江苏省江阴市暨阳区2013届九年级上学期期末考试数学试题 新人教版

合集下载

2013九年级上册数学期末试题(附答案)

2013九年级上册数学期末试题(附答案)

2013九年级上册数学期末试题(附答案)一、选择题:(每小题3分,共30分。

在每小题给出的四个选项中,只有1项是符合题目要求的,请将正确答案的序号写在答题纸的表格中)1.二次根式x+1中,字母x的取值范围是A.x≥1B.x≥-1C.x≤1D.x可取一切实数2.下列四个方程中,一元二次方程是A.2x2-3x+4=2x2-3B.x(x+1)=5xC.x2=1D.3.已知:⊙O1与⊙O2的半径分别为3和4,O1O2=5,那么这两个圆的位置关系是A.相切B.相离C.相交D.内含4.如图,正三角形的内切圆半径为1,那么这个正三角形的边长为A.2B.3C.3D.235.某学校七年级1班统计了全班同学在1~8月份的课外阅读数量(单位:本),绘制了左边的折线统计图,下列说法正确的是A.极差是47B.众数是42C.中位数是58D.极差大于众数6.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③角的平分线上的点到角的两边的距离相等;④平行四边形的对角线互相平分.其中真命题的个数是()A.4个B.3个C.2个D.1个7.如右图所示,扇形OAB的圆心角为直角,正方形OCDE的顶点C、E、D分别在OA、OB、︵AB上,AF⊥ED,交ED的延长线于点F.如果正方形的边长为2,则图中阴影部分的面积是A.4(2-1)平方单位B.2(2-1)平方单位C.4(2+1)平方单位D.2(2+1)平方单位8.计算32×22+2×5的结果估计在A.4至5之间B.5至6之间C.6至7之间D.7至8之间二、填空题(每题3分,计30分)9.(-2)2=;10.已知:x1、x2分别是一元二次方程x2-3x-4=0的两个根,则x1+x2=;11.已知最简二次根式2x+1与x+3是同类二次根式,则x=;12.计算:(π-3)2+(π-4)2=;13.如图所示,A、B、C、D是圆上的点,∠1=68°,∠A=40°.则∠D =.14.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连结OC,若OC=5,CD=8,则AE=15.如图是一个四边形的纸片ABCD.在没有任何度量工具的情况下,林老师请小明判断它是否为矩形纸片,小明随即用他所学的知识得出判断.请你说出他用的办法是;16.两台机床同时加工直径为50mm的同种规格零件,为了检查这两台机床加工零件的稳定性,各抽取5件进行检测,结果如下表(单位:mm):机床甲50.050.249.850.249.8机床乙50.250.050.150.049.8从表中的数据可以看出:稳定性较好的机床是;17.若关于x的方程x2-mx+3=0有实数根,则m的值可以为___________.(任意给出一个符合条件的值即可);18.林老师当作小明、小丽的面,将2个红球和1个黄球分别装进3个相同的纸盒内(每盒1个球).在小明、小丽闭上眼后,给每人一个纸盒.要求他们打开各自手中的纸盒(不得看到对方的盒子)后,判断对方纸盒中球的颜色.小明、小丽打开各自的纸盒后都迟疑了片刻,没有立即说出各自小球的颜色.你认为小明、小丽纸盒中小球的颜色分别是;三、解答题(计96分)19.解下列方程(每小题5分,计15分)(1)(x+4)2-3=0;(2)9x2=(x-1)2(3)(x+1)2=6x+6(用配方法解)20.(本题满分6分)先化简,后求值:x2y-4y3x2+4xy+4y2•(),其中21.(本题满分6分)在四边形ABCD中,AB=CD,E、F分别是AD、BC边上的中点,G、H分别是BD、AC的中点,四边形EGFH是怎样的四边形?请证明你的结论.22.(本题满分8分)一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:平均分方差极差甲组6.82.36乙组(1)请补充完成上面的成绩统计分析表;(2)请你评价一下两个小组在本次测试中表现.23.(本题满分7分)如图,已知AB是圆的一条弦.请用圆规和直尺将此图补充为既是轴对称、又是中心对称的图形.(不写作法,保留作图痕迹)24.(本题满分10分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底三年共建设了多少万平方米廉租房.25.(本题满分10分)已知关于x的方程x2+2(a-1)x+a2-7a-4=0.(1)若此方程有两个不相等的实数根,求a的范围;(2)在(1)的条件下,设方程的两根分别为x1、x2,试用含a的关系式表示x1、x2;(3)在(2)的条件下,方程的两个实数根x1、x2满足x1x2-3x1-3x2-2=0.求(1+4a2-4)•a+2a的值.26.(本题满分10分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.27.(本题满分12分)如图1,将边长为2的正方形纸片ABCD对折后展开,折痕为EF;再将点B翻折到EF上的点B′处,折痕为GC,如图2所示;最后沿B′D对折,使A点翻折到A′点的位置,折痕为HD,如图3所示.(1)试证明HA′平分∠GHD;(2)试求图3中原来正方形纸片上没有被遮挡(即阴影)部分的面积.28.(本题满分12分)知识链接在圆中,除了圆周角和圆心角以外,还有一些角也很重要,比如具有“顶点在圆周上,一边是圆的弦、另一边是圆的切线”特征的角,由于一边是圆的弦、另一边是圆的切线,故我们将这种角称之为弦切角.例如图1中的∠APQ就是弦切角.可以看出弦切角∠APQ的大小与︵PQ的长度有关,即与所夹弧的度数有关,连接经过P点的直径PD,连接DQ,不难证得∠APQ=∠PDQ.即弦切角的度数等于所夹弧的度数的一半,即等于所夹弧对的圆周角的度数.知识应用已知,如图2所示,A为⊙O外一点,过点A作⊙O的切线,切点为P;设Q为⊙O上任意一点,作射线AQ,交⊙O于点R.若AP=6,设AR=y,AQ=x,试用含x的关系式表示y.拓展延伸在图2中,作射线AO,交⊙O于B,过点P作PC⊥AO于点C,连接QC并延长交⊙O于点D,连接RD(如图3所示).试问RD与直线OA是否垂直?并说明理由.(2)38万平方米(4分)25.(1)(3分)(2)(3分)(3)解得a=4或-3,∵∴舍去∴原式=(4分)(不舍去-3扣1分)26.(1)连接OC,证明(略)(4分)(2)过点O作CF⊥AB于点F,则可证得四边形CODF是矩形(2分)设AD=x,可得:(5-x)2+(6-x)2=25解之得:x=2或9(舍去),求得AB=6(4分)。

2013年九年级上册数学期末考试题

2013年九年级上册数学期末考试题

2013年九年级上册数学期末考试题九年级期末考试数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分100分,考试时间90分钟。

第Ⅰ卷选择题一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.一元二次方程的解是A.B.C.D.2.顺次连结任意四边形各边中点所得到的四边形一定是A.平行四边形B.菱形C.矩形D.正方形3.若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是A.球B.圆柱C.圆锥D.棱锥4.在同一时刻,身高1.6m的小强,在太阳光线下影长是1.2m,旗杆的影长是15m,则旗杆高为A、22mB、20mC、18mD、16m5.下列说法不正确的是A.对角线互相垂直的矩形是正方形B.对角线相等的菱形是正方形C.有一个角是直角的平行四边形是正方形D.一组邻边相等的矩形是正方形6.直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是A.4.8B.5C.3D.107.若点(3,4)是反比例函数图像上一点,则此函数图像必经过点A.(3,-4)B.(2,-6)C.(4,-3)D.(2,6)8.二次三项式配方的结果是A.B.C.D.9.一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为A.30°B.45°C.60°D.75°10.函数的图象经过(1,-1),则函数的图象是11.如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E、F 分别是AM、MR的中点,则EF的长随着M点的运动A.变短B.变长C.不变D.无法确定12.如图,点A在双曲线上,且OA=4,过A作AC⊥轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为A.B.5C.D.第Ⅱ卷非选择题二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上.)13.如图,△ABC中,∠C=,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是。

江苏省江阴市2013届九年级数学上学期期末考试试题 新人教版

江苏省江阴市2013届九年级数学上学期期末考试试题 新人教版

CD E FA BOx y4 4 C .Ox y 4 4B .Oxy4 4A .Exy4 4 D .江阴初级中学2012-2013学年第一学期期末考试九年级数学试卷(满分130分,考试时间120分钟)一、选择题:(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确选项的序号填在对应的答题卷上.) 1.下列计算中,正确的是 (▲)A.145=-B.824⋅=C.a a =2D.236= 2.若关于x 的一元二次方程012=++ax ax 有两个相等的实数根,则a 等于 (▲)A .4B .—4C .0或4D .0或—43.在Rt △ABC 中,∠C =900,AC =4,AB =5,则sinB 的值是(▲) A.23B.35C.34D.454.A 、B 两地的实际距离是500m ,图上距离为5cm ,则图上距离与实际距离的比是(▲) A .1:100B .1:1000C .1:10000D .1:100000y =-12x 2+3x -5的形状、开口方向都相同,只有位置不同的抛物线是(▲) A .y =x 2+3x -5 B .y =-12x 2+2x C .y=12x 2+3x -5 D .y =—12x 6.数据为:2,2,3,4,5,5,5,6,则下列说法正确的是(▲)A .这组数据的众数是2B .这组数据的平均数是3C .这组数据的极差是4D .这组数据的中位数是57.如图,AB 是⊙O 的直径,弦CD ⊥AB 于P ,CD =34,OP =2,则AC 的长是(▲)A .24B .34C .26D .368.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB=4,点E 、F 分别是线段CD ,AB 上的动点,设AF=x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是(▲)CBO PAD二、填空题:(本大题共10小题,每小题3分,共30分.请把结果填在答题卷相应的横线上.)9.函数x y 25-=中,自变量x 的取值X 围是___▲___.10.若a 是方程0122=--x x 的解,则代数式2011422+-a a 的值为_▲. 11.在﹣1,,0,2)2(-,π,722中任取一个数,取到无理数的概率是▲.12. 如图,已知△ABC 中,D 是AC 边的二等分点,E 是BC 边的四等分点,F 是BD 边的二等分点,若S △ABC =16,则S △DEF =▲.13.如图,已知□ABCD 的对角线AC 、BD 交于点O ,DE ∥AC ,CE ∥BD ,要使四边形OCED 是矩形,则□ABCD 还必须添加的条件是 ▲(填一个即可). 14.半径分别为6cm 和8cm 的两圆相切,两圆的圆心距等于 ▲.15.如图,已知AB 是⊙O 的直径,∠CAB =42°,D 是圆上一个点(不与A 、B 、C 重合),则 ∠ADC = ▲.16.如图所示圆锥中,∠CAB =600,母线AB =8,则圆锥的侧面积是▲.17.探究:如图,在Rt △POQ 中OP =OQ =4,将一把三角尺的直角顶点放在PQ 中点M 处,以M 为旋转中心旋转三角尺,三角尺的两直角边与△POQ 的两直角边分别交于点A 、B ,连接AB ,则△AOB 周长的最小值是▲.18.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2013次运动后,动点P 的坐标是_ ▲ .y第18题第17题P O QMAB第13题 A B C. O第15题 第15题 第12题 FD AB E AO B第16题C三、解答题:(本大题共10小题,共76分.请在答题卡指定区域内........作答,解答时应写出必要的演算步骤、证明过程或文字说明) 19.(本题满分6分)计算或化简求值:(1)计算:20)21()12(60sin 2---+ (2)化简求值:12)113(--÷---x x x x ,其中x =2-.20.(本题满分6分)解方程:(1)0282=-+x x (用配方法) (2)0)1(2)1(2=-+-x x21.(本题满分6分)如图,在△ABC 中,∠B =∠C ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F .求证: (1)△BDE ≌△CDF ;(2)当△ABC 是直角三角形时,试判断四边形AEDF 的形状.22.(本题满分6分)一个不透明的布袋里装有红、黄、绿三种颜色的球(除颜色不同,其它均无任何区别),其中红球2个,黄球1个,从袋中任意摸出一个球是红球的概率是21.(1)求布袋中绿球的个数;(2)第一次从袋中任意摸出一个球,记下颜色后放回袋中,第二次再摸出一个球记下颜色,请用画树状图或列表的方法求两次都摸到红球的概率.23.(本题满分6分)九(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理, 月均用水量x (t) 频数(户) 频率 05x <≤ 6 510x <≤ 1015x <≤ 16 2 1520x <≤ 10 2025x <≤ 4 2530x <≤2请解答以下问题:AEBDF频数(户)月用水量(t)30252015105161284(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15t 的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计该小区月均用水量超过20t 的家庭大约有多少户?24.(本题满分6分)如图,已知△ABC 中,∠ABC =135°,过B 作AB 的垂线交AC 于点P ,若21 PA CP ,PB =2,求BC 的长.25.(本题满分8分)某饰品店老板去批发市场购买新款手链,第一次购手链共用100元,回来后该手链按定价2.8元销售,并很快售完.由于该手链深得“潮女”喜爱十分畅销,第二次去购手链时,每条的批发价已比第一次高元,共用去了150元,所购数量比第一次多10条.当这批手链售出54时,出现滞销,便以定价的5折售完剩余手链.(手链销售中不考虑其它因素)(1)求第一次该手链的批发价;(2)试问该老板第二次销售手链是赔钱了,还是赚钱了?用数据说明.26.(本题满分10分)如图,点O 是边长为8的正方形ABCD 边AD 上一个动点(4<OA <8),以O 为圆心、OA 长为半径的圆交边CD 于点M ,连接OM ,以CM 为边在正方形ABCD 内部作∠CMN=∠DOM ,直线MN 交边BC 于点N . (1)试说明:直线MN 是⊙O 的切线;(2)设DM =x ,求OA 的长(用含x 的代数式表示); (3)在点O 运动的过程中,设△CMN 的周长为p ,试用含x 的代数式表示p ,你有什么发现?27.(本题满分10分)如图,在Rt △ABC 中,∠A =90º,AB =6cm ,AC =8cm ,D 、E 分别是边AB 、AC 的中点,点P 从点D 出发沿DE 方向以1cm/s 的速度运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R 、交DE 于G ,当点Q 与点C 重合时,点P 停止运动.设点P 运动BCAPMD OA BN C时间为ts .(1)点D 到BC 的距离DH 的长是▲;(2)当四边形BQGD 是菱形时,t =▲,S △EGR =▲;(3)令QR =y ,求y 关于t 的函数关系式(不要求写出自变量的取值X 围);(4)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由.28.(本题满分12分)已知:如图,抛物线1c 经过A ,B ,C 三点,顶点为D ,且与x 轴的另一个交点为E .(1)求抛物线1c 的解析式并直接写出顶点D 的坐标;(2)△AOB 与△BDE 是否相似,若相似,请予以证明;若不相似,请说明理由; (3)设抛物线1c 的对称轴与x 轴交于点F ,另一条抛物线2c 经过点E (抛物线2c 与抛物线1c 不重合),且顶点为M (a ,b ),对称轴与x 轴相交于点G ,且以M 、G 、E 为顶点的三角形与以D 、E 、F 为顶点的三角形全等,求a ,b 的值(只需写出结果,不必写出解答过程).初三数学期末试卷参考答案 一、选择题:ABCDRPHQGO AB C (2,3)yx-1 D E 3二、填空题:≤2.5 10. 2013 11.12.3 13.略 或14cm 15. 48°或132°π 17.22+4 18. (2013,1) 三、解答题:19.(1)3—3;(2)222-=--x 20.(1)2342,1±-=x ;(2)1,121-==x x21.(1)略;(2)正方形 22.(1)1个;(2)4123. 解:(1)略;(2)用水量不超过15吨是前三组,(0.12+0.24+0.32)×100﹪=68﹪; (3)1000×(0.04+0.08)=120(户) 24.BC=2325.解:(1)设第一次批发价为x 元/条,则第二次的批发价为(x+0.5)元/条依题意,得:(x+0.5)(10+x100)=150 2’ 解之得:x 1=2, x 2=2.5经检验,x 1=2,x 2=2.5都是原方程的根 4’ ’(2)老板第二次售手链赚了第二次共批发手链)(605.21505.0150条==+x第二次的利润为:(元))(2.11505.08.260518.26054=-⨯⨯⨯+⨯⨯ 7’ 故,老板第二次售手链赚了1.2元 8’ 26.解:(1)略 3’(2)设OA =y ,Rt△ODM 中,DM 2=OM 2- DO 2=OA 2-DO 2,即x 2=y 2-(8-y)2,解得OA =y =2416x +. 3’(3)易证△DOM ∽△CMN,相似比为24DO 816CM 816x x x -+==-, ∴p=CM 16(DO DM OM)(8)16OD 8x x++⋅=+=+.∴在点O 运动的过程中,△CMN 的周长p 为定值16.4’27.解:(1)DH=512;(2)t=1.2s ,S △EGR =2524. (3)△BDC 中BH=59,BQ=59+t ,QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QCAB BC∴=,108.1106t y --=∴,)2.8(53t y -=∴. (4)存在,分三种情况:令BQ=x①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=.此时t=59.②当PQ RQ =时,312655x -+=,6x ∴=.此时t=4.2.③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BA C CR CA==,366528x -+∴=,152x ∴=.此时t=5.7.综上所述,当t 为59或4.2或5.7时,PQR △为等腰三角形. 28.解:(1)由图象可知:c 1过A (-1,0),B (0,3),C (2,3)三点,解析式:232++-=x x y 顶点D (1,4) (2)相似,AO BO AB BD BE DE ===(3)11a 5b 4=⎧⎨=⎩,22a 5b 4=⎧⎨=-⎩,33a 7b 1=⎧⎨=-⎩,44a 7b 1=⎧⎨=⎩,55a 1b 4=⎧⎨=-⎩,66a 1b 1=-⎧⎨=-⎩,77a 1b 1=-⎧⎨=⎩.HQ A CD E R PHQG25∴AO BO AB BD BE DE 2===.∴△AOB∽△DBE. (4)11a 5b 4=⎧⎨=⎩,22a 5b 4=⎧⎨=-⎩,33a 7b 1=⎧⎨=-⎩,44a 7b 1=⎧⎨=⎩,55a 1b 4=⎧⎨=-⎩,66a 1b 1=-⎧⎨=-⎩,77a 1b 1=-⎧⎨=⎩.。

