1+3-b =4-b >0. 即f (2)·f (3)<0,易知f (x )在(0,+∞)上单调递增.∴函数f (x )在(0,+∞)上存在唯一的零点x 0,且x 0∈(2,3),∴n=2.【答案】 2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设函数f(x)=e x-m-x,其中m∈R,当m>1时,判断函数f(x)在区间(0,m)内是否存在零点.【解】f(x)=e x-m-x,所以f(0)=e-m-0=e-m>0,f(m)=e0-m=1-m.又m>1,所以f(m)<0,所以f(0)·f(m)<0.又函数f(x)的图象在区间[0,m]上是一条连续曲线,故函数f(x)=e x-m-x(m>1)在区间(0,m)内存在零点.18.(本小题满分12分)定义在R上的偶函数y=f(x)在(-∞,0]上递增,函数f(x)的一个零点为-12,求满足f(log14x)≥0的x的取值集合.【解】∵-12是函数的一个零点,∴f⎝⎛⎭⎪⎫-12=0.∵y=f(x)是偶函数且在(-∞,0]上递增,∴当log 14x≤0,解得x≥1,当log14x≥-12,解得x≤2,所以1≤x≤2.由对称性可知,当log 14x>0时,12≤x<1.综上所述,x的取值范围是⎣⎢⎡⎦⎥⎤12,2.19.(本小题满分12分)燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log2Q10,单位是m/s,其中Q表示燕子的耗氧量.(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?【解】(1)由题知,当燕子静止时,它的速度v=0,代入题给公式可得:0=5log2Q 10,解得Q=10.即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q=80代入题给公式得:v=5log28010=5log28=15(m/s).即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.20.(本小题满分12分)设f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3,2.(1)求f (x );(2)当函数f (x )的定义域为[0,1]时,求其值域. 【解】 (1)因为f (x )的两个零点分别是-3,2, 所以⎩⎨⎧f (-3)=0,f (2)=0,即⎩⎨⎧9a -3(b -8)-a -ab =0,4a +2(b -8)-a -ab =0,解得a =-3,b =5,f (x )=-3x 2-3x +18.(2)由(1)知f (x )=-3x 2-3x +18的对称轴x =-12,函数开口向下,所以f (x )在[0,1]上为减函数,f (x )的最大值f (0)=18,最小值f (1)=12,所以值域为[12,18].21.(本小题满分12分)如图2,直角梯形OABC 位于直线x =t 右侧的图形的面积为f (t ).图2(1)试求函数f (t )的解析式; (2)画出函数y =f (t )的图象. 【解】 (1)当0≤t ≤2时,f (t )=S 梯形OABC -S △ODE =(3+5)×22-12t ·t =8-12t 2, 当2<t ≤5时,f (t )=S 矩形DEBC =DE ·DC =2(5-t )=10-2t , 所以f (t )=⎩⎪⎨⎪⎧8-12t 2,(0≤t ≤2),10-2t ,(2<t ≤5).(2)函数f (t )图象如图所示.22.(本小题满分12分)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为2.10元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元.已知甲、乙两用户该月用水量分别为5x,3x 吨.(1)求y 关于x 的函数;(2)如甲、乙两户该月共交水费40.8元,分别求出甲、乙两户该月的用水量和水费. 【解】 (1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨, y =(5x +3x )×2.1=16.8x ;当甲的用水量超过4吨,乙的用水量不超过4吨时,即3x ≤4且5x >4, y =4×2.1+3x ×2.1+3×(5x -4)=21.3x -3.6. 当乙的用水量超过4吨时,即3x >4,y =8×2.1+3(8x -8)=24x -7.2,所以y =⎩⎪⎨⎪⎧16.8x ⎝ ⎛⎭⎪⎫0≤x ≤45,21.3x -3.6⎝ ⎛⎭⎪⎫45<x ≤43,24x -7.2⎝ ⎛⎭⎪⎫x >43.