兰州市重点中学市联考2019年数学高二年级上学期期末考试试题

合集下载

甘肃省兰州市联片办学2019_2020学年高二语文上学期期末考试试题(含解析)

甘肃省兰州市联片办学2019_2020学年高二语文上学期期末考试试题(含解析)

如果您喜欢这份文档,欢迎下载!祝成绩进步,学习愉快!2019-2020学年度第一学期联片办学期末考试高二年级语文试卷第I卷阅读题一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成下列小题。

“诗教”一词,最早出现于《礼记·经解》之中:“孔子曰:入其国,其教可知也。

其为人也,温柔敦厚,诗教也。

”“温柔敦厚”作为孔子诗教的目标,是指用“以诗化民”的方式,来培育平和、理性、通达的人格,并由个体上升至国家、民族、天下,意在构建一种雅正中和的社会范式。

孔子把诗教作为一种人文教化的途径,对《诗》之义理加以阐发,奠定了儒家诗教观念的原初意蕴。

孔子不但在教育主张上提倡诗教,而且身体力行地从事诗教传播活动。

《论语·泰伯》云:“子曰:兴于诗,立于礼,成于乐。

”诗教在礼乐教化之先,是通向礼乐教化、成为仁人君子的基础和起点。

孔子之贡献在于,使记录了敬神祭祖、讽诵王德的王官之诗同时成为开启后世思想观念的学术之诗。

儒家学人在以诗为教的论诗、释诗的传播活动中融入了儒家的道德理想,诗教遂成为一种学术和思想观念。

以情感为立足点的诗教不同于仅化教条的政治说教。

情感教化如春风化雨,润物无声,最能深入人心。

王一川说:“从‘诗教’的提出和目的,还应当看到中国古代对文化软实力的认识。

有关社会和睦、忠信、孝悌等伦理训诫,不宜直接以强制方式或生硬方式去实施,而需要借助以诗歌为代表的艺术的魅力感染方式来委婉地传达,也就是在‘温柔敦厚’中达到伦理劝诫的效果。

”春秋时期的孔子已经有了初步的“文化软实力”的认识。

孔子评价《关雎》时说“乐而不淫,哀而不伤”,从中可以看出诗教所秉持的情感,认为“哀”与“乐”都是正常合理的情感,但不是个人欲望的无度宣泄,而是合理情志的理性表达,更是一种自我价值的启发。

“诗”不仅是一种语言艺术,更是营造诗意人生与趣味生活、培养高尚人格与高雅情调的资源和途径。

如《论语·先进》中,孔子对于曾皙所描绘的“暮春者,春服既成,冠者五六人,童子六七人,浴乎沂,风乎舞雩,咏而归”的人生理想尤其赞赏。

江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解

江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解
C.若一个回归直线方程 ,则变量 每增加一个单位时, 平均增加3个单位
D.若一组数据2,4, ,8 平均数是5,则该组数据的方差也是5
2.甲、乙两名同学参加校园歌手比赛,7位评委老师给两名同学演唱比赛打分情况的茎叶图如图(单位:分),则甲同学得分的平均数与乙同学得分的中位数之差为
A.1B.2
C.3D.4
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()
A.先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为 ,然后抽取编号为 , , ,…的学生,这种抽样方法是分层抽样法
B.线性回归直线 不一定过样本中心
3.设椭圆C: 的左、右焦点分别为 、 ,P是C上的点, ⊥ ,
∠ = ,则C的离心率为
A. B. C. D.
4.下课后教室里最后还剩下甲、乙、丙三位同学,如果没有2位同学一起走的情况,则第二位走的是甲同学的概率是()
A. B. C. D.
5.设两圆 、 都和两坐标轴相切,且都过点(4,1),则两圆心的距离 =
13.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,而北乡需遣一百零八人,问北乡人数几何?”其意思为:“今有某地北面若干人,西面有7488人,南面有6912人,这三面要征调300人,而北面征调108人(用分层抽样的方法),则北面共有__________人.”
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()

哈尔滨市第三中学2019_2020学年高二数学上学期期末考试试题文含解析

哈尔滨市第三中学2019_2020学年高二数学上学期期末考试试题文含解析
【解析】
∵sina= ,且a为第四象限角,
∴ ,
则 ,
故选D.
3。 四张卡片上分别写有数字 ,若从这四张卡片中随机抽取两张,则抽取的两张卡片上的数字之和为奇数的概率是( )
A. B。 C。 D。
【答案】C
【解析】
【分析】
先确定从这四张卡片中随机抽取两张总事件数,再确定抽取的两张卡片上的数字之和为奇数的事件数,最后根据古典概型概率公式求解.
黑龙江省哈尔滨市第三中学2019—2020学年高二数学上学期期末考试试题 文(含解析)
考试说明:
(1)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考试时间为120分钟;
(2)第Ⅰ卷,第Ⅱ卷试题答案均答在答题卡上,交卷时只交答题卡.
第Ⅰ卷(选择题)
一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.
因此
故选:C
【点睛】本题考查直线与抛物线位置关系,考查基本分析求解能力,属中档题.
第Ⅱ卷(非选择题)
二、填空题பைடு நூலகம்本大题共4小题,将答案填在答题卡相应的位置上.
13。 已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于__________.
【答案】24
【解析】
【分析】
根据扇形面积公式求解.
【详解】扇形的面积为 .
【点睛】本题考查分层抽样方法以及古典概型概率公式,考查基本分析求解能力,属基础题.
19. 如图所示,“8"是在极坐标系Ox中分别以 和 为圆心,外切于点O的两个圆.过O作两条夹角为 的射线分别交⊙C1于O、A两点,交⊙C2于O、B两点.
(1)写出⊙C1与⊙C2的极坐标方程;
(2)求△OAB面积最大值.

2019-2020学年湖北省荆州高二上学期期末考试数学试题(解析版

2019-2020学年湖北省荆州高二上学期期末考试数学试题(解析版

2019-2020学年湖北省荆州中学、宜昌一中两校高二上学期期末考试数学试题一、单选题 1.复数231iz i+=-(i 为虚数单位)的虚部为( ) A .12-B .12i -C .52D .52i 【答案】C【解析】根据复数的除法运算以及复数的概念即可求解. 【详解】()()()()231231511122i i i z i i i i +++===-+--+,故复数的虚部为52,故选:C 【点睛】本题考查了复数的四则运算以及复数的概念,属于基础题. 2.(2,,0)a m =,(1,3,1)b n =-,若a //b ,则m n +=( ) A .6 B .7C .8D .9【答案】B【解析】根据向量共线定理即可求解. 【详解】由a //b ,且(2,,0)a m =,(1,3,1)b n =-, 则存在非零实数λ使得λab ,即()2301m n λλλ⎧=⎪=⎨⎪=-⎩,解得6m =,1n =, 所以7m n +=. 故选:B 【点睛】本题考查了空间向量共线定理,需掌握向量共线定理的内容,属于基础题.3.椭圆2218x y m +=的焦距为4,则m 的值为( )A .12B .4C .12或4D .10或6【答案】C【解析】由椭圆的标准方程222a b c =+即可求解. 【详解】因为双曲线的焦距为24c =,则2c =, 由222a b c =+,当焦点在x 轴上时, 即28212m =+=,解得12m = 当焦点在y 轴上时,即282m =+,解得4m =. 故4m =或12. 故选:C 【点睛】本题考查了椭圆的标准方程,需熟记,,a b c 之间的关系,属于基础题. 4.曲线31233y x x =-+在点(1,43)处的切线的倾斜角为( )A .4πB .3π C .23π D .34π【答案】D【解析】首先对函数31233y x x =-+求导,求出()1f '的值,根据导数的几何意义以及倾斜角与斜率的关系即可求解. 【详解】 由31233y x x =-+,则22y x '=-, 所以21121x y ==-=-',所以切线的斜率为1-,由tan 1k α==-,所以34πα=, 故选:D 【点睛】本题考查了导数的计算以及导数的几何意义、倾斜角与斜率的关系,属于基础题. 5.已知α,β是相异两平面;,m n 是相异两直线,则下列命题中假命题的是 ( )A .若m n ,m α⊥,则n α⊥B .若m α⊥,m β⊥,则αβ∥C .若m α,n αβ=,则m nD .若m α⊥,m β⊂,则αβ⊥ 【答案】C【解析】在A 中,由直线与平面垂直的判定定理可得真假; 在B 中,由平面与平面平行的判定定理可得真假; 在C 中,m 与n 平行或异面;在D 中,由平面与平面垂直的判定定理可得真假. 【详解】解:在A 中:若m n ,m α⊥,则由直线与平面垂直的判定定理得n α⊥,故A 正确;在B 中:若m α⊥,m β⊥,则由平面与平面平行的判定定理得αβ∥,故B 正确; 在C 中:若m α,n αβ=,则m 与n 平行或异面,故C 错误;在D 中:若m α⊥,m β⊂,则由平面与平面垂直的判定定理得αβ⊥,故D 正确. 故选C . 【点睛】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.6.数列{}n a 满足112n n n a a a -+=+,n S 是数列{}n a 的前n 项和,22019,a a 是函数2()65f x x x =-+的两个零点,则2020S 的值为( )A .6B .12C .2020D .6060【答案】D【解析】根据题意判断数列{}n a 为等差数列,由函数的零点与方程根的关系可得220196a a +=,再由等差数列的性质以及等差数列的前n 和的公式即可求解. 【详解】数列{}n a 满足112n n n a a a -+=+,∴数列{}n a 为等差数列,又22019,a a 是函数2()65f x x x =-+的两个零点,即22019,a a 是方程2650x x -+=的两个根,220196a a ∴+=,()()1202022019202020202020606022a a a a S +⋅+⋅∴===,故选:D 【点睛】本题主要考查了等差中项、函数与方程的关系、等差数列的性质以及前n 和的公式,属于基本知识的考查,属于基础题.7.平面直角坐标系内,到点(2,3)A 和直线:280l x y +-=距离相等的点的轨迹是( ) A .直线 B .椭圆 C .双曲线 D .抛物线【答案】A【解析】根据已知判断点A 是否在直线上,即可结合抛物线的定义判断正确选项,据此解答此题,此题属于基础题. 【详解】由题意,点(2,3)A 在直线:280l x y +-=, 即动点到点A 的距离与动点到直线l 的距离相等, 点(2,3)A 满足直线:280l x y +-=方程, 所以动点的轨迹是一条过A 与直线垂直的直线. 故选:A 【点睛】本题考查了抛物线的定义,需注意抛物线定义中满足的条件,属于基础题.8.过点(4,2)P 作圆224x y +=的两条切线,切点分别,A B ,O 为坐标原点,则OAB∆的外接圆方程为( ) A .()()222+1=5x y -- B .()()22+2++1=20x y C .()()224+2=5x y -- D .()()22+4++2=2x y【答案】A【解析】由题意知OA PA ⊥,BO PB ⊥,四边形AOBP 的四个顶点在同一圆上,此圆的直径是OP ,AOB ∆外接圆就是四边形AOBP 的外接圆. 【详解】由题意知,OA PA ⊥,BO PB ⊥,∴四边形AOBP 有一组对角都等于90,∴四边形AOBP 的四个顶点在同一圆上,此圆的直径是OP ,OP 的中点为()2,1,25OP =,∴四边形AOBP 的外接圆方程为()()222+1=5x y --,∴AOB ∆外接圆的方程为()()222+1=5x y --.故选:A 【点睛】本题考查了圆的标准方程,需熟记圆的标准方程的形式,属于基础题.9.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,点0(2,)M y 在抛物线C 上,M 与直线l 相切于点E ,且3EMF π∠=,则M 的半径为( )A .23B .43C .83D .163【答案】C【解析】依据图像运用抛物线的定义及直线与圆相切,可得22222p p ⎛⎫-=+ ⎪⎝⎭,求出p ,进而得到M 的半径.【详解】如图所示,连接ME ,依题意ME l ⊥,过点M 作MH x ⊥轴,垂足为H , 在Rt MFH ∆中,||2||MF FH =, 由抛物线定义可得||||ME MF =,则22222p p ⎛⎫-=+ ⎪⎝⎭,解得43p =, 故M 的半径为8223p +=, 故选C . 【点睛】本题考查抛物线的性质,直线与圆相切,考查逻辑推理,数学运算的核心素养,属于中档题.10.如图,正方形ABCD 沿对角线AC 折叠之后,使得平面BAC ⊥平面DAC ,则二面角B CD A --的余弦值为( )A .2B .12C .3 D .5 【答案】C【解析】设正方形边长为a ,AC 和BD 的交点为O ,过O 作BC 的平行线OE 交CD 于E ,则二面角B CD A --就是BEO ∠,由平面BAC ⊥平面DAC ,在BEO ∆中即可求解. 【详解】设正方形边长为a ,AC 和BD 的交点为O , 过O 作BC 的平行线OE 交CD 于E , 则二面角B CD A --的平面角就是BEO ∠, 因2AO =,12OE a =,且平面BAC ⊥平面DAC ,BO AC ⊥,所以BO OE ⊥,所以222234BE BO OE a =+=,即3BE =,所以32cos 3aOE BEO BE a∠===, 故选: C 【点睛】本题主要考查面面角,解题的关键是作出二面角,考查了学生的空间想象能力,属于中档题.11.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足cos cos b cB C a+=+,8sin bcA=,则ABC ∆的周长的最小值为( ) A .3 B .332+C .4D .442+【答案】D【解析】根据正弦定理边化角求出角90A =,从而可求出8bc =,然后利用基本不等式即可求解. 【详解】 因为cos cos b c B C a +=+,根据正弦定理可得sin sin cos cos sin B CB C A+=+, 所以()()sin sin sin cos sin cos A C A B A B A C +++=+, 所以cos sin cos sin 0A C A B +=,即()cos sin sin 0A C B +=, 在ABC ∆中,sin sin 0C B +≠,故cos 0A =,90A ∴=sin 1A =,则8bc =,所以2222442a b c b c b c bc bc ++=+++≥+=+, 当且仅当b c =时取等号,综上ABC ∆的周长的最小值为442+. 故选:D 【点睛】本题主要考查正弦定理以及基本不等式求最值,注意在利用基本不等式时需验证等号成立的条件,属于基础题. 12.已知双曲线的左、右焦点分别为为双曲线上一点,为双曲线渐近线上一点,均位于第一象限,且,则双曲线的离心率为( )A .B .C .D .【答案】A 【解析】设,则,由题设可得,解之得,故,又由可知点是中点,则,代入双曲线方程可得,即,所以,应选答案A 。

湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

荆州中学高二圆月期末考数学(文科)试题一,选择题:本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.设,则地一个必要不充分款件是()A. B. C. D.【结果】A【思路】【思路】当时,是成立,当成立时,不一定成立,依据必要不充分款件地判定方式,即可求解.【详解】由题意,当时,是成立,当成立时,不一定成立,所以是地必要不充分款件,故选A.【点睛】本题主要考查了必要不充分款件地判定问题,其中解答中熟记必要不充分款件地判定方式是解答本题地关键,着重考查了推理与论证能力,属于基础题.2.已知椭圆长轴在轴上,若焦距为4,则等于()A. 4B. 5C. 7D. 8【结果】8【思路】由椭圆地长轴在y轴上,则a2=m﹣2,b2=8﹣m,c2=a2﹣b2=2m﹣10.由焦距为4,即2c=4,即有c=2.即有2m﹣10=4,解得m=7.故结果为:7.3.已知直线和平面,若,,则过点且平行于地直线()A. 只有一款,不在平面内B. 只有一款,且在平面内C. 有无数款,一定在平面内D. 有无数款,不一定在平面内【结果】B【思路】【思路】假设m是过点P且平行于l地直线,n也是过点P且平行于l地直线,则与平行公理得出地结论矛盾,进而得出结果.【详解】假设过点P且平行于l地直线有两款m与n,则m∥l且n∥l由平行公理得m∥n,这与两款直线m与n相交与点P相矛盾,故过点且平行于地直线只有一款,又因为点P在平面内,所以过点P且平行于l地直线只有一款且在平面内.故选:B【点睛】本题主要考查了空间中直线与直线之间地位置关系,空间中直线与平面地位置关系.过一点有且只有一款直线与已知直线平行.4.已知数列是等差数列,且,则公差()A. B. 4 C. 8 D. 16【结果】B【思路】试题思路:等差数列中考点:等差数列地性质5.“更相减损术”是《九章算术》中记录地一种求最大公约数地算法,按其算理流程有如下程序框图,若输入地,分别为165,66,则输出地为()A. 2B. 3C. 4D. 5【结果】B【思路】【思路】由题中程序框图知,该程序地功能是利用循环结构计算并输出变量地值,模拟程序地运行过程,思路循环中各变量地变化情况,即可得到结果.【详解】由程序框图可知:输入时,满足,则,满足,则,满足,则,不满足,此时输出,故选B.【点睛】本题主要考查了循环结构地程序框图地计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构。

兰州市重点中学九年级上学期期中考试数学试卷及答案解析(共五套)

兰州市重点中学九年级上学期期中考试数学试卷及答案解析(共五套)