新人教版2013-2014学年九年级上期末数学试题【新人教版九年级上下册】

新人教版2013-2014学年九年级上期末数学试题【新人教版九年级上下册】

2013-2014学年上学期期末测试九年级数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷2页为选择题,共30分;第Ⅱ卷4页为非选择题,共70分;共100分.考试时间为120分钟.2. 答卷Ⅰ前,考生务必将密封线内的项目填写清楚,并将座号填写在第4页右侧.3. 第Ⅰ卷每小题选出答案后,填在试卷Ⅱ前的答案表格中.在答试卷Ⅱ时,用钢笔或圆珠笔直接答在试卷上.第Ⅰ卷(选择题,共30分)一、选择题:(本大题共10小题,在每小题给出的四个选项中,只有一个是正确的.请把正确的选项选出来.每小题选对得3分;选错、不选或选出的答案超过一个,均记零分.)1、已知A 、B 两地的实际距离AB=5千米,画在地图上的距离B A ''=2㎝,则这张地图的比例尺是( )A 、 2∶5 B、 1∶25000 C 、 25000∶1 D、 1∶2500002、把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线为( )A. 2(1)3y x =---B. 2(1)3y x =-+-C. 2(1)3y x =--+D. 2(1)3y x =-++ 3、下列命题中的真命题是( )A 、两个等腰三角形相似B 、有一个锐角是30 的两个等腰三角形相似C 、两个直角三角形相似D 、有一个内角是30 的两个直角三角形相似 4、抛物线()223y x =++的顶点坐标是( )A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 5、如图,在大小为4×4的正方形网格中,是相似三角形的是( )① ② ③ ④A.①和②B.②和③C.①和③D.②和④ (第7题) 6、二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( ) A .3<k B .03≠<k k 且 C .3≤k D .03≠≤k k 且 7、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形( )A 1对B 2对C 3对D 4对8、已知二次函数2(0)y ax bx c a =++≠的图象如图所示,当0y <时,x 的取值范围是( )A .13x -<<B .3x >C .1x <-D .3x >或1x <-9、如图3,为了测量一池塘的宽DE ,在岸边找一点C ,测得 CD=30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB=6m ,则池塘的宽DE 为( )A 、25mB 、30mC 、36mD 、40m10、二次函数2y ax bx c =++(0a ≠)的图象如图,下列4个结论:①0abc >; ②b a c <+; ③420a b c ++>; ④240b ac ->;其中正确的结论有( )A .1个B .2个C .3个D .4个第8题第9题 . . 第10题2012-2013学年上学期期末测试九年级数学试题第Ⅰ卷(选择题,共30分)第Ⅱ卷(非选择题,共70分)二、填空题:(本大题共5小题,共15分;只要求填写最后结果,每小题填对得3分.)11、抛物线2245y x x =--的对称轴是 ,顶点为 . 12、在△ABC 中,AB=8,AC=6,点D 在AC 上,且AD=2,若要在AB上找一点E ,使△ADE 与原三角形相似,那么AE= 。

度初三上学期数学期末试卷含答案

度初三上学期数学期末试卷含答案

2012-2013学年度初三上学期数学期末试卷(含答案)江阴市要塞中学2012-2013学年度第一学期初三数学期末试卷一、选择题(每题3分,共30分)1.下列计算正确的是(▲)A.B.C.-D.2.已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A.1B.-1C.0D.无法确定3.在体育达标测试中,某校初三5班第一小组六名同学一分钟跳绳成绩如下:93,138,98,152,138,183;则这组数据的极差是(▲)A.138B.183C.90D.934.如图,抛物线y=ax2+bx+c的对称轴是x=,下面四条信息:①c<0,②abc<0,③a-b+c>0,④2a-3b=0.你认为其中正确的有(▲)A.1个B.2个C.3个D.4个5.下列图形中,既是轴对称图形又是中心对称图形的是(▲)D.6.如图,折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处.已知AB=,∠B=30°,则DE的长是(▲)第6题图第7题图第9题图7.如图所示,扇形AOB的圆心角为120°,半径为2,则图中阴影部分的面积为(▲)A.B.C.D.8.下列四个命题:①垂直于弦的直径平分弦所对的两条弧;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④若两圆没有公共点,则两圆外离.其中真命题的个数有(▲)A.1个B.2个C.3个D.4个9.如图,在扇形纸片AOB中,OA=10,&ETH;AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为(▲)A.B.C.D.10.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P 是斜边AB上一动点(不与点A、B重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y关于x的函数关系的图象大致是(▲)二、填空题(每空2分,共20分)11.若代数式有意义,则的取值范围为▲.12.如果关于x的一元二次方程x2-6x+c=0没有实数根,那么c的取值范围是▲.13.一个射箭运动员连续射靶5次,所得环数分别是:8,6,10,7,9,则这个运动员所得环数的标准差为▲.14.若二次函数(m为常数)的图象经过原点,则m=▲.15.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是▲cm.16.一个正多边形的每一个外角都是36°,则这个正多边形的边数是▲.17.用一个半径为60cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为▲cm.18.如图,已知以直角梯形ABCD的腰CD为直径的半圆O 与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是▲.19.如图,四边形ABCD中,AD∥BC,BC=5,AD=3,对角线AC⊥BD,且∠DBC=30°,则AD与BC之间的距离等于▲.20.将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”,例如圆的直径就是它的“面径”.已知等边三角形的边长为2,则它的“面径”长m的范围是▲.三、解答题(共80分)21.计算:(每小题4分,共8分)(1)10×8÷52;(2)2sin60°-3tan30°+(13)0-(-1)2012.22.解方程(每小题4分,共8分)(1)x2+6=5x;(2)3(x-1)2=x(x-1).23.(本题9分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.(1)请你根据图中的数据填写下表:姓名平均数(环)众数(环)方差甲7乙62.8(2)从平均数和方差相结合看,分析谁的成绩好些.24.(本题9分)如图,Rt△ABC中,∠C=90°,D是AB 上一点,以BD为直径的⊙O切AC于点E,交BC于点F,OG⊥BC于G点.(1)求证:CE=OG;(2)若BC=3cm,sinB=,求线段AD的长.25.(本题9分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB 的坡度i=1:3,AB=10米,AE=15米,求这块宣传牌CD 的高度.26.(本题12分)某大学校园内一商店,销售一种进价为每件20元的台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设此商店每月获得利润为w(元),求w与x的函数关系式,并求出w的最大值.(2)如果此商店想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种台灯的销售单价不得高于32元,如果此商店想要每月获得的利润不低于2000元,那么商店每月的成本最少需要多少元?27.(本题12分)如图,在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,请直接写出P点的坐标.28.(本题13分)如图,在△ABC中,AB=AC=10cm,BC=16cm,DE=4cm.线段DE(端点D从点B开始)沿BC边以1cm/s的速度向点C运动,当端点E到达点C时停止运动.过点E作EF∥AC交AB于点F,连接DF,设运动的时间为t秒(t≥0).(1)在运动过程中,△DEF能否为以DE为腰的等腰三角形?若能,请求出t的值;若不能,试说明理由.(2)以E为圆心,EF长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙E与边AC有1个公共点?(3)设M、N分别是DF、EF的中点,请直接写出在整个运动过程中,线段MN所扫过的图形的面积.初三数学答案一选择题(每题3分共30分)二填空题(每空2分共20分)11.a≥-2;12.C9;13.;14.2;15.3;16.10;17.25;18.14;19.;20.三解答题(8题共80分)21.(1)解:原式=4分(2)解:原式=04分22.(1)解:4分(2)解:4分23.(1)姓名平均数(环)众数(环)方差甲70.4乙6…………………6分(2)甲、乙两人射靶成绩的平均数来看:甲的成绩优于乙的,并且甲比乙的方差要小,说明甲的成绩较为稳定,所以甲的成绩比乙的成绩要好些.…………………9分24.(1)证明:连接OE,∵⊙O切AC于点E,∴OE⊥AC,即∠OEC=90°,…1分∵OG⊥BC,∴∠CGO=90°,∵Rt△ABC中,∠C=Rt∠,∴四边形OGCE是矩形,…2分∴CE=OG;…3分(2)AB=5cm,…5分AD=…9分25.解:过B作于F,于G,∵AB的坡度,∴,即,∴,∵AB=10,∴,∴.…………2分在Rt△BCF中,,∴……………………4分在Rt△ADE中,,∴,……………………7分∴,∴CD=……………………9分26.(1)=.………………3分∵=-10<0,∴当时,w可取得最大值.即当销售单价定为35元时,每月可获得最大利润2250元.……………………5分(2)依题意,得.解得,.即如果此商店想要每月获得2000元的利润,那么销售单价应定为30元或40元.…8分(3)∵,∴抛物线的开口向下.∴当30≤≤40时,≥2000.∵≤32,∴30≤≤32.……………………9分设成本为(元),依题意,得.∵,∴随的增大而减小.∴当时,.答:此商店想要每月获得的利润不低于2000元,每月的成本最少需要3600元.……12分27、解:(1)由题意得A(0,2)、B(2,2)、C(3,0).设经过A,B,C三点的抛物线的解析式为y=ax2+bx+2.则解得∴.……………4分(2)由=.∴顶点坐标为G(1,).过G作GH⊥AB,垂足为H.则AH=BH=1,GH=-2=.∵EA⊥AB,GH⊥AB,∴EA∥GH.∴GH是△BEA的中位线.∴EA=3GH=.过B作BM⊥OC,垂足为M.则MB=OA=AB.∵∠EBF=∠ABM=90°,∴∠EBA=∠FBM=90°-∠ABF.∴Rt△EBA≌Rt△FBM.∴FM=EA=.∵CM=OC-OM=3-2=1,∴CF=FM+CM =.……………10分(3)要使四边形BCPQ的周长最小,可将点C向上平移一个单位,再做关于对称轴对称的对称点C1,得点C1的坐标为(-1,1).可求出直线BC1的解析式为.直线与对称轴x=1的交点即为点Q,坐标为(1,).点P的坐标为(1,).……………12分28、(1).1分分二种情况讨论:当时,∴,解得:………3分当时,有∴△DEF∽△ABC.∴,即,解得:.综上所述,当t=或秒时,△为等腰三角形.………………5分(2)⊙E与边AC相切时,t=……………7分EF=EA时,;EF=EC时,……………9分所以当<时,⊙E与边AC有1个公共点。

2013人教版九年级数学(上)期末试题(含答案)要

2013人教版九年级数学(上)期末试题(含答案)要

九年级数学上学期期末测试卷分值 150分 时间 120分钟一、选择题(本大题共10小题,每小题4分,共40分) 1、下列函数中,自变量x 的取值范围是x ≥2的是( )。

