初二分式方程与简单应用提高同步讲义

合集下载

第16讲 分式方程八年级数学下册同步讲义(北师大版)

第16讲  分式方程八年级数学下册同步讲义(北师大版)

第16讲分式方程目标导航2.通过将简单的分式方程转化为整式方程进行求解,领会分式方程“整体化”的化归思想和方法;3.理解增根的概念,会检验分式方程的根;4.会用分式方程解决相关问题,并进行简单的应用.知识精讲知识点01 分式方程的定义分式方程的定义:分母中含有未知数的方程叫做分式方程.判断一个方程是否为分式方程主要是看这个方程的分母中是否含有未知数.【知识拓展】(2021秋•平罗县期末)下列方程中,不是分式方程的是()A.B.C.D.【即学即练】(2021秋•西峰区期末)下列关于x的方程是分式方程的是()A.B.C.D.知识点02 分式方程的解求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.【知识拓展】(2022春•北碚区校级月考)若实数a使关于x的分式方程有正整数解,且使关于y的一元一次不等式组至少有4个整数解,则符合条件的所有整数a之和为()A.12B.15C.19D.22【即学即练】(2022春•沙坪坝区校级月考)若关于x的不等式组有且只有四个整数解,且关于y的分式方程的解为非负整数,则所有满足条件的整数a的值的和是()A.2B.0C.1D.﹣1知识点03 解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.【知识拓展】(2022•德城区校级开学)方程的解为()A.B.﹣4或1C.﹣4D.无解【即学即练1】((2022•江汉区模拟)方程的解为.【即学即练2】((2021秋•利通区校级期末)若分式值相等,则x的值为.知识点04换元法解分式方程1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.【知识拓展】(2021春•淮安月考)用换元法解分式方程x2+2x﹣=8,若设x2+2x=y,则原方程可化为()A.20y2+8y﹣1=0B.y2﹣8y﹣20=0C.y2+8y﹣20=0D.8y2﹣20y+1=0【即学即练】(2021春•宝山区校级月考)用换元法解方程时,设,则原方程可变形为()A.y2+y=4B.y2+y=2C.y2+y=6D.y2﹣y=4知识点05分式方程的增根(1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.【知识拓展】(2021秋•开福区校级期末)若关于x的分式方程有增根,则m的值是()A.m=2或m=6B.m=2C.m=6D.m=2或m=﹣6【即学即练】(2021秋•德江县期末)关于x的方程有增根,则m的值是()A.0B.2或3C.2D.3知识点06由实际问题抽象出分式方程由实际问题抽象出分式方程的关键是分析题意找出相等关系.(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.【知识拓展】(2022•罗山县校级模拟)郑州市新冠肺炎疫情防控指挥部发布开展全市全员新冠病毒核酸检测的通告,某小区有3000人需要进行核酸检测,由于组织有序,居民也积极配合,实际上每小时检测人数比原计划增加50人,结果提前2小时完成检测任务.假设原计划每小时检测x人,则依题意,可列方程为()A.B.C.D.【即学即练】(2021秋•和硕县校级期末)在新农村建设中,为了美化乡村,八年级同学积极参加植树造林,已知八(1)班每天比八(2)班每天多植5棵树,八(1)班植80棵树所用的天数与八(2)班植70棵树所用的天数相等,若设八(1)班每天植x棵,根据题意列出的方程是()A.B.C.D.知识点07分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.【知识拓展】(2022•麻栗坡县校级模拟)根据云南省《关于加快推进城镇老旧小区改造工作的指导意见》,在2021年底要基本完成云南全省城镇老旧小区改造提升工作.某小区计划对面积为1200m2的区域进行停车位改造,经投标由甲、乙两个工程队来完成.已知甲队每天能完成改造的面积是乙队每天能完成改造面积的2倍,如果两队各自独立完成面积为400m2区域的改造时,甲队比乙队少用4天.求甲、乙两工程队每天各能完成多少面积的停车位改造?【即学即练1】(2021秋•利通区校级期末)“阅读陪伴成长,书香润泽人生,”吴忠市第四中学为了开展学生阅读活动,计划从书店购进若干本A、B两类图书(每本A类图书的价格相同,每本B类图书的价格也相同),且每本A类图书的价格比每本B类图书的价格多5元,用1200元购进的A类图书与用900元购进的B类图书册数相同,求每本A类图书和每本B类图书的价格各为多少元?【即学即练2】(2021秋•绵阳期末)精强硅谷,有众多高科技产业,红旗电子科技公司是通讯设备、电源设备及消费类电子产品生产厂商,提供各类高分子材料、热传导材料、绝缘材料、缓冲及防尘材料.该公司今年承包了一手机品牌某一热传导材料零部件的生产任务,原计划在规定时间内生产24000个热传导材料零部件,由于此零件紧缺,需要提前5天供货,该公司经商议后,决定将工作效率比原计划提高25%,结果按预期刚好提前5天完成任务,求原计划每天生产的零件个数和规定的天数.能力拓展一.选择题(共3小题)1.(2021•大渡口区自主招生)如果关于x 的分式方程+=1有非负整数解,关于y 的不等式组有且只有三个整数解,则所有符合条件的整数m的个数为()A.0B.1C.2D.32.(2020•渝北区自主招生)若a为整数,关于x 的不等式组有且只有两个整数解,且关于y的分式方程﹣=1有整数解,则满足上述条件的整数a的和为()A.﹣1B.﹣3C.﹣5D.﹣63.(2020•武昌区校级自主招生)若关于x 的方程++=0只有一个实数根,则实数a的所有可能取值的和为()A.7B.15C.31D.以上选项均不对二.填空题(共4小题)4.(2021•黄州区校级自主招生)黄冈首届半程马拉松于5月6日在遗爱湖公园起跑,小林与小雨两名同学为参加比赛,在学校运动场400米环形跑道上进行训练,两人各自以恒定的速度沿逆时针方向跑步,已知每隔12分钟小林追上小雨一次,小林每圈花费的时间比小雨少10秒,则小林跑步的速度为每秒米.5.(2019•顺庆区校级自主招生)已知x满足﹣x2﹣2x=1,那么x2+2x=.6.(2020•巴南区自主招生)若关于x的分式方程﹣=4有正整数解,且关于y的不等式组有解,则所有符合条件的整数a的值的积是.7.(2019•达州自主招生)已知a2﹣6a+1=0且=2,则m=.三.解答题(共5小题)8.(2020•宝山区校级自主招生)解关于x的方程a(x﹣1)++3=0.9.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?10.(2020•浙江自主招生)已知关于x的方程﹣=恰好有一个实数解,求k的值及方程的解.11.(2020•渝中区校级自主招生)2020年2月,因新冠肺炎确诊病例不断增加,湖北某医疗救治中心计划购买一批无创呼吸机和双向呼吸机,两款共200台,预算分别为56万元和156万元.已知每台双向呼吸机的售价是每台无创呼吸机售价的2倍少1000元.(1)求该救治中心计划分别购进无创呼吸机和双向呼吸机各多少台?(2)为了表达对湖北疫区人民支持,呼吸机生产厂家立即对两款呼吸机均进行打折零利润销售,实际售价均在原售价的基础上下降了a%,根据救治中心一线医护人员的实际需求,双向呼吸机的实际购买量比原计划增加了a%,结果购买双向呼吸机比购买无创呼吸机多花费了90.4万元,求a的值.12.(2020•谷城县校级自主招生)若关于x的方程只有一个解(相等的解也算作一个),试求k的值与方程的解.分层提分题组A 基础过关练一.选择题(共5小题)1.(2021秋•樊城区期末)随着电影《你好,李焕英》热映,其同名小说的销量也急剧上升.某书店分别用400元和600元两次购进该小说,第二次数量比第一次多1倍,且第二次比第一次进价便宜4元,设书店第一次购进x套,根据题意,下列方程正确的是()A .B .C .D .2.(2021秋•河西区期末)方程的解为()A.1B.3C.4D.无解3.(2021秋•惠州期末)把分式方程=转化成整式方程时,方程两边同乘()A.x B.x﹣2C.x(x﹣2)D.3x(x﹣2)4.(2021秋•公安县期末)已知关于x 的方程的解为正数,则k的取值范围为()A.k>﹣2且k≠﹣1B.k>﹣2C.k>0且k≠1D.k<﹣25.(2021秋•德江县期末)关于x 的方程有增根,则m的值是()A.0B.2或3C.2D.3二.填空题(共5小题)6.(2021秋•孟村县期末)现有6000米的钢轨需要铺设,为确保通车时间,实际施工时每天铺设的长度是原计划的2倍,结果提前15天完成任务.设原计划每天铺设钢轨x米.(1)根据题意,可列分式方程为;(2)实际施工时每天铺设钢轨的长度为米.7.(2022•仁寿县模拟)已知关于x的方程=5的解不是正数,则m的取值范围为.8.(2021秋•宜城市期末)若关于x的分式方程无解,则m的值为.9.(2021秋•新田县期末)解关于x的分式方程=时不会产生增根,则m的取值范围是.10.(2021秋•曲阳县期末)A、B两地相距1350km,两辆汽车从A开往B地,大汽车比小汽车晚到30min,已知小汽车与大汽车的速度之比为5:3,求两车的速度,设大汽车的速度为3xkm/h,小汽车的速度为5xkm/h,所列方程是.三.解答题(共2小题)11.(2021秋•昌吉市校级期末)解方程:(1)=;(2)﹣=1.12.(2022•淮北模拟)解分式方程:+3=.题组B 能力提升练一.选择题(共5小题)1.(2022•开州区模拟)若关于x的一元一次不等式组的解集为x<﹣2,且关于y的分式方程的解为负整数,则所有满足条件的整数a的值之和是()A.﹣15B.﹣13C.﹣7D.﹣52.(2021秋•钢城区期末)若关于x的分式方程有正数解,则m的取值范围为()A.m<2B.m≠3C.﹣3<m<﹣2D.m<2且m≠﹣33.(2021秋•平舆县期末)若关于x的方程=a无解,则a的值为()A.1B.﹣1C.0D.±14.(2022•北碚区校级开学)若关于x的一元一次不等式组的解集恰好有3个负整数解,且关于y的分式方程=1有非负整数解,则符合条件的所有整数a的和为()A.6B.9C.﹣1D.25.(2021秋•晋安区期末)若关于x的分式方程=无解,则k的值为()A.1或4或﹣6B.1或﹣4或6C.﹣4或6D.4或﹣6二.填空题(共2小题)6.(2022•任城区一模)关于x的分式方程的解是正数,则a的取值范围是.7.(2021秋•绵阳期末)若关于x的方程的解为整数,则满足条件的所有整数a的和等于.三.解答题(共8小题)8.(2021秋•江源区期末)学习分式方程应用时,老师板书的问题和两名同学所列的方程如下:15.3分式方程甲乙两个工程队,甲队修路400米与乙队修路600米所用时间相等,乙队每天比甲队多修20米,求甲队每天修路的长度?聪聪:=明明:﹣=20根据以上信息,解答下列问题:(1)选择:聪聪同学所列方程中的x表示,明明同学所列方程中的y表示;A.甲队每天修路的长度;B.乙队每天修路的长度;C.甲队修路400米所用的时间.(2)你喜欢列的方程,该方程的等量关系为;(3)解(2)中你所选择的方程,并回答老师提出的问题.9.(2021秋•濮阳期末)为了做好防疫工作,保障员工安全健康,某公司用480元购进一批某种型号的口罩.由于质量较好,公司又用720元购进第二批同一型号的口罩,已知第二批口罩的数量是第一批的2倍,且每包便宜4元,问第一批口罩每包的价格是多少元?公司前后两批一共购进多少包口罩?10.(2021秋•密山市期末)(1)已知x(x﹣1)﹣(x2﹣y)=﹣6,求﹣xy的值.(2)虎林市政府倡导开展“共建绿色家园”,八年级甲、乙两个班的同学参加植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?(用方程解答)11.(2021秋•青县期末)为响应“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲种足球2个,乙种足球1个,购买足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?12.(2021秋•老河口市期末)某商家预测一种商品能畅销市场,就用4000元购进一批这种商品,这种商品面市后果然供不应求,商家又用8800元购进了第二批这种商品,所购数量是第一批购进数量的2倍,但单价贵了4元.该商家购进的两批商品的数量分别是多少件?13.(2021秋•渌口区期末)某商场在端午节来临之际用3000元购进A、B两种玩具110个,购买A玩具与购买B玩具的费用相同.已知A玩具的单价是B玩具单价的1.2倍.(1)求A、B两种玩具的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种玩具共260个,已知A、B两种玩具的进价不变.求A种玩具最多能购进多少个?14.(2021秋•普兰店区期末)一项工程需要限期完成,若用甲工程队单独做正好如期完成,若用乙工程队单独做,需要逾期3天才能完成(比期限多3天).现在甲、乙两工程队合做2天,余下由乙工程队单独做,刚好如期完成,求甲、乙两工程队单独完成工程各需要多少天?15.(2021秋•民权县期末)某商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少4元,其用200元购进甲种牛奶的数量与用220元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的2倍少4件,该商场甲种牛奶的销售价格为每件45元,乙种牛奶的销售价格为每件50元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于364元,请通过计算求出该商场购进甲、乙两种牛奶各多少件?题组C 培优拔尖练一.选择题(共1小题)1.(2021春•福田区校级期中)如果关于x的不等式组有且仅有四个整数解,且关于y 的分式方程﹣=1有非负数解,则符合条件的所有整数m的和是()A.13B.15C.20D.22二.填空题(共2小题)2.(2022春•渝中区校级月考)某校在“3.12”植树节来临之际,特从初一、初二、高一、高二四个年级中抽调若干学生去植树.已知初一、初二抽调的人数之比为5:3,高一、高二抽调的人数之比为4:3.上午,初一、高一年级平均每人植树的棵树相同且大于3棵小于10棵,高二年级平均每人植树的棵树为初一、初二平均每人植树的棵树之和的2倍,上午四个年级平均每人植树的棵树总和大于30棵小于40棵,上午四个年级一共植树714棵.下午,初二年级因为要回校参加活动不再参与植树活动,高一、高二年级平均每人植树的棵树都有所降低,高一年级平均每人植树的棵树降低50%,高二年级平均每人植树的棵树降为原来的.若初一年级人数及人均植树的棵树不变,高一高二年级人数不变,且四个年级平均每人植树的棵树为整数,则四个年级全天一共植树棵.3.(2020秋•滨州月考)若=+++++,则a的值是.三.解答题(共10小题)4.(2021秋•望城区期末)已知,关于x的分式方程=1.(1)当a=2,b=1时,求分式方程的解;(2)当a=1时,求b为何值时分式方程=1无解;(3)若a=3b,且a、b为正整数,当分式方程=1的解为整数时,求b的值.5.(2021秋•临河区期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发10分钟后,乙班的乙车才出发,为了比甲车早到5分钟,乙车的平均速度是甲车的平均速度的1.2倍,求乙车的平均速度.7.(2021春•射洪市月考)已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.8.(2021秋•宜城市期末)有一项工作需要在规定日期内完成,如果甲单独做,刚好如期完成;如果乙单独做,就要超过规定日期3天.现在由甲、乙两人合做2天,剩下的工作由乙单独做,刚好如期完成,问规定日期是几天?为了提升阅读速度,某中学开设了“高效阅读”课.小敏经过一段时间的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小敏原来每分钟阅读的字数.10.(2021秋•饶平县期末)在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了y天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?11.(2021秋•上思县期末)为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?12.(2020秋•庆云县校级期末)进入防汛期后,某地驻军在河堤加固的工程中出色完成任务,下面是记者与驻军工程指挥官的对话:记者:“你们是用9天时间完成4800米长的大坝加固任务的?”驻军指挥官:“我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.”通过上面的对话,请你求出该驻军原来每天加固河堤的米数.13.(2021春•南浔区期末)某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶).(1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?。