(2)由于y =f (x )在各段区间上均为单调递增函数, 当x ∈⎣⎢⎡⎦⎥⎤0,45时,y ≤f ⎝ ⎛⎭⎪⎫45<40.8;当x ∈⎝ ⎛⎦⎥⎤45,43时,y ≤f ⎝ ⎛⎭⎪⎫43<40.8; 当x ∈⎝ ⎛⎭⎪⎫43,+∞时,令24x -7.2=40.8,解得x =2,所以甲用户用水量为5x =10吨,付费S 1=4×2.1+6×3=26.40(元);乙用户用水量为3x =6吨,付费S 2=4×2.1+2×3=14.40(元).模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B =( ) A .{1,2,4} B .{2,3,4} C .{0,2,4}D .{0,2,3,4}【解析】 ∵全集U ={0,1,2,3,4},集合A ={1,2,3},∴∁U A ={0,4},又B ={2,4},则(∁U A )∪B ={0,2,4}.故选C .【答案】 C2.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))=( ) A .0 B .1 C .2D .3【解析】 ∵f (2)=log 3(22-1)=1, ∴f (f (2))=f (1)=2e 1-1=2. 【答案】 C3.同时满足以下三个条件的函数是( )①图象过点(0,1);②在区间(0,+∞)上单调递减;③是偶函数. A .f (x )=-(x +1)2+2 B .f (x )=3|x | C .f (x )=⎝ ⎛⎭⎪⎫12|x |D .f (x )=x -2【解析】 A .f (x )=-(x +1)2+2关于x =-1对称,不是偶函数,不满足条件③. B .f (x )=3|x |在区间(0,+∞)上单调递增,不满足条件②. C .若f (x )=⎝ ⎛⎭⎪⎫12|x |,则三个条件都满足.D .若f (x )=x -2,则f (0)无意义,不满足条件①.故选C . 【答案】 C4.与函数y =-2x 3有相同图象的一个函数是( ) A .y =-x -2xB .y =x -2xC .y =-2x 3D .y =x2-2x【解析】 函数y =-2x 3的定义域为(-∞,0],故y =-2x 3=|x |-2x =-x -2x ,故选A .【答案】 A5.函数f (x )=2x -1+log 2x 的零点所在区间是( ) A.⎝ ⎛⎭⎪⎫18,14 B.⎝ ⎛⎭⎪⎫14,12 C .⎝ ⎛⎭⎪⎫12,1 D .(1,2)【解析】 ∵函数f (x )=2x -1+log 2x , ∴f ⎝ ⎛⎭⎪⎫12=-1,f (1)=1, ∴f ⎝ ⎛⎭⎪⎫12f (1)<0,故连续函数f (x )的零点所在区间是⎝ ⎛⎭⎪⎫12,1,故选C . 【答案】 C6.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是( )A.13 B .-13 C .3D .-3【解析】 设幂函数为y =x α,因为图象过点⎝ ⎛⎭⎪⎫-2,-18,所以有-18=(-2)α,解得α=-3,所以y =x -3,由f (x )=27,得x -3=27,即x =13. 【答案】 A7.函数f (x )=2x 21-x +lg (3x +1)的定义域为( )A.⎝ ⎛⎭⎪⎫-13,1B.⎝ ⎛⎭⎪⎫-13,13 C .⎝ ⎛⎭⎪⎫-13,+∞ D.⎝ ⎛⎭⎪⎫-∞,13 【解析】 要使函数有意义,只需⎩⎨⎧1-x >0,3x +1>0,解得-13<x <1,故函数f (x )=2x 21-x +lg(3x +1)的定义域为⎝ ⎛⎭⎪⎫-13,1.【答案】 A8.设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A .c <a <b B .b <a <c C .c <b <aD .a <b <c【解析】 因为y =x 0.5在(0,+∞)上是增函数,且0.5>0.3,所以0.50.5>0.30.5,即a >b ,c =log 0.30.2>log 0.30.3=1,而1=0.50>0.50.5.所以b <a <c .故选B . 【答案】 B9.若函数f (x )=(k -1)ax -a -x (a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )【解析】 由f (x )=(k -1)ax -a -x (a >0,且a ≠1)在R 上既是奇函数,又是减函数,所以k =2,0<a <1,再由对数的图象可知A 正确.【答案】 A10.