兰州市重点中学九年级上学期期中考试数学试卷(一)一、认真选一选1、若a>b,则下列式子正确的是()A、a﹣4>b﹣3B、0.5 a<0.5bC、3+2a>3+2bD、﹣3a>﹣3b2、在平面直角坐标系内,点P(m﹣3,m﹣5)在第三象限,则m的取值范围是()A、m<5B、3<m<5C、m<3D、m<﹣33、如图,在△ABC中,D、E分别是BC、AC边的中点.若DE=3,则AB的长度是()A、9B、5C、6D、44、如果把分式中的a、b都扩大3倍,那么分式的值一定()A、是原来的3倍B、是原来的5倍C、是原来的D、不变5、解关于x的方程产生增根,则常数m的值等于()A、﹣1B、﹣2C、1D、26、如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x的取值范围是()A、x<2B、x>2C、x<﹣1D、x>﹣17、如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是()A、AD=BCB、OA=OCC、AB=CDD、∠ABC+∠BCD=180°8、如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A、1cmB、2cmC、3cmD、4cm9、如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A、30°B、35°C、40°D、50°10、如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A、2cm<OA<5cmB、2cm<OA<8cmC、1cm<OA<4cmD、3cm<OA<8cm二、填空题11、不等式2x﹣3≥0的解集是________.12、要使分式有意义,那么x应满足的条件是________13、分解因式:2x2﹣12x+18=________.14、若分式的值为零,则x=________.15、已知一个多边形中,除去一个内角外,其余内角的和为1160°,则除去的那个内角的度数是________16、已知x2﹣(m﹣2)x+49是完全平方式,则m=________.17、如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是________.18、ABCD的周长是30,AC、BD相交于点O,△OAB的周长比△OBC的周长大3,则AB=________.三、画图题19、如图,按要求画出图形.画出△ABC绕点O顺时针旋转90°的△A2B2C2.四、计算题20、分解因式(1)x2y﹣2xy2+y3(2)m4﹣16n4.21、解不等式组与方程.(1)(2)= .22、先化简,再求值:,其中a= .五、解答题23、如图,平行四边形ABCD中,E、F分别是对角线BD上的两点,且BE=DF,连接AE、AF、CE、CF.四边形AECF是什么样的四边形,说明你的道理.24、如图,在△ABC中,D、E分别是边AB、AC的中点,O是三角形内部一点,连接OB、OC,G、H分别是OC、OB的中点,试说明四边形DEGH是平行四边形.25、小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是36千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.求小明走路线一时的平均速度.26、今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨;(1)该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来;(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选择哪种方案使运费最少,最少运费是多少元?答案解析部分一、<b >认真选一选</b>1、【答案】C【考点】不等式的性质【解析】【解答】解:A、∵a>b,∴a﹣4>b﹣4,故本选项错误;B、∵a>b,0.5>0,∴0.5a>0.5b,故本选项错误;C、∵a>b,∴2a>2b,∴3+2a>3+2b,故本选项正确;D、∵a>b,﹣3<0,∴﹣3a<﹣3b,故本选项错误.故选C.【分析】根据不等式的基本性质对各选项进行逐一分析即可.2、【答案】C【考点】解一元一次不等式组,点的坐标【解析】【解答】解:∵点P(m﹣3,m﹣5)在第三象限,∴ ,解不等式①得,m<3,解不等式②得,m<5,所以,m<3.故选:C.【分析】根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可.3、【答案】C【考点】三角形中位线定理【解析】【解答】解:∵D、E分别是BC、AC边的中点,∴DE是△CAB的中位线,∴AB=2DE=6.故选C.【分析】根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.4、【答案】D【考点】分式的基本性质【解析】【解答】解:根据题意得= = ,∴分式的值不变.故选D.【分析】先把原分式中的a、b用3a、3b替换,然后提取公因式,可知把分式中的a、b都扩大3倍,相当于把分式中的分子分母同时乘以3,故分式的值不变.5、【答案】B【考点】分式方程的增根【解析】【解答】解;方程两边都乘(x﹣1),得x﹣3=m,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=﹣2.故选:B.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.6、【答案】B【考点】一次函数与一元一次不等式【解析】【解答】解:根据题意当x>2时,若y1>y2.故选B.【分析】观察函数图象得到当x>2时,直线y1=ax+b都在直线y2=mx+n的上方,即有y1>y2.7、【答案】C【考点】平行四边形的判定【解析】【解答】解:∵∠DAC=∠ACB,∴AD∥BC,A、根据平行四边形的判定有一组对边平行且相等的四边形是平行四边形,不符合题意;B、可利用对角线互相平分的四边形是平行四边形判断平行四边形,不符合题意;C、可能是等腰梯形,故本选项错误,符合题意;D、根据AD∥BC和∠ABC+∠BAD=180°,能推出符合判断平行四边形的条件,不符合题意.故选C.【分析】根据平行四边形的判定可判断A;根据平行四边形的判定定理判断B即可;根据等腰梯形的等腰可以判断C;根据平行线的判定可判断D.8、【答案】B【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=5cm,AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠AEB=∠BAE,∴BE=AB=3cm,∴EC=BC﹣BE=5﹣3=2cm;故选:B.【分析】由平行四边形的性质和角平分线定义得出∠AEB=∠BAE,证出BE=AB=3cm,得出EC=BC﹣BE=2cm即可.9、【答案】A【考点】平行线的性质,旋转的性质【解析】【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故选A【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.10、【答案】C【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:∵平行四边形ABCD中,AB=3cm,BC=5cm,∴OA=OC= AC,2cm<AC<8cm,∴1cm<OA<4cm.故选:C.【分析】由在平行四边形ABCD中,AB=3cm,BC=5cm,根据平行四边形对角线互相平分与三角形三边关系,即可求得OA=OC= AC,2cm<AC<8cm,继而求得OA 的取值范围.二、<b >填空题</b>11、【答案】x≥【考点】解一元一次不等式【解析】【解答】解:移项得,2x≥3,系数化为1得,x≥ .故答案为:x≥ .【分析】先移项、再把x的系数化为1即可.12、【答案】x≠﹣1【考点】分式有意义的条件【解析】【解答】解:根据题意得,x+1≠0,解得x≠﹣1.故答案为:x≠﹣1.【分析】根据分母不等于0列式计算即可得解.13、【答案】2(x﹣3)2【考点】提公因式法与公式法的综合运用【解析】【解答】解:2x2﹣12x+18,=2(x2﹣6x+9),=2(x﹣3)2.故答案为:2(x﹣3)2.【分析】先提取公因式2,再对余下的多项式利用完全平方公式继续分解.14、【答案】-2【考点】分式的值为零的条件【解析】【解答】解:由分式的值为零的条件得x2﹣4=0,2x﹣4≠0,由x2﹣4=0,得x=2或x=﹣2,由2x﹣4≠0,得x≠2,综上,得x=﹣2,故答案为﹣2.【分析】根据分式的值为零的条件可以求出x的值.15、【答案】100°【考点】多边形内角与外角【解析】【解答】解:∵1160°÷180°=6…80°,又∵100°+80°=180°∴这个内角度数为100°.故答案为:100°.【分析】先用1160°÷180°,看余数是多少,再把余数补成180°.16、【答案】16或﹣12【考点】完全平方公式【解析】【解答】解:∵x2﹣(m﹣2)x+49=x2﹣(m﹣2)x+72,∴﹣(m﹣2)x=±2x•7,解得m=16或m=﹣12.故答案为:16或﹣12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.17、【答案】a<﹣1【考点】解一元一次不等式【解析】【解答】解:∵(a+1)x>a+1的解集为x<1,∴a+1<0,∴a<﹣1.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.18、【答案】9【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OA=OC,OB=OD;又∵△OAB的周长比△OBC的周长大3,∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3,又∵▱ABCD的周长是30,∴AB+BC=15,∴AB=9.故答案为9.【分析】如图:由四边形ABCD是平行四边形,可得AB=CD,BC=AD,OA=OC,OB=OD;又由△OAB的周长比△OBC的周长大3,可得AB﹣BC=3,又因为▱ABCD的周长是30,所以AB+BC=10;解方程组即可求得.三、<b >画图题</b>19、【答案】解:如图,△A2B2C2即为所作.【考点】作图-旋转变换【解析】【分析】利用旋转的性质,画出点A、B、C绕点O顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可.四、<b >计算题</b>20、【答案】(1)解:x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2(2)解:m4﹣16n4=(m2+4n2)(m2﹣4n2)=(m2+4n2)(m+2n)(m﹣2n)【考点】提公因式法与公式法的综合运用【解析】【分析】(1)首先提取公因式y,进而利用完全平方公式分解因式即可;(2)直接利用平方差公式分解因式即可.21、【答案】(1)解:,由①得:x>﹣,由②得:x<1,则不等式组的解集为﹣<x<1(2)解:去分母得:100x+700=30x,移项合并得:70x=﹣700,解得:x=﹣10【考点】解分式方程,解一元一次不等式组【解析】【分析】(1)分别求出不等式组中两不等式的解集,找出解集的公共部分即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.22、【答案】解:原式= • ﹣•=3(a+1)﹣= ﹣===3a+1+ ,当a= 时,原式=3 +1+=3 +1+= +1【考点】分式的化简求值【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.五、<b >解答题</b>23、【答案】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵BE=DF,∴△ABE≌△CDF,∴AE=CF,同理:CE=AF,∴四边形AECF是平行四边形【考点】全等三角形的判定与性质,平行四边形的判定与性质【解析】【分析】由平行四边形的性质可得AB∥CD,AB=CD,已知BE=DF,从而可利用SAS判定△ABE≌△CDF,根据全等三角形的性质可得到AE=CF,同理可得到CE=AF,根据SSS判定△AEF≌△CFE,从而可推出AE∥CF,即可根据有一组对边平行且相等的四边形是平行四边形.24、【答案】解:在△ABC中,∵D、E分别是边AB、AC的中点,∴DE BC,同理,在△OBC中,HG BC,所以,DE HG,所以,四边形DEGH是平行四边形【考点】三角形中位线定理,平行四边形的判定【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DE= BC,GH∥BC且GH= BC,从而得到DE∥GH,DE=GH,再利用一组对边平行且相等的四边形是平行四边形证明即可.25、【答案】解:设路线一的平均车速为xkm/h,则路线一需要的时间是小时,路线二的平均车速是(1+80%)x=1.8xkm/h,根据题意得:﹣= ,﹣= ,解得 x=50,经检验:x=50是原分式方程的解,答:小明走路线一时的平均速度为50km/h【考点】分式方程的应用【解析】【分析】先设路线一的平均车速为xkm/h,根据已知表示出路线一的时间和路线二的平均速度;再根据等量关系式:路线一的时间﹣10分钟=路线二的时间列分式方程,解出即可.26、【答案】(1)解:设安排甲种货车x辆,则安排乙种货车(10﹣x)辆,依题意得解这个不等式组得∴5≤x≤7∵x是整数∴x可取5、6、7,即安排甲、乙两种货车有三种方案:①甲种货车5辆,乙种货车5辆;②甲种货车6辆,乙种货车4辆;③甲种货车7辆,乙种货车3辆(2)解:方法一:由于甲种货车的运费高于乙种货车的运费,两种货车共10辆,所以当甲种货车的数量越少时,总运费就越少,故该果农应选择①运费最少,最少运费是16500元;方法二:方案①需要运费:2000×5+1300×5=16500(元)方案②需要运费:2000×6+1300×4=17200(元)方案③需要运费:2000×7+1300×3=17900(元)∴该果农应选择①运费最少,最少运费是16500元【考点】一元一次不等式组的应用【解析】【分析】(1)根据两种货车可装的荔枝应大于等于30吨和可装的香蕉应大于等于13吨,列出不等式组进行求解;(2)方法一:在所用的两种车的辆数一定时,所需货车的单价费用越低,所需的总费用越少;方法二:将每种方案的总费用算出,进行比较.兰州市重点中学九年级上学期期中考试数学试卷(二)一、选择题1、下列方程是一元二次方程的是()A、x2+2x﹣3B、x2+3=0C、(x2+3)2=9D、2、用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A、(x+2)2=1B、(x﹣2)2=1C、(x+2)2=9D、(x﹣2)2=93、如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()A、B、C、D、4、下列给出的条件中,能判断四边形ABCD是平行四边形的是()A、AB∥CD,AD=BCB、∠B=∠C;∠A=∠DC、AB=AD,CB=CDD、AB=CD,AD=BC5、下列识别图形不正确的是()A、有一个角是直角的平行四边形是矩形B、有三个角是直角的四边形是矩形C、对角线相等的四边形是矩形D、对角线互相平分且相等的四边形是矩形6、如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,那么在下列三角形中,与△EBD相似的三角形是()A、△ABCB、△ADEC、△DABD、△BDC7、如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A、B、C、D、8、若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A、1或4B、﹣1或﹣4C、﹣1或4D、1或﹣49、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是()A、5%B、10%C、15%D、20%10、如图,电灯P在横杆AB的正上方,AB在灯光下的影长为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则点P到AB的距离是()A、mB、mC、mD、m二、填空题11、观察方程(x﹣1)(x+2)=0的解是________.12、方程(x+8)(x﹣1)=﹣5化成一般形式是________.13、如果C是线段AB的黄金分割点,且AC>BC,则有比例线段________.14、方程(2y+1)(2y﹣3)=0的根是________.15、两对角线分别是6cm和8cm的菱形面积是________ cm2,周长是________ cm.16、在△ABC中,D,E分别是AB,AC的中点,DE=4,则BC=________17、关于x的一元二次方程x2﹣3x﹣m=0有两个不相等的实数根,则m的取值范围________.18、若正方形的对角线长为2cm,则它的面积是________ cm2.19、为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼________条.20、如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为________.三、尺规作图题21、如果四边形ABCD的四个顶点坐标分别是A(2,1),B(4,3),C(6,2),D(3,﹣1).试将此四边形缩小为原来的.四、解答题22、解方程.(1)(x﹣1)2=4;(2)x2+3x﹣4=0;(3)4x(2x+1)=3(2x+1);(4)2x2+5x﹣3=0.五、解答题23、在一个布口袋里装有红色、黑色、蓝色和白色的小球各1个,如果闭上眼睛随机地从布袋中取出一个球,记下颜色,放回布袋搅匀,再闭上眼睛随机的再从布袋中取出一个球.求:(1)连续两次恰好都取出红色球的概率;(2)连续两次恰好取出一红、一黑的概率.24、如图,平行四边形ABCD,E,F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.25、如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.26、为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.27、如图,在△ABC中,D,E分别是AB,AC的中点,过点E作EF∥AB,交BC 于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?28、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?答案解析部分一、<b >选择题</b>1、【答案】B【考点】一元二次方程的定义【解析】【解答】解:A、不是方程,错误;B、符合一元二次方程的定义,正确;C、原式可化为x4+6x2=0,是一元四次方程,错误;D、是分式方程,错误.故选B.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:(1)是整式方程;(2)含有一个未知数,且未知数的最高次数是2;(3)二次项系数不为0.以上三个条件必须同时成立,据此即可作出判断.2、【答案】D【考点】解一元二次方程-配方法【解析】【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3、【答案】C【考点】列表法与树状图法【解析】【解答】解:列表得:6种情况,∴两个指针同时落在偶数上的概率是.故选C.【分析】列举出所有情况,看两个指针同时落在偶数上的情况数占总情况数的多少即可.4、【答案】D【考点】平行四边形的判定【解析】【解答】解:A、∵AB∥CD,AD=BC,∴四边形ABCD是平行四边形或梯形;故本选项错误;B、由∠B=∠C,∠A=∠D,不能四边形ABCD是平行四边形;故本选项错误;C、由AB=AD,CB=CD,不能判断四边形ABCD是平行四边形;故本选项错误;D、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形;故本选项正确.故选D.【分析】直接利用平行四边形的判定定理求解即可求得答案.注意掌握排除法在选择题中的应用.5、【答案】C【考点】矩形的判定【解析】【解答】解:A、有一个角是直角的平行四边形是矩形,正确;B、有三个角是直角的四边形是矩形,正确;C、对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形,错误;D、对角线互相平分且相等的四边形是矩形,正确.故选C.【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形,据此判定.6、【答案】C【考点】相似三角形的判定【解析】【解答】解:如右图所示,∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,又∵BD是∠ABC的平分线,∴∠ABD=∠CBD=36°,∵DE∥BC,∴∠EDB=∠CBD=36°,即∠A=∠BDE,∠ABD=∠DBE,∴△ABD∽△DBE,故选C.【分析】由于∠A=36°,AB=AC,易求∠ABC=∠C=72°,而BD是角平分线,易求∠ABD=∠CBD=36°,又DE∥BC,那么有∠EDB=∠CBD=36°,即∠A=∠BDE,∠ABD=∠DBE,从而可证△ABD∽△DBE.7、【答案】D【考点】平行四边形的性质,相似三角形的判定与性质【解析】【解答】解:∵AD∥BC∴∵CD∥BE∴△CDF∽△EBC∴ ,∴∵AD∥BC∴△AEF∽△EBC∴∴D错误.故选D.【分析】根据平行四边形的性质和相似三角形的性质求解.8、【答案】B【考点】一元二次方程的解【解析】【解答】解:∵x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,∴4+5a+a2=0,∴(a+1)(a+4)=0,解得a1=﹣1,a2=﹣4,故选:B.【分析】将x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0,再解关于a的一元二次方程即可.9、【答案】B【考点】一元二次方程的应用【解析】【解答】解:设平均每次降价的百分率是x,根据题意得50(1﹣x)2=40.5解得:x1=1.9(不合题意舍去),x2=0.1,∴x=0.1.故选B.【分析】降低后的价格=降低前的价格×(1﹣降低率),如果设平均每次降价x,则第一次降低后的价格是50(1﹣x),那么第二次后的价格是50(1﹣x)2,即可列出方程求解.10、【答案】C【考点】平行线分线段成比例,相似三角形的判定与性质【解析】【解答】解:设点P到AB的距离是xm∵AB∥CD∴△ABP∽△CDP∴∴x=故选C.【分析】由平行得到两三角形相似,根据相似三角形的对应高的比等于相似比求解.二、<b >填空题</b>11、【答案】1或﹣2【考点】解一元二次方程-因式分解法【解析】【解答】解:∵(x﹣1)(x+2)=0∴x﹣1=0或x+2=0∴x1=1,x2=﹣2【分析】本方程的左边为两个一次因式相乘,右边为0,所以得方程x﹣1=0或x+2=0,直接解答即可.12、【答案】x2+7x﹣3=0【考点】一元二次方程的定义,一元二次方程的解【解析】【解答】解:x2﹣x+8x﹣8+5=0,x2+7x﹣3=0,故答案为:x2+7x﹣3=0.【分析】把方程左边的因式相乘,再把右边的常数项移到左边,合并同类项即可.13、【答案】【考点】黄金分割【解析】【解答】解:C是线段AB的黄金分割点,且AC>BC,根据线段黄金分割的定义,则有比例线段(形式不唯一).【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.14、【答案】y1=﹣,y2=【考点】解一元二次方程-因式分解法【解析】【解答】解:∵(2y+1)(2y﹣3)=0,∴2y+1=0或2y﹣3=0,解得y1=- ,y2= .【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求得.15、【答案】24①20【考点】菱形的性质【解析】【解答】解:菱形面积是6×8÷2=24cm2;∵菱形的对角线互相垂直平分,根据勾股定理可得,边长为5cm,则周长是20cm.故答案为24,20.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积,利用勾股定理求得其边长,从而不难求得其周长.16、【答案】8【考点】三角形中位线定理【解析】【解答】解:如图所示,∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵DE=4,∴BC=2DE=2×4=8.故答案为:8.【分析】先根据题意画出图形,由D、E分别是AB、AC的中点可知,DE是△ABC 的中位线,根据三角形中位线定理解答即可.17、【答案】m>﹣【考点】根的判别式【解析】【解答】解:∵方程有两个不相等的实数根,a=1,b=﹣3,c=﹣m∴△=b2﹣4ac=(﹣3)2﹣4×1×(﹣m)>0,解得m>﹣,故答案为:m>﹣.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于m 的不等式,求出m的取值范围.18、【答案】2【考点】正方形的性质【解析】【解答】解:∵四边形ABCD是正方形,∴AO=BO= AC=1cm,∠AOB=90°,由勾股定理得,AB= cm,=()2=2cm2.S正故答案为2.【分析】根据正方形的性质,对角线平分、相等、垂直且平分每一组对角求解即可.19、【答案】800【考点】用样本估计总体【解析】【解答】解:设湖里有鱼x条,则,解可得x=800.故答案为:800.【分析】第二次捕得200条所占总体的比例=标记的鱼25条所占有标记的总数的比例,据此直接解答.20、【答案】(22﹣x)(17﹣x)=300【考点】一元二次方程的应用【解析】【解答】解:设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,故答案为:(22﹣x)(17﹣x)=300.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.三、<b >尺规作图题</b>21、【答案】解:如图所示:四边形A′B′C′D′即为所求.【考点】作图-位似变换【解析】【分析】直接利用位似图形的性质分别得出对应点位置,进而得出答案.四、<b >解答题</b>22、【答案】(1)解:x﹣1=±2,即x﹣1=2或x﹣1=﹣2,解得:x1=﹣1,x2=3(2)解:因式分解可得:(x﹣1)(x+4)=0,∴x﹣1=0或x+4=0,解得:x1=﹣4,x2=1(3)解:4x(2x+1)﹣3(2x+1)=0,(2x+1)(4x﹣3)=0,∴2x+1=0或4x﹣3=0,解得:x=﹣或x=(4)解:因式分解可得(x+3)(2x﹣1)=0,∴x+3=或2x﹣1=0,解得:x= 或x=﹣3【考点】解一元二次方程-直接开平方法,解一元二次方程-因式分解法【解析】【分析】(1)直接开平方法求解可得;(2)因式分解法求解可得;(3)因式分解法求解可得;(4)十字相乘法因式分解可得.五、<b >解答题</b>23、【答案】(1)解:画树状图得:∴一共有16种等可能的结果,连续两次恰好都取出红色球的有1种情况,∴连续两次恰好都取出红色球的概率为:(2)解:∵连续两次恰好取出一红、一黑的有2种情况,∴连续两次恰好取出一红、一黑的概率为:=【考点】列表法与树状图法【解析】【分析】(1)首先根据题意画树状图,然后根据树状图求得所有等可能的结果与连续两次恰好都取出红色球的情况数,再根据概率公式求解即可求得答案;(2)根据(1)中的树状图求得连续两次恰好取出一红、一黑的情况数,然后根据概率公式求解即可求得答案.24、【答案】证明:连接AC交BD于点O,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD.∵BE=DF,∴OE=OF.∴四边形AECF为平行四边形.【考点】平行四边形的判定与性质【解析】【分析】根据两条对角线相互平分的四边形是平行四边形即可证明四边形AECF是平行四边形.25、【答案】证明:∵矩形ABCD中,AB∥CD,∴∠BAF=∠AED.∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D=90°.∴△ABF∽△EAD【考点】矩形的性质,相似三角形的判定【解析】【分析】根据两角对应相等的两个三角形相似可解.26、【答案】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴ ,,解得= (米).答:两岸间的大致距离为100米【考点】相似三角形的应用【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.27、【答案】(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形(2)解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D是AB的中点,∴BD= AB,∵DE是△ABC的中位线,∴DE= BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形【考点】三角形中位线定理,平行四边形的判定,菱形的判定【解析】【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.28、【答案】解:设每千克水果应涨价x元,依题意得方程:(500﹣20x)(10+x)=6000,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10.要使顾客得到实惠,应取x=5.答:每千克水果应涨价5元【考点】一元二次方程的应用【解析】【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.兰州市重点中学九年级上学期期中考试数学试卷(三)一、选择题1、下列图形中,是中心对称图形的是()A、 B、 C、 D、2、方程:①2x2﹣=1,②2x2﹣5xy+y2=0,③7x2+1=0,④ =0中,一元二次方程是()A、①和②B、②和③C、③和④D、①和③3、下列语句中,正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A、1个B、2个C、3个D、4个4、若c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,则c+b的值为()A、1B、﹣1C、2D、﹣25、已知关于x的一元二次方程(k﹣1)x2﹣x+ =0有实数根,则k的取值范围是()A、k为任意实数B、k≠1C、k≥0D、k≥0且k≠16、抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A、y=3(x﹣1)2﹣2B、y=3(x+1)2﹣2C、y=3(x+1)2+2D、y=3(x﹣1)2+27、已知三角形两边的长分别是2和3,第三边的长是方程x2﹣8x+12=0的根,则这个三角形的周长为()A、7B、11C、7或11D、8或98、已知二次函数y=2x2+4x﹣5,设自变量的值分别为x1、x2、x3,且﹣1<x1<x2<x3,则对应的函数值y1、y2、y3的大小关系为()。