分式方程讲义

分式方程讲义

x2 4x 1 2 ) 2 其中,x=—3” . x2 x 4 x 4
小玲做题时把“x=—3”错抄成了“x=3” ,但她的计算结果也是正确的,请你解释这是怎么回事?
20. (8 分)今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。某校师生也活动起来捐款打井抗 旱,已知第一天捐款 4800 元,第二天捐款 6000 元,第二天捐款人数比第一天捐款人数多 50 人,且两天人 均捐款数相等,那么两天共参加捐款的人数是多少?
180 180 x 2 (1 ) , x 1.5 x 3 解这个方程为 x 182 ,经检验,x=182 是所列方程的根,即前前一小时的速度为 182.
由题意得: 22 、 解 : 设 该 市 去 年 居 民 用 气 的 价 格 为 x 元 / m ³ , 则 今 年 的 价 格 为 (1+25%)x 元 / m ³. „„„„„„„„„„„„„„„„„„1 分 96 90 10 . 根据题意,得 „„„„„„„„„4 分 x (1 25%) x 7
3
本节小结:
解分式方程的步骤(1).去分母(2).解整式方程(3).把整式方程的根代入最简公分母或原分式方
程.若结果为零,则是增根,舍去
解分式方程应用的步骤和注意事项
列分式方程解的一般步骤题为: ①设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数; ②列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺 各个量之间的关系; ③列出方程:根据题目中明显的或者隐含的相等关系列出方程; ④解方程并检验; ⑤写出答案.
18、 (1) x 1 为增根,此题无解; (2) x
2 19、解:原式计算的结果等于 x 4 , „„„„„„„„„„„„„6 分