已知函数f (x )=1+x 21-x 2,则有( )A .f (x )是奇函数,且f ⎝ ⎛⎭⎪⎫1x =-f (x )B .f (x )是奇函数,且f ⎝ ⎛⎭⎪⎫1x =f (x )C .f (x )是偶函数,且f ⎝ ⎛⎭⎪⎫1x =-f (x )D .f (x )是偶函数,且f ⎝ ⎛⎭⎪⎫1x =f (x )【解析】 ∵f (-x )=f (x ), ∴f (x )是偶函数,排除A ,B .又f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=1+x 2x 2-1=-f (x ),故选C .【答案】 C11.在y =2x ,y =log 2x ,y =x 2这三个函数中,当0<x 1<x 2<1时,使f ⎝⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2恒成立的函数的个数是( )A .0个B .1个C .2个D .3个【解析】 在0<x 1<x 2<1时, y =2x使f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2恒成立,y =log 2x 使f ⎝ ⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2恒成立,y =x 2使f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2恒成立.故选B .【答案】 B12.若f (x )是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则(x -1)f (x )<0的解是( ) A .(-3,0)∪(1,+∞) B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-3,0)∪(1,3)【解析】 ∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数,∴f (x )在(-∞,0)内也是增函数.又∵f (-3)=0,∴f (3)=0,∴当x ∈(-∞,-3)∪(0,3)时,f (x )<0;当x ∈(-3,0)∪(3,+∞)时,f (x )>0.∵(x -1)·f (x )<0,∴⎩⎨⎧ x -1<0,f (x )>0或⎩⎨⎧x -1>0,f (x )<0,解得-3<x <0或1<x <3,∴不等式的解集是(-3,0)∪(1,3),故选D.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.当a >0且a ≠1时,函数f (x )=ax -2-3必过定点________.【解析】 因为a 0=1,故f (2)=a 0-3=-2,所以函数f (x )=ax -2-3必过定点(2,-2).【答案】(2,-2)14.设A∪{-1,1}={-1,1},则满足条件的集合A共有________个.【解析】∵A∪{-1,1}={-1,1},∴A⊆{-1,1},满足条件的集合A为:∅,{-1},{1},{-1,1},共4个.【答案】 415.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+3x),则f(-1)=________.【解析】由题意知f(-1)=-f(1)=-1×(1+31)=-2.【答案】-216.下列命题:①偶函数的图象一定与y轴相交;②定义在R上的奇函数f(x)必满足f(0)=0;③f(x)=(2x+1)2-2(2x-1)既不是奇函数也不是偶函数;④A=R,B=R,f:x→y=1x+1,则f为A到B的映射;⑤f(x)=1x在(-∞,0)∪(0,+∞)上是减函数.其中真命题的序号是________.(把你认为正确的命题的序号都填上)【解析】①不正确,如y=lg|x|,其在原点处无定义,其图象不可能与y轴相交;②正确,∵f(-x)=-f(x),∴f(-0)=-f(0)=f(0),∴f(0)=0;③不正确,∵f(x)=(2x+1)2-2(2x-1)=4x2+3,且f(-x)=f(x),∴f(x)为偶函数;④不正确,当x=-1时,在B中没有元素与之对应;⑤不正确,只能说f(x)=1x在(-∞,0)及(0,+∞)上是减函数.【答案】②三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值:(1)1.5-13×⎝⎛⎭⎪⎫-760+80.25×42-;(2)12lg3249-43lg 8+lg 245+10lg 3.【解】 (1)原式=×=2.