湖北省宜昌市第一中学2018-2019学年高二上学期期末考试数学(理)试题

湖北省宜昌市第一中学2018-2019学年高二上学期期末考试数学(理)试题

高二圆月期末考数学试题(理科)一,选择题:本大题共12步题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.若,,则是地 ( )A .充分非必要款件B .必要非充分款件C .充要款件D .非充分非必要款件2.向量=, =,若, 且,则地值为( )A . B .C . D .3.若两直线与平行,则它们之间地距离为( )A .B .C .D.4.某中学高二(5)班共有学生56人,座号分别为1,2,3,…,56,现依据座号,用系统抽样地方式,抽取一个容量为4地样本.已知3号,17号,45号同学在样本中,那么样本中另外一个同学地座号是( )A.30B.31C.32D.335.若直线和圆O :没有交点,则过点地直线与椭圆地交点个数为( )A .至多一个 B .0个 C .1个 D .2个6.某班班会准备从含甲,乙地6名学生中选取4人发言,要求甲,乙2人中至少有一人参加,且若甲,乙同时参加,则他们发言时顺序不能相邻,那么不同地发言顺序地种数为( )A .720B .520C .600D .2647.圆与圆地公共弦长为( )A C ..8.一个算法地程序框图如图所示,该程序输出地结果为,则空白处应填入地款件是( )0>x 0>y 1>+y x 122>+y x a (1,2,)x b (2,,1)y -||a a b ⊥x y +2-21-10343=++y x 016=++my x 5522552214mx ny +=224x y +=(,)m n 22194x y +=2250x y +=22126400x y x y +--+=5536A. B. C. D.9.函数地图象向左平移个单位后为偶函数,设数列地通项公式为,则数列地前2019项之和为( )A. 0B.1C.D. 210.如图,在四棱锥中,侧面为正三角形,底面为正方形,侧面底面,为底面内地一个动点,且满足,则点在正方形内地轨迹为( )A .B .C .D .11.春节期间,5位同学各自随机从“三峡明珠,山水宜昌”,“荆楚门户,秀丽荆门”,“三国故里,风韵荆州”三个城市中选择一个旅游,则三个城市都有人选地概率是( )A.B.C.D.12.椭圆地右焦点为,其右准线与轴地交点为,在椭圆上存在点满足线段地垂直平分线过点,则椭圆离心率地取值范围是( )A .B . C.D .二,填空题:本大题共4小题,每小题5分,共20分.把结果填在题中横一上.?9≤i ?6≤i ?9≥i ?8≤i ()sin(2)(2f x x πϕϕ=+<6π{}n a ()6n n a f π={}n a 32P ABCD -PAD ABCD PAD ⊥ABCD M ABCD MP MC =M ABCD 50812081811252712522221(0)x y a b a b+=>>F A PAP F 1(0,]21,1)-1[,1)213.已知变量满足约束款件,则y x z +=4地最大值为 .14.给下面三个结论:○1命题“”地否定是“”。

应县第一中学校高二数学上学期期末考试试题理含解析

应县第一中学校高二数学上学期期末考试试题理含解析
【点睛】本题考查了指数函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.
14.已知p:(x-m)2〉3(x-m)是q:x2+3x-4<0的必要不充分条件,则实数m的取值范围为________.
【答案】{m|m≥1或m≤-7}
【解析】
由命题p中的不等式(x-m)2〉3(x-m)变形,得(x-m)(x-m-3)>0,解得x〉m+3或x〈m;
【详解】双曲线 : 的右焦点为 , 由 ,可得直线 的方程为 , , 设直线 与双曲线相切,且切点为左支上一点, 联立 ,可得 ,
由 , 解得 (4舍去),
可得 到直线 的距离为 ,
即有 的面积Байду номын сангаас最小值为 .
故答案为: .
【点睛】本题考查三角形的面积的最小值的求法,注意运用联立直线方程和双曲线方程,运用判别式为0,考查化简整理的运算能力,属于中档题.
【详解】(Ⅰ)当 t=1 时,
≤3 在[1,+∞)上恒成立,故命题 q 为真命题.
(Ⅱ)若 p∨q 为假命题,则 p,q 都是假命题.
当 p 为假命题时,Δ= -4<0,解得-1〈t〈1;
当 q 为真命题时, ≤4 -1,即 -1≥0,解得 t≤ 或 t≥
∴当 q 为假命题时,
∴t 的取值范围是 .
所以圆心到直线的距离
可解得 ,所以切线方程为
当在x轴与y轴上的截距不为0时,设切线方程为
所以 ,解得 或 (舍),即切线方程为
所以共有3条切线方程
所以选C
【点睛】本题考查了点到直线距离 简单应用,直线与圆的位置关系,属于基础题.
6.给出下列两个命题,命题 “ "是“ ”的充分不必要条件;命题q:函数 是奇函数,则下列命题是真命题的是( )

江苏省连云港市2019_2020学年高二数学上学期期末考试试题含解析

江苏省连云港市2019_2020学年高二数学上学期期末考试试题含解析
【点睛】本题考查了向量平行和垂直的性质等,属于基础题。
11.已知p,q都是r的充分条件,s是r的必要条件,q是s的必要条件,则( )
A。p是q的既不充分也不必要条件B。p是s的充分条件
C。r是q的必要不充分条件D.s是q的充要条件
【答案】BD
【解析】
【分析】
逐项列出每个条件,然后根据充分条件和必要条件的概念判断即可。
联立 和 消去 得 ,化简得
所以 , .故 .
故答案为:(1) ; (2)
【点睛】本题考查椭圆的基本概念还有直线和圆锥曲线的相交弦,属于中档题。
16.已知数列 的前n项和为 , , ( ),则 =_______.
【答案】2020
【解析】
【分析】
可以通过给出的递推公式做差来求出此数列相邻两项和,最后凑出前n项和的形式,
根据椭圆定义和向量的数量积运算,逐一推导,将每个选项验证一下.
【详解】椭圆长轴长为 ,根据椭圆定义 ,故选A; 设P是椭圆C的任意一点,则 ,所以 ,B错误;
,而 ,所以 ,C正确; ,又根据椭圆性质有 ,所以 ,D正确。故选:ACD.
【点睛】本题考查椭圆定义和向量的数量积运算,是一道不错的综合题。
【答案】112
【解析】
【分析】
由“毎天走的路程为前一天的一半"可知,这个人每天走的路程满足等比数列的特点,且 ,公比 ,由此可解出 ,根据 得出 。
【详解】设第 天走了 步,又因为毎天走的路程为前一天的一半,所以 ,根据题意 ,故 ,解得 ,所以 。
故答案为:112
【点睛】此题考查了等比数列的应用,根据实际问题建立数学模型,然后再用等比数列求和公式求解,属于中档题。
【解析】
【分析】

河北省张家口市第一中学2018-2019学年高二上学期期末考试数学(理)试题

河北省张家口市第一中学2018-2019学年高二上学期期末考试数学(理)试题

2018-2019学上学期高二期末考试数学(理)试题一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.已知集合{}220A x x x =--<,{}2,1,0,1,2B =--,则A B = ( )A.{}2,1,0-- B.{}1,0,1- C.{}0,1 D.{}0,1,22.若复数z 满足121zi i+=+,其中i 为虚数单位,z 表示复数z 地共轭复数,则z =( )A.3i-- B.3i - C.3i + D.3i-+3.如图所示地长方形地长为2,宽为1,在长方形内撒一把豆子(豆子大小忽略不计),然后统计知豆子地总数为m 粒,其中落在飞鸟图案中地豆子有n 粒,据此请你估计图中飞鸟图案地面积约为( )A.n mB.2n mC.m nD.2m n4. 按照程序框图(如右图)执行,第4个输出地数是( )A .4 B .5 C .6 D .75.设()0,90a ΰ°,若()3sin 7525a +=-°,则()()sin 15sin 75a a +×-=°°( )A.110C.110-D.-6.在三棱柱111ABC A B C -中,若AB a = ,AC b = ,1AA c = ,则1(C B = )A .a b c +-B .a b c --C .a b c -+-D .a b c--+ 7.已知三棱锥A BCD -中,ABD △与BCD △是边长为2地等边三角形且二面角A BD C --为直二面角,则三棱锥A BCD -地外接球地表面积为( )A.103p B.5p C.6p D.203p 8.执行如图所示地程序框图(其中mod10b c =表示b 等于c 除以10地余数),则输出地b 为( )A.2B.4C.6D.89.某几何体是由一个三棱柱和一个三棱锥构成地,其三视图如图所示,则该几何体地体积为( )A.43B.32C.53D.11610.已知双曲线224x y -=,1F 是左焦点,1P ,2P 是右支上两个动点,则111212F P F P PP +-地最小值是( )A.4B.6C.8D.1611.已知0x >,0y >,且3622x y +=.若247x y m m +>-恒成立,则m 地取值范围为( )A .(3,4)B .(4,3)- C.(,3)(4,)-∞+∞ D .(,4)(3,)-∞--+∞ 12.已知0a >且1a ¹,若当1x ³时,不等式x a ax ³恒成立,则a 地最小值是( )A.eB.1eeC.2D.ln 2二,填空题(每题5分,满分20分,将结果填在答题纸上)13.正三角形ABC 地边长为1,G 是其重心,则AB AG ×=.14.14.命题“当0c >时,若a b >,则ac bc >.”地逆命题是 .15.已知椭圆()222210x y a b a b+=>>,1F 和2F 是椭圆地左,右焦点,过1F 地直线交椭圆于()11,A x y ,()22,B x y 两点,若2ABF △地内切圆半径为1,122F F =,123y y -=,则椭圆离心率为.16.如图,在三棱锥P ABC -,ABC ∆为等边三角形,PAC ∆为等腰直角三角形,4PA PC ==,平面PAC ⊥平面ABC ,D 为AB 地中点,则异面直线AC 与PD 所成角地余弦值为 .三,解答题 (本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.已知数列{}n a 是等差数列,21a t t =-,24a =,23a t t =+.(1)求数列{}n a 地通项公式。

2018-2019学年上学期高二数学12月月考试题含解析(1690)

2018-2019学年上学期高二数学12月月考试题含解析(1690)