A.y=x--2 B.y=xx 2- C.y=24x- D.y=21--x2、化简xx 1-得( )。

A.x--B.x- C.x-D.x3、一元二次方程ax 2+bx+c=0中,若a >0,b <0,c <0,则这个方程根的情况是( )。

A.有两个正根 B.有两个负根C.有一正根一负根且正根绝对值大;D.有一正根一负根且负根绝对值大。

4.已知关于x 的方程260xkx --=的一个根为3x =,则实数k 的值为( )A .2B .1-C .1D .2-5.已知x 、y 是实数,3x +4 +y 2-6y +9=0,则xy 的值是( ) A .4 B .-4 C .94 D .-946、下列图形中,是中心对称图形的有( )。

A.4个B.3个C.2个D.1个7、两圆的圆心坐标分别为(3,0)、(0,4),它们的直径分别为4和6,则这两圆的位置关系是( )。

A.外离B.相交C.外切D.内切8.如图2,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A.2B.3C.4D.59. 六张形状、颜色、大小完全相同的纸片上分别写着二次ba2、一张纸片,上面写着最简二次根式的概率是A.16B.13C.23D.1210.如图1,把边长为3的正三角形绕着它的中心旋转180°后,则新图形与原图形重叠部分的面积为()A.2B.4C.D.8A.4个B.3个C.2个D.1个二、填空题(本题共4小题,每小题5分,满分20分)11.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到,每一次旋转_______度.12.若实数a、b满足11122+-+-=aaab,则a+b的值为________.13.若关于x方程kx2–6x+1=0有两个实数根,则k的取值范围是 .14.如图6,在Rt△ABC中,∠C=90°,CA=CB=2。

江阴市暨阳中学九年级上册期末精选试卷检测题

江阴市暨阳中学九年级上册期末精选试卷检测题

江阴市暨阳中学九年级上册期末精选试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从去年年底至今年3月20日,猪肉价格不断走高,3月20日比去年年底价格上涨了60%.某市民在今年3月20日购买2.5千克猪肉至少要花200元钱,那么去年年底猪肉的最低价格为每千克多少元?(2)3月20日,猪肉价格为每千克60元,3月21日,某市决定投入储备猪肉并规定其销售价在每千克60元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克60元的情况下,该天的两种猪肉总销量比3月20日增加了a%,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比3月20日提高了1%10a,求a的值.【答案】(1)去年年底猪肉的最低价格为每千克50元;(2)a的值为20.【解析】【分析】(1)设去年年底猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设3月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【详解】解:(1)设去年年底猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥200,解得:x≥50.答:去年年底猪肉的最低价格为每千克50元;(2)设3月20日的总销量为1;根据题意得:60(1﹣a%)×34(1+a%)+60×14(1+a%)=60(1+110a%),令a%=y,原方程化为:60(1﹣y)×34(1+y)+60×14(1+y)=60(1+110y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.【点睛】本题考查了一元一次不等式的应用、一元二次方程的应用;根据题意列出不等式和方程是解决问题的关键.2.如图,已知AB 是⊙O 的弦,半径OA=2,OA 和AB 的长度是关于x 的一元二次方程x 2﹣4x+a=0的两个实数根. (1)求弦AB 的长度; (2)计算S △AOB ;(3)⊙O 上一动点P 从A 点出发,沿逆时针方向运动一周,当S △POA =S △AOB 时,求P 点所经过的弧长(不考虑点P 与点B 重合的情形).【答案】(1)AB=2;(2)S △AOB 33)当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π. 【解析】试题分析:(1)OA 和AB 的长度是一元二次方程的根,所以利用一元二次方程的根与系数的关系即可求出AB 的长度;(2)作出△AOB 的高OC ,然后求出OC 的长度即可求出面积; (3)由题意知:两三角形有公共的底边,要面积相等,即高要相等. 试题解析:(1)由题意知:OA 和AB 的长度是x 2﹣4x+a=0的两个实数根, ∴OA+AB=﹣41-=4, ∵OA=2, ∴AB=2;(2)过点C 作OC⊥AB 于点C ,∵OA=AB=OB=2,∴△AOB 是等边三角形,∴AC=12AB=1, 在Rt△ACO 中,由勾股定理可得:3△AOB =12AB ﹒OC=1233; (3)延长AO 交⊙O 于点D ,由于△AOB 与△POA 有公共边OA , 当S △POA =S △AOB 时,∴△AOB 与△POA 高相等,由(2)可知:等边△AOB 3P 到直线OA 3,这样点共有3个 ①过点B 作BP 1∥OA 交⊙O 于点P 1,∴∠BOP 1=60°, ∴此时点P 经过的弧长为:1202180π⨯=43π, ②作点P 2,使得P 1与P 2关于直线OA 对称,∴∠P 2OD=60°, ∴此时点P 经过的弧长为:2402180π⨯=83π, ③作点P 3,使得B 与P 3关于直线OA 对称,∴∠P 3OP 2=60°,∴此时P 经过的弧长为:3002180π⨯ =103π, 综上所述:当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π.【点睛】本题主要考查了一元二次方程与圆的综合知识.涉及等边三角形性质,圆的对称性等知识,能综合运用所学知识,选择恰当的方法进行解题是关键.3.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%5a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30. 【解析】 【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可. 【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥, 解这个不等式,得56x ≤, 答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件, 根据题意,得()()()12260001%561%90001%701%6000569000701%2523a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=,解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =, 即a 的值是30. 【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.4.如图,在矩形ABCD 中,6AB = ,10BC = ,将矩形沿直线EF 折叠.使得点A 恰好落在BC 边上的点G 处,且点E 、F 分别在边AB 、AD 上(含端点),连接CF . (1)当32BG = 时,求AE 的长; (2)当AF 取得最小值时,求折痕EF 的长;(3)连接CF ,当△FCG 是以CG 为底的等腰三角形时,直接写出BG 的长.【答案】(1)92AE =;(2)62EF =3)185BG =. 【解析】 【分析】(1)根据折叠得出AE=EG ,据此设AE=EG=x ,则有BE=6-x ,由勾股定理求解可得; (2)由FG ⊥BC 时FG 的值最小,即此时AF 能取得最小值,显然四边形AEGF 是正方形,从而根据勾股定理可得答案;(3)由△CFG 是以FG 为一腰的等腰三角形,可知应分两种情况讨论:①FG=FC ;②FG=GC ;分别求解可得. 【详解】(1)由折叠易知,AE EG =,设AE EG x ==,则有6BE x =-, 由勾股定理,得()(222632x x =-+,解得92x =,即92AE = (2)由折叠易知,AF FG =,而当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值,当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值, 当FG BC ⊥时,点E 与点B 重合, 此时四边形AEGF 是正方形,∴折痕226662EF =+=.(3)由△CFG 是以FG 为一腰的等腰三角形,可知应分两种情况讨论: ①当FG=FC 时,如图2,过F 作FH ⊥CG 于H ,则有:AF=FG=FC ,CH=DF=GH 设AF=FG=FC=x ,则DF=10-x=CH=GH 在Rt △CFH 中 ∵CF 2=CH 2+FH 2 ∴x 2=62+(10-x )2 解得:x=345, ∴DF=CH=GH=10-165, 即BG=10-165×2=185, ②当FG=GC 时,则有:AF=FG=GC=x ,CH=DF=10-x ; ∴GH=x-(10-x )=2x-10,在Rt △FGH 中,由勾股定理易得:x 2=62+(2x-10)2, 化简得:3x 2-40x+136=0, ∵△=(-40)2-4×3×136=-32<0, ∴此方程没有实数根. 综上可知:BG=185. 【点睛】本题主要考查四边形的综合问题,解题的关键是掌握矩形和翻折变换的性质、正方形的判定与性质、勾股定理、一元二次方程根与系数的关系等知识点,也考查了分类讨论的数学思想.5.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值.【答案】0. 【解析】 【分析】由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-.Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k ≠1,则k =2,但使2216k k k -+-无意义.综上,代数式2216k k k -+-的值为0【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,二、初三数学 二次函数易错题压轴题(难)6.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;2(3)5412或4或5412【解析】 【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d 为()24542d BP sin t =⋅︒=-,则12PBESBE d =⨯⨯)()122244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值;(3)先求出2454222AM AB sin =⋅︒=⨯=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ 是平行四边形,得到22NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得22884NH NQ HQ =+=+=;设()2,65N m m m -+-,则(),0G m ,(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可.【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE的距离()4542d BP sin t =⋅︒=- 所以12PBESBE d =⨯⨯)()1244222t t t t =⨯⨯-=-; ∵二次函数()()42f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时, ∴()()()22422max f t f ==⨯⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得454AM AB sin =⋅︒== 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴22884,NH NQ HQ =+=+=设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得54152m -=<(舍)或5412m +=③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键7.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.(探究)(1)证明:OBC≌OED;(2)若AB=8,设BC为x,OB2为y,是否存在x使得y有最小值,若存在求出x的值并求出y的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16【解析】【分析】(1)连接EF,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS证明OBC≌OED即可;(2)连接EF、BE,再证明△OBE是直角三角形,然后再根据勾股定理得到y与x的函数关系式,最后根据二次函数的性质求最值即可.【详解】(1)证明:连接EF.∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BCD=∠ADE=∠DAF=90°由折叠得∠DEF=∠DAF,AD=DE∴∠DEF=90°又∵∠ADE=∠DAF=90°,∴四边形ADEF是矩形又∵AD=DE,∴四边形ADEF是正方形∴AD=EF=DE,∠FDE=45°∵AD=BC,∴BC=DE由折叠得∠BCO=∠DCO=45°∴∠BCO=∠DCO=∠FDE.∴OC=OD.在△OBC与△OED中,BC DEBCO FDEOC OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△OBC≌△OED(SAS);(2)连接EF、BE.∵四边形ABCD是矩形,∴CD=AB=8.由(1)知,BC=DE∵BC=x,∴DE=x∴CE=8-x由(1)知△OBC≌△OED∴OB=OE,∠OED=∠OBC.∵∠OED+∠OEC=180°,∴∠OBC+∠OEC=180°.在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE=90°.在Rt△OBE中,OB2+OE2=BE2.在Rt△BCE中,BC2+EC2=BE2.∴OB2+OE2=BC2+CE2.∵OB2=y,∴y+y=x2+(8-x)2.∴y=x2-8x+32∴当x=4时,y有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.8.在平面直角坐标系中,点(),p tq 与(),q tp ()0t ≠称为一对泛对称点. (1)若点()1,2,()3,a 是一对泛对称点,求a 的值;(2)若P ,Q 是第一象限的一对泛对称点,过点P 作PA x ⊥轴于点A ,过点Q 作QB y ⊥轴于点B ,线段PA ,QB 交于点C ,连接AB ,PQ ,判断直线AB 与PQ 的位置关系,并说明理由;(3)抛物线2y ax bx c =++()0a <交y 轴于点D ,过点D 作x 轴的平行线交此抛物线于点M (不与点D 重合),过点M 的直线y ax m =+与此抛物线交于另一点N .对于任意满足条件的实数b ,是否都存在M ,N 是一对泛对称点的情形?若是,请说明理由,并对所有的泛对称点(),M M M x y ,(),N N N x y 探究当M y >N y 时M x 的取值范围;若不是,请说明理由. 【答案】(1)23;(2)AB ∥PQ ,见解析;(3)对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M(x M ,y M ),N(x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0 【解析】 【分析】(1)利用泛对称点得定义求出t 的值,即可求出a.(2)设P ,Q 两点的坐标分别为P (p,tq ),Q (q,tp ),根据题干条件得到A (p,0),B (0,tp ),C (p,tp )的坐标,利用二元一次方程组证出k 1=k 2,所以AB ∥PQ.(3)由二次函数与x 轴交点的特征,得到D 点的坐标;然后利用二次函数与一元二次方程的关系,使用求根公式即可得到答案. 【详解】(1)解:因为点(1,2),(3,a )是一对泛对称点, 设3t =2 解得t =23所以a =t×1=23(2)解:设P ,Q 两点的坐标分别为P (p,tq ),Q (q,tp ),其中0<p <q ,t >0. 因为PA ⊥x 轴于点A ,QB ⊥y 轴于点B ,线段PA ,QB 交于点C ,所以点A ,B ,C 的坐标分别为:A (p,0),B (0,tp ),C (p,tp ) 设直线AB ,PQ 的解析式分别为:y =k 1x +b 1,y =k 2x +b 2,其中k 1k 2≠0. 分别将点A (p,0),B (0,tp )代入y =k 1x +b 1,得111pk b tp b tp +=⎧⎨=⎩. 解得11k tb tp=-⎧⎨=⎩ 分别将点P (p,tq ),Q (q,tp )代入y =k 2x +b 2,得2222pk b tp qk b tp +=⎧⎨+=⎩. 解得22k tb tp tp =-⎧⎨=+⎩ 所以k 1=k 2. 所以AB ∥PQ(3)解:因为抛物线y =ax 2+bx +c (a <0)交y 轴于点D , 所以点D 的坐标为(0,c ). 因为DM ∥x 轴,所以点M 的坐标为(x M ,c ),又因为点M 在抛物线y =ax 2+bx +c (a <0)上. 可得ax M 2+bx M +c =c ,即x M (ax M +b )=0. 解得x M =0或x M =-b a . 因为点M 不与点D 重合,即x M ≠0,也即b≠0, 所以点M 的坐标为(-ba,c ) 因为直线y =ax +m 经过点M ,将点M (-b a ,c )代入直线y =ax +m 可得,a·(-b a)+m =c. 化简得m =b +c所以直线解析式为:y =ax +b +c.因为抛物线y =ax 2+bx +c 与直线y =ax +b +c 交于另一点N , 由ax 2+bx +c =ax +b +c ,可得ax 2+(b -a )x -b =0. 因为△=(b -a )2+4ab =(a +b )2, 解得x 1=-ba,x 2=1. 即x M =-b a ,x N =1,且-ba≠1,也即a +b≠0.所以点N 的坐标为(1,a +b +c ) 要使M (-ba,c )与N (1,a +b +c )是一对泛对称点, 则需c =t ×1且a +b +c =t ×(-b a). 也即a +b +c =(-ba)·c 也即(a +b )·a =-(a +b )·c. 因为a +b≠0,所以当a =-c 时,M ,N 是一对泛对称点.因此对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形. 此时点M 的坐标为(-ba,-a ),点N 的坐标为(1,b ). 所以M ,N 两点都在函数y =bx(b≠0)的图象上. 因为a <0,所以当b >0时,点M ,N 都在第一象限,此时 y 随x 的增大而减小,所以当y M >y N 时,0<x M <1;当b <0时,点M 在第二象限,点N 在第四象限,满足y M >y N ,此时x M <0.综上,对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M (x M ,y M ),N (x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0. 【点睛】本题主要考察了新定义问题,读懂题意是是做题的关键;主要考察了二元一次方程组,二次函数、一元二次方程知识点的综合,把握题干信息,熟练运用知识点是解题的核心.9.如图1所示,抛物线223y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P 是第四象限内抛物线上的动点,四边形OPAQ 是平行四边形,设点P 的横坐标为m . (1)求抛物线的解析式;(2)求使△APC 的面积为整数的P 点的个数;(3)当点P 在抛物线上运动时,四边形OPAQ 可能是正方形吗?若可能,请求出点P 的坐标,若不可能,请说明理由;(4)在点Q 随点P 运动的过程中,当点Q 恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x =-+;(2)9个 ;(3)33,22或44,;(4)33【解析】 【分析】(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,即可求解; (2)APC ∆的面积PHAPHCSSS,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=,即可求解; (4)求出直线AP 的表达式为:2(1)(6)3y m x ,则直线OQ 的表达式为:2(1)3ym x ②,联立①②求出Q 的坐标,又四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,即可求解. 【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434b c, 故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方, 此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=, 即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433kt kmt m m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②,联立①②得:2(1)3243ym x yx ,解得:446mm y x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点, 如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =, 则有,66m m ,解得:33m,经检验,33m 是原分式方程得跟,则633m,故Q 的横坐标的值为33 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.10.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点. (1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 的坐标为(13,93132-+). 【解析】 【分析】(1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可. 【详解】解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2,即点C 坐标为(0,2),同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H , 由点A、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为: S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a , PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°, ∴∠FQ ′P =∠OCQ ′, ∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a aa Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′22223213CO OQ +=+=此时a 13P 139313-+). 【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.三、初三数学 旋转易错题压轴题(难)11.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.12.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.13.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)2m mm=32m,在Rt△EBH中,sin∠EBH=3+36226mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,14.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:(1)求证:EP2+GQ2=PQ2;(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【解析】【分析】(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】(1)过点E作EH∥FG,连接AH、FH,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.15.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .(1).如图,猜想ADE ∆是_______三角形;(直接写出结果)(2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论;(3).①当BD=___________时,30DEC ∠=;(直接写出结果)②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+【解析】【分析】(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答.【详解】解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,ADE ∴∆是等边三角形,故答案为等边三角形;。