(2)原式=12(lg 25-lg 72)-+12lg (72×5)+10lg 3=52lg 2-lg 7-2lg 2+lg 7+12lg 5+3=12lg 2+12lg 5+3=12(lg 2+lg 5)+3=72.18.(本小题满分12分)已知集合A ={x |(a -1)x 2+3x -2=0},B ={x |x 2-3x +2=0}. (1)若A ≠∅,求实数a 的取值范围; (2)若A ∩B =A ,求实数a 的取值范围.【解】 (1)①当a =1时,A =⎩⎨⎧⎭⎬⎫23≠∅,合题意;②当a ≠1时,由Δ=9+8(a -1)≥0,得a ≥-18且a ≠1. 综上所述,a 的范围为a ≥-18. (2)由A ∩B =A ,得A ⊆B .①当A =∅时,a <-18,显然合题意;②当A ≠∅时,得到B 中方程的解1和2为A 的元素,即A ={1,2}, 把x =1代入A 中方程,得a =0. 综上所述,a的范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a <-18,或a =0. 19.(本小题满分12分)已知函数f (x )=1-2x . (1)若g (x )=f (x )-a 为奇函数,求a 的值;(2)试判断f (x )在(0,+∞)内的单调性,并用定义证明. 【解】 (1)由已知得g (x )=1-a -2x , ∵g (x )是奇函数,∴g (-x )=-g (x ),即1-a -2-x=-⎝ ⎛⎭⎪⎫1-a -2x ,解得a =1.(2)函数f (x )在(0,+∞)内是单调增函数. 证明如下:任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=1-2x 1-⎝ ⎛⎭⎪⎫1-2x 2=2(x 1-x 2)x 1x 2.∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0,从而2(x 1-x 2)x 1x 2<0,即f (x 1)<f (x 2).∴函数f (x )在(0,+∞)内是单调增函数.20.(本小题满分12分)已知函数f (x )=x 2-2mx +m 2+4m -2. (1)若函数f (x )在区间[0,1]上是单调递减函数,求实数m 的取值范围; (2)若函数f (x )在区间[0,1]上有最小值-3,求实数m 的值. 【解】 f (x )=(x -m )2+4m -2.(1)由f (x )在区间[0,1]上是单调递减函数得m ≥1.(2)当m ≤0时,f (x )min =f (0)=m 2+4m -2=-3,解得m =-2-3或m =-2+ 3. 当0<m <1时,f (x )min =f (m )=4m -2=-3, 解得m =-14(舍).当m ≥1时,f (x )min =f (1)=m 2+2m -1=-3,无解. 综上可知,实数m 的值是-2±3.21.(本小题满分12分)已知函数f (x )=log a (2x +1),g (x )=log a (1-2x )(a >0且a ≠1), (1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由; (3)确定x 为何值时,有f (x )-g (x )>0.【解】 (1)要使函数有意义,则有⎩⎨⎧2x +1>0,1-2x >0,解得-12<x <12.∴函数F (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <12. (2)F (x )=f (x )-g (x )=log a (2x +1)-log a (1-2x ),F (-x )=f (-x )-g (-x )=log a (-2x +1)-log a (1+2x )=-F (x ). ∴F (x )为奇函数. (3)∵f (x )-g (x )>0,∴log a (2x +1)-log a (1-2x )>0, 即log a (2x +1)>log a (1-2x ).①当0<a <1时,有0<2x +1<1-2x , ∴-12<x <0.②当a >1时,有2x +1>1-2x >0,∴0<x <12.综上所述,当0<a <1时,有x ∈⎝ ⎛⎭⎪⎫-12,0,使得f (x )-g (x )>0; 当a >1时,有x ∈⎝ ⎛⎭⎪⎫0,12,使得f (x )-g (x )>0. 21.(本小题满分12分)甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲,乙两图:甲 乙图1甲调查表明:每个鱼池平均产量直线上升,从第1年1万条鳗鱼上升到第6年2万条. 