铁门关市第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1B .2C .3D .42. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+,则当14x y+取最小值时,CM CN ⋅=( )A .6B .5C .4D .33. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .4. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.5. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .26. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.7. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形8. 与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°9. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( ) A .2017 B .﹣8 C .D .10.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A .80B .40C .60D .2011.某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱12.设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x ∈R 恒成立,则( ) A .f (2)>e 2f (0),f B .f (2)<e 2f (0),f C .f (2)>e 2f (0),fD .f (2)<e 2f (0),f二、填空题13.经过A (﹣3,1),且平行于y 轴的直线方程为 .14.-23311+log 6-log 42()= . 15.如图是正方体的平面展开图,则在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线;③CN 与BM 成60︒角;④DM 与BN 是异面直线.以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).16.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.18.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )A .2B .3C .2D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.三、解答题19.已知f (x )=|﹣x|﹣|+x|(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围.20.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.21.设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=a f(x)﹣1(a>0且a≠1).(Ⅰ)求k的值;(Ⅱ)求g(x)在[﹣1,2]上的最大值;(Ⅲ)当时,g(x)≤t2﹣2mt+1对所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求实数t的取值范围.22.已知函数f(x)=.(1)求f(x)的定义域;(2)判断并证明f(x)的奇偶性;(3)求证:f()=﹣f(x).23.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.24.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.铁门关市第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2, 故选B .2. 【答案】D 【解析】试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设BM k B A =,则,1x k y k =-=-,可得1x y +=,当14x y+取最小值时,()141445x yx y x y x y y x⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此时21,33y x ==,将()1,CN 2CM xCA yCB CA CB =+=+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫⋅=++⋅=+=+= ⎪⎝⎭.故本题答案选D.考点:1.向量的线性运算;2.基本不等式. 3. 【答案】 D【解析】解:A 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,A 不正确;B 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,B 不正确;C 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=log x在定义域上是增函数,C 不正确;D 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f(x )=logx 在定义域上是减函数,D 正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.4. 【答案】D 【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.5.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.6.【答案】B7.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.8.【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)即:k360°+257°,(k∈Z)故选C【点评】本题考查终边相同的角,是基础题.9.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.10.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.11.【答案】A【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.12.【答案】B【解析】解:∵F(x)=,∴函数的导数F′(x)==,∵f′(x)<f(x),∴F′(x)<0,即函数F(x)是减函数,则F(0)>F(2),F(0)>F<e2f(0),f,故选:B二、填空题13.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.14.【答案】33 2【解析】试题分析:原式=233331334log log16log16log1622+=+=+=+=。

陕西省西安中学2019_2020学年高二数学上学期期末考试试题理(含解析)

陕西省西安中学2019_2020学年高二数学上学期期末考试试题理(含解析)