2013年九年级上学期数学期末测试题及答案

2013年九年级上学期数学期末测试题及答案

2013——2014学年度上学期九年级数学期末测试题答案一.选择题1 2 3 4 5 6 7 8 9 10 11 12 BDBDDCDBBAAC二.填空题13.6414- 14.8315.π2 16.10 17.4或1 三.解答题18.(1)解:102-=x .(3分)原式=61048104104-+--+(5分)= 0(6分)19. 解:(1)88)1(4)1(422+-=---=∆k k k >0,(1分)k <1(2分) (2)若0是方程的一个根,则012=-k .(3分) 1±=k ,又由(1) k <1,所以1-=k .(5分)此时方程为042=-x x ,另一根是4.(6分) 20.证明:∵BE=DC.(1分) △AEC 都是等边三角形, ∴AE=AC ,∠EAC=60°,(2分) 同理,AB=AD ,∠BAD=60°.(3分)∴以点A 为旋转中心将△EAB 顺时针旋转60°就得到△CAD.(4分) ∴△EAB ≌△CAD.(5分)∴BE=DC.(6分) 21.(1)92;(3分) (2)31.(6分) 22.(1)解:根据题意,得200)2100)(30(=--x x .(3分)整理得01600802=+-x x , 解得4021==x x (元)(5分) ∴P=20(件).答:每件商品的售价应定为40元,每天要销售这种商品20件.(6分)23.解:(1)△AFB ∽△FEC.(1分)∵四边形ABCD 是矩形,∠ABC=∠ADC=∠ECF=90°.∴∠AFE=∠ADE=90°,∴∠EFC+∠AFB=90°, 又∵∠AFB+∠FAB=90°,∴∠FAB=∠EFC.(3分) ∴△AFB ∽△FEC.(4分)(2)设FC=x 4,∵43=FC EC ,∴EC=x 3,EF=x 5,DE=EF=x 5,AB= x 8.(5分) ∵△AFB ∽△FEC ,∴43==FC EC AB BF ,∴BF=x 6.(6分) AF=x 10. ∴2222)55(==+AE EF AF∴125)5()10(22=+x x .即12=x .∵x >0,∴x =1.(7分) ∴AB=8,BC=10,矩形ABCD 的周长为36.(8分)24.(1)如图,以抛物线对称轴为y 轴,AB 为x 轴建立直角坐标系,CD 交y 轴于N ,则A(62-,0),B (62,0),C (32-,4),D (32,4).(2分) 设所求抛物线解析式为62)(62(-+=x x a y ). 因过C 点,∴31-=a .(5分) 8312+-=x y .(6分)∴M (0,8).(7分) MN=4. 4÷0.5=8. ∴水过警戒线后8小时淹到拱桥顶端M 处.(8分)25. 解:(1)连结OD.∵CD ,CB 均为⊙O 的切线,∴∠ODC=∠OBC=90°.(1分)∵OD=OB ,OC=OC. ∴Rt △ODC ≌Rt △OBC.(2分)∴∠COD=∠COB=21∠BOD.(3分) ∵OD=OA ,∴∠ODA=∠OAD. ∴∠COD=∠ODA=∠COB=∠OAD. ∴AD ∥OC.(4分)(2)PD 2=PA ·PB.(5分)连结BD ,则∠ADB=90°, 又∠PDO=90°,∴∠POA+∠ODA=∠PBD+∠OAD=90°. 又∵∠ODA=∠OAD ,∴∠PDA=∠PBD.(6分) 又∠DPB=∠APB. ∴△PAD ∽△PDB.∴PBPD PD PA =.∴PD 2=PA ·PB.(7分) (3)∵AD ∥OC, ∴△PAD ∽△POC. ∴CDPDAO PA =. 又PD=CD ,∴PA=OA.(8分) 设DA=x ,则OA=OB=PA=x .PD 2=PA ·PB=23x .(9分) ∴BC 2=CD 2=PD 2=23x .(10分)在△OBC 中,由勾股定理,得16322=+x x .∵x >0,∴x =2. ∴BC=32.(11分)26.(1)由已知可得⎪⎩⎪⎨⎧==++=++.2,0416,0c c b a c b a (1分)解方程组,得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.2,25,21c b a (2分) ∴抛物线解析式为225212+-=x x y .(3分) 经配方,得89)25(212--=x y . ∴顶点坐标为(25,89-). (4分) (2)设对称轴右侧的抛物线上存在点P (m ,n ),m >25,使△PAC 为直角三角形. (Ⅰ)若∠PCA=90°时(由图像可以看出点P 在x 轴上方),由勾股定理,得222)2(-+=n m PC ,222)1(n m PA +-=.52=AC .又222AC PC PA +=, ∴5)2()1(2222+-+=+-n m n m . 整理得42-=n m . ① ∵89)25(212--=m n , ② 由①,②得 ⎩⎨⎧==20n m (舍去),⎩⎨⎧==.5,6n m ∴对称轴右侧的抛物线上存在点P(6,5),使△PAC 为直角三角形.(6分) 易得53=PC ,5=AC .又OC=2,OA=1,∴PC AC OC OA ≠. ∴Rt △PAC 与Rt △OAC 不相似.(7分)(Ⅱ)若∠CAP=90°时,由图像可看出点P 也在x 轴上方.由勾股定理得:222)2(-+=n m PC ,222)1(n m PA +-=,52=AC . 又222AC PA PC +=,得12+=n m . 又225212+-=m m n ,由①,②可得⎩⎨⎧==01n m (舍去),⎩⎨⎧==.2,5n m∴在对称轴右侧存在点P(5,2),使△PAC 为直角三角形.(9分) 易得52=PA ,5=AC ,OC=2,OA=1, ∴OAAC OC PA =. ∴Rt △PAC ∽Rt △COA.(10分) (Ⅲ)对称轴右侧的抛物线上任意一点P ,都不能使∠APC 为直角.因为:如果点P 在对称轴右侧,x 轴下方的任一点时,∠CAP 为钝角,所以∠APC 不可能为直角.如果点P 在对称轴右侧,x 轴上方的任一点时,∵PA >AB >AC ,,则∠PCA >∠APC . ∴∠APC 不可能为直角.(11分)综不所述,在对称轴右侧的抛物线上存在点P(6,5)和(5,2),使△PAC 为直角为三角形,且以点P (5,2)为直角顶点的Rt △PAC ∽Rt △CAO.(12分)。

2013届九年级数学上册期末考试题(含答案)-数学试题

2013届九年级数学上册期末考试题(含答案)-数学试题

2013届九年级数学上册期末考试题(含答案)-数学试题2012-2013学年第一学期初三数学期末试卷(2013.1)考试时间:120分钟满分130分命题人:审核人:一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不成立的是()A.B.C.D.2.关于x的一元二次方程方程x2-2x+k =0有两个不相等的实数解,则k的范围是()A.k>0 B.k<1 C.k>1 D.k≤13.正方形具有而菱形不一定具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线平分一组对角4.若两圆的半径分别是2和4,圆心距为2,则两圆的位置关系为()A.相交B.内切C.外切D.外离5.如图,是的外接圆,已知,则的大小为()A.60° B.50°C.55° D.40°6.对于二次函数,下列说法正确的是()A.开口方向向下B.顶点坐标(1,-3)C.对称轴是y轴D.当x=1时,y有最小值7.将抛物线y=―x2向上平移2个单位,再向右平移3个单位,那么得到的抛物线的解析式为()A.B.C.D.8.为了准备体育中考,某班抽取6名同学参加30秒跳绳测试,成绩如下:90,100,85,85,90,90(单位:个).则下面关于这组成绩的说法中正确的是()A.平均数是92 B.中位数是85 C.极差是15 D.方差是209.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.148 (1+a%)2=200 B.200(1-a%)2=148C.200(1-2a%)=148 D.200(1-a2%)=14810.在矩形ABCD中,BC=6cm、DC=4cm,点E、F分别为边AB、BC上的两个动点,E从点A出发以每秒3cm的速度向B运动,F从点B出发以每秒2cm的速度向C运动,设运动时间为t秒.若∠AFD=∠AED,则t的值为()A.B.0.5或1 C.D.1二、填空题(本大题共8小题,每空2分,共18分)11.当x 时,有意义.12.若最简二次根式与是同类二次根式,则.13.已知关于x的方程的一个根为2,则m=_______.14.某二次函数的图象的顶点坐标(2,-1),且它的形状、开口方向与抛物线y=―x2相同,则这个二次函数的解析式为.15.若一个扇形的半径为3cm,圆心角为60°,现将此扇形围成一个圆锥的侧面,则这个圆锥的底面积为cm2.16.如图,某中学准备在校园里利用围墙的一段,再砌三面围成一个矩形花坛ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的花坛的材料,若要使矩形花园的面积为300m2,则垂直墙的一边长为_________.17.如图,弦CD垂直于∠O的直径AB,垂足为H,CD=4,BD= ,则AB的长为_____.18.已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D 重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90&ordm;,∠E=∠ABC=30&ordm;,AB=DE=6.若纸片DEF不动,问∠ABC绕点F逆时针旋转最小度时,四边形ACDE成为以ED为底的梯形(如图(2)),此梯形的高为____________.三、解答题(本大题共10小题,共82分.解答时请写出文字说明、证明过程或演算步骤)19.(本题满分8分)计算:(1);(2).20.(本题满分8分)解下列方程:(1);(2).21.(本题满分6分)如图,在∠ABC中,D、E分别是AB、AC的中点,过C点作AB的平行线交DE的延长线于点F.(1)求证:DF=BC;(2)连结CD、AF,如果AC=BC,试判断四边形ADCF的形状,并证明你的结论.22.(本题满分8分)如图,每个小方格都是边长为1个单位的小正方形,B、C、D三点都是格点(每个小方格的顶点叫格点).(1)找出格点A,连接AB,AD使得四边形ABCD为菱形;(2)画出菱形ABCD绕点A逆时针旋转90°后的菱形AB1C1D1,并求对角线AC在旋转的过程中扫过的面积.23.(本题满分8分)九年级(1)班数学活动选出甲、乙两组各10名学生,进行趣味数学答题比赛,共10题,答对题数统计如表一:答对题数5 6 7 8 9 10甲组1 0 1 5 2 1乙组0 0 4 3 2 1平均数众数中位数方差甲组8 8 8 1.6乙8(1)根据表一中统计的数据,完成表二;(2)请你从平均数和方差的角度分析,哪组的成绩更好些?24.(本题满分8分)已知二次函数.(1)求抛物线顶点M的坐标;(2)设抛物线与x轴交于A,B两点,与y轴交于C点,求A,B,C的坐标(点A在点B的左侧),并画出函数图象的大致示意图;(3)根据图象,求不等式的解集25.(本题满分8分)如图,点A、B、C分别是∠O上的点,CD是∠O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是∠O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE&#8226;AB的值.26.(本题满分8分)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)如果多种5棵橙子树,计算每棵橙子树的产量;(2)如果果园橙子的总产量要达到60375个,考虑到既要成本低,又要保证树与树间的距离不能过密,那么应该多种多少棵橙子树?(3)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?27.(本题满分10分)如图,矩形ABCD,A(0,3)、B(6,0),点E在OB上,∠AEO= 30°,点从点Q(-4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t 秒.(1)求点E的坐标;(2)当∠PAE=15°时,求t的值;(3)以点P为圆心,PA为半径的随点P的运动而变化,当与四边形AEBC的边(或边所在的直线)相切时,求t的值.28.(本题满分10分)如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A 在x轴上,点B的横坐标为-8.点P是直线AB上方的抛物线上的一动点(不与点A、B重合).(1)求该抛物线的函数关系式;(2)连接PA、PB,在点P运动过程中,是否存在某一位置,使∠PAB恰好是一个以点P为直角顶点的等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由;(3)过P作PD∠y轴交直线AB于点D,以PD为直径作∠E,求∠E在直线AB上截得的线段的最大长度.九年级第一学期期末数学试卷参考答案(2013.1)命题人:审核人:一、选择题(本大题共有10小题,每小题3分,共30分)1 2 3 4 5 6 7 8 9 10D B C B A D B C B A二.填空题(本大题有8小题,每空2分,共18分)11.12..1 13.1 14.,注意若写成也可以15.16.15 17.5 18.30,三.解答题:(本大题有10小题,共计82分)19.(1)原式=…………………………………………………… (3分)=……………………………………………………………… (4分)(2)原式=………………………………………………………… (2分)=………………………………………………………………(4分)20.(1). …………………………………………………………… (4分)(2)…………………………………………… (4分)21.证明:(1)∠DE是∠ABC的中位线,∠DE∠BC ……………………………………(1分)∠CF∠AB ∠四边形BCFD是平行四边形,……………………………(2分)∠DF=BC …………………………………………………………………(3分)(2)证四边形ADCF是平行四边形………………………………………(4分)∠BC=AC,点D是中点,∠CD∠AB ………………………………………(5分)∠四边形ADCF是矩形……………………………………………………………(6分)22.(1)画出格点A,连接AB,AD …………………………………………………(2分)(2)画出菱形AB1C1D1 ……………………………………………………………(4分)计算AC= ……………………………………………………………(6分)∠扫过的面积…………………………………………………………………(8分)23.解:(1)众数7,中位数8,方差1…………………………………………………(6分)(2)两组的平均数相同,乙组的方差小说明乙组的成绩更稳定.……………(8分)24.解:(1)M(1,4)…………………………………………………………………(2分)(2)A(-1,0)、B(3,0)、C(0,3)………………………………………………(5分)画图…………………………………………………………………………………(6分)(3)x&lt;-1或x&gt;3 …………………………………………………………………………(8分)25.解:(1)证明:连接OA∠∠B=60°,∠∠AOC=2∠B=120°,…………………………………………………(1分)∠OA=OC,∠∠ACP=∠CAO=30°………………………………………………………(2分)∠∠AOP=60°,∠AP=AC,∠∠P=∠ACP=30°,∠∠OAP=90°,…………………………………………………………(4分)∠OA∠AP,∠AP是∠O的切线.………………………………………………………(5分)(2)解:连接BD∠点B是弧CD的中点∠弧BC=弧BD ∠∠BAC=∠BCE∠∠EBC=∠CBA∠∠BCE∠∠BAC …………………………………………………………………(6分)∠∠BC2=BE&#8226;BA …………………………………………………………………(7分)∠CD是∠O的直径,弧BC=弧BD∠∠CBD=90°,BC=BD∠CD=4 ∠BC=∠BE&#8226;BA= BC2=8 ……………………………………………………………………(8分)26. 解:(1)每棵橙子树的产量:600-5×5=575(个)……………………………(1分)(2)解:设应该多种x棵橙子树.……………………………………………(3分)解得x1=5,x2=15(不符合题意,舍去)…………………………………………(4分)答:应该多种5棵橙子树.(3)解:设总产量为y个……………………………………………………(6分)……………………………………………………………(7分)答:增种10棵橙子树,可以使果园橙子的总产量最多,最多为60500个.…………(8分)27. 解:(1)点E的坐标为(,0)………………………………………(2分)(2)当点在点E左侧时,如图若,得故OP=OA=3,此时t=7………(2分)当点在点E右侧时,如图若,得故EP=AE=6,此时t= ………(2分)(3)由题意知,若与四边形AEBC的边相切,有以下三种情况:①当与AE相切于点A时,有,从而得到此时………………………………………………………………(7分)②当与AC相切于点A时,有,即点与点重合,此时. …………………………………………………………………(8分)③当与BC相切时,由题意,.于是.解处. …………………………………………(9分)的值为或4或. …………………………………………………………(10分)28.解:(1)A(2,0),B(―8,―5).……………………………………(1分)∠抛物线的函数关系式为……………………………………(3分)(2)当∠BPA=90&ordm;时,由PA=PB,构造两个全等的直角三角形,…………………(4分)根据全等得出P点为(),………………………………… …………………(6分)代入抛物线方程,显然不成立,∠点P不存在………… ……………………………(7分)∠不存在点P,使∠PAB恰好是一个等腰直角三角形.(3)设P(m,),则D(m,).∠PD= ―()== .…………………………(8分)∠当m=―3时,PD有最大值.此时∠E在直线AB上截得的线段的长度最大.………………………………(9分)过E作EF∠AB于点F,由∠DEF∠∠GAO可得:DF= ,所以截得的最长线段为.……………………………………(10分)。