乙调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个. 请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;(2)到第6年这个县的鳗鱼养殖业的规模比第1年扩大了还是缩小了?说明理由;(3)哪一年的规模(即总产量)最大?说明理由.【解】 由题意可知,图甲图象经过(1,1)和(6,2)两点,从而求得其解析式为y 甲=0.2x +0.8,图乙图象经过(1,30)和(6,10)两点,从而求得其解析式为y 乙=-4x +34.(1)当x =2时,y 甲=0.2×2+0.8=1.2,y 乙=-4×2+34=26,y 甲×y 乙=1.2×26=31.2.所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万条.(2)第1年出产鳗鱼1×30=30(万条),第6年出产鳗鱼2×10=20(万条),可见第6年这个县的鳗鱼养殖业规划比第1年缩小了.(3)设第m 年的规模最大,总出产量为n ,那么n =y 甲y 乙=(0.2m +0.8)(-4m +34)=-0.8m 2+3.6m +27.2=-0.8(m 2-4.5m -34)=-0.8(m -2.25)2+31.25,因此,当m =2时,n 最大值为31.2.即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万条.。

高一数学第一单元测试卷

高一数学第一单元测试卷

高一数学第一单元测试卷一.选择题(每题4分,共40分)1.已知集合{}{}{}1,0,1,3,1,3,2,1,0,1,2-==--=B A U ,则()U C A B =( )A .{}0,1-B .{}1,1-C .{}1,0D .{}1,0,1-2.已知函数()()R b a bx ax x f ∈++=,33,若()52=f ,则()=-2f ( ) A .4B .3C .2D .13.已知函数()xbax x f +=2是定义在(][),31,b b -∞--+∞上的奇函数.若()32=f ,则ba +的值为( ) A .1B .2C .3D .44.函数3492-++-=x x x y 的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线0=-y x 对称5.函数()()()41222--=x x x x f 的图象可能是( )A .B .C .D .6.已知非空集合B A ,满足以下两个条件 (i ){}1,2,3,4,5,6,AB A B ϕ==; (ii )若A x ∈,则B x ∈+1.则有序集合对()B A ,的个数为( ) A .12B .13C .14D .157.函数()x x x f 122-+-=在区间(]4,0上的值域为( ) A .⎥⎦⎤⎢⎣⎡415,23 B .⎥⎦⎤⎝⎛∞-415,C .⎥⎦⎤⎢⎣⎡2,23D .(]2,∞-8.已知)(x f 是定义在R 上的奇函数,若()()()31,2=-=+f x f x f ,则()()20192018f f +的值为( ) A .3-B .0C .3D .69.已知定义域为R 的函数)(x f 满足()2+x f 是偶函数,且当()2,,21∞-∈x x 时,()()[]()01212>--x x x f x f 恒成立,如果212x x <<,且421>+x x ,则()()21x f x f -的值( ) A .恒小于0B .恒大于0C .可能为0D .可正可负10.设函数(){}3,2,3min 2+-=x x x x f ,其中{}z y x ,,m in 表示z y x ,,中的最小者,下列说法错误的是( )A .函数()x f 是偶函数B .若⎥⎦⎤⎢⎣⎡-∈22,22x 时,有()()x f x f ≥-2 C .若R x ∈时,有()[]()x f x f f 2≤ D .若[)+∞∈,1x 时,有()()x f x f ≤-2 二.填空题(每空3分,共18分)11.已知函数()()()⎩⎨⎧>≤+=02012x xx x x f ,则()[]=-2f f.12.函数()26x x x f -=的单调增区间为 . 13.已知函数()162ax ax x f +-=,若()x f 的定义域为R ,则实数a 的取值范围是 :若()x f 的值域为[)+∞,0,则实数a 的取值范围是 .14.已知是定义在区间()1,1-上的奇函数,当0<x 时,()()1-=x x x f ,已知m 满足不等式()()0112<-+-m f m f ,则实数m 的取值范围为 .15.已知函数()()0482≤++=a x ax x f ,对于给定负数a ,有一个最大正数()a l ,使在整个区间()[]a l ,0上,不等式()6≤x f 恒成立,则()a l 的最大值为.高一数学第一单元测试答卷纸一.选择题:(本大题共10小题,每小题4分,共40分。