西安中学2019-2020学年度第一学期期末考试高二数学(理)一、选择题(共12小题;共60分) 1.抛物线y =4x 2的焦点坐标是( ) A. (0,1)B. (1,0)C. 1(0,)16D.1(,0)16【答案】C 【解析】 【分析】将抛物线方程化为标准形式,即可得到焦点坐标.【详解】抛物线24y x =的标准方程为214x y =,即18p =,开口向上,焦点在y 轴的正半轴上,故焦点坐标为10,16⎛⎫⎪⎝⎭.故选:C.【点睛】本题考查抛物线的标准方程,把抛物线方程化为标准形式是解题的关键,属于基础题.2.已知(2,1,2),(4,2,)a b x =-=-v v ,且//a b r r ,则x=( )A. 5B. 4C. -4D. -5【答案】C 【解析】 【分析】由向量平行,坐标对应成比例可求得x. 【详解】由题意可知,因为//a b rr,所以21242x-==-,所以x=-4,选C. 【点睛】本题考查空间向量平行的坐标关系,两向量平行,坐标对应成比例. 3.给出下列命题:①若空间向量,a b r r 满足a b =r r ,则a b =r r ;②空间任意两个单位向量必相等;③对于非零向量c r,由a c b c ⋅=⋅r r rr,则a b =rr;④在向量的数量积运算中()()a b c a b c ⋅⋅=⋅⋅r r r r r r.其中假.命题的个数是( ) A 1 B. 2C. 3D. 4【答案】D 【解析】 【分析】结合向量的性质,对四个命题逐个分析,可选出答案.【详解】对于①,空间向量,a b rr 的方向不一定相同,即a b =rr不一定成立,故①错误; 对于②,单位向量的方向不一定相同,故②错误;对于③,取()0,0,0a =r ,()1,0,0b =r ,()0,1,0c =r ,满足0a c b c ⋅=⋅=r r rr ,且0c ≠r r ,但是a b ≠r r ,故③错误;对于④,因为a b ⋅r r 和b c ⋅r r 都是常数,所以()a b c ⋅⋅r r r 和()a b c ⋅⋅r r r 表示两个向量,若a r 和c r 方向不同,则()a b c ⋅⋅r r r 和()a b c ⋅⋅r r r不相等,故④错误.故选:D.【点睛】本题考查向量的概念与性质,考查向量的数量积,考查学生的推理论证能力,属于基础题.4.下列命题,正确的是( )A. 命题“0x R ∃∈,使得2010x -<”的否定是“x R ∀∈,均有210x ->”B. 命题“存在四边相等的空间四边形不是正方形”,该命题是假命题C. 命题“若22x y =,则x y =”的逆否命题是真命题D. 命题“若3x =,则2230x x --=”的否命题是“若3x ≠,则2230x x --≠” 【答案】D 【解析】对于选项A,正确的是“,x R ∀∈ 均有210x -≥”; 对于选项B,命题是真命题,存在四边相等的空间四边形不是正方形,比如正四面体,选项B 错; 对于选项C,由于原命题为假命题,所以其逆否命题为假命题,选项C 错; 对于选项D,从否命题的形式上看,是正确的.故选D. 点睛:本题以命题的真假判断应用为载体, 考查了四种命题, 特称命题等知识点,属于中档题. 解题时要认真审题, 仔细解答.5.过抛物线26y x =的焦点F 作直线交抛物线于()11,A x y ,()22,B x y 两点,如果126x x +=,那么||AB =( )A. 10B. 9C. 6D. 4【答案】B 【解析】 【分析】依据抛物线的定义,可以求出点A ,B 到准线距离,即可求得AB 的长. 【详解】抛物线26y x =的准线方程是32x =-,所以132AF x =+, 232BF x =+,1239AB AF BF x x =+=++=,故选B . 【点睛】本题主要考查抛物线定义的应用以及过焦点弦的弦长求法.6.设,a b r r 是非零向量,则“存在实数λ,使得λa b =r r”是“a b a b +=+r r r r ”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B 【解析】 【分析】由题意结合向量共线的性质分类讨论充分性和必要性是否成立即可. 【详解】存在实数λ,使得λa b =r r,说明向量,a b r r 共线,当,a b r r同向时,a b a b +=+r r r r 成立, 当,a b r r反向时,a b a b +=+r r r r 不成立,所以,充分性不成立.当a b a b +=+r r r r 成立时,有,a b r r 同向,存在实数λ,使得λa b =r r成立,必要性成立,即“存在实数λ,使得λa b =r r”是“a b a b +=+r r r r ”的必要而不充分条件.故选B .【点睛】本题主要考查向量共线的充分条件与必要条件,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.7.椭圆221102x y m m +=--的焦距为4,则m 等于( )A. 4B. 8C. 4或8D. 12【答案】C 【解析】 【分析】分焦点在x 轴上和y 轴上两种情况讨论,分别求出2a 、2b 的表达式,结合2224a b c +==可求出答案.【详解】因为221102x ym m +=--为椭圆,所以10020102m m m m ->⎧⎪->⎨⎪-≠-⎩,即()()2,66,10m ∈U , 若椭圆的焦点在x 轴上,则210a m =-,22b m =-,故()21021224c m m m =---=-=,解得4m =,符合题意;若椭圆的焦点在y 轴上,则22a m =-,210b m =-,故()22102124c m m m =---=-=,解得8m =,符合题意.故选:C.【点睛】本题考查椭圆的性质,考查学生的计算求解能力,属于基础题.8.(2016新课标全国Ⅱ理科)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为B.32D. 2【答案】A【解析】试题分析:由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.9.已知点A(0,1,0),B(-1,0,-1),C(2,1,1),点P(x,0,z),若PA⊥平面ABC ,则点P 的坐标为( ) A. (1,0,-2) B. (1,0,2) C. (-1,0,2) D. (2,0,-1)【答案】C 【解析】 【分析】利用PA u u u r ⊥AB u u u r ,PA u u u r ⊥AC u u ur ⇔0PA AB PA AC ⋅=⋅=u u u r u u u r u u u r u u u r .即可得出.【详解】∵()111AB =---u u u r ,,,()201AC =u u u r ,,,()1PA x z =--u u u r,,. ∵PA u u u r ⊥AB u u u r ,PA u u u r ⊥AC u u u r ,∴0PA AB PA AC ⋅=⋅=u u u r u u u r u u u r u u u r.∴1020x z x z -+=⎧⎨--=⎩,解得12x z =⎧⎨=-⎩.∴P (-1,0,2) . 故选C .【点睛】本题考查向量数量积与垂直的关系,考查运算能力,属于基础题.10.已知12,F F 是椭圆()222210x y a b a b+=>>的两焦点,P 是椭圆上任意一点,过一焦点引12F PF ∠的外角平分线的垂线,垂足为Q ,则动点Q 的轨迹为( ▲ )A. 圆B. 椭圆C. 双曲线D. 抛物线【答案】A 【解析】【详解】不妨设过焦点1F 引12F PF ∠的外角平分线的垂线,垂足为Q ,延长F 1Q 交F 2P 与M 点,连OQ ,则21211()=22OQ F M F P PF a ==+,所以动点Q 的轨迹为圆,选A. 11.如图所示,直三棱柱111ABC A B C -的侧棱长为3,底面边长11111A C B C ==,且11190A C B ∠=o,D 点在棱1AA 上且12AD DA =,P 点在棱1C C 上,则1PD PB ⋅u u u r u u u r的最小值为( )A.52B. 14-C.14D. 52-【答案】B 【解析】 【分析】由题易知1,,AC BC CC 两两垂直,以C 为坐标原点,建立如图所示空间直角坐标系,设()03PC a a =≤≤,可知()0,0,P a ,进而可得1,PD PB u u u r u u u r的坐标,然后求得1PD PB ⋅u u u r u u u r 的表达式,求出最小值即可.【详解】由题意可知,1,,AC BC CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系,则()10,1,3B ,()1,0,2D ,设()03PC a a =≤≤,则()0,0,P a ,所以()1,0,2P a D =-u u u r ,()10,1,3a PB =-u u u r,则()()2151 002324a a aPD PB⎛⎫=++--=--⎪⎝⋅⎭u u u r u u u r,当52a=时,1PD PB⋅u u u r u u u r取得最小值14-.故选:B.【点睛】本题考查两个向量的数量积的应用,考查向量的坐标运算,考查学生的计算求解能力,属于中档题.12.已知椭圆2222:1(0)x yE a ba b+=>>的右焦点为F.短轴的一个端点为M,直线:340l x y-=交椭圆E于,A B两点.若4AF BF+=,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是()A.3B.3(0,]4C.3D.3[,1)4【答案】A【解析】试题分析:设1F是椭圆的左焦点,由于直线:340l x y-=过原点,因此,A B两点关于原点对称,从而1AF BF是平行四边形,所以14BF BF AF BF+=+=,即24a=,2a=,设(0,)M b,则45bd=,所以4455b≥,1b≥,即12b≤<,又22224c a b b=-=-,所以03c<≤3ca<≤.故选A.考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得,a c关系或范围,解题的关键是利用对称性得出AF BF +就是2a ,从而得2a =,于是只有由点到直线的距离得出b 的范围,就得出c 的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.二、填空题(共4小题;共20分)13.O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB OC t =++u u u r u u u r u u u r u u u r,若P ,A ,B ,C 四点共面,则实数t =______.【答案】18【解析】 【分析】根据四点共面的充要条件即可求出t 的值.【详解】P ,A ,B ,C 四点共面,且3148OP OA OB OC t =++u u u r u u u r u u u r u u u r,31148t ++=,解得18t =. 故答案为: 18【点睛】本题考查四点共面,掌握向量共面的充要条件是解题的关键,属于基础题.14.设P 是椭圆221169x y +=上一点,12,F F 分别是椭圆的左、右焦点,若12||.||12PF PF =,则12F PF ∠的大小_____. 【答案】60o 【解析】 【分析】1PF m =,2PF n =,利用椭圆的定义、结合余弦定理、已知条件,可得22122812282m n a mn m n mncos F PF+==⎧⎪=⎨⎪=+-∠⎩,解得121cos 2F PF ∠=,从而可得结果.【详解】椭圆221 169xy+=,可得28a=,设1PF m=,2PF n=,可得2221228124282m n amnc m n mncos F PF+==⎧⎪=⎨⎪==+-∠⎩,化简可得:121cos2F PF∠=,1260F PF∴∠=o,故答案为60o.【点睛】本题主要考查椭圆的定义以及余弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cosa b c bc A=+-;(2)222cos2b c aAbc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用.15.如图,二面角lαβ--等于120︒,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC l⊥,BD l⊥,且1AB AC BD===,则CD的长等于______.【答案】2【解析】【分析】由已知中二面角α﹣l﹣β等于120°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=BD=1,由22()CD CA AB BD=++u u u r u u u r u u u r u u u r,结合向量数量积的运算,即可求出CD的长.【详解】∵A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,又∵二面角α﹣l ﹣β的平面角θ等于120°,且AB =AC =BD =1,∴0CA AB AB BD ⋅=⋅=u u u r u u u r u u u r u u u r ,CA DB =u u u r u u u r <,>60°,1160CA BD cos ⋅=⨯⨯︒u u u r u u u r∴22()CD CA AB BD =++u u u r u u u r u u u r u u u r2222422=CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ||2CD =u u u r故答案为2.【点睛】本题考查的知识点是与二面角有关的立体几何综合题,其中利用22()CD CA AB BD =++u u u r u u u r u u u r u u u r ,结合向量数量积的运算,是解答本题的关键.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为6,渐近线方程为13y x =±,动点M 在双曲线左支上,点N 为圆22:(1E x y ++=上一点,则2||||MN MF +的最小值为_______【答案】9 【解析】 【分析】求得双曲线的a ,b ,可得双曲线方程,求得焦点坐标,运用双曲线的定义和三点共线取得最小值,连接1EF ,交双曲线于M ,圆于N ,计算可得所求最小值. 【详解】解:由题意可得26a =,即3a =,渐近线方程为13y x =±,即有13b a =,即1b =,可得双曲线方程为2219x y -=,焦点为1(F 0),2F ,0),由双曲线的定义可得211||2||6||MF a MF MF =+=+,由圆22:(1E x y +=可得(0,E ,半径1r =, 21||||6||||MN MF MN MF +=++,连接1EF ,交双曲线于M ,圆于N ,可得1||||MN MF +取得最小值,且为1||6104EF =+=, 则则2||||MN MF +的最小值为6419+-=. 故答案为:9.【点睛】本题考查双曲线的定义、方程和性质,考查圆的方程的运用,以及三点共线取得最值,考查数形结合思想和运算能力,属于中档题. 三、解答题(共12小题;共70分) 17.根据下列条件求曲线的标准方程: (1)准线方程为32y =-的抛物线; (2)焦点在坐标轴上,且过点(3,27-、()62,7--的双曲线.【答案】(1)26x y =;(2)2212575y x -=【解析】 【分析】(1)设抛物线的标准方程为22(0)x py p =>,利用准线方程为32y =-,可求出p 的值,即可求出抛物线的标准方程;(2)设所求双曲线的方程为221(0)mx ny mn +=<,将点(3,27-、()62,7--代入方程,可求出,m n ,进而可求出双曲线的标准方程. 【详解】(1)设抛物线的标准方程为22(0)x py p =>. 其准线方程为32y =-,所以有322p -=-,故3p =. 因此抛物线的标准方程为26x y =.(2)设所求双曲线的方程为221(0)mx ny mn +=<,因为点()3,27-、()62,7--在双曲线上,所以点的坐标满足方程,由此得928172491m n m n +=⎧⎨+=⎩,解得175125m n ⎧=-⎪⎪⎨⎪=⎪⎩,因此所求双曲线的方程为2212575y x -=.【点睛】本题考查抛物线与双曲线的标准方程的求法,考查学生的计算求解能力,属于基础题.18.如图,在正方体1111ABCD A B C D -中,E 为棱1DD 的中点.求证:(1)1BD ⊥平面1AB C ; (2)平面EAC ⊥平面1AB C .【答案】(1)证明见解析;(2)证明见解析 【解析】 【分析】(1)以D 为原点,建立如图所示的空间直角坐标系D xyz -,求出平面1AB C 的法向量m u r ,通过证明1//BD m u u u u r u r,可得出1BD ⊥平面1AB C ;(2)结合(1),平面1AB C 的法向量是m u r ,然后求出平面EAC 的法向量n r,进而可证明m n ⊥u r r,从而可知平面EAC ⊥平面1AB C .【详解】(1)以D 为原点,建立如图所示的空间直角坐标系D xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,1E ,()2,0,0A ,()0,2,0C ,()12,2,2B ,()2,2,0B ,()10,0,2D ,所以()2,2,0AC =-u u u r,()2,0,1AE =-u u u r ,()10,2,2AB =u u u r ,()12,2,2BD =--u u u u r , 设平面1AB C 的法向量(),,m x y z =u r,则1220220m AC x y m AB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩u u u r r u u u r r ,取1x =,得()1,1,1m =-u r . 因为12BD m =-u u u u r u r ,所以1//BD m u u u u r u r,所以1BD ⊥平面1AB C ;(2)设平面AEC 的法向量(),,n x y z '''=r,则20220n AE x z n AC x y ⎧''⋅=-+=⎪⎨''⋅=-+=⎪⎩r u u u r r u u u r ,取1x '=,得()1,1,2n =r , 1120m n ⋅=+-=Q u r r, ∴平面EAC ⊥平面1AB C.【点睛】本题考查线面垂直、面面垂直的证明,利用空间向量法是解决本题的较好方法,考查学生的计算求解能力与推理论证能力,属于基础题.19.如图,在直三棱柱111ABC A B C -中,已知12AA =,1AC BC ==,且AC BC ⊥,M 是11A B 的中点.(1)求证:1//CB 平面1AC M ;(2)设AC 与平面1AC M 的夹角为θ,求sin θ. 【答案】(1)证明见解析;(2)23【解析】 【分析】(1)易知1,,CA CB CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系C xyz -,求得平面1AC M 的法向量n r,从而可证明1n CB ⊥u u u r r ,又1CB ⊄平面1AC M ,即可证明1//CB 平面1AC M ;(2)由(1)可得AC u u u r 及平面1AC M 的法向量为n r ,设AC u u u r 和n r的夹角为α,可得sin cos A nnC AC θα==⋅⋅u u u r r u u u r r ,求解即可.【详解】(1)由题易知,1,,CA CB CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系C xyz -,则()0,0,0C ,()10,0,2C ,()1,0,0A ,()10,1,2B ,()11,0,2A , M Q 是11A B 的中点,11,,222M ⎛⎫∴⎪⎝⎭. 由此可得,11,,222AM ⎛⎫=- ⎪⎝⎭u u u u r ,111,,022C M ⎛⎫= ⎪⎝⎭u u u u r ,()10,1,2CB =u u u r,设向量(),,n x y z =r为平面1AC M 的一个法向量,则1112211222n C M x yn AM x y z⎧⋅=+=⎪⎪⎨⎪⋅=-++=⎪⎩u u u u rru u u u rr,取2x=,得2y=-,1z=,()2,2,1n∴=-r为平面1AC M的一个法向量.1·2021120n CB=⨯-⨯+⨯=u u u rrQ,1n CB∴⊥u u u rr,1CB⊄Q平面1AC M,1//CB∴平面1AC M.(2)()1,0,0AC=-u u u r,平面1AC M的一个法向量为()2,2,1n=-r,AC与平面1AC M的夹角为θ,设AC u u u r和n r的夹角为α,则()222212sin cos312(2)1ACACnnθα⨯-====⨯+-⋅+⋅u u u r ru u u r r.【点睛】本题考查线面平行的证明,考查线面角的求法,利用空间向量法是解决本题的较好方法,考查学生的计算求解能力与推理论证能力,属于中档题.20.一个圆经过点()2,0F,且和直线20x+=相切.(1)求动圆圆心的轨迹C的方程;(2)已知点()1,0B-,设不垂直于x轴的直线l与轨迹C交于不同的两点P Q、,若x轴是PBQ∠的角平分线,证明直线l过定点.【答案】(1)28y x=;(2)证明见解析【解析】【分析】(1)圆心到定点()2,0F 与到定直线2x =-的距离相等,可知圆心的轨迹是以点F 为焦点的抛物线,求出方程即可;(2)易知直线l 斜率存在且不为零,可设直线():0l my x n m =+≠,设()11,P x y ,()22,Q x y ,联立直线l 与抛物线方程,可得关于y 的一元二次方程,由x 轴是PBQ ∠的角平分线,可得121211y y x x -=++,整理可求得128y y =-,再结合韦达定理128y y n =,从而可求得n 的值,进而可求得直线l 过定点.【详解】(1)由题意,圆心到定点()2,0F 与到定直线2x =-的距离相等, 根据抛物线的定义可知,圆心的轨迹是以点F 为焦点的抛物线,其方程为28y x =. (2)由题可知,直线l 与C 有两个交点且不垂于于x 轴,所以直线l 斜率存在且不为零,设直线():0l my x n m =+≠,()11,P x y ,()22,Q x y ,联立28my x n y x=+⎧⎨=⎩,可得2880y my n -+=,则264320m n ∆=->,且1280y y m +=≠,128y y n =,又2118y x =,2228y x =,x 轴是PBQ ∠的角平分线,所以12122212121188y y y y x x y y --=⇒=++++,整理可得128y y =-, 所以1288y y n ==-,即1n =-,此时满足>0∆,故l :1my x =-, 所以,直线PQ 过定点()1,0.【点睛】本题考查抛物线的定义,考查直线与抛物线位置关系的应用,考查直线恒过定点问题,考查学生的计算求解能力,属于中档题.21.如图,正三角形ABE 与菱形ABCD 所在的平面互相垂直,2AB =,60ABC ∠=o ,M 是AB 的中点.(1)求证:EM AD ⊥;(2)求二面角A BE C --的余弦值;(3)在线段EC 上是否存在点P ,使得直线AP 与平面ABE 所成的角为45o ,若存在,求出EPEC的值;若不存在,说明理由. 【答案】(1)证明见解析;(2)5 ;(3) 在线段EC 上存在点P ,理由见解析. 【解析】 【分析】(1)推导出EM AB ⊥,从而EM ⊥平面ABCD ,由此能证明EM AD ⊥.(2)推导出EM MC ⊥,MC AB ⊥,从而MB 、MC 、ME 两两垂直,建立空间直角坐标系M xyz -,利用向量法能求出二面角A BE C --的余弦值.(3)求出AP u u u r和平面ABE 的法向量,利用向量法能示出在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o ,且23EP EC =. 【详解】证明:(Ⅰ)EA EB =Q ,M 是AB 的中点,EM AB ∴⊥,Q 平面ABE ⊥平面ABCD ,平面ABE I 平面ABCD AB =,EA ⊂平面ABE ,EM ∴⊥平面ABCD ,AD ⊂平面ABCD ,.EM AD ∴⊥解:(2) EM ⊥Q 平面ABCD ,EM MC ∴⊥,ABC QV 是正三角形,.MC AB MB ∴⊥∴、MC 、ME 两两垂直.建立如图所示空间直角坐标系.)M xyz -则(0,M 0,0),(1,A -0,0),(1,B 0,0),()C ,(0,E 0,()BC =-u u u r ,(1,BE =-u u u r,设(,m x =ry ,)z 是平面BCE 的一个法向量,则0m BC x m BE x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩u u u v r u u u v r , 令1z =,得)m =r,y Q 轴与平面ABE 垂直,(0,n ∴=r1,0)是平面ABE的一个法向量.cos ,5m n m n m n ⋅===⋅r rr rr r ,∴二面角A BE C --(3)假设在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o .(1,AE =u u u r0,(EC =u u u r ,设(),EP EC λ==u u u r u u u r,()001λ≤≤,则()AP AE EP =+=u u u r u u u r u u u r,Q 直线AP 与平面ABE 所成的角为45o ,sin 45,2AP n cos AP n AP n ⋅∴====⋅ou u u r ru u u r r u u u r r , 由01λ≤≤,解得23λ=, ∴在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o ,且2.3EP EC =【点睛】本题考查线线垂直的证明,考查二面角的余弦值的求法,考查满足条件的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查化归与转化思想、函数与方程思想、数形结合思想,考查创新意识、应用意识,是中档题.22.已知()13,0F -是椭圆C :()222210x y a b a b+=>>的左焦点,O 为坐标原点,22,2P -⎭为椭圆上的点. (1)求椭圆C 的标准方程;(2)若点,A B 都在椭圆C 上,且AB 中点M 在线段OP (不包括端点)上,求AOB V 面积的最大值,及此时直线AB 的方程.【答案】(1)2214x y +=;(2)AOB V 面积的最大值为1, 此时直线AB 的方程为112y x =- 【解析】 【分析】(1)依题意可得222221123a ba b ⎧+=⎪⎨⎪-=⎩,求出,a b ,即可得到椭圆C 的标准方程; (2)设()11,A x y ,()22,B x y ,()00,M x y ,易知直线AB 的斜率存在,设为k ,将,A B 两点坐标分别代入椭圆方程,所得两式相减,可得到004x y k +⋅=,进而可求出k 的值,从而设出直线AB 的方程,并与椭圆方程联立,得到关于x 的一元二次方程,分别表示出弦长AB 及点O 到直线AB 的距离d ,从而可求得AOB V 面积的表达式,进而求出最大值,并求得此时直线的方程.【详解】(1)依题意可得222221123a ba b ⎧+=⎪⎨⎪-=⎩, 即42230b b +-=,解得21b =,则24a =.故椭圆C 的标准方程为2214x y +=;(2)设()11,A x y ,()22,B x y ,()00,M x y , 依题意可知,直线AB 的斜率存在,设为k ,则221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以2222121204x x y y -+-=,即()()()()1212121204x x x x y y y y -++-+=,又1202x x x +=,1202y y y +=,2121y y k x x -=-,所以0004x y k +⋅=,又直线OP :12y x =-,M 在线段OP 上,所以0012y x =-,所以12k =.设直线AB 的方程为12y x m =+, 联立方程221214y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,可得222220x mx m ++-=,,122x x m +=-,21222x x m =-,且12002x x ∆>⎧⎪⎨<<+⎪⎩,即()()22024220m m m ⎧∆=--><-<⎪⎨⎪⎩,解得0m <<,21 所以12x x -====,122AB x x =-== 又点O 到直线AB的距离d ==所以221121222OAB m m S AB d -+=⨯⨯==≤=V , 当且仅当222m m -=,即1(1m m =-=舍去)时,等号成立,此时直线方程为112y x =-. 所以AOB V 面积的最大值为1,此时直线AB 的方程为112y x =-. 【点睛】本题考查椭圆方程的求法,考查三角形面积,考查直线与椭圆位置关系的应用,考查学生的计算求解能力,属于难题.。