人教版九年级数学第一学期期末考试试题

人教版九年级数学第一学期期末考试试题

2013学年度第一学期九年级教学质量评估2012~精品文档卷学试数32250.2266、二次根式、、、、、中,最简二次根式的概率是3x?ba122 满分:150分)(时间:120分钟1112 (卷首提示语))()(D)(A)(B)(C2336我们一直投给你信任目光的目光,智慧和收获,亲爱的同学这份卷将再次记录你的自信、沉着、请认真审题,看清要求,仔细答题。

祝你成功!题号一二三四五总分AABC、如图,一块含有30°角的直角三角板,在水平桌面7???CABC?的位置.若按顺时针方向旋转到上绕点B 15cm AC=A)那么顶点从开始到结束所经过的路径长为( C Bcm3π10?cm2015πcm10πcmπA(B()C)(A)(D)(7题图)分评卷人得、选择题分,共在每32分。

8一(本大题共小题,每小题4()8、下列说法中正确的是小题给出的四个选项中,只有一个是正确的,请将所选选项的1字母写在题目后面的括号内。

)22222 2x==x的根是+4x =3+3(A)4 (B) +4方程=323P1、平面直角坐标系内一点(-2,)关于原点对称的点的坐标是)( (D) 明天会下雨是随机事件(C)相等的弦所对的弧相等(-3)(C)2,-32)(),3()D2)23A ()(,-)(B(,-分评卷人得二、填空题)20分5小题,每小题4分,共(本大题共2x+1 请把下列各题的正确答案填写在横线上。

) ( )x 在实数范围内有意义,则的取值范围是、若式子2 x-19、请写出两个我们学过的、既是中心对称、又是轴对称的几何图形. 1111--1 (D) x≠≥且≠xx--1 (C) x≥(A) x-- (B) x≠>且22210、直径12cm 的圆中,垂直平分半径的弦长为cm(、右图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是 3 )11、本试卷中的选择题,每小题都有4个选项,其中只有一个是正确的,当你遇到不会做的 C B ()相交()外切)内切(D A()外离题目时,如果你随便选一个答案,那么你答对的概率为12、政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每、下列一元二次方程中没有实数根是4 )(72元调至56元.若每次平均降价的百分率为x,由题意可列方程22盒为.0=+3xxA ()+4+4xx)(B-04=(第题图)3-2xx)(0 =-2xx)C(-5D+4=22013、下面是按一定规律排列的2008年北京奥运会比赛项目中的五项比赛项目的图标,按此)(、圆锥侧面展开图可能是下列图中的5 规律画出的第2009个图标应该是,(填上符合题意的运动项目的名称)……田径射击游泳举重足球(A))C()B(D()精品文档.精品文档得分评卷人CABOD?EABD O的一条弦,,点上.在⊙,垂足为O,交⊙O、如图,18于点是⊙52??AOD DEB?的度数;)若,求(1三、解答题)小题,每小题(本大题共57分,共35分5?3OA?OCAB E)若,求,的长.(2321 )2 -+÷( 、计算:14327 2O第18题图20 =2xx+-6、解方程:15.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、、“一方有难,八方支援”16、B两名护士中选取一位医生和一名护士支援汶川的灾后重建工作.乙、丙三位医生和A(1) 若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2) 求恰好选中医生甲和护士的概率.A评卷人得分四、解答题(本大题共3小题,每小题9分,共27分) 2xy11、19 ,其中x=2 +1 (先化简,再求值:-)÷,y=2 -1,22yxxx+y--y y、如图:在平面直角坐标系中,网格中每一个小17ABC1正方形的边长为个单位长度;已知△A 向ABC将△① x CB,个单位得△5轴正方向平移A111C O再以②为旋转中心,将△180C°B旋转A B111C,BA得△222Ox.画出平移和旋转后的图形,并标明对应字母精品文档.精品文档(3)若3≤n≤8,则从中任取2个图形,恰好都是中心对称图形、阅读下面材料:解答问题20 .的概率是得分评卷人2222 1x0,我们可以将()看作一个整体,然后-5 (x--1)+为解方程(x4-1)=22时,y,=4.当y=,那么原方程可化为y1-5y+4=0,解得y=x设1-1=y21五、解答题)分分,共36(本大题共3小题,每小题12 2222,x,∴x=±5 x=-1=1,∴x=±=2,∴xx2 ;当y=4时,5,∴-1=4 =-=5 ,x5 .,=故原方程的解为x2 ,x=-2 x4132平方米的空地,准备建一个矩形的露天游泳池,179822、某住宅小区在住宅建设时留下一块上述解题方法叫做换元法;22 2米宽的空地,其它三52倍,在游泳池的前侧留一块设计如图所示,游泳池的长是宽的0 (x -x)- 4 (x -x)-12=请利用换元法解方程.1米宽的绿化带侧各保留2米宽的道路及1)请你计算出游泳池的长和宽(个面)都贴上瓷砖,请你计算要贴瓷砖米,现要把池底和池壁(共5(2)若游泳池深3 的总面积前侧空地BC上、的内接正△分别是⊙OABC的边AB、(21、1)如图①,MN MON的度数。

【初三数学】江阴市九年级数学上期末考试测试题(解析版)

【初三数学】江阴市九年级数学上期末考试测试题(解析版)