高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案高一年级数学第一单元质量检测试题一、选择题(每小题5分,共50分)1.已知全集$U=\{1,2,3,4,5,6,7\}$,$A=\{2,4,5\}$,则$C\cup A=$()A.$\varnothing$B.$\{2,4,6\}$C.$\{1,3,6,7\}$D.$\{1,3,5,7\} $2.已知集合$A=\{x|-1\leq x<3\}$,$B=\{x|x^2<x\leq 5\}$,则$A\cap B=$()A.$\{x|2<x<3\}$B.$\{x|-1\leq x\leq 5\}$C.$\{x|-1<x<5\}$ D.$\{x|-1<x\leq 5\}$3.图中阴影部分表示的集合是()A.$A\cap C$B.$C\cup A\cap B$C.$C\cup (A\capB)$ D.$(C\cup A)\cap (C\cup B)$4.方程组$\begin{cases}x-2y=3\\2x+y=11\end{cases}$的解集是()A.$\{5,-1\}$B.$\{1,5\}$C.$\{(-1,2)\}$D.$\{(5,-1)\}$5.已知集合$A=\{x|x=3k,k\in Z\}$,$B=\{x|x=6k,k\in Z\}$,则$A$与$B$之间最适合的关系是()XXX6.下列集合中,表示方程组$\begin{cases}x+y=1\\x-y=3\end{cases}$的是()A.$\{(x,y)|x=2,y=-1\}$B.$\{(x,y)|x=2,y=1\}$C.$\{(x,y)|x=-2,y=-1\}$D.$\{(x,y)|x=-2,y=1\}$7.设$\begin{cases}x+y=1\\x-y=2\end{cases}$,$\begin{cases}x-y=1\\2x+y=3\end{cases}$,则实数的取值范围是()A.$\{1\}$B.$\{2\}$C.$\{1,2\}$D.$\varnothing$8.已知全集$U=\{x|x\in R\}$,$A=\{x|x^2-4x+3=0\}$,那么$A=$()A.$\{1,3\}$B.$\{1,-3\}$C.$\{2,3\}$D.$\{2,-1\}$9.已知集合$A=\{x|x^2-2x+1<0\}$,那么$A=$()A.$\{x|02\}$ D.$\{x|1<x<2\}$10.设$\oplus$是$R$上的一个运算,$A$是$R$上的非空子集,若对任意的$a,b\in A$,有$a\oplus b\in A$,则称$A$对运算$\oplus$封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是()A.自然数集B.整数集C.有理数集D.无理数集二、填空题(每小题5分,共25分)11.已知集合$A=\{a,b,c\}$,写出集合$A$的所有真子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学(上)单元测试题八
一:选择题:
1:方程x 2+y 2+ax+2ay+2a 2+a-1=0表示的曲线是圆,则a 的取值范围是()
A . R B.(-∞,-2) (32,+∞) C.(-32,2) D.(-2, 3
2 ) 2: 若圆的方程为(x+a )2+(y+1)2=2a (0<a<1),则坐标原点()
A .必在圆外 B. 必在圆上 C. 必在圆内 D. 以上均不对
3: 圆x 2+y 2=25截直线4x-3y=20所得弦的中垂线方程是()
A .y=43
x B. y=-43x C. y=-34x D. y=34
x
4:长方形OABC-D ’A ’B ’C ’中,E 是AB 中点,F 是B ’E 中点,OA=3,OC=4.OD ’=3,
则F 坐标为()
A .(3,2,23
) B. (3,3,23
) C. (3,23
,2) D. (3,0,3)
5:方程x 2+y 2+Dx+Ey+F=0 (D 2+E 2-4F>0)表示的曲线关于x+y=0成轴对称图形()
A .D+E=0 B. D+F=0 C. E+F=0 D. D+E+F=0
6:已知圆的直径的两端点是A(x 1,y 1),B(x 2,y 2),那么此圆的方程是()