江西师范大学附属中学2018-2019学年高二上学期期末考试数学(文)试题

江西师范大学附属中学2018-2019学年高二上学期期末考试数学(文)试题

2018—2019学年度上学期期末考试高二数学(文)试题一,选择题(每小题5分,共12小题,共60分)1.若复数Z 满足(1)34i Z i +=+,则Z 地实部为( )A .32-B .52- C .32D .522. 若函数xe x x y -++=23log ,则='y ( ).A .x e x x -++2ln 1414 B .x e x x --+2ln 1414 C .x e x x --+2ln 132D .xe x x -++2ln 1323. 直线y =kx +b 与曲线31y x ax =++相切于点()2,3 ,则b 地值为 ( )A. -15B. -7C. -3D. 94. 下面表达正确地是( )A .“若x 2=1,则x =1,或x =-1”地否定是“若x 2=1则x ≠1,或x ≠-1”B .a ,b 是两个命题,假如a 是b 地充分款件,那么⌝a 是⌝b 地必要款件.C .命题“∃x 0∈R,使得20010x x ++<”地否定是:“∀x ∈R,均有x 2+x +1<0”D .命题“若α=β,则sin α=sin β”地否命题为真命题5. 已知/()(1)ln f x f x x =+,则()f e 是( )A .1e +B .eC .2e +D .36. 设抛物线24y x =地焦点为F ,不过焦点地直线与抛物线交于1(A x ,1)y ,2(B x ,2)y两点, 与y 轴交于点C (异于坐标原点)O ,则ACF ∆与BCF ∆地面积之比为( )A .12x xB .1211x x ++C .2122x x D .212211x x ++7,已知定义在R 上地函数f (x )满足f (4)=f (﹣2)=1,f′(x )为f (x )地导函数,且导函数y=f′(x )地图象如图所示.则不等式f (x )<1地解集是()A .(﹣2,0)B .(﹣2,4)C .(0,4)D .(﹣∞,﹣2)∪(4,+∞)8,设=)(x f 3,x x x +∈R ,当02πθ≤≤时,0)1()sin (>-+m f m f θ恒成立,则实数m 地取值范围是( )A .(0,1)B .)0,(-∞C .21,(-∞D .)1,(-∞9,直线2by x a=与双曲线22221x y a b -=(a >0,b >0)地左支,右支分别交于A,B 两点,F 为右焦点,若AB ⊥BF,则该双曲线地离心率为( )A B C D .210.设函数()f x 是定义在(),0-∞上地可导函数,其导函数为()f x ',且有x x f x x f <'+)()(,则不等式0)2(2)2014()2014(>-+++f x f x 地解集为( )A .(),2012-∞-B .()20120-,C .(),2016-∞-D .()20160-,11.已知函数21(),()2ln 2,()f x kx g x x e x e e==+≤≤,若()f x 与()g x 地图象上分别存在点M,N,使得MN 有关直线y e =对称,则实数k 地取值范围是( )A .224[,e e-- B .2[,2]e e -C .24[,2]e e- D .24[,)e-+∞12. 已知当()1,x ∈+∞时,有关x 地方程()ln 21x x k xk+-=-有唯一实数解,则k 值范围是()A .()3,4B .()4,5C .()5,6D .()6,7二,填空题(每小5分,共4小题,共20分)13. 定义运算11a b ,b a b a a b 122122-=则函数()21331x xxx f x +=地图象在点⎪⎭⎫ ⎝⎛31,1处地切线方程是__________.14. 复数z 1=1-2i,|z 2|=3,则|z 2-z 1|地最大值是___________.15.语文中有回文句,如:“上海自来水来自海上”,倒过来读完全一样。

河南省郑州市2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

河南省郑州市2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

河南省郑州市2018-2019学年上期期末考试高二数学(理)第Ⅰ卷(选择题,共60分)一,选择题:本大题共有12个小题,每小题5分,共60分。

在每小题所给出地四个选项中,只有一项是符合题目要求地。

1.已知命题那么为()A. B.C. D.【结果】B【思路】【思路】依据全称命题地否定是特称命题即可写出结果.【详解】命题则为故选:B【点睛】本题考全称命题地否定形式,属于简单题.2.已知数列是等比数列,若则地值为()A. 4B. 4或-4C. 2D. 2或-2【结果】A【思路】【思路】设数列{a n}地公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【详解】因故选:A【点睛】本题考查等比数列地性质以及通项公式,属于简单题.3.已知是实数,下面命题结论正确地是()A. “”是“”地充分款件B. ”是“”地必要款件C. “ac2>bc2”是“”地充分款件D. ” 是“”地充要款件【思路】【思路】依据不等式地性质,以及充分款件和必要款件地定义分别进行判断即可.【详解】对于,当时,满足,却,所以充分性不成立。

对于,当时,满足,却,所以必要性不成立。

对于,当时,成立,却,所以充分性不成立,当时,满足,却,所以必要性也不成立,故“” 是“”地既不充分也不必要款件,故选:C【点睛】本题主要考查不等式地性质以及充分款件,必要款件地判断,属于基础题.4.已知双曲线地一款渐近线与直线垂直,则双曲线地离心率为()A. B. C. D.【结果】A【思路】【思路】双曲线地渐近线方程为,由渐近线与直线垂直,得地值,从而得到离心率.【详解】由于双曲线地一款渐近线与直线垂直,所以双曲线一款渐近线地斜率为,又双曲线地渐近线方程为,所以,双曲线地离心率.故选:A【点睛】本题主要考查双曲线地渐近线方程和离心率,以及垂直直线斜率地关系.5.若等差数列地前项和为,且,则()A. B. C. D.【结果】C【思路】由得,再由等差数列地性质即可得到结果.【详解】因为为等差数列,所以,解得,故.故选:C【点睛】本题主要考查等差数列地前项和公式,以及等差数列性质(其中m+n= p+q)地应用.6.地内角地对边分别为,,, 则=()A. B. C. D.【结果】D【思路】【思路】先由二倍角公式得到cosB,然后由余弦定理可得b值.【详解】因为,所以由余弦定理,所以故选:D【点睛】本题考查余弦二倍角公式和余弦定理地应用,属于简单题.7.椭圆与曲线地()A. 焦距相等B. 离心率相等C. 焦点相同D. 准线相同【结果】A【思路】【思路】思路两个曲线地方程,分别求出对应地a,b,c即可得结果.【详解】因为椭圆方程为,所以,焦点在x轴上,曲线,因为,所以,曲线方程可写为,,所以曲线为焦点在y轴上地椭圆,,所以焦距相等.【点睛】本题考查椭圆标准方程及椭圆简单地几何性质地应用,属于基础题.8.在平行六面体(底面是平行四边形地四棱柱)ABCD-A1B1C1D1中,AB=AD=AA1=1,,则地长为()A. B. 6 C. D.【结果】C【思路】【思路】依据空间向量可得,两边平方即可得出结果.【详解】∵AB=AD=AA1=1,∠BAD=∠BAA1=∠DAA1=60°,∴===,∵,∴=6,∴|=.故选:C.【点睛】本题考查平行四面形法则,向量数量积运算性质,模地计算公式,考查了推理能力与计算能力.9.已知不等式地解集是,若对于任意,不等式恒成立,则t地取值范围()A. B. C. D.【结果】B【思路】【思路】由不等式地解集是,可得b,c地值,代入不等式f(x)+t≤4后变量分离得t≤2x2﹣4x﹣2,x ∈[﹣1,0],设g (x )=2x 2﹣4x ﹣2,求g(x)在区间[﹣1,0]上地最小值可得结果.【详解】由不等式地解集是可知-1和3是方程地根,,解得b=4,c=6,,不等式化为 ,令g (x )=2x 2﹣4x ﹣2,,由二次函数图像地性质可知g(x)在上单调递减,则g(x )地最小值为g(0)=-2,故选:B【点睛】本题考查一圆二次不等式地解法,考查不等式地恒成立问题,常用方式是变量分离,转为求函数最值问题.10.在中,角所对地边分别为,表示地面积,若,则( )A.B.C.D.【结果】D 【思路】【思路】由正弦定理,两角和地正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理,三角形面积公式可求角C,从而得到B 地值.【详解】由正弦定理及得,因为,所以。

广东省中山市2019-2020学年高二上学期期末考试数学试卷含详解

广东省中山市2019-2020学年高二上学期期末考试数学试卷含详解
A.2B.3C. D.4
【答案】B
【解析】
【分析】由 ,两边平方后展开整理,即可求得 ,则 的长可求.
【详解】解: ,

, ,
, ,



故选: .
【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.
4.已知等比数列 的各项均为正数,前 项和为 ,若 ,则
1.“ ”是“ ”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】C
【解析】
【分析】根据充分条件和必要条件的定义进行判断即可.
【详解】
∴“ ”是“ ”的充分必要条件.
故选C
【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.
2.在等差数列 中,若 的值是
11.已知点 和点 ,直线 , 的斜率乘积为常数 ,设点 的轨迹为 ,下列说法正确的是()
A.存在非零常数 ,使 上所有点到两点 , 距离之和为定值
B.存在非零常数 ,使 上所有点到两点 , 距离之和为定值
C.不存在非零常数 ,使 上所有点到两点 , 距离之差的绝对值为定值D.不存在非零常数 ,使 上所有点到两点 , 距离之差的绝对值为定值
【详解】根据题意,在△ADC中,∠ACD=45°,∠ADC=67.5°,DC=2 ,
则∠DAC=180°-45°-67.5°=67.5°,则AC=DC=2 ,
在△BCE中,∠BCE=75°,∠BEC=60°,CE= ,
则∠EBC=180°-75°-60°=45°,
则有 = ,变形可得BC= = = ,

河北省成安县第一中学2018-2019学年高二上学期期末考试数学(文)试题

河北省成安县第一中学2018-2019学年高二上学期期末考试数学(文)试题

2018-2019学年上学期期末考试高二数学试题(文)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时长120分钟第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.已知集合A={x|2x2﹣5x﹣3≤0},B={x∈Z|x≤2},则A∩B中地圆素个数为( )A.2B.3C.4D.52.设复数z=1+i,i是虚数单位,则+()2=( )A.1﹣3i B.1﹣i C.﹣1﹣i D.﹣1+i3.命题“∃x0∈(0,),cosx0>sinx0”地否定是( )A.∃x0∈(0,),cosx0≤sinx0B.∀x∈(0,),cosx≤sinxC.∀x∈(0,),cosx>sinx D.∃x0∉(0,),cosx0>sinx04.设各项均为正数地等差数列{a n}地前n项和为S n,且a4a8=32,则S11地最小值为A.244 C.22 D.4422 B.25.已知向量,满足•(﹣)=2,且||=1,||=2,则与地夹角为( )A.B.C.D.6.如图为教育部门对辖区内某学校地50名儿童地体重(kg)作为样本进行思路而得到地频率分布直方图,则这50名儿童地体重地平均数为( )A.27.5B.26.5C.25.6D.25.7 7.已知sin()=,则cos(2)=( )A.﹣B.﹣C.D.8.在一线性回归模型中,计算相关指数20.96R ,下面哪种表达不够妥当?( )A.该线性回归方程地拟合效果较好B.解释变量对于预报变量变化地贡献率约为96%C.随机误差对预报变量地影响约占4%D.有96%地样本点在回归直线上9.如图,B ,D 是以AC 为直径地圆上地两点,其中,,则=( )A .1B .2C .tD .2t10.已知实数x,y 满足款件|x ﹣1|+|y ﹣1|≤2,则2x+y 地最大值为( )A .3B .5C .7D .911.设函数()f x 在R 上可导, ()()2'23,f x x f x =-则()1f -与()1f 地大小关系是( )A. ()(1)1f f -=B. ()()f f ->11C. ()(1)1f f -<D.不确定12.抛物线y 2=2px (p >0)地焦点为F,已知点A,B 为抛物线上地两个动点,且满足∠AFB=120°.过弦AB 地中点M 作抛物线准线地垂线MN,垂足为N,则地最大值为( )A .B .1C .D .2 第Ⅱ卷(非选择题)二.填空题(共4题每题5分满分20分)13.已知双曲线=l (a >0,b >0)地一款渐近线与直线2x+y ﹣3=0垂直,则该双曲线地离心率为 .14.已知正四面体ABCD 地棱长为l,E 是AB 地中点,过E 作其外接球地截面,则此截面面积地最小值为 .15.若函数2()2ln f x x x =-在其定义域内地一个子区间(1,1)k k -+内不是单调函数,则实数k 地取值范围是16.设函数y=地图象上存在两点P,Q,使得△POQ 是以O 为直角顶点地直角三角形(其中O 为坐标原点),且斜边地中点恰好在y 轴上,则实数a 地取值范围是 .三.解答题:(解答题应写出必要地文字说明和演算步骤,17题10分,18-22每题12分)17.已知a,b,c 分别为△ABC 地三个内角A,B,C 地对边,a=2且(2+b )(sinA ﹣sinB )=(c ﹣b )sinC(1)求角A 地大小。