人教版九年级第一学期期末模拟数学试卷(含答案)一、选择题(每小题3分,共24分)1.(3分)﹣的相反数是()A.3B.﹣3C.D.﹣2.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105B.4.4×106C.0.44×107D.4.4×1053.(3分)不等式组的解集为()A.x<﹣2B.x≤﹣1C.x≤1D.x<34.(3分)如图中几何体的主视图是()A.B.C.D.5.(3分)方程x2﹣3x﹣2=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根6.(3分)如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<07.(3分)下列命题中,正确的是()A.所有的等腰三角形都相似B.所有的直角三角形都相似C.所有的等边三角形都相似D.所有的矩形都相似8.(3分)如图,在平面直角坐标系中,一次函数y=kx﹣2的图象分别与x轴、y轴交于A、B两点,与函数y=(x>0)的图象交于点C.若点A为线段BC的中点,则k的值为()A.1B.C.2D.3二、填空题(每小题3分,共18分)9.(3分)分解因式:2m2﹣8=.10.(3分)一次函数y=3x+2的图象与x轴交点的坐标是.11.(3分)在比例尺为1:2500000的地图上,一条路长度约为8cm,那么这条路它的实际长度约为km.12.(3分)顺次连接矩形各边中点所得四边形为形.13.(3分)如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为度.14.(3分)如图,在平面直角坐标系中,正方形OABC的顶点A在y轴正半轴上,顶点C 在x轴正半轴上,抛物线y=a(x﹣1)2+c(a<0)的顶点为D,且经过点A、B.若△ABD为等腰直角三角形,则a的值为.三、解答题(本大题共10小题,共78分)15.(10分)解方程:(1)2x﹣5=3(x﹣2)(2)x2﹣3x+2=0.16.(6分)先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.17.(6分)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.18.(6分)如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)【参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81】19.(7分)某校学生会为了解本校学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查,在确定调查对象时,大家提出以下几种方案:(A)对各班班长进行调查;(B)对某班的全体学生进行调查;(C)从全校每班随机抽取5名学生进行调查.在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会收集到的数据整理后绘制成如图所示的条形统计图.(1)为了使收集到的数据具有代表性,学生会在确定调查对象时选择了方案(填A、B或C);(2)被调查的学生每天做作业所用时间的众数为小时;(3)根据以上统计结果,估计该校800名学生中每天做作业用1.5小时的人数.20.(7分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.21.(8分)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y (千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.22.(9分)问题情境:小明和小丽共同探究一道数学题:如图①,在△ABC中,点D是边BC的中点,∠BAD=65°,∠DAC=50°,AD=2,求AC的长为多少.探索发现;小明的思路是:延长AD至点E,使DE=AD,构造全等三角形.小丽的思路是:过点C作CE∥AB,交AD的延长线于点E,构造全等三角形.选择小明、小丽其中一人的方法解决问题情境中的问题.类比应用:如图②,在四边形ABCD中,对角线AC、BD相交于点O,点O是BD的中点,AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,则BC的长为.23.(9分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6.点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动.点Q从点C出发,沿CA方向以每秒个单位长度的速度运动.点P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长.(用含t的代数式表示).(2)当PQ与△ABC的一边平行时,求t的值.(3)如图②,过点P作PE⊥AC于点E,以PE、QE为邻边作矩形PEQF,点D为AC 的中点,连接DF.直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.24.(10分)对于给定的两个函数y=k1x+b1(k1≠0)和y=k2x+b2(k2≠0),在这里我们把y=(k1x+b1)(k2x+b2)叫做这两个函数的积函数,把直线y=k1x+b1和y=k2x+b2叫做抛物线y=(k1x+b1)(k2x+b2)的母线.(1)直接写出函数y=x﹣3和y=﹣x﹣1的积函数,然后写出这个积函数的图象与x轴交点的坐标.(2)点P在(1)中的抛物线上,过点P垂直于x轴的直线分别交此抛物线的母线于M、N两点,设点P的横坐标为m,求PM=PN时m的值.(3)已知函数y=x﹣2n和y=﹣x.当它们的积函数自变量的取值范围是﹣1≤x≤2,且当n≥2时,这个积函数的最大值是8,求n的值以及这个积函数的最小值.2018-2019学年吉林省长春外国语学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.【解答】解:﹣的相反数是,故选:C.2.【解答】解:4 400 000=4.4×106.故选:B.3.【解答】解:解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选:C.4.【解答】解:从正面看易得左排3层,中间排是2九年级(上)数学期末考试试题(含答案)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)在有理数﹣6,3,0,﹣7中,最小的数是()A.﹣6B.3C.0D.﹣72.(4分)如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A.B.C.D.3.(4分)在函数y=中,自变量x的取值范围是()A.x>2B.x≤2且x≠0C.x<2D.x>2且x≠04.(4分)下列图形都是由同样大小的地砖按照一定规律所组成的,其中第①个图形中有4块地砖,第②个图形中有9块地砖,第③个图形中有16块地砖,…,按此规律排列下去,第9个图形中地砖的块数为()A.81B.99C.100D.1215.(4分)如图,△ABC中,DE∥BC且=,若△ABC的面积等于,则四边形DBCE 的面积为()A.B.C.D.46.(4分)下列命题是真命题的是()A.一组对边平行,且另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.四边都相等的矩形是正方形D.对角线相等的四边形是矩形7.(4分)估计(﹣)的值应在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间8.(4分)按如图所示的程序运算,如果输出y的结果是4,则输入x的值可能是()A.±2B.2或3C.﹣2或3D.±2或39.(4分)如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC =30°,DC=1,则⊙O的半径为()A.2B.C.2﹣D.110.(4分)如图,小明站在某广场一看台C处,测得广场中心F的俯角为21°,若小明身高CD=1.7米,BC=1.9米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10.5米,则看台底端A点距离广场中心F点的距离约为()米.(参考数据:sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)A.8.9B.9.7C.10.8D.11.911.(4分)若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a 的是()A.﹣2B.1C.0D.312.(4分)如图,已知Rt△ABC的直角顶点A落在x轴上,点B、C在第一象限,点B的坐标为(,4),点D、E分别为边BC、AB的中点,且tan B=,反比例函数y=的图象恰好经过D、E,则k的值为()A.B.8C.12D.16二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上13.(4分)计算:|1﹣|+(π﹣3.14)0+=.14.(4分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆O 交AB于点D,则图中阴影部分的面积为(结果保留π).15.(4分)如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为.16.(4分)如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.17.(4分)一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了105分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.18.(4分)某水果销售商在年末准备购进一批水果进行销售,经过市场调查,发现芒果、车厘子、奇异果、火龙果比较受顾客的喜爱,于是制定了进货方案.其中芒果、车厘子的进货量与奇异果、火龙果的进货量分别相同,而芒果、车厘子的单价与火龙果、奇异果的单价分别相同,已知芒果和车厘子的单价和为每千克180元,且芒果和车厘子的进货总价比奇异果和火龙果的进货总价多863元.由于年末资金周转不开,所以临时决定只购进芒果和车厘子,芒果和车厘子的进货量与原方案相同,且进货量总数不超过300kg,则该水果商最多需要准备元进货资金.三、解答题:(本大题2个小题,第19小题8分,第20小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上19.(8分)先化简,再求值:÷(a﹣2﹣)+,其中a2﹣2a﹣6=0 20.(8分)如图,直线AB∥CD,EF平分∠AEG,∠DFH=13°,∠H=21°,求∠EFG 的度数.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上21.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点C,直线l1与直线l2:y=﹣x交于点A,将直线l2:y=﹣x沿射线AB的方向平移得到直线l3,当l3经过点B时,与y轴交点记为D点,已知A点的纵坐标为2,sin∠ABO=.(1)求直线BC的解析式;(2)求△ABD的面积.22.(10分)距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 9070 90 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 8090 70 80 50 80 100 90根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如下表所示:(1)请将上面两个表格补充完整:a=,b=,c=;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.23.(10分)春节即将来临,根据习俗每家每户都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进一批红灯笼和对联进行销售,已知对联的进价比红灯笼的进价少10元,若用720元购进对联的数量比用720元购进红灯笼的数量多50件.(1)对联和红灯笼的单价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼,已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个销售一段时间后发现对联售出了总数的,红灯笼售出了总数的,为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?24.(10分)已知平行四边形ABCD,过点A作BC的垂线,垂足为E,且满足AE=EC,过点C作AB的垂线,垂足为F,交AE于点G,连接BG,(1)如图1,若AC=,CD=4,求EG的长度;(2)如图2,取BE的中点K,在EC上取一点H,使得点K和点E为BH的三等分点,连接AH,过点K作AH的垂线,交AC于点Q,求证:BG=2CQ.25.(10分)阅读材料,解决问题:某数学学习小组在阅读数学史时,发现了一个有趣的故事;古希腊神话中的米诺斯王嫌别人为他建造的坟墓太小,命令将其扩大一倍,并说只要将每边扩大一倍就行,这当然是错误的,但这类问题却引出了著名的几何问题:倍立方问题.此时他们刚好学习了平面几何,所以甲同学提出:“任意给定一个正方形,是否存在另外一个正方形,它的周长和面积分别是已知正方形周长和面积的2倍呢?”,对于这个问题小组成员很快给出了解答:设原正方形的边长为a,则周长为4a,面积为a2∵另一个正方形的周长为2×4a=8a∴此时边长为2a,面积为(2a)2=4a2≠2a2∴不存在这样的正方形,它的周长和面积分别是已知正方形周长和面积的2倍.虽然甲同学的问题得到了很快的解决,但这一问题的提出触发了其他小组成员的积极思考,进一步乙同学提出:“任意给定一个矩形,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”通过讨论,他们决定先研究:“已知矩形的长和宽分别为m和1,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”,并给出了如下解答过程:设所求矩形的长为x,则根据题意可表示出所求矩形的宽为2(m+1)﹣x那么可建立方程:x•[2(m+1)﹣x]=2m∵判别式△=4m2+4>0∴原方程有解,即结论成立.根据材料解决下列问题(1)若已知一个矩形的长和宽分别为3和1,则是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半呢?若存在,请求出此矩形的长和宽;若不存在,请说明理由;(2)若已知一个矩形的长和宽分别为m和1,且一定存在另一个矩形的周长和面积分别是已知矩形周长和面积的k倍,求k的取值范围(写明解答过程).五、解谷题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,抛物线y=﹣x2+x+6与x轴交于A、B(B在A的左侧)两点,与y轴交于点C,将直线AC沿y轴正方向平移2个单位得到直线A′C′,将抛物线的对称轴沿x轴正方向平移最新人教版九年级(上)期末模拟数学试卷及答案一、选择题(本大题共12小题,共48.0分)1.计算:A. 3B.C.D. 【答案】C【解析】解:,故选:C.根据算术平方根和二次根式的性质化简可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义和二次根式的性质.2.下列计算正确的是A. B. C. D.【答案】B【解析】解:A、不能化简,所以此选项错误;B、,所以此选项正确;C、,所以此选项错误;D、,所以此选项错误;本题选择正确的,故选B.A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.3.在中,,则是的A. 正弦B. 余弦C. 正切D. 以【答案】A【解析】解:在中,,则是正弦,故选:A.根据锐角三角函数的定义即可得到结论.本题考查了锐角三角函数的定义,熟记三角函数的定义是解题的关键.4.用配方法解方程,则方程可变形为A. B. C. D. 【答案】D【解析】解:原方程为,二次项系数化为1,得,即,所以故选D.本题考查分配方法解一元二次方程.配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.5.已知 ∽,的面积为6,周长为周长的一半,则的面积等于A. B. 3 C. 12 D. 2【答案】D【解析】解: ∽,的周长为周长的一半,,,的面积为6,,故选:D.利用相似三角形的面积比等于相似比的平方即可解决问题.本题考查相似三角形的性质,记住相似三角形的周长比等于相似比,面积比等于相似比的平方.6.某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目每位同学必须选择一项,为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为A. 240B. 120C. 80D. 4【答案】D【解析】解:调查的总人数是:人,则参加调查的学生中最喜欢跳绳运动项目的学生数是:人.故选:D.根据A项的人数是80,所占的百分比是即可求得调查的总人数,然后李用总人数减去其它组的人数即可求解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7.在和中,已知,,在下面判断中错误的是A. 若添加条件,则 ≌B. 若添加条件,则 ≌C. 若添加条件,则 ≌D. 若添加条件,则 ≌【答案】B【解析】解:A,正确,符合SAS判定;B,不正确,因为边BC与不是与的一边,所以不能推出两三角形全等;C,正确,符合AAS判定;D,正确,符合ASA判定;故选:B.根据全等三角形的判定方法对各个选项进行分析,从而得到答案.此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有:AAS,SAS,SSS,HL等要根据已知与判断方法进行思考.8.在网格中的位置如图所示每个小正方形边长为,于D,下列四个选项中,错误的是A.B.C.D.【答案】C【解析】解:观察图象可知,是等腰直角三角形,,,,,,,故A正确,,故B正确,,故D正确,,,,故C错误.故选:C.观察图形可知,是等腰直角三角形,,,,,,利用锐角三角函数一一计算即可判断.本题考查锐角三角函数的应用等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,中,AD是中线,,,则线段AC的长为A. 4B.C. 6D. 【答案】B【解析】解:,,在和中,,,∽ ,,,;故选:B.根据AD是中线,得出,再根据AA证出 ∽ ,得出,求出AC即可.此题考查了相似三角形的判断与性质,关键是根据AA证出 ∽ ,是一道基础题.10.若关于x的一元二次方程有实数根,则k的取值范围在数轴上表示正确的是A. B. C.D.【答案】A【解析】解:关于x的一元二次方程有实数根,,解得:.故选:A.根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围,将其表示在数轴上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及在数轴上表示不等式的解集,根据一元二次方程的定义结合根的判别式,找出关于k的一元一次不等式组是解题的关键.11.我们知道方程的解是,,现给出另一个方程,它的解是A. ,B. ,C. ,D. ,【答案】D【解析】解:把方程看作关于的一元二次方程,所以或,所以,.故选:D.先把方程看作关于的一元二次方程,利用题中的解得到或,然后解两个一元一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.如图小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为,若米,,米,CE平行于AB,迎水坡BC的坡角的正切值为,坡长米,则AB的长约为参考数据:,,A. 米B. 米C. 米D. 米【答案】A【解析】解:如图,延长DE交AB延长线于点P,作于点Q,,,四边形CEPQ为矩形,米,,,设、,由可得,解得:或舍,则米,米,米,在中,米,米.故选:A.延长DE交AB延长线于点P,作,可得、,由,可设、,根据求得x的值,即可知,由,结合可得答案.此题考查了俯角与坡度的知识注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.二、填空题(本大题共6小题,共24.0分)13.的相反数是______.【答案】【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.14.方程的解是______.【答案】,【解析】解:,,或,所以,.故答案是:,.先移项,然后利用因式分解法解方程.本题考查了解一元二次方程因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了数学转化思想.15.在实数范围内分解因式:______.【答案】【解析】解:,,,故答案为:先把前面两项配成完全平方式,然后根据平分差公式进行因式分解即可.本题考查了利用公式进行因式分解的方法:把整式先配成完全平分式或平分差的形式,然后利用公式法进行因式分解.16.某商品四天内每天每斤的进价与售价的信息如图所示,则售出这种商品每斤利润最大的是第______天【答案】二【解析】解:由图象中的信息可知,利润售价进价,利润最大的天数是第二天,故答案为:二.根据图象中的信息即可得到结论.本题考查了折线统计图,有理数大小的比较,正确的把握图象中的信息,理解利润售价进价是解题的关键.17.如图,在直角坐标系中,有两点、以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为______.【答案】【解析】解:由题意得, ∽ ,相似比是,,又,,,,点C的坐标为:,故答案为:.根据位似变换的性质可知, ∽ ,相似比是,根据已知数据可以求出点C的坐标.本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.18.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的正整数a的值为______.【答案】2【解析】解:①②,解不等式①得:,解不等式②得:,该不等式组有且只有四个整数解,该不等式组的解集为:,且,解得:,,方程两边同时乘以得:,去括号得:,移项得:,该方程的解为非负数,且,解得:且,综上可知:符合条件的正整数a的值为2,故人教版数学九年级上册期末考试试题及答案一、选择题(每小题3分,共30分)1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠0=4,4.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT 则此函数的表达式为()A.B.C.D.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3 7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.88.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y29.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()。

江阴初三年级数学上学期期末试卷

江阴初三年级数学上学期期末试卷

江阴初三年级数学上学期期末试卷亲爱的同学,本试卷共5页,满分分值130分,考试时间120分钟.请仔细审题,细心答题,相信你一定会有出色的表现,祝你考出好成绩! 一、选择题:(每小题3分,计30分) 1. x 取什么值时,451+x 有意义( )A .x >﹣45 B. x >﹣54 C. x ≥54- D. x ≤54- 2.下列图形中,既是轴对称图形,又是中心对称图形的是( )3.关于x 的方程(a -5)2x -4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠54.在100张奖卷中,有4张中奖,小红从中任抽一张,她中奖的概率是( ) A.41 B.201 C.251 D.1001 5.已知扇形的半径是12cm ,圆心角的度数是60°,则扇形的弧长是( )A.2πcm,B.4πcm,C.12πcm,D.14πcm6. ⊙O 的直径为10,圆心O 到直线l 的距离为6,则直线l 与⊙O 的位置关系是( ) A . 相交 B . 相切 C . 相离 D . 无法确定7. 若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为………………………………………………………………( )A .1∶2B .1∶4C .2∶1D 8. 在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是……………( )A .y =2(x + 2)2-2B .y =2(x -2)2+ 2C .y =2(x -2)2-2D .y =2(x + 2)2+ 29. 2010年因干旱影响,凉山州政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是( )A .中位数是6吨B .平均数是5.8吨C .众数是6吨D .极差是4吨10.m 是方程x 2+x-1=0的根,则式子m 3+2m 2+2009的值为( )A.2008B.2009C.2010D.2011二、填空题:(每小题3分,计30分)11.方程x 2= x 的根是_______________.12.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,•随机从口袋中任取一只球,取得黄球的概率是_________. 13. 化简:122432+--= .14. 如果圆锥的底面半径是3,高为4,那么他的侧面积是 。