第06讲分式方程(讲义)(原卷版)-2024年中考数学一轮复习讲义

第06讲分式方程(讲义)(原卷版)-2024年中考数学一轮复习讲义

第06讲 分式方程目 录一、考情分析 二、知识建构考点一 解分式方程题型01 判断分式方程 题型02 分式方程的一般解法 题型03 分式方程的特殊解法 类型一 分组通分法 类型二 分离分式法 类型三 列项相消法 类型四 消元法题型04 错看或错解分式方程问题 题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值题型07 根据分式方程有解或无解求参数题型08 已知分式方程有增根求参数 题型09 已知分式方程有整数解求参数考点二 分式方程的应用题型01 列分式方程题型02 利用分式方程解决实际问题 类型一 行程问题 类型二 工程问题 类型三 和差倍分问题 类型四 销售利润问题考点一解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.1.分式方程与整式方程的根本区别:分母中含有未知数,也是判断分式方程的依据.2. 去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项.3. 分式方程的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.4. 分式方程的增根是去分母后的整式方程的根,也是使分式方程的公分母为0的根,它不是原分式方程的根.5. 解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.6. 分式方程有增根与无解并非是同一个概念.分式方程无解,需分类讨论:可能是解为增根,也可能是去分母后的整式方程无解.题型01 判断分式方程题型02 分式方程的一般解法解分式方程方法:先通过方程两边同乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.题型03 分式方程的特殊解法类型一分组通分法方法简介:如果整个方程一起通分,计算量大又易出错,观察方程中分母的特点可联想分组通分求解.类型二分离分式法方法简介:每个分式的分母与分子相差1,利用这个特点可采用分类分式法求解类型三列项相消法方法简介:根据分式方程的结果特点,依据公式“1n(n+1)=1n−1n+1”化积为差,裂项相消,简化难度.类型四消元法方法简介:当方程中的分式互为倒数,或不同分式中的分母互为相反式,或方程中分子、分母的二次项与一次项分别相同时,可考虑用换元法.题型04 错看或错解分式方程问题+1,其中x=先化简,再求值:3−xx−4⋅(x−4)+(x−4)解:原式=3−xx−4=3−x+x−4=−1题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.题型07 根据分式方程有解或无解求参数已知分式方程的解确定字母参数,首先将分式方程化为整式方程,用含字母参数的代数式表x,再根据解的情况确定字母参数的取值. 同时要注意原分式方程的最简公分母不能为零.题型08 已知分式方程有增根求参数依据分式方程的增根确定字母参数的值的一般步骤:1)先将分式方程转化为整式方程;2)由题意求出增根;3)将增根代入所化得的整式方程,解之就可得到字母参数的值.题型09 已知分式方程有整数解求参数考点二分式方程的应用用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:题型01 列分式方程【例1】(2022·云南·中考真题)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该A.1.4−x=8 1.4+x=8 1.4−2x=8 1.4+2x=8题型02 利用分式方程解决实际问题类型一行程问题【例2】(2022·四川自贡·统考中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【变式2-1】(2023青岛市一模)小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍:(1)求小李步行的速度和骑自行车的速度分别为多少千米每小时;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?类型二工程问题【例3】(2023重庆市模拟预测)为方便群众出行,甲、乙两个工程队负责修建某段通往高铁站的快线,已知甲队每天修路的长度是乙队的1.5倍,如果两队各自修建快线600m,甲队比乙队少用4天.(1)求甲,乙两个工程队每天各修路多少米?(2)现计划再修建长度为3000m的快线,由甲、乙两个工程队来完成.若甲队每天所需费用为1万元,乙队每天所需费用为0.6万元,求在总费用不超过38万元的情况下,至少安排乙工程队施工多少天?【变式3-1】(2023·重庆渝中·重庆巴蜀中学校考一模)重庆市潼南区是中国西部绿色菜都,为全市人民提供了新鲜多样的蔬菜.今年,区政府着力打造一个新的蔬菜基地,计划修建灌溉水渠1920米,由甲、乙两,而乙施工队单独修建这个施工队合作完成.已知乙施工队每天修建的长度是甲施工队每天修建的长度的43项工程需要的天数比甲施工队单独修建这项工程需要的天数少4天.(1)求甲、乙两施工队每天各修建多少米?(2)若甲施工队每天的修建费用为13万元,乙施工队每天的修建费用为15万元,实际修建时先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好12天完成修建任务,求共需修建费用多少万元?类型三和差倍分问题【例4】(2022·广东深圳·深圳中学校考一模)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?【变式4-1】(2022·河南·统考中考真题)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需倍,用300元在市场上要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的54购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【变式4-2】(2021·山东济南·统考中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【变式4-3】(2022·山东烟台·统考中考真题)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?类型四销售利润问题【例5】(2023梁山县三模)某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【变式5-1】(2023银川市二模)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?。

精品 八年级数学上册 分式方程及应用题同步讲义+同步练习

精品 八年级数学上册 分式方程及应用题同步讲义+同步练习

分式方程及应用题知识点:1.分式方程定义:分母中含有未知数的方程叫做分式方程.2.解分式方程步骤:(1)去分母: 将 抓化为 (2) (3)3.増根:在方程变形时,产生不适合原方程的根,这种根叫做原方程的増根。

4.列方程解应用题的基本步骤:例1.解下列分式方程: (1)6272332+=++x x (2)2236111x x x +=+-- (3)163104245--+=--x x x x例2.已知关于x 的方程323-=--x mx x 的解为正数,求m 的取值范围。

例3.若关于x 的方程211333x x kx x x x ++-=--有增根,求增根和k 的值.例4.解方程:1211)10)(9(1...)1(1)1(1=++++++-x x x x x x例5.已知1=abc ,求证:1111=++++++++cac cbc b b ab a a .例6.李某承包了40亩菜地和15亩水田,根据市场信息,冬季瓜菜需求量大,他准备把水田改造为菜地,使改完后水田占菜地的10%,问应把多少水田改为菜地?例7.某人骑自行车比步行每小时快8千米,坐汽车比骑自行车每小时快16千米,此人从A 地出发,先步行4千米,然后乘坐汽车10千米就到在B 地,他又骑自行车从B 地返回A 地,结果往返所用的时间相等,求此人步行的速度.例8.今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱.某校师生也活动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?例9.周末某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一路程所用时间之比为2:3.(1)直接写出甲、乙两组行进速度之比.(2)当甲组到达山顶时,乙组行进到山腰A 处,且A 处离山顶的路程尚有1.2 km ,试求山脚到山顶的路程.例10.某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m3,5月份的燃气费是90元.求该市今年居民用气的价格.例11.某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.例12.北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?例13.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?课堂练习:1.解分式方程2236111x x x +=+--,分以下四步,其中,错误的一步是( )A.方程两边分式的最简公分母是(x-1)(x+1) C.解这个整式方程,得x=1B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6 D.原方程的解为x=12.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20%,结果于下午4时到达,求原计划行军的速度.设原计划行军的速度为xkm/h ,,则可列方程( )A.1%206060++=x xB.1%206060-+=x xC.1%2016060++=)(x xD.1%2016060-+=)(x x3.一件工程甲单独做a 小时完成,乙单独做b 小时完成,甲、乙二人合作完成此项工作需要的小时数是( ) A.a +b B.b a 11+ C.b a +1 D.b a ab+4.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ) A .8 B.7 C .6 D .55.已知122432+--=--+x Bx A x x x ,其中A 、B 为常数,则4A-B 的值为( ) A.7 B.9 C.13 D.5 6.若解分式方程21x x +-21m x x ++=1x x+产生增根,则m 的值是( ) A.-1或-2 B.-1或2 C.1或2 D.1或-27.若方程212x ax +=--的解是最小的正整数,则a 的值为_______8.若方程87178=----x x x 有增根,则增根是9.若关于x 的分式方程311x a x x --=-无解,则a =10.已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______ 11.轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时. 12.解分式方程: (1)1132422x x +=-- (2)21212339x x x -=+-- (3))2)(1(311+-=--x x x x13.若方程122-=-+x ax 的解是正数,求a 的取值范围。