A (x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0
B (x+x 1)(x+x 2)+(y-y 1)(y-y 2)=0
C (x-x 1)(x-x 2)-(y-y 1)(y-y 2)=0
D (x+x 1)(x+x 2)-(y+y 1)(y+y 2)=0
7: 从点P(x,3)向圆(x+2)2+(y+2)2=1作切线,切线长度最短为( )
A .4 B.26 C.5 D. 211
8: 点P 在直线2x+y+10=0上,PA,PB 与圆x 2+y 2=4分别相切于A,B 两点,则四边形PAOB 面积的最小值为(0为坐标原点)
( ) A .24 B.16 C.8 D. 4
9: 方程x(x 2+y 2-1)=0和x 2+(x 2+y 2-1)2=0,他们表示的图形是( )
A .都是两个点 B.都是一条直线和一个圆
C.前者表示两个点,后者表示一条直线和一个圆
D 前者表示一条直线和一个圆,后者是两个点
10.若圆(x-a )2+(y-b)2=b 2+1,始终平分圆(x+1)2+(y+1)2=4,则a,b 满足的关系是( )
A .a 2-2a-2b-3=0 B.a 2+2a+2b+5=0
C.a 2+2b 2+2a+2b+1=0
D.3a 2+2b 2+2a+2b+1=0
二填空题
11:过圆x 2+y 2-8x-2y+10=0内一点M(3,0)的最长弦所在直线方程是_______
12:圆心为(2,-3),一条直径的两端点分别在x 轴和y 轴上的圆的方程是_______
13:直线x-2y-3=0与圆(x-2)2+(y+3)2=9交于E,F 两点,则三角形EOF(O 是圆心)的面积等于__________
14:如果直线L 将圆x 2+y 2-2x-4y=0平分,且直线不通过第四象限,那么L 的斜率的取值范围是______________
三 解答题
15:设棱长为2的正方体OABC-D ’A ’B ’C ’中,A 是A ’B 上一点, 且B
A P A ''=x,E 是CC ’的中点 (1) 写出E,P 坐标
(2) 当x 变化时,求EP 长的最小值.
16.已知圆C 的圆心坐标是(-
2
1,3),且圆C 与直线x+2y-3=0相交于P,Q 两点,又OP ┴OQ,O 是坐标原点,求圆C 的方程.
17.从圆外一点P(1,1)向圆x2+y2=1引割线,交该圆于A,B两点,求弦AB的中点的轨迹方程.
18:机械加工后的产品是否合格,要经过测量检验某车间的质量检测员利用三个同样的量球以及两块不同的长方体形状的块规检测一个圆弧形零件的半径.已知量球的直径为2厘米,并测出三个不同高度和三个相应的水平距离(如图),求圆弧零件的半径.
参考答案
一 DABB AABC DB
二 11. x-y-3=0 12. 0
6422=+-+y x y x 13. 52 14. 20≤≤k 三 15 <1> 易知E(0,2,1), 过P 作P F ∥AA ' ,
则AF/AB=A 'P/A 'B=x
∴ AF=2x
同理 PF=2-2x
∴ P(2,2x,2-x)
<2> 2929)43(89128)122()22(2222222≥+-=+-=--+-+=x x x x x EP E P ≧2
23(当x=43时,取“=”) ∴EP 长的最小值为2
23 16 解:设圆C 的方程为022=++++F Ey Dx y x ,其圆心为(2,2E D --
),则 32
,212=--=-E D ∴ D =1,E=-6 ∴圆方程为0622=+-++F y x y x 设P ),(11y x ,Q ),(22y x 则P,Q 两点坐标适合方程组
x 2+y 2
+x-6y+F=0
x+2y-3=0
消去x 得,5y 2-20y+12+F=0 由韦达定理得:y 1+y 2=4,y 1y 2=
5
12F + ∴x 1x 2 =(-2y 1+3)(-2y 2+3)=4 y 1y 2-6(y 1+y 2)+9=5
274-F 因为OP ┴OQ 所以
2121x y y x =-1,即x 1x 2+y 1 y 2=0 ∴5274-F +5
12F +=0 ∴F=3 故所求圆的方程为03622=+-++y x y x
17:解:设AB 中点M ,连OM ,OP ,则OM ┴PB 。

由于M 点的运动满足<PMO=90
所以点M 的轨迹是以OP 为直径的圆在已知圆O 内部的一段圆弧(如图所示EOF ) OP 中点(
21,2
1)。

OP=2 所以点M 的轨迹方程为()1121)21()21(22<<-=-+-x y x。

相关文档
最新文档