江苏省九年级数学上学期期末考试试卷 新人教版

江苏省九年级数学上学期期末考试试卷 新人教版

2012~2013学年第一学期期末考试试卷九年级数学命题人: 复核人:注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、选择题:本大题共10小题,每小题3分,共30分.每小题都给出代号为A B C D ,,,的四个结论,其中只有一个结论是正确的,请将正确结论代号填在答卷的对应题号内. 1、下列计算正确的是( )A .2+23=3 5B .8= 4 2C .27÷3=3D .(-3)2= -32、温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是 ( ) A .7106.3⨯ B .6106.3⨯ C .61036⨯ D .81036.0⨯ 3、如图,∠ABD =∠ACD =90°,且DB =DC ,则下面正确的有( ) (1) AB =AC (2) AD 平分∠BAC (3) OB =OC (4) AD ⊥BC A .1个 B .2个 C .3个 D .4个 4、下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( )A 、y=(x ﹣2)2+1B 、y=(x+2)2+1C 、y=(x ﹣2)2﹣3D 、y=(x+2)2﹣35、已知圆锥的底面半径为6㎝,高为8㎝,圆锥的侧面积为( ) A .48π B .96π C .30π D .60π6、某商场试销一种新款衬衫,一周内销售情况如下表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .众数 C .中位数 D .方差7、已知⊙O 的半径为r ,圆心O 到直线l 的距离为d .若直线l 与⊙O 有交点, 则下列结论正确的是( )A .d =rB .0≤d ≤rC .d ≥rD .d <r 8、如图,四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件是 ( )A. AC ⊥BDB. AC=BDC. AC ⊥BD 且AC=BDD. 不确定9、如图,在平面直角坐标系中,正方形ABCD 的顶点A 、C 分别在y 轴、x 轴上,以AB为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为 ( ) A.(-4,5) B.(-5,4) C.( -4,6) D.( -5,6)10、如图,四边形ABCD 是边长为1 的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与 x 之间函数关系的图象是( )DA O BC第3题E (F)E A A y x MO C B A (第9题图) (第8题)HGF E D C B A二、填空题:本大题共8小题,每小题2分,共16分.请把结果填在题中的横线上. 11、分解因式:34m m -= .12、要使式子有意义,则a 的取值范围为 . 13、已知a 是0422=-+x x 的一个根,则代数式1632-+a a 的值为 .14、某小区2011年屋顶绿化面积为2000平方米,计划2013年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是 .15、凸多边形的内角和是外角和的2倍,则该凸多边形的边数为 . 16、如图,点O 是O ⊙的圆心,点A B C 、、在O ⊙上,AO BC ∥,38AOB ∠=°,则OAC ∠ 的度数是 .17、二次函数2(0)y ax bx c a =++≠的图象如图所示,根据图象可知:当k 时,方程2ax bx c k ++=有两个不相等的实数根.18、如图,在矩形ABCD 中,AB =2,BC =3,两顶点A 、B 分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则当OC 为最大值时,点C 的坐标是 .三、解答题:本大题共10小题,共84分.解答应写出必要的文字说明,证明步骤,推理过程. 19、(本题每小题4分,共12分) (1)计算: 122232+-- (2)解方程:22)25(96x x x -=+-(3)求不等式组⎪⎩⎪⎨⎧≤->+13531521x x 的解集20、(本题满分6分)已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求B C D C G H F a -1OCBA第16题图第17题图yxODCBA4)2(222-+-b a ab 的值.21、(本题满分8分)如图,已知Rt △ABC ,∠ABC =90º,以直角边AB 为直径作⊙O ,交斜边AC 于点D ,连结BD .(1)若AD =3,BD =4,求边BC 的长;(2)取BC 的中点E ,连结ED ,试证明ED 与⊙O 相切.22、(本题满分8分)如图线段AB 的端点在边长为1的小正方形网格的格点上,现将线段AB 绕点A 按逆时针方向旋转90°得到线段AC . ⑴请你在所给的网格中画出线段AC 及点B 经过的路径;⑵若将此网格放在一平面直角坐标系中,已知点A 的坐标为(1,3),点B 的坐标为(-2, -1),则点C 的坐标为 ; ⑶线段AB 在旋转到线段AC 的过程中,线段AB 扫过的区域的面积为 ;⑷若有一张与⑶中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为 .23、(本题满分6分)如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、 3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位 置(指针指向两个扇形的交线时,重新转动转盘).(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率. 24、(本题满分8分)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体 育成绩进行分段(A :50分;B :49-45分;C :44-40分;D :39-30分;E :29-0分)统计如下:A B 第21题图 _ C _ O D A E B根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 , b 的值为 ,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑); (2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内? (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?25、(本题满分8分)某企业在生产甲、乙两种节能产品时需用A 、B 两种原料,生产每吨节能产销售甲、乙两种产品的利润m (万元)与销售量n (吨)之间的函数关系如图所示.已知该企业生产了甲种产品x 吨和乙种产品y 吨,共用去A 原料200吨. (1)写出x 与y 满足的关系式;(2)为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B 原料多少吨? 26、(本题满分10分)(1) 如图26-1,等腰直角△ABC 的直角顶点B 在直线l 上,A 、C 在直线l 的同侧.过A 、C 作直线l 的)分数段A C垂线段AD 、CE ,垂足为D 、E .请证明AD +CE =DE .(2)如图26-2,平面直角坐标系内的线段GH 的两个端点的坐标为G (4,4),H (0,1).将线段GH 绕点H 顺时针旋转90°得到线段KH .求点K 的坐标. (3)平面直角坐标系内有两点P (a ,b )、M (-3,2),将点P 绕点M 顺时针旋转90°得到点Q ,请你直接写出点Q 的坐标.27、(本题满分6分)如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.(1)请在所给的图中,用尺规画出点A 在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积S .28、(本题12分)已知:如图,二次函数)0(22≠+-=a c ax ax y 的图象与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0).(1)求该二次函数的关系式;(2)写出该二次函数的对称轴和顶点坐标;(3)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ.当△CQE 的面积最大时,求点Q 的坐标;(4)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由。

江苏省江阴市暨阳区2013届九年级数学上学期期末考试试题 新人教版

江苏省江阴市暨阳区2013届九年级数学上学期期末考试试题 新人教版

2012-2013学年第一学期期末考试九年级数学试卷(满分130分,考试时间120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的) 1.若x 2y+9-与|x ﹣y ﹣3|互为相反数,则x+y 的值为………………………………………………( )A . 3B . 9C . 12D . 272.某同学对甲、乙、丙、丁四个市场二月份每天的猪肉价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为2222S 8.5S 2.5S 10.1S 7.4====乙丁甲丙,,,.二月份猪肉价格最稳定的市场是…………………………………………………………………………………………………( ) A .甲 B .乙 C .丙 D .丁3.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值X 围是…………( )A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠ 4.如图,在平面直角坐标中,等腰梯形ABCD 的下底在x 轴上,且B 点坐标为(4,0),D 点坐标为 (0,3),则AC 长为……………………………………………………………………………………( ) A .4 B .5 C .6 D .不能确定5.已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为……………………( ) A . 15πcm 2B .3cm 2C .60πcmD .30πcm 26.在正方形网格中,ABC △的位置如图所示,则A ∠tan 的值为……………………………………( )A .31B .22C .32D .337.已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①02=+b a ;②abc<0;③042>-ac b ;④8a+c>0.其中正确的有………………( ) A .3个 B .2个 C .1个 D .0个8.若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值X 围是……………( ) A .m =l B .m >l C .m ≥l D.m ≤l9.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要多长. ………………………………………………… ( ) A .10n B .29+16n 2C .29n 2+16 D .210n 2+16A CDBO10.如图,等腰直角三角形△ABD 内接于⊙O,AB 为直径,点C 为劣弧AD 上一点,且AC=4,CD=26,则BC 的长为…………………………………………………………………………………………( ) A .14 B .15 C .16 D .17 二、填空题(本大题共8小题-每小题2分,共16分)11.已知a 、b 为两个连续的整数,且b a <<13,则b a +=. 12.已知一组数据:1,3,5,5,6,则这组数据的方差是。

2013年九年级上册数学期末测试题

2013年九年级上册数学期末测试题

80米100米A BC九年级上册数学期末测试题(2013年真题)一、选择题1、方程250x x -=的解是A 、120,5x x ==-B 、5x =C 、120,5x x ==D 、0x = 2、一元二次方程22510x x -+=的根的情况是A 、有两个不相等的实数根B 、有两个相等的实数根C 、没有实数根D 、无法确定 3、用配方法解方程2210x x --=时,配方后得到的方程为A 、2(1)0x += B 、2(1)0x -= C 、2(1)2x += D 、2(1)2x -=4、如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,使剩余面积为7644,求道路的宽为多少米,设道路的宽为x 米,则可列方程为A 、10080100807644x x ⨯--=B 、(100)(80)7644x x --=C 、2(100)(80)+7644x x x --= D 、100807644x x +=5、河堤横断面如图所示,堤高6BC =米,迎水坡AB 的破比是1:3,则AB 的长为A 、43米B 、53米C 、63米D 、12米6、如图,身高1.6米的某学生想测量一棵大树的高度,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得3.2,0.8BC m CA m ==,则树的高度为A 、10mB 、8mC 、6.4mD 、4.8m 7、若反比例函数ky x=与一次函数2y x =+图像没有交点,则的值可以是 A 、2- B 、1 C 、2 D 、38、某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生的成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有 A 、50人 B 、64人 C 、90人 D 、96人 二、填空题9、2cos30︒=10、在Rt ABC 中,901312C AB AC ∠=︒==,,,则cos =BB ABx11、如图,△ABC 中,D E 、中分别是AB AC 、的中点,3DE cm = 则BC = cm 。

江苏省江阴市长泾片2013届九年级数学上学期期末考试试题 新人教版

江苏省江阴市长泾片2013届九年级数学上学期期末考试试题 新人教版

31yxO(第9题图)2012-2013学年第一学期期末考试试卷九年级数学注意事项:1.本卷考试时间为120分钟,满分130分.2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.) 1、下列各式中,正确的是 ( )A.2(5)5-=-;B.255-=-;C.2(5)5±=±;D.255=±. 2、下列一元二次方程中两实数根之和为2的是 ( )A.0322=+-x x ;B.0322=++x x ;C.0322=--x x ;D.0322=-+x x . 3、某商场试销一种新款衬衫,一周内销售情况如下表所示.型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义 的是 ( )A.平均数;B. 众数;C. 中位数;D. 方差.4、下列命题:①菱形的四个顶点在同一个圆上;②正多边形都是中心对称图形;③三角形的外心到三个顶点的距离相等;④若圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线。

其中是真命题的有( )A.4个;B.3个;C.2个;D.1个.5、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形 ( )A.1对;B. 2对;C.3对;D. 4对.6、如图,在梯形ABCD 中,AD ∥BC ,对角线BD 与中位线EF 交于点O ,若FO -EO =3,则BC -AD 等于 ( )A.4;B. 6;C. 8;D. 10. l7、如图,点O 在⊙A 外,点P 在线段OA 上运动,以OP 为半径的⊙O 与⊙A 的位置关系不可能...是下列中的 ( )A.外离;B. 外切;C. 相交;D. 内含.第6题A EDCBF O第5题 A EDC BFAPO第7题.. .8、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值 X 围是 ( )A.1k >-;B.1k >-且0k ≠;C.1k <;D.1k <且0k ≠.9、二次函数y =ax 2+bx +c 的图象如图所示,则下列判断中错误..的是 ( ) A. 图象的对称轴是直线x =1; B. 一元二次方程ax 2+bx +c =0的两个根是-1、3; C. 当x >1时,y 随x 的增大而减小; D. 当-1<x <3时,y <0.10、如图,在△ABC 中,AB =5,AC =4,BC =3,经过点C 且与边AB 相切的动圆与CB 、CA 分别相交于点E 、F ,则线段EF 长度的最小值是 ( )A.;B. 2;C.;D. 2 2.二、填空题(本大题共有8小题,每空2分,共20分.请把结果 直接填在题中的横线上.)11、若2(2)2a a -=-,则a 的取值X 围为. 12、计算:248⨯=________;21()3=________;()25-=_________。