中考数学复习考点知识与题型专题讲义4---用分式方程解决问题(提高篇

中考数学复习考点知识与题型专题讲义4---用分式方程解决问题(提高篇

中考数学复习考点知识与题型专题讲义 04 用分式方程解决问题(提高篇)1.从贵阳到广州,乘特快列车的行程约为1800km ,高铁开通后,高铁列车的行程约为900km ,运行时间比特快列车所用的时间减少了16h .若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.【分析】设特快列车平均速度为xkm /h ,则高铁列车平均速度为2.5xkm /h ,根据高铁列车运行900km 比特快列车运行1800km 的时间减少了16h ,列方程求解.【解答】解:设特快列车的平均速度为x km /h ,根据题意可列出方程为1800x =9002.5x +16,解得x =90.检验:当x =90时,2.5x ≠0.所以x =90是方程的解.答:特快列车的平均速度为90km /h .【点评】本题考查了分式方程的应用,解答本题的关键是读懂原题,设出未知数,找出合适的等量关系,列方程求解,注意检验.2.受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?【分析】(1)设该商场购进的第一批“84”消毒液单价为x 元/瓶,根据所购数量是第一批数量的2倍,但单价贵了1元,列出方程即可解决问题.(2)根据题意分别求出两次的利润即可解决问题.【解答】解:(1)设该商场购进的第一批“84”消毒液单价为x 元/瓶,依题意得:2×8000x=17600x+1. 解得,x =10.经检验,x =10是原方程的根.所以该商场购进的第一批消毒液的单价为10元/瓶;(2)共获利:(800010+1760010+1−200)×13+200×13×0.9﹣(8000+17600)=5340(元).在这两笔生意中商场共获得5340元.【点评】本题考查分式方程的应用,解题的关键是学会设未知数,寻找等量关系,注意解分式方程必须检验.3.母亲节前夕,某花店购进康乃馨和百合两种鲜花,销售过程中发现康乃馨比百合销量大,店主决定将百合每枝降价2元促销,降价后100元可购买百合的数量是原来可购买百合数量的54倍. (1)试问:降价后每枝百合的售价是多少元?(2)根掂销售情况,店主用不多于1000元的资金再次购进两种鲜花共180枝,康乃馨进价为6元/枝,百合的进价是5元/枝.试问至少需要购进多少枝百合?【分析】(1)可设降价后每枝百合的售价是x 元,根据等量关系:降价后100元可购买百合的数量是原来可购买百合数量的54倍,列出方程求解即可; (2)可设购进百合y 枝,根据不等量关系:购进康乃馨的钱数+购进百合的钱数≤1000元,列出不等式求解即可.【解答】解:(1)设降价后每枝百合的售价是x元,依题意有100 x =100x+2×54,解得:x=8.经检验,x=8是原方程的解.答:降价后每枝百合的售价是8元.(2)设购进百合y枝,依题意有6(180﹣y)+5y≤1000,解得:y≥80.答:至少购进百合80枝.【点评】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系和不等关系是解决问题的关键.4.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用2000元购进医用口罩若干个,第二次又用2000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个.(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个3元的价格出售,卖出了a个后购进第二批同款罩,由于进价提高了,药店将口罩的售价也提升至每个3.5元继续销售卖出了b个后,两次共收入4800元.因当地医院医疗物资紧缺,药店决定将剩余的口罩全部捐赠给医院.请问药店捐赠口罩至少有多少个?【分析】(1)设第一次购进医用口罩的数量为x个,根据题意给出的等量关系即可求出答案.(2)由(1)可知两次购进口罩共1800个,由题意可知:3a+3.5b=4800,所以a=1600−76b,根据条件可求出b 的最小值,从而可求出药店捐赠的口罩至少有多少个.【解答】解:(1)设第一次购进医用口罩的数量为x 个,∴第二次购进医用口罩的数量为(x ﹣200)个,∴由题意可知:2000x−200=1.25×2000x ,解得:x =1000,经检验,x =1000是原方程的解,且符合题意,∴x ﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:3a +3.5b =4800,∴a =1600−76b ,∴1800﹣a ﹣b =1800﹣(1600−76b )﹣b =200+b 6,∵a ≤1000,∴1600−76b ≤1000,∴b ≥51427, ∵a ,b 是整数,∴b 是6的倍数,∴b 的最小值是516,∴1800﹣a ﹣b ≥286,答:药店捐赠口罩至少有286个.【点评】本题考查分式方程,解题的关键是正确找出等量关系,本题属于中等题型.5.甲、乙两地相距360千米,一辆贩毒车从甲地往乙地接头取货,警方截取情报后,立即组织干警从甲地出发,前往乙地缉拿这伙犯罪分子,结果警车与贩毒车同时到达,将犯罪分子一网打尽.已知贩毒车比警车早出发1小时15分,警车与贩毒车的速度比为4:3,求贩毒车和警车的速度.【分析】设警车的速度为4xkm /h ,则贩毒车的速度为3xkm /h ,根据警车与贩毒车之间的时间关系建立方程求出其解,即可得出结果.【解答】解:设警车的速度为4xkm /h ,则贩毒车的速度为3xkm /h ,根据题意得:3603x −3604x =1.25,解得:x =24,经检验,x =24是原方程的根,∴原方程的根为x =24.∴警车的速度为:4×24=96(km /h ),贩毒车的速度为:3×=72(km /h ).答:警车的速度为96km /h ,贩毒车的速度为72km /h .【点评】本题是一道行程问题的运用题,考查了列分式方程解实际问题的运用、分式方程的解法;根据题意列出方程是解决问题的关键,注意检验.6.某图书馆计划选购甲、乙两种图书,已知甲图书每本价格是乙图书每本价格的2倍,用1200元单独购买甲图书比用1200元单独购买乙图书要少25本.(1)甲、乙两种图书每本价格分别是多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍少5本,且用于购买甲、乙两种图书的总经费不超过1800元,那么该图书馆最多可以购买多少本乙图书?【分析】(1)利用用1200元单独购买甲图书比用1200元单独购买乙图书要少25本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x 元,则甲图书每本价格是2x 元,根据题意可得:1200x −12002x =25,解得:x =24,经检验得:x =24是原方程的根,则2x =48,答:乙图书每本价格为24元,则甲图书每本价格是48元;(2)设购买甲图书本数为a 本,则购买乙图书的本数为:2a ﹣5,故48a +24(2a ﹣5)≤1800,解得:a ≤20,故2a ﹣5≤35,答:该图书馆最多可以购买35本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.7.某工厂准备今年春季开工前美化厂区,计划对面积为2000m 2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为480m 2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2)若工厂每天需付给甲队的绿化费用为0.4万元,乙队为0.5万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?【分析】(1)设乙工程队每天能完成绿化的面积为xm 2,则甲工程队每天能完成绿化的面积为2xm 2,根据“在独立完成面积为480m 2区域的绿化时,甲队比乙队少用6天”,即可得出关于x 的分式方程,解之并检验后,即可得出结论;(2)设安排甲工程队工作y 天,则乙工程队工作2000−80y 40=(50﹣2y )天,根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,即可得出关于y 的一元一次不等式,解之即可得出y 的取值范围,取其内的最小正整数即可.【解答】解:(1)设乙工程队每天能完成绿化的面积为xm 2,则甲工程队每天能完成绿化的面积为2xm 2,根据题意得:480x −4802x =6,解得:x =40.经检验,x =40是原方程的解,∴2x =80.答:甲工程队每天能完成绿化的面积为80m 2,乙工程队每天能完成绿化的面积为40m 2.(2)设安排甲工程队工作y 天,则乙工程队工作2000−80y 40=(50﹣2y )天,根据题意得:0.4y +0.5(50﹣2y )≤10,解得:y ≥25.答:至少应安排甲队工作25天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出关于x 的分式方程;(2)根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,列出关于y 的一元一次不等式.8.某企业在甲地一工厂(简称甲厂)生产某产品,2017年的年产量过百万,2018年甲厂经过技术改造,日均生产的该产品数是该厂2017年的2倍还多2件.(1)若甲厂2018年生产200件该产品所需的时间与2017年生产98件该产品所需的时间相同,则2017年甲厂日均生产该产品多少件?(2)由于该产品深受顾客喜欢,2019年该企业在乙地建立新厂(简称乙厂)生产该产品,乙厂的日均生产的该产品数是甲厂2017年的3倍还要多5件,同年该企业要求甲、乙两厂分别生产m ,n 件产品(甲厂的日均产量与2018年相同),m :n =12:17,若甲、乙两厂同时开始生产,谁先完成任务?请说明理由.【分析】(1)设2017年甲厂日均生产该产品x 件,根据题意列出方程即可求出答案.(2)设甲厂完成m 件产品需要的时间为p ,乙厂完成n 件产品需要的时间为q ,由题意可知 m n =100p 152q ,求出p 与q 的比值即可求出答案.【解答】解:(1)设2017年甲厂日均生产该产品x 件,则改造后日均生产该产品(2x +2)件,∵2002x+2=98x ,解得:x =49,经检验,x =49是原分式方程的解,答:2017年甲厂日均生产该产品49件;(2)由题意可知:2019年乙厂日均生产是152件,2018年甲厂日均生产100件,设甲厂完成m 件产品需要的时间为p ,乙厂完成n 件产品需要的时间为q ,∴m n=100p 152q =1217, ∴p q =456425,故乙厂先完成.【点评】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.9.为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织总共需要购买2000件物资,请问该爱心组织如何购买这2000件物资,才能使得购买资金最少?【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同列出方程,求解即可;(2)设甲种物品件数为m件,根据“灾区对甲种物资的需求量不少于乙种物资的1.5倍”列出不等式.【解答】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,350x+10=300x,解得:x=60.经检验,x=60是原方程的解,x+10=60+10=70.答:甲每件70元,乙每件60元;(2)设甲种物品件数为m件,根据题意得:m≥1.5(2000﹣m).解得:m≥1200.故m最小值为1200,2000﹣m=800.此时:70×1200+60×800=132000(元).答:甲购入1200件,乙购入800件,最少需要132000元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.10.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)分别求出每个甲种配件、每个乙种配件的价格为多少万元?(2)现投入资金40万元,假设投入资金全部用完,根据维修需要预测,甲种配件要比乙种配件至少多25件,乙种配件最多可购买多少件?【分析】(1)设每个乙种配件的价格为x万元,则每个甲种配件的价格为(x﹣0.4)万元,根据数量=总价÷单价结合用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买甲种配件m件,购买乙种配件n件,根据总价=单价×购买数量,即可得出m=50﹣1.5n,再结合甲种配件要比乙种配件至少要多11件,即可得出关于n的一元一次不等式,解之结合m,n均为非负整数可得出n的最大值.【解答】解:(1)设每个乙种配件的价格为x万元,则每个甲种配件的价格为(x﹣0.4)万元,根据题意得:16x−0.4=24x,解得:x=1.2,经检验,x=1.2是原分式方程的解,∴x﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)设购买甲种配件m件,购买乙种配件n件,根据题意得:0.8m +1.2n =40,∴m =50﹣1.5n .∵m ﹣n ≥25,∴50﹣1.5n ﹣n ≥25,∴n ≤10,∵m ,n 均为非负整数,∴n 的最大值为10.答:乙种配件最多可购买10件.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.11.某单位为美化环境,计划对面积为1200平方米的区域进行绿化,现安排甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的1.5倍,并且在独立完成面积为360平方米区域的绿化时,甲队比乙队少用3天.(1)甲、乙两工程队每天能绿化的面积分别是多少平方米?(2)若该单位每天需付给甲队的绿化费用为700元,付给乙队的费用为500元,要使这次的绿化总费用不超过14500元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能完成绿化的面积是x 平方米,则甲工程队每天能完成绿化的面积是1.5x 平方米,根据工作时间=工作总量÷工作效率结合在独立完成面积为360平方米区域的绿化时甲队比乙队少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m 天,则需安排乙队工作1200−60m 40天,根据总费用=700×甲队工作时间+500×乙队工作时间结合这次的绿化总费用不超过14500元,即可得出关于m 的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设乙工程队每天能完成绿化的面积是x 平方米,则甲工程队每天能完成绿化的面积是1.5x 平方米,依题意,得:360x −3601.5x =3,解得:x =40,经检验,x =40是原方程的解,且符合题意,∴1.5x =60.答:甲工程队每天能完成绿化的面积是60平方米,乙工程队每天能完成绿化的面积是40平方米.(2)设安排甲队工作m 天,则需安排乙队工作1200−60m 40天,依题意,得:700m +500×1200−60m 40≤14500, 解得:m ≥10.所以m 最小值是10.答:至少应安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.12.列方程解应用题:港珠澳大桥是中国中央政府支持香港、澳门和珠三角地区城市快速发展的一项重大举措,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门,止于珠海洪湾,总长55千米,是粤港澳三地首次合作共建的超大型跨海交通工程.某天,甲乙两辆巴士均从香港口岸人工岛出发沿港珠澳大桥开往珠海洪湾,甲巴士平均每小时比乙巴士多行驶10千米,其行驶时间是乙巴士行驶时间的56.求乘坐甲巴士从香港口岸人工岛出发到珠海洪湾需要多长时间.【分析】设甲巴士从香港口岸人工岛出发到珠海洪湾的行驶时间需要x 小时,则乙巴士的行驶时间需要65x 小时,根据“甲巴士平均每小时比乙巴士多行驶10千米”列出方程并解答.【解答】解:设甲巴士从香港口岸人工岛出发到珠海洪湾的行驶时间需要x 小时, 则乙巴士的行驶时间需要65x 小时, 根据题意得:55x =5565x +10 解得:x =1112经检验,x =1112是原分式方程的解且符合题意 答:甲巴士从香港口岸人工岛出发到珠海洪湾需要1112小时.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.13.某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)按照(2)中两种汽车进价不变,如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 值应是多少?【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:90 m =100m+1,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同,此时,购买A款汽车6辆,B款汽车9辆对公司有利.【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.14.某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.(2)根据盈利=总售价﹣总进价,进而求出即可.【解答】解:(1)设第一批购进书包的单价为x 元.依题意,得2000x ×3=6300x+4,整理,得20(x +4)=21x ,解得x =80.检验:当 x =80时,x (x +4)≠0,∴x =80是原分式方程的解.答:第一批购进书包的单价为80元,(2)200080×(80−68)+630084×(84−70)=300+1050=1350答:商店共盈利1350元.【点评】此题主要考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系.15.“阅读陪伴成长,书香润泽人生.”某校为了开展学生阅读活动,计划从书店购进若干本A、B两类图书(每本A类图书的价格相同,每本B类图书的价格也相同),且每本A类图书的价格比每本B类图书的价格多5元,用1200元购进的A类图书与用900元购进的B类图书册数相同.(1)求每本A类图书和每本B类图书的价格各为多少元?(2)根据学校实际情况,需从书店一次性购买A、B两类图书共300册,购买时得知:一次性购买A、B两类图书超过100册时,A类图书九折优惠(B类图书按原价销售),若该校此次用于购买A、B两类图书的总费用不超过5100元,那么最多可以购买多少本A类图书?【分析】(1)设每本A类图书的价格是x元,则每本B类图书的价格是(x﹣5)元.依据“用1200元购进的A类图书与用900元购进的B类图书册数相同”列出方程并解答;(2)设该校A类图书y本,则根据题中的已知条件“该校此次用于购买A、B两类图书的总费用不超过5100元”列出不等式,并解答.【解答】解:(1)设每本A类图书的价格是x元,则每本B类图书的价格是(x﹣5)元,根据题意可得:1200 x =900x−5,解得:x=20,经检验x=20是方程的解,所以x﹣5=20﹣5=15,答:每本A类图书的价格是20元,每本B类图书的价格是15元;(2)设该校A类图书y本,则B类图书(300﹣y),根据题意可得:20×90%y+15×(300﹣y)≤5100,解得:y≤200,答:最多可以购买200本A类图书.【点评】本题考查了分式方程的应用、一元一次不等式的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.16.为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?【分析】(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工作所需天数是3x天,则甲队的工效为13x ,乙队的工效为1x,由已知得:甲队工作了30天,乙队工作了10天完成,列方程得:303x +10x=1,解出即可,要检验;(2)根据(1)中所求得出甲、乙合作需要的天数,进而求出总费用,即可得出答案.【解答】解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工作所需天数是3x天,依题意得:303x +10x=1,解得x=20,检验,当x=20时,3x≠0,所以原方程的解为x=20.所以3x=3×20=60(天).答:乙队单独完成这项工程需20天,则甲队单独完成这项工作所需天数是60天;(2)设甲、乙两队合作完成这项工程需要y天,则有y(120+160)=1,解得y=15.需要施工的费用:15×(15.6+18.4)=510(万元).∵510>500,∴工程预算的费用不够用,需要追加预算10万元.【点评】本题考查了分式方程的应用,属于工程问题,明确三个量:工作总量、工作效率、工作时间,一般情况下,根据已知设出工作时间,根据题意表示出工效,找等量关系列分式方程,本题表示等量关系的语言叙述为:“甲队先做20天,剩下的工程再由甲、乙两队合作10天完成”.17.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【分析】方案(1)、(3)不耽误工期,符合要求,求出费用即可判断,方案(2)显然不符合要求.【解答】解:设规定日期为x天.由题意得3 x +xx+6=1,3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.18.某校为美化校园,计划对某一区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【分析】设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出分式方程,解方程即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得400 x −4002x=4解得:x=50经检验:x=50是原方程的解所以甲工程队每天能完成绿化的面积是50×2=100(m2)。