江苏省江阴市九年级数学上学期期末考试试卷 新人教版

江苏省江阴市九年级数学上学期期末考试试卷 新人教版

EHA BCDPF2012~2013学年第一学期期末考试一、选择题(本大题共10小题,每小题3分,共30分)1.在下列二次根式中,与3是同类二次根式的是(▲ )A.18 B.24 C.27 D.302.方程x2=3x的解为(▲ )K]A.x=0 B.x=3 C.x1=0,x2=-3 D.x1=0,x2=33.已知两圆半径为5cm和3cm,圆心距为3cm,则两圆的位置关系是(▲ )A.相交 B.内含 C.内切 D.外切4.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同,方差分别为2甲S=8.5,2乙S=2.5,2丙S=10.1,2丁S=7.4.二月份白菜价格最稳定的市场是(▲ )A.甲 B.乙 C.丙 D.丁5.如果圆锥的母线长为6cm,底面圆半径为3cm,则这个圆锥的侧面积为(▲ )A.9πcm2B. 18πcm2C. 27πcm2D. 36πcm26.已知在Rt△ABC中,∠C=90︒,sin A=35,则tan B的值为(▲ )A.43B.45C.54D.347.如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(▲ )A.26 B.25 C.21 D.208.函数()20y ax a=-≠与()20y ax a=≠在同一平面直角坐标系中的图象可能是(▲ )A. B. C. D.9.如图,将矩形沿图中虚线(其中x>y)剪成四块图形,用这四块图形恰能拼一个正方形.若y=1,则x的值等于(▲ )A.3 B.5-12C.1+52D.1+22(第9题图)(第10题图)10.如图,⊙O的直径AB垂直于弦CD,垂足为H,点P是AC⌒上的一点(点P不与A,C重合),连结PC,PD,PA,AD,点E在AP的延长线上,PD与AB交于点F.给出下列四个结论:①∠CPD=∠BAD;②AD⌒=AC⌒;③AD2=DF·DP;④∠EPC=∠APD.其中正确结论的个数有(▲ ).A.1个 B.2个 C.3个 D.4个AB CD第7题图二、填空题(本大题共8小题,每小题2分,共16分) 11.写出一个比5小的正整数 ▲ . 12.函数y=4+x -2中自变量x 的取值范围是 ▲ .13.已知一元二次方程x 2+mx -2=0的两个实数根分别为x 1,x 2,则x 1• x 2= ▲ . 14.如图,A 、B 、C 是⊙O 上的三个点,∠ABC =25°,则∠AOC 的度数是 ▲ . 15.顺次连接矩形四条边的中点,得到的四边形的形状是 ▲ . 16.将抛物线y =2x 2-4x +1先向左平移3个单位,再向下平移2个单位,则平移后的抛物线为 ▲ .17.抛物线y=2x 2+8x +m 与x 轴只有一个公共点,则m 的值为 ▲ .18.定义[a 、b 、c ]为函数y =ax 2+bx+c 的特征数,下列对特征数为[2m ,1-4m ,2m -1]的函数的描述:①当m =12时,函数图像的顶点坐标是(12,−14);②当m =−1时,函数在x >1时,y 随x 的增大而减小;③无论m 取何值,函数图像都经过同一个点.其中正确的结论有 ▲ .(写序号) 三、解答题(本大题共10小题,共84分)19.计算:(1)(12)-1-(2009-3)0-|-2|(2)先化简,再求值:(a -5)(a +5)-a (a -3),其中a =3+5320.计算: (1)x x -1+1x=1; (2)x 2+3x -1=021.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE . (1)求证:BD=EC ; (2)若∠E =50°,求∠BAO 的大小.22.如图,在边长为1的小正方形组成的网格,直角梯形ABEF 的顶点均在格点上,请按要求完成下列各题: (1)请在图中拼上一个直角梯形,使它与梯形ABEF 构成一个等腰梯形ABCD ; (2)将等腰梯形ABCD 绕点C 按顺时针方向旋转90°,画出相应的图形A 1B 1CD 1;O AB C第14题图A B C Ox yl23.江阴市南菁中学初中部举行了第四届校园文化艺术节.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,请用列表法或画树状图法求出九年级同学获得前两名的概率.24.如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ 与MN 平行,河岸MN 上有A 、B 两个相距50米的凉亭,小亮在河对岸D 处测得∠ADP =60°,然后沿河岸走了110米到达C 处,测得∠BCP =30°,求这条河的宽.(结果保留根号)25.如图,直线l 的解析式为y =43x +4,与x 轴,y 轴分别交于点A 、B .(1)O 到直线l 的距离;(2)半径为1的圆C 从坐标原点出发,以每秒1个单位的速度沿y 轴正方向运动,设运动时间为t (s ),当圆C与直线l 相切时,求t 的值.26.知识迁移: 当n >0且m >0时,因为2)(mn m -≥0,所以m nn m +-2≥0,从而m n m +≥n 2 (当nm =时取等号),记函数)0,0(>>+=m n mnm y ,由上述结论可知:当n m =时,该函数有最小值为n 2.直接应用:已知函数)0(1>=x x y 与函数)0(12>=x xy , 则当x=_________时,21y y +取得最小值为_________.yx OEy xOE变形应用:已知函数)1(11->+=x x y 与函数22(1)4(1)y x x =++>-,求21y y 的最小值,并指出取得该最小值时相应的x 的值.实际应用:已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油 费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001;设该汽车一次运输的路程 为x 千米,求当x 为多少时,该汽车平均每千米的运输成本..........最低?最低是多少元?27.如图,在平面直角坐标系中,直线y=12x +1与抛物线y =ax 2+bx -3交于A 、B 两点,点A 在x 轴上,点B的纵坐标为3.点P 是直线AB 下方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .(1)求a 、b 及sin ∠ACP 的值;(2)设点P 的横坐标为m ,连接PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 值,使这两个三角形的面积之比为9:10?若存在,请求出m 的值;若不存在,请说明理由.28.如图1,在第一象限内,直线y=mx 与过点B (0,1)且平行于x 轴的直线l 相交于点A ,半径为r 的⊙Q 与直线y=mx 、x 轴分别相切于点T 、E ,且与直线l 分别交于不同的M 、N 两点.(1)当点A 的坐标为(33,p )时,填空:p = ,m = ,∠AOE = .(2)①在图1中,连接EQ 并延长交⊙Q 于点D ,交直线l 于点F ,连接DM,ME ,如图2,请证明:MF 2=EF •FD②试在图2中探索:对m 、r 的不同取值,经过M 、D 、N 三点的抛物线y=ax 2+bx+c ,a 的值会变化吗? 若不变,求出a 的值;若变化.请说明理由.图1 图22012——2013学年度第一学期初三数学期末考试评分标准 2013年1月11.1(或者2); 12.x ≥2; 13.-2; 14.50°;15.菱形; 16.y =2x 2+8x +5; 17.8; 18.①③; 三、解答题:(本大题共10小题,共84分) 19、(本大题共有2小题,每题4分,共8分) 计算:(1)(本题满分4分)01)32009()21(----2-解:原式=2—1—2………………………………2分 =—1 …………………………………4分(2)(本题满分4分)先化简,再求值)3()5)(5(--+-a a a a ,其中353+=a 解:原式=3a —5 …………………………………………(3分) 当353+=a 时,原式=53……………………………(4分) 20.(本大题共有2小题,每题4分,共8分)(1)x x -1+1x=1; (2)(2)x 2+3x -1=0.解:(1)x 2+x -1=x (x -1)……………………………………(1分)x 2+x -1=x 2-x 2x =1x =12……………………………………………(3分); 经检验x =12是原方程的解…………………(4分)(2)2133±-=x ……………………………………………………………………………………(2分)∴2133,213321+-=+-=x x ……………………………………………………………………(4分) 21. (本题满分8分) )(1)证明:∵四边形ABCD 是菱形,∴AB=CD ,AB ∥CD .又∵BE=AB ,∴BE=CD ,BE ∥CD .∴四边形BECD 是平行四边形.∴BD=EC ………………………………………………………………………………(4分)(2)解:∵四边形BECD 是平行四边形,∴BD∥CE ,∴∠ABO =∠E =50°.又∵四边形ABCD 是菱形,∴AC 丄BD .∴∠BAO =90°﹣∠ABO =40°……………………(8分)22.(本题满分6分) (1)如图……………………(3分) (2)如图……………………(3分)23. (本题满分8分)用列表法或树状图法(树状图或列表正确)……………………(4分) ∴P(九年级同学获得前两名)21=126……………………(8分) 24. (本题满分8分)解:作AE ⊥PQ 于E ,CF ⊥MN 于F . ∵PQ ∥MN ,∴四边形AECF 为矩形.∴EC =AF ,AE =CF .……………………(2分) 设这条河宽为x 米,∴AE =CF =x . 在Rt△AED 中, ∵∠ADP =60°,∴ED =AE tan60°=x 3=33x .∵PQ ∥MN ,∴∠CBF =∠BCP =30°. ∴在Rt△BCF 中,BF =CFtan30°=x33=3x .……………………(4分)∵EC =ED +CD ,AF =AB +BF , ∴33x +110=50+3x .解得x =303.………………………(7分) ∴这条河的宽为303米.………………………………………(8分)25. (本题满分8分)(1)在y =43x +4中,令x =0,得y =4,即BO =4.令y =0,得x =−3,得AO =3,所以AB =5.设点O 到直线AB 的距离为h ,S △A OB =12AO ×BO =12AB ×h ,h =2.4. …………………(3分)(2)设⊙C 与直线l 相切于点D ,连结CD ,则CD ⊥AB ,因为AO ⊥BO ,所以∠BDC =∠BOA =90°.因为∠ABO =∠CBD ,所以△ABO ∽△CBD ,所以AO CDAB BC =,由(1)得AO =3,BO =4,AB =5, 所以5BC =13,所以BC =53.所以OC =4-53=73,所以t 1=OC =73(秒)………………………………………(5分)根据对称性可知,BC’=BC =53,所以OC’=4+53=173,所以t 2=173(秒). …………………(7分)当⊙C 与直线l 相切时,t =73秒或173秒………………………………………………………(8分)26. (本题满分10分)解:直接应用: 1, 2 ……………………………………………………(2分) 变形应用解:∵221(1)44(1)(1)11y x x x y x x ++==++>-++∴21yy有最小值为4=,当1x +=1x =时取得该最小值…………………………………(4分)实际应用解:设该汽车平均每千米的运输成本为y 元,则20.001 1.6360x x y x++= ……………(6分) 3603600000.001 1.60.001() 1.6x x x x=++=++,…………………………(8分)∴当600x ==(千米)时, 该汽车平均每千米的运输成本y 最低………………(9分)最低成本为0.001 1.6 2.8⨯=元. ………………………………………………(10分) 27. (本题满分10分) (1)由1102x +=,得到2,x =-∴(2,0)A - 由1132x +=,得到4,x =∴(4,3)B∵23y ax bx =+-经过,A B 两点,∴11,22a b ==-……………………………(2分)设直线,A B 与y 轴交于点E ,则(0,1)E ∵PC ∥y 轴,∴ACP AEO ∠=∠.∴sin sin OA ACP AEO AE ∠=∠=4分)(2)分别过点D ,B 作DF ⊥PC ,垂足分别为F ,G , 在Rt△PDF 中,DF=51PD=−15(m 2−2m −8),而BG=4−m∴21(28)2545PCD PBC m m SDF m S BG m ---+===-……………………………(6分) 当29510PCD PBC S m S+==时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省江阴市暨阳区2013届九年级第一学期期末考试数学试卷(满分130分,考试时间120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的) 1|x ﹣y ﹣3|互为相反数,则x+y 的值为………………………………………………( ) A . 3 B . 9 C . 12 D . 272.某同学对甲、乙、丙、丁四个市场二月份每天的猪肉价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为2222S 8.5S2.5S10.1S 7.4====乙丁甲丙,,,.二月份猪肉价格最稳定的市场是…………………………………………………………………………………………………( )A .甲B .乙C .丙D .丁3.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是…………( )A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠ 4.如图,在平面直角坐标中,等腰梯形ABCD 的下底在x 轴上,且B 点坐标为(4,0),D 点坐标为 (0,3),则AC 长为……………………………………………………………………………………( ) A .4 B .5 C .6 D .不能确定5.已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为……………………( ) A . 15πcm 2 B .3cm 2 C .60πcm D .30πcm 26.在正方形网格中,ABC △的位置如图所示,则A ∠tan 的值为……………………………………( )A .31 B.2C.2D.37.已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①02=+b a ;②abc<0;③042>-ac b ;④8a+c>0.其中正确的有………………( )A .3个B .2个C .1个D .0个8.若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是……………( ) A .m =l B .m >l C .m ≥l D .m ≤l9.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要多长. ………………………………………………… ( ) A .10n B .29+16n 2 C .29n 2+16 D .210n 2+1610.如图,等腰直角三角形△ABD 内接于⊙O,AB 为直径,点C 为劣弧AD 上一点,且AC=4,CD=26,则BC 的长为…………………………………………………………………………………………( ) A .14 B .15 C .16 D .17 二、填空题(本大题共8小题-每小题2分,共16分)11.已知a 、b 为两个连续的整数,且b a <<13,则b a += . 12.已知一组数据:1,3,5,5,6,则这组数据的方差是 。

13.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为 。

14.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB在地面上的投影BC长为24米,则旗杆AB 的高度是 米.(结果保留根号)(第4题) (第6题) (第7题) (第9题) (第10题)15.等腰梯形的腰长为5㎝,它的周长是22㎝,则它的中位线长为 ㎝.16.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB=CD=8,则OP 的长为 ; 17.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为()331212+--=x y ,由此可知铅球推出的距离是 m 。

18.如图,把抛物线221x y=平移得到抛物线m ,抛物线m 经过点A (-6,0(0,0),它的顶点为P ,它的对称轴与抛物线221x y =交于点Q ,则图中阴影部分的面积为___________.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤). 19.(本题满分9分)(1)计算:()1-2221211321⎪⎪⎭⎫⎝⎛--+-⨯(2)解方程:2230x x --=20. (本题满分7分)如图,将□ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F .⑴求证:△ABF≌△ECF⑵若∠AFC=2∠D,连接AC 、BE .求证:四边形ABEC 是矩形.21.(本题满分6分)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x .(1)求实数m 的取值范围;(2)当22120x x -=时,求m 的值.A B CE F (第14题)(第16题)(第22. (本题满分8分)如图,在Rt△ABC 中,∠C=90°,∠ABC 的平分线交AC 于点D ,点O 是AB 上一点,⊙O 过B 、D 两点,且分别交AB 、BC 于点E 、F . (1)求证:AC 是⊙O 的切线;(2)已知AB=10,BC=6,求⊙O 的半径r .23. (本题满分10分)如图,在东西方向的海岸线l 上有一长为1千米的码头MN ,在码头西端M 的正西方向30 千米处有一观察站O .某时刻测得一艘匀速直线航行的轮船位于O 的北偏西30°方向,且与O 相距千米的A 处;经过40分钟,又测得该轮船位于O 的正北方向,且与O 相距20千米的B 处. (1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.24. (本题满分8分)矩形ABCD 中,AD=5,AB=3,将矩形ABCD 沿某直线折叠,使点A 的对应点A′落在线段BC上,再打开得到折痕EF .(1)当A′与B 重合时(如图1),EF= ;当折痕EF 过点D 时(如图2),求线段EF 的长;(2)观察图3和图4,设BA′=x ,①当x 的取值范围是 时,四边形AEA′F 是菱形;②在①的条件下,利用图4证明四边形AEA′F 是菱形.A D EF A D(F) EA D F ADF25.(本题满分9分)如图:已知正方形ABCD的对角线AC长为20cm,半径为1的⊙O1的圆心O1从A点出发以1cm/s的速度向C运动,半径为1的⊙O2的圆心O2从C点出发以2cm/s的速度向A运动且半径同时也以1cm/s的速度不断增大,两圆同时运动,当其中一个圆的圆心运动到AC的端点时,另一个圆也停止运动.(1)当O1运动了几秒时,⊙O1与AD相切?(2)当O2运动了几秒时,⊙O2与CB相切?(3)当O2运动了几秒时,⊙O1与⊙O2相切?26.(本题满分8分)某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)(2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?图1 图227.(本题满分12分)如图,二次函数c bx ax y ++=2的图像交x 轴于(1,0),(2,0)A B -,交y 轴于(0,2)C -,过,A C 画直线。

(1)求二次函数的解析式;(2)若点P 是抛物线上的动点,点Q 是直线x y =上的动点,请判断是否存在以P 、Q 、O 、C 为顶点的四边形为平行四边形,若存在,请求出点Q 的坐标;若不存在,请说明理由; (3)在y 轴右侧的点M 在二次函数图像上,以M 为圆心的圆与直线AC 相切,切点为H 。

且△CHM∽△AOC(点C 与点A 对应),求点M 的坐标。

28.(本小题满分7分)阅读以下材料:对于三个数a b c ,,,用{}M a b c ,,表示这三个数的平均数,用{}min a b c ,,表示这三个数中最小的数.例如:{}123412333M -++-==,,;{}min 1231-=-,,;{}(1)min 121(1).a a a a -⎧-=⎨->-⎩≤;,,解决下列问题:(1)填空:{}min sin 30cos 45tan 30=,, ;(2)①如果{}{}212min 212M x x x x +=+,,,,,求x ;②根据①,你发现了结论:“如果{}{}min M a b c a b c =,,,,,那么 (填a b c ,,的大小关系)”. ③运用②的结论,填空:若{}{}2222min 2222M x y x y x y x y x y x y +++-=+++-,,,,,则x y += . (3)填空:{}2min 1(1)2x x x +--,,的最大值为 .参考答案:1. D2. B3. B4. B5. D6.A7. A8.C9.B 10.C11.7 12.3.2 13.12 14.38 15.6 16.17.9 18.22719.(1)解:原式=21212232-4--++(3分) =21232-++-=33-(2分)(2)31=x ,12-=x (4分)20.证明:⑴∵四边形ABCD 是平行四边形,∴AB∥CD,AB =CD 。

∴∠ABF=∠ECF。

∵EC=DC ,∴AB=EC 。

在△ABF 和△ECF 中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB =EC ,∴△ABF≌△ECF。

(3分)(2)∵AB=EC ,AB∥EC,∴四边形ABEC 是平行四边形。

∴AF=EF , BF =CF 。

∵四边形ABCD 是平行四边形。

(2分)∴∠ABC=∠D。

又∵∠AFC=2∠D,∴∠AFC=2∠ABC。

∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB 。

∴FA=FE =FB =FC ,∴AE=BC 。

∴四边形ABEC 是矩形。

(2分)21.解:(1)由题意有22(21)40m m ∆=--≥, 解得14m ≤.即实数m 的取值范围是14m ≤.(2分) (2)由22120x x -=得1212()()0x x x x +-=.若120x x +=,即(21)0m --=,解得12m =. ∵21>41,12m ∴=不合题意,舍去.(2分) 若120x x -=,即12x x =,0∴∆=,由(1)知14m =.故当22120x x -=时,14m =.(2分) 22.(1)证明:连接OD 。

相关文档
最新文档