北师大版八年级下册寒假衔接专题讲义第5章 分式及分式方程(共两份打包 pdf 无答案)

北师大版八年级下册寒假衔接专题讲义第5章 分式及分式方程(共两份打包 pdf 无答案)

第2讲:分式方程及应用一.分式方程1.分式方程的概念分式方程:分母中含有未知数的方程.2.分式方程的解法(1)能化简的先化简;(2)方程两边同乘以最简公分母,化成整式方程;(3)解整式方程;(4)验根.二.分式方程的实际应用步骤:审题—-设未知数—-列方程—-解方程—-检验—-解答检验时要从方程本身和实际问题两个方面进行检验三.增根问题1.增根:使分式方程的分母为零的未知数的值,是分式方程去分母后化成的整式方程的根.2.由增根求参数的值(1)将原方程化成整式方程;(2)确定增根;(3)将增根代入变形后的整式方程,求出参数的值.3.由分式方程根的情况,求参数的取值范围(1)将原方程化成整式方程;(2)把参数看成常数求解;(3)根据根的情况,确定参数的取值范围(注意要排除增根时参数的值).四.整数根问题利用参数取表示未知数,再针对不同形式的参数表示形式进行分离常量,对分式部分进行整除性讨论,再得到分式方程的整数解.题模一:解分式方程例1.1.1解分式方程12x x --+2=12x -,可知方程()A .解为x =2B .解为x =4C .解为x =3D .无解例1.1.2解方程1111210(1)(2)(2)(3)(9)(10)x x x x x x x +++⋯+=+++++++22x x +-22x x +-=2222x x x --6811792--+-+=--+-x x x x x x x x 题模二:分式方程的实际应用例1.2.1在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的13.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是1a,甲队的工作效率是乙队的m 倍(1≤m ≤2),若两队合作40天完成剩余的工程,请写出a 关于m 的函数关系式,并求出乙队的最大工作效率是原来的几倍?例1.2.2某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为25万元,今年销售额只有20万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,今年电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3000元,乙种电脑每台进价为2500元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共18台,有几种进货方案?(3)如果乙种电脑每台售价为3600元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?题模三:含参分式方程例1.3.1(1)若关于x 的方程11ax x +--1=0有增根,则a 的值为____.(2)a 为时,关于的方程223242ax x x x +=--+会产生增根?例1.3.2当a 为何值时,关于x 的分式方程()22111232a a x x x x +-=---+总无解.例1.3.3关于x 的分式方程()x kx x x x --+=-1316有解,求k 的取值范围.例1.3.4已知关于x 的分式方程111x kkx x +-=+-的解为负数,求k 的取值范围.例1.3.5若关于x 的分式方程1322a x -=-解为整数,请写出a 所有可能值.随练1.1分式方程23x+x-22-x =1的解为()A .1B .2C .13D .0随练1.2若分式22912x x x -+-=0,则x 的值是()A .3或-3B .-3C .3D .9随练1.3若方程61(1)(1)1mx x x -=+--有增根,则它的增根是()A .0B .1C .1-D .1或1-随练1.4若分式方程:2+12kxx --=12x -有增根,则k =____.随练1.5若关于x 的分式方程312a x =+-的解为整数,则a 所有值得和为()A .0B .2-C .4D .4-随练1.6解方程:2344342334x x x x+-+=++-随练1.7若关于x 的分式方程321a a x a ++=的解为非负整数,求整数a 的值.随练1.8当a 取何值时,解关于x 的方程()()21222121x x x axx x x x -++-=-+-+无增根?随练1.9要使分式方程21212x x ax x x x +-=+-+-的解是正数,求a 应满足的条件.随练1.10如果关于x 的方程42212-=-+x m x x 的解也是不等式组()⎪⎩⎪⎨⎧-≤-->83222-1x x x x 的一个解,求m 的取值范围.随练1.11某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?1(自编)解方程31512 1.5x x --=2(实外)(1)关于x 的分式方程311x ax x --=-无解,则a =.(2)分式方程225111mx x x -=+--会产生增根,则m =.3(实外)关于x 的方程的解211x mx +=-的解是整数,则m 的取值范围是.4(自编)24681357x x x x x x x x +++++=+++++,求x 的值.5(自编)233242433x x x x +++=+++,求x 的值.6(直升)关于x 的方程22x c x c +=+的两个根为x 1=c ,22x c =,则关于x 的方程,2211x a x a +=+--的解为.作业1解分式方程11x -=3(1)(2)x x -+的结果为()A .1B .-1C .-2D .无解作业2当a 为何值时,分式方程()()135225x x ax x x x +++=----出现增根x =2()A .a=5B .a=10C .a=-10D .a=-15作业3若关于x 的分式方程22132253a a x a a ++=++的解为整数,则a 的值为.作业4解分式方程225111mx x x +=+--会产生增根,则m =__________.作业5已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围是.作业6分式方程131212-=--+x x x m 无解,则m 的值为.作业7解方程22226124044444y y y y y y y y 2+--+=++-+-2222232253232253x x x x x x x x ++-+=--+-作业8化简:2222223256712x x x x x x ++++++++,并求当31x =该分式的值.作业9正偶数x使得方程111x x a+=-成立,求整数a的值.作业10在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为402m区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.。

精品 八年级下数学讲义+练习题-- 分式方程及应用

精品 八年级下数学讲义+练习题-- 分式方程及应用
B.解为 x 4
A.解为 x 2
C.解为 x 3
D.无解
3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此 项工作,且甲、乙两人工效相同,结果提前 3 天完成任务,则甲志愿者计划完成此项工作的 天数是( A.8 4.用换元法解分式方程 ) B.7 C.6 D.5
11.已知
x 1
2 3
2 x 3

4 , 则 x=________ 9
M 2 xy y 2 x y ,则 M= x2 y 2 x2 y 2 x y
12.(1)已知 x
x2 1 4 ,则 4 x x2 1 x

(2)若
1 x2 x 3, 则 4 __________。 x x x2 1 1 x x 3, 则 2 ________ x x 1
八年级下数学讲义
5.某服装厂准备加工 400 套运动装,在加工完 160 套后,采用了新技术,使得工作效率比原 计划提高了 20%,结果共用了 18 天完成任务,问计划每天加工服装多少套?在这个问题中, 设计划每天加工 x 套,则根据题意可得方程为
160 400 18 x (1 20%) x 160 400 160 (C) 18 x 20% x
(3)若
x xa 有增根,则 a 的值可能是 x 5 x 6 3 2 14.若方程 有负数根,则 k 的取值范围是_______ x3 xk
13.若方程 15.解分式方程:
5x 4 4x 10 1 x 2 3x 6
16.解方程:
课堂练习:
1.学完分式运算后,老师出了一道题“化简:
x3 2 x ” x 2 x2 4

(完整)分式与分式方程题型分类讲义

(完整)分式与分式方程题型分类讲义

分式方程及其应用一、基本概念1.分式方程:分母中含有 的方程叫分式方程。

2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程; (2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3。

用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 。

二、题型分类考点一:分式方程题型(一)分式方程去分母 1、解分式方程22311x x x时,去分母后变形为( )。

A .()()1322-=++x xB .()1322-=+-x xC .()()x x -=+-1322D .()()1322-=+-x x 2、下列方程是分式方程的是( )A .0322=--x xB .13-=x x C .x x =1 D .12=-πx题型(二)解分式方程用常规方法解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);();题型(三)分式方程的解 1。

已知方程261=311xax a x -=+-的解与方程的解相同,则a 等于( ) A .3 B .-3 C. 2 D .-22。

方程13462232622+++++++x x x x x x -5=0的解是( )A 。

无解 B. 0 , 3 C 。

—3 D 。

0, ±33。

如果)2)(1(3221+-+=++-x x x x B x A 那么A-B 的值是( ) A .34 B 。

35C. 41 D 。

分式及分式方程复习讲义

分式及分式方程复习讲义

分式及分式方程教学目标:1.掌握分式概念、性质及运算.2.掌握分式方程的概念、解法、及增根问题.一、知识回顾知识点1:分式及分式概念分式:分母还字母的代数式:易辨错的分式有:0x ,2x x ,11x+等.分式方程:分母含字母的方程叫分式方程.知识点2:分式性质易错点1 约分,找公因式,同时约去分子分母的公因式.用的是分式的除法性质 易错点2 通分,找最简公分母,化异分母为同分母,用的是分式的乘法性质.知识点3:解分式方程1.思路:去分母,变分式方程为整式方程求解,记得验根.2.易淆点(1)把分子分母中的分数,小数变成整数时,是分子分母同时扩大多少倍,用的是分式的性质; (2)去分母,方程的每项同乘分母的最简公分母,用的是等式性质; 3.增根问题增根的概念:是整式方程的根,同时又使最简公分母为0的根叫增根,必须满足这两个条件. 常考题型:求含参数的增根问题. ◆课前热身1.下列式子中,哪些是分式?哪些是整式?①x 1,②3x ,③5342+b ,④352-a ,⑤22y x x -,⑥ 121222+-++x x x x , ⑦()b a c -÷,⑧x x 2,⑨2)1(--x 分式:____________________;整式___________________; 2. 当x ___________时,分式43x x --有意义;当x ____时,分式422--x x 无意义. 3. 若分式142+-x x 的值为0,那么____________.4. 填空(1)223(__)22x x x x =++; (2)2(____)()x y x y x y -=++; (3)2(____)a ab a bab --=5. 化简:232312a b ab -=__________;223(1)9(1)a b m ab m --=__________ ;(3)22211m m m -+-=_____________. 6. 计算:223286a y y a ⋅=_______;a a a a 21222+⋅-+=___________. 7. 1112+-+a a a =_____________;21422---a a a =______________. 8.下列关于x 的方程,是分式方程的是( )A .23356x x ++-=B .137x x a -=-+C .x a b xa b a b-=- D .2(1)11x x -=- 9. 若关于x 的分式方程311x a x x --=-有增根,则a =____________. 10.解下列分式方程:512552x x x+=--;分式部分 二、例题辨析例1 若分式24xx +的值为正数,则x 的取值范围是( ) A. x >0 B. x >-4 C. x ≠0 D. x >-4且x ≠0练习 (1)当x ________时,分式xx 61212-+的值为负数.例2 如果把分式xx y+中的x 和y 都扩大3倍,那么分式的值( ) A .不变 B .变大3倍 C .缩小3倍 D .无法确定练习 (1)把分式yx x +2中的x 和y 都扩大3倍,分式值____________.(2)不改变分式的值,把分子、分母的系数化为整数.①y x yx 41313221+- ②ba ba +-04.003.02.0例3 计算(1)3131+--x x练习:(1) a a --+242 (2) x x x ----13132例4 化简求值:若x =33,求233()22x x x x x-÷+--的值.练习 化简求值3,32),()2(222222-==--+÷+---b a b a a b a a b ab a a b a a 其中.三、归纳总结1.区别分数与分式:分数是一个具体的数,是整式.分式的分母一定含有字母,是分式,2.分数与分式在形式上相近,性质上也类似,所以由熟悉的分数来类比学习和理解分式的性质和运算.3.分式的运算中,分子分母能因式分解的要先分解因式.四、拓展延伸例5 1.如果分式111a b a b+=+,那么a b b a +的值为( ). A.1 B.-1 C.2 D.-22.已知:511=+y x ,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出y x 11+.练习 1.若实数a 、b 满足:2a bb a+=,则22224a ab b a ab b ++++的值为_________ . 例6 已知2310x x -+=,求441xx +的值.练习 若x +1x =3,求2421x x x ++的值.分式方程部分例7 解下列分式方程(1)x x 311=-; (2)0.2100.10.3x x-=-; (3)114112=---+x x x ; (4)x x x x -+=++4535提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.练习 解下列方程:(1)021211=-++-xxx x ; (2)0.4230.10.3x x x -=--;例8 若关于x 的分式方程3132--=-x mx 有增根,求m 的值.练习 1. 若分式方程()1516-+=-x x x x 有增根,则增根是( ) A. x =1 B. x =1和x =0 C. x =0 D. 无法确定2.若关于x 的方程21x x x +--13x =33x kx +-有增根,求增根和k 的值.3. m 为何值时,关于x 的方程234222+=-+-x x mx x 会产生增根?五、作业与思考(1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .。

八年级下分式方程及应用讲义

八年级下分式方程及应用讲义

八年级下数学复习——分式方程及应用知识点归纳1.分式方程:分母中含有 的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 .5.易错知识辨析:(1) 去分母时,不要漏乘没有分母的项.(2) 解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3) 如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.巩固练习:一、选择题1.下列关于x 的方程,是分式方程的是 ( )A .23356x x ++-=B .137x x a -=-+C .x a b x a b a b -=-D .2(1)11x x -=- 2.解方程12112-=-x x 会出现的增根是( ) A .1=x B.1-=x C. 1=x 或1-=x D.2=x3.(06泸州)如果分式12-x 与33+x 的值相等,则x 的值是( ) A .9 B .7 C .5 D .34.(06临沂)如果3:2:=y x ,则下列各式不成立的是( )A .35=+y y xB .31=-y x yC .312=y xD .4311=++y x 5.(08宜宾)若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.26、(2009年上海市)3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --= 7.下列说法中,错误的是 ( )A .分式方程的解等于0,就说明这个分式方程无解;B .解分式方程的基本思路是把分式方程转化为整式方程C .检验是解分式方程必不可少的步骤D .能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解8、(2009年孝感)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是 A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-29.某饭馆用320元钱到商场去购买“白猫”洗洁精,经过还价,每瓶便宜0.5元,结果比用原价买多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为 ( )A .320320200.5x x -=-B .320320200.5x x -=-C .3203200.520x x -=-D .3203200.520x x-=- 10、(2010广西南宁)将分式方程13)1(251+=++-x x x x 去分母整理后得: (A )018=+x (B )038=-x (C )0272=+-x x (D )0272=--x x11、(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为(A )18%)201(400160=++x x (B )18%)201(160400160=+-+xx (C )18%20160400160=-+x x (D )18%)201(160400400=+-+x x 12、(2010,深圳)某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。

初二分式方程的应用提高同步讲义

初二分式方程的应用提高同步讲义

初二分式方程的应用提高同步讲义第12讲分式方程的应用温故知新解分式方程的步骤如下:1.去分母,即在方程两边同时乘以最简公分母,把原方程化为整式方程。

2.解这个整式方程。

3.验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的根是原方程的根,否则便是增根,必须舍去。

解下列关于x的方程:1.$\frac{x+14}{2x-2}-\frac{2}{x+1}=1$2.$\frac{x-1}{x-1} \cdot \frac{x-5}{5-x}$课堂导入列方程解应用题的一般步骤如下:1.审题:弄清题意,明确哪些量是已知的,哪些量是未知的,要求的量是什么。

2.设未知数:一般设欲求的量为x,也可以设其他的量为x。

3.列方程:根据题目的实际意义找出等量关系,并把这个等量关系用已知数与未知数表示出来,这就是列方程。

4.解方程并求出未知数的值,分式方程一定要验根。

5.检验:检验解方程是否正确,以及所解出的根是否符合题意。

知识要点一行程问题:基本量及关系:路程 = 速度 ×时间速度 = 路程/时间时间 = 路程/速度典型问题:相遇问题中的相等关系:一个的行程 + 另一个的行程 = 两者之间的距离追及问题中的相等关系:追及者的行程 - 被追者的行程 = 相距的路程举例分析:1.甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍。

直达快车比普通快车晚出发2h,比普通快车早4h 到达乙地,求两车的平均速度。

解题步骤:根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等。

2.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍。

1) 求普通列车的行驶路程。

2) 若高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度。

八年级数学上册第十五章分式方程第2课时用分式方程解决实际问题上课pptx课件新版新人教版

八年级数学上册第十五章分式方程第2课时用分式方程解决实际问题上课pptx课件新版新人教版

【课本P154 练习 第1题】
【课本P154 练习 第2题】
4. 甲、乙二人做某种机械零件.已知甲每小时比乙多做6个, 甲做90个所用的时间与乙做60个所用的时间相等.求甲、乙 每小时各做零件多少个.
检验:当x = 200时,x(x+50)≠ 0, 所以,原分ቤተ መጻሕፍቲ ባይዱ方程的解为x = 200. 两天捐款人数为200+250=450(人), 人均捐款为4800÷200=24(元).
答:两天共参加捐款的人数为450人,人均 捐款24元.
6.在某一城市美化工程招标时,有甲、乙两个工程队投 标,经测算:甲队单独完成这项工程需要60天,若由甲 队先做20天,剩下的工程由甲、乙合作24天可完成. (1)乙队单独完成这项工程需要多少天? (2)甲队施工一天,需付工程款3.5万元,乙队施工一 天需付工程款2万元.若该工程计划在70天内完成,在不 超过计划天数的前提下,是由甲队或乙队单独完成工程 省钱?还是由甲乙两队全程合作完成该工程省钱?
(2)甲队单独做工程款:
60×3.5=210(万元).
乙队单独做需要90天,超过了70天.
甲乙合作工程款:
甲乙合作所需天数:1÷(
)= 36(天)
36×(3.5+2)=198(万元)
∴甲、乙合作完该工程最省钱.
课堂小结
用分式方程解决实际问题的步骤: 1 设未知数为x; 2 根据等量关系列出分式方程; 3 解分式方程; 4 检验.
推进新课
知识点1 用分式方程解决实际问题(一)
例3 两个工程队共同参与一项筑路工程, 甲队单独施工1个月完成总工程的三分之一,这 时增加了乙队,两队又共同工作了半个月,总工 程全部完成,哪个队的施工速度快?

人教版八年级数学上册第19讲 分式方程及应用 辅导讲义(无答案)

人教版八年级数学上册第19讲 分式方程及应用  辅导讲义(无答案)

第19讲 分式方程及应用知识要点梳理〔1〕分母中含有未知数的方程叫做分式方程〔2〕解分式方程的根本思想是转化思想:方程两边同乘最简公分母转化为整式方程〔3〕解分式方程要进展检验,检验的方法是将整式方程的解代入最简公分母中,假设结果不为零,那么整式方程的解就是原分式方程的解,否那么,是增根或原方程无解〔4〕列分式方程解应用题的步骤是:①审题〔找等量关系〕②设未知数③根据等量关系列出分式方程 ④解分式方程并二验⑤写出答案引例:就要毕业了,几位要好的同学准备中考后结伴到某地玩耍,预计共需费用1200元,后来又有2名同学参加进来,但总费用不变,于是每人可少分摊30元,试求原方案结伴玩耍的人数.典型例题:例1. 判断以下各式是不是分式方程〔1〕x x 21=- 〔2〕3252z y x -=+ 〔3〕5+x y =0 〔4〕11-x 〔5〕11=+x x 〔6〕52433=+x x 〔7〕21112=+-+x x 〔8〕772-=x x〔1〕233x x =- 〔2〕xx x --=+-34731 〔3〕 2111x x x x++=+ 〔4〕21212339x x x -=+-- 例3、假设方程kx x +=+233有负数根,那么k 的取值范围是__________. 例4、假设关于x 的方程211333x x k x x x x ++-=-- 有增根,求增根和k 的值. 例5、假如关于x 的方程42212-=-+x m x x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8)3(2221x x x x 的一个解,求m 的取值范围。

例6、〔行程问题〕A 、B 两地相距40km 倍的速度追赶,当追到B 地时,甲比乙先到20分钟,求甲、乙两人的速度.例7、〔工程问题〕甲、乙两人在一样时间内各加工168个零件和144个零件,每小时甲比乙多加工8个零件,求甲、乙两人每小时各加工多少个零件?例8、〔销售问题〕商店经销一种泰山旅游纪念品,4月份的营业额为2021元,为了扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元。

人教版八年级 上册15.3分式方程讲义

人教版八年级 上册15.3分式方程讲义

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯分式方程(一)分式方程题型题型一:用常规方法解分式方程【例1】解下列分式方程 (1)x x 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x45x 3x x 5++=++题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x题型三:求待定字母的值【例3】若关于x 的分式方程3132--=-x mx 有增根,求m 的值.【例4】若分式方程122-=-+x ax 的解是正数,求a 的取值范围.题型四:列分式方程解应用题 应用题的几种类型:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题。

【例1】甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.(2)工程问题 基本公式:工作量=工时×工效。

【例2】一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?【例3】某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做多少个零件?(3)顺水逆水问题 v 顺水=v 静水+v 水; v 逆水=v 静水-v 水。

【例4】已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?练习:1.解下列方程: (1)021211=-++-xxx x ; (2)3423-=--x x x ;(3)22322=--+x x x ; (4)171372222--+=--+x x x x xx2.如果解关于x 的方程222-=+-x xx k 会产生增根,求k 的值.3.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数.4.已知关于x 的分式方程a x a =++112无解,试求a 的值.(二)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。

初二-第11讲-分式方程与简单应用(提高)-教案

初二-第11讲-分式方程与简单应用(提高)-教案

第11讲 分式方程与简单应用温故知新一元一次方程的一般步骤解一元一次方程时,一般要通过去分母、 、 、 、未知数的系数化为1等步骤,把一个方程化为“x=a ”的形式。

具体做法如下:变形名称 变形根据具体做法注意事项去分母等式的基本性质2 在方程两边同乘各分母的最小公倍数 不要漏乘不含分母的项去括号 分配律、去括号法则先去小括号,再去中括号,最后去大括号不要漏乘项、注意符号 移项 等式的基本性质1 将含有未知数的项移到方程的一边,其他项移到另一边移项注意变号合并同类项 合并同类项法则 把方程化成ax=b (a ≠0)的形式系数相加,字母指数不变未知数系数化1 等式的基本性质2 在方程两边同除以未知数的系数a分子、分母位置不要颠倒课堂导入请同学们解一下这个方程:4233x -1+-=-x x知识要点一一.分式方程1.定义:分母中含有未知数的方程叫分式方程。

2.注意未知数和字母的区别:未知数是字母,但字母不一定是未知数。

例如,解关于x 的方程()0xb a a=≠,这里的x 是未知数,但字母a 不是未知数,它是系数,故该方程不是分式方程。

二.解分式方程的步骤:(1)去分母,即在方程两边同时乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母中,使最简公分母不等于0的根是原方程的根,否则,便是增根,必须舍去。

➢ 典例分析例1.判断下列关于x 、y 的方程中,是分式方程的有 。

(填正确的序号) ①32115x x x +-=-;②2221x x π+=+;③2a x xa h-=(a 、h 为常数)④112x y +=【解析】①④例2.下列关于x 的方程中,其中是分式方程的有 。

①52ax b +=;②()143243x x +++=;③1m n m x a a +-+=;④22121x x x +=-;⑤1212x x +=-;⑥2m n m n x m -++=;⑦11a b a x b x -=+;⑧2x n x mm n+--=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11讲 分式方程与简单应用
一元一次方程的一般步骤
解一元一次方程时,一般要通过去分母、 、 、 、未知数的系数化为1等步骤,把一个方程化为“x=a ”的形式。

具体做法如下:
请同学们解一下这个方程:
4
2
33x -1+-=-x x
知识要
点一
典例分析
例1.判断下列关于x 、y 的方程中,是分式方程的有 。

(填正确的序号) ①32115x x x +-=-;②2221x x π+=+;③2a x x a h -=(a 、h 为常数)④11
2x y
+=
例2.下列关于x 的方程中,其中是分式方程的有 。

①52ax b +=;②()143243x x +++=;③1m n m x a a +-+=;④22121x x x +=-;⑤12
12x x +=-;⑥2m n m n x m -++=;⑦11a b a x b x -=+;⑧2x n x m
m n
+--=。

例3.解下列关于x 方程 (1)22
055x x x x
-+=--; (2)
214111x x x +-=--。

举一反三
1.给出下列关于x 方程中,是分式方程的有 。

①1223x x +
=;②2152x x +=+;③215673x x ++=+;④34x =;⑤169107x x +=+; ⑥2236111
x x x +=+--。

2.在下列关于x 方程中,是分式方程的是( ) A. 123x x a -=- B. 32m n n x x ++=+ C. 23356x x ++=+ D. x a b x
a b a b
-=-
3.解下列关于x 的方程 (1)2301x -=+ (2)5113
x x =-+
(3)3233x x x =--- (4)2
236
111
x x x +=+--
学霸说
知识要
点二
典例分析
例1.当m 为何值时,解方程225111
m x x x -=+--会产生增根?
例2.m 为何值时,方程251422mx x x x x
+-=--无解。

例3.若关于x 的方程2661236
k
x x x =--+的解不大于13,求k 的取值范围。

举一反三
1.当m 为何值时,关于x 的方程223
22
4mx x x x +=-+-会产生增根?
2.若关于x 的分式方程2
2233
m x x -=--无解,求常数m 的值。
3.若关于x 的方程211
x a
x +=-的解不小于1-,求a 的取值范围。

初出茅庐
建议用时:10分钟
1.下列各方程是关于x 的分式方程的是( )
A. 0322
=-+x x B.
)0(522≠=-a a
x
x C.
351
2-=-x
x D. 02=++c bx ax 2.如果方程
()
2
31k x =-的解是5x =,则k = 。

3.方程
41
322
x x -=++的解是 。

4.满足方程12
12
x x =--的x 值是( ) A. 1 B. 2 C. 0 D. 没有 5.关于x 的方程
2236111
x x x +=+--,下列说法中不正确的是( ) A. 最简公分母是()()11x x +- B.方程两边同乘以()()11x x +-得整式方程()()21316x x -++= C. 解该分式方程对应的整式方程得1x = D. 原方程的解为1x = 6.若方程322
x m
x x -=--有增根,求m 的值。

优学学霸
建议用时:15分钟
1.若方程
3
22
x m
x x
-
=
--
无解,则m=______。

2. 如果关于x的方程
2
1
33
m
x x
=-
--
无解,则m的值为()
A. -3
B. -2
C. -1
D. 3
3. 解答题:
(1)若是正整数,关于的分式方程的解为非负数,求的值;
(2)若关于的分式方程总无解,求的值.
1.(2016•黑龙江四模)若分式方程
=
有增根,则增根为( )
A .x=﹣1
B .x=1
C .x=±1
D .x=0
2.(2016•梅州)对于实数a 、b ,定义一种新运算“⊗”为:a ⊗b=
,这里等式右边是实数运
算.例如:1⊗3=.则方程x ⊗(﹣2)=﹣1的解是( )
A .x=4
B .x=5
C .x=6
D .x=7
建议用时:30分钟
1.下列关于x 的方程中,是分式方程的是( )
A .3x=
B .=2
C .=
D .3x ﹣2y=1
2.若关于x 的方程有增根,则m 的值为( )
A .0
B .1
C .﹣1
D .2
3.在下列方程①x 2﹣x +;②﹣3=a +4;③+5x=6;④+=1中,是分式方程的有( )
A .1个
B .2个
C .3个
D .4个
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x ﹣1=0即可. 弧长公式中圆心角为弧度制弧长公式中圆心角为弧度制
4.下列方程中,不是分式方程的是()
A.B.
C.D.
5.(2016•邵阳)分式方程=的解是()
A.x=﹣1 B.x=1 C.x=2 D.x=3
6.(2016•潍坊)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣
7.(2016•柳州)分式方程的解为()
A.x=2 B.x=﹣2 C.x=﹣D.x=
8.(2016•重庆)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()
A.﹣3 B.﹣2 C.﹣D.
9.(2016•十堰)用换元法解方程﹣=3时,设=y,则原方程可化为()A.y﹣﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=0
10.(2016•雅安校级自主招生)已知﹣x2=2+x,则代数式2x2+2x的值是()
A.2 B.﹣6 C.2或﹣6 D.﹣2或6
11.(2016•盐田区二模)关于x的方程有增根,那么a=()
A.﹣2 B.0 C.1 D.3
12.(2017•莒县模拟)方程的解是()
A.x=1 B.x=﹣1 C.x=2 D.x=﹣2
13.在下列方程:①、②、③、④、⑤中,分式方程的个数有.
14.下列方程:(1)=2;(2)=;(3)+=1(a,b为已知数);(4)+=4.其中是分式方程的是.
15.解分式方程:+=1.
16. 若解分式方程时产生增根,则的值为多少?
17.关于的方程无解,则m的值为多少?
18. (2015春•深圳校级期末)已知关于x的方程+1=无解,求a的值.。

相关文档
最新文档