兰州市重点中学2024届中考数学考前最后一卷含解析

兰州市重点中学2024届中考数学考前最后一卷含解析

兰州市重点中学2024届中考数学考前最后一卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共10小题,每小题3分,共30分)1.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .2.如图是某个几何体的三视图,该几何体是( )A .圆锥B .四棱锥C .圆柱D .四棱柱3.如图,在Rt ABC ∆中,90C =∠,10AB =,8AC =,则sin A 等于( )A .35B .45C .34D .434.如图,在△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,错误的结论是( ).A .AD AEDB EC= B .AB ACAD AE= C .AC ECAB DB= D .AD DEDB BC= 5.如图,已知D 是ABC 中的边BC 上的一点,BAD C ∠=∠,ABC ∠的平分线交边AC 于E ,交AD 于F ,那么下列结论中错误的是( )A .△BAC ∽△BDAB .△BFA ∽△BEC C .△BDF ∽△BECD .△BDF ∽△BAE6.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( ) A .49B .112C .13D .167.若2a 2a 30--=,代数式a 2a 23-⨯的值是( ) A .0B .2a 3-C .2D .12-8.已知5a b =,下列说法中,不正确的是( ) A .50a b -= B .a 与b 方向相同 C .//a bD .||5||a b =9.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( )A .﹣2B .2C .3D .﹣310.如图,在▱ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,若BG=2,则△CEF 的面积是( )A.22B.2C.32D.42二、填空题(本大题共6个小题,每小题3分,共18分)11.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .12.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为时,四边ABC1D1为矩形;当点B的移动距离为时,四边形ABC1D1为菱形.13.如图,在Rt△ABC中,∠B=90°,∠A=45°,BC=4,以BC为直径的⊙O与AC相交于点O,则阴影部分的面积为_____.14.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=kx(k≠0)的图象恰好经过A′,B,则k的值为_____.15.若反比例函数2ky x-=的图象位于第二、四象限,则k 的取值范围是__. 16.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于_____.三、解答题(共8题,共72分)17.(8分)计算:(3﹣2)0+11()3-+4cos30°﹣|﹣12|. 18.(8分)如图,在△ABC 中,AB=AC=1,BC=,在AC 边上截取AD=BC ,连接BD .(1)通过计算,判断AD 2与AC•CD 的大小关系; (2)求∠ABD 的度数.19.(8分)已知关于x 的一元二次方程22410x x k ++-=有实数根. (1)求k 的取值范围;(2)若k 为正整数,且方程有两个非零的整数根,求k 的取值.20.(8分)解不等式组:3(2)421152x x x x ≥-+⎧⎪-+⎨<⎪⎩并把解集在数轴上表示出来.21.(8分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?22.(10分)如图,分别延长▱ABCD 的边CD AB ,到E F ,,使DE BF =,连接EF ,分别交AD BC ,于G H ,,连结CG AH.,求证:CG //AH .23.(12分)如图,抛物线与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围; (3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由24.襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数解析式为()76(120)2030mx m x x n x x -≤<⎧⎪⎨≤≤⎪⎩,为整数,为整数 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W 元(利润=销售收入﹣成本).m= ,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.2、B【解题分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【题目详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱.故选B.【题目点拨】本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.3、A【解题分析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴2222=108=6AB AC--,∴sinA=63105 BCAB==.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义. 4、D 【解题分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论. 【题目详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AE DB EC =,AB ACAD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D . 【题目点拨】考点:1.平行线分线段成比例;2.相似三角形的判定与性质. 5、C 【解题分析】根据相似三角形的判定,采用排除法,逐项分析判断. 【题目详解】 ∵∠BAD=∠C , ∠B=∠B ,∴△BAC ∽△BDA .故A 正确. ∵BE 平分∠ABC , ∴∠ABE=∠CBE ,∴△BFA ∽△BEC .故B 正确. ∴∠BFA=∠BEC , ∴∠BFD=∠BEA ,∴△BDF ∽△BAE .故D 正确.而不能证明△BDF ∽△BEC ,故C 错误. 故选C . 【题目点拨】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角. 6、C 【解题分析】 画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况, ∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=. 故选C.【题目点拨】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件. 7、D 【解题分析】由2a 2a 30--=可得2a 2a 3-=,整体代入到原式()2a 2a6--=即可得出答案.【题目详解】 解:2a 2a 30--=,2a 2a 3∴-=,则原式()2a 2a31662---===-.故选:D . 【题目点拨】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键. 8、A 【解题分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用. 【题目详解】A 、50a b -=,故该选项说法错误B 、因为5a b =,所以a 与b 的方向相同,故该选项说法正确,C 、因为5a b =,所以//a b ,故该选项说法正确,D 、因为5a b =,所以||5||a b =;故该选项说法正确,故选:A.【题目点拨】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.9、B【解题分析】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.10、A【解题分析】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴,∴AE=2AG=4;∴S△ABE=12AE•BG=142⨯⨯=∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=14S△ABE=22.故选A.【题目点拨】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1+【解题分析】试题分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为1+.点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.12、33,3. 【解题分析】试题分析:当点B 的移动距离为33时,∠C 1BB 1=60°,则∠ABC 1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC 1D 1为矩形;当点B 的移动距离为3时,D 、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC 1D 1为菱形.试题解析:如图:当四边形ABC 1D 是矩形时,∠B 1BC 1=90°﹣30°=60°,∵B 1C 1=1,∴BB 1=113tan 6033B C ==︒, 当点B 3ABC 1D 1为矩形; 当四边形ABC 1D 是菱形时,∠ABD 1=∠C 1BD 1=30°,∵B 1C 1=1,∴BB 1=113tan 303B C ==︒,当点B 的移动距离为3时,四边形ABC 1D 1为菱形.考点:1.菱形的判定;2.矩形的判定;3.平移的性质.13、6﹣π【解题分析】连接OD 、BD ,根据阴影部分的面积()=ADB BOD BOD SS S --扇形计算.【题目详解】连接OD 、BD ,90B ∠=︒,45A ∠=︒,∴45C ∠=︒,BA BC =,BC 为O 的直径,∴90BDC ∠=︒,BA BC =,∴DB DC =,∴45DBC ∠=︒,∴90BOD ∠=︒,∴阴影部分的面积()=ADB BOD BOD S S S --扇形 211902144226223602ππ⨯=⨯⨯⨯-+⨯⨯=-. 故答案为6π-.【题目点拨】本题考查的是扇形面积计算,掌握直角三角形的性质、扇形面积公式2360n R S π=是解题的关键. 14、33【解题分析】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=32m,∴A′(12m,32m),∵反比例函数kyx=(k≠0)的图象恰好经过点A′,B,∴12m•32m=m,∴m=433,∴k=433故答案为43 315、k>1【解题分析】根据图象在第二、四象限,利用反比例函数的性质可以确定1-k的符号,即可解答.【题目详解】∵反比例函数y=2kx-的图象在第二、四象限,∴1-k<0,∴k>1.故答案为:k>1.【题目点拨】此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.16、5π【解题分析】根据题意得出球在无滑动旋转中通过的路程为12圆弧,根据弧长公式求出弧长即可.【题目详解】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为14圆的周长,然后沿着弧O1O2旋转14圆的周长,则圆心O运动路径的长度为:112544π⨯⨯+×2π×5=5π,故答案为5π.【题目点拨】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.三、解答题(共8题,共72分)17、1【解题分析】分析:按照实数的运算顺序进行运算即可.详解:原式3 13423, =++-132323,=++=1.点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.18、(1)AD2=AC•CD.(2)36°.【解题分析】试题分析:(1)通过计算得到=,再计算AC·CD,比较即可得到结论;(2)由,得到,即,从而得到△ABC∽△BDC,故有,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.试题解析:(1)∵AD=BC=,∴==.∵AC=1,∴CD==,∴;(2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考点:相似三角形的判定与性质.19、(1)3k≤;(2)k=1【解题分析】(1)根据一元二次方程2x2+4x+k﹣1=0有实数根,可得出△≥0,解不等式即可得出结论;(2)分别把k的正整数值代入方程2x2+4x+k﹣1=0,根据解方程的结果进行分析解答.【题目详解】(1)由题意得:△=16﹣8(k﹣1)≥0,∴k≤1.(2)∵k为正整数,∴k=1,2,1.当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x =0,解得:x=0或x=-2,有一个根为零;当k=2时,方程2x2+4x+k﹣1=0变为:2x2+4x +1=0,解得:x=222-±,无整数根;当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x +2=0,解得:x1=x2=-1,有两个非零的整数根.综上所述:k=1.【题目点拨】本题考查了一元二次方程根的判别式:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(1)△<0⇔方程没有实数根.20、不等式组的解集为﹣7<x≤1,将解集表示在数轴上表示见解析.【解题分析】试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.试题解析:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:.考点:解一元一次不等式组;在数轴上表示不等式的解集.点睛:分别求出各不等式的解集,再求出其公共解集即可.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21、(1)详见解析;(2)4分.【解题分析】(1)根据题意用列表法求出答案;(2)算出甲乙获胜的概率,从而求出乙胜一次的得分.【题目详解】(1)列表如下:由列表可得:P(数字之和为5)=14,(2)因为P(甲胜)=14,P(乙胜)=34,∴甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:12÷3=4分.【题目点拨】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.22、证明见解析【解题分析】分析:根据平行四边形的性质以及已知的条件得出△EGD 和△FHB 全等,从而得出DG=BH ,从而说明AG 和CH 平行且相等,得出四边形AHCG 为平行四边形,从而得出答案.详解:证明:在▱ABCD 中,AB//CD AD//CB AD CB ,,=,E F EDG DCH FBH ,∠∠∠∠∠∴===,又 DE BF =,EGD ∴≌()FHB AAS ,DG BH ∴=,AG HC ∴=,又AD//CB ,∴四边形AGCH 为平行四边形, AH //CG ∴.点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG 为平行四边形.23、(1)112y x =+;(2)251544s t t =-+ (0≤t≤3);(3)t=1或2时;四边形BCMN 为平行四边形;t=1时,平行四边形BCMN 是菱形,t=2时,平行四边形BCMN 不是菱形,理由见解析.【解题分析】(1)由A 、B 在抛物线上,可求出A 、B 点的坐标,从而用待定系数法求出直线AB 的函数关系式.(2)用t 表示P 、M 、N 的坐标,由等式MN NP MP =-得到函数关系式.(3)由平行四边形对边相等的性质得到等式,求出t .再讨论邻边是否相等.【题目详解】解:(1)x=0时,y=1,∴点A 的坐标为:(0,1),∵BC ⊥x 轴,垂足为点C (3,0),∴点B 的横坐标为3,当x=3时,y=52, ∴点B 的坐标为(3,52), 设直线AB 的函数关系式为y=kx+b ,1532b k b =⎧⎪⎨+=⎪⎩, 解得,121k b ⎧=⎪⎨⎪=⎩,则直线AB 的函数关系式112y x =+(2)当x=t 时,y=12t+1, ∴点M 的坐标为(t ,12t+1), 当x=t 时,2517144y t t =-++ ∴点N 的坐标为2517(,1)44t t t -++ 2251715151(1)44244s t t t t t =-++-+=-+ (0≤t≤3); (3)若四边形BCMN 为平行四边形,则有MN=BC , ∴25155=442t t -+, 解得t 1=1,t 2=2,∴当t=1或2时,四边形BCMN 为平行四边形,①当t=1时,MP=32,PC=2, ∴MC=52=MN ,此时四边形BCMN 为菱形, ②当t=2时,MP=2,PC=1,∴,此时四边形BCMN 不是菱形.【题目点拨】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用.24、(1)m=﹣12,n=25;(2)18,W 最大=968;(3)12天. 【解题分析】【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值;(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.【题目详解】(1)当第12天的售价为32元/件,代入y=mx ﹣76m 得32=12m ﹣76m ,解得m=12-, 当第26天的售价为25元/千克时,代入y=n ,则n=25,故答案为m=12-,n=25;(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,当1≤x<20时,W=(4x+16)(12x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,∴当x=18时,W最大=968,当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,∵28>0,∴W随x的增大而增大,∴当x=30时,W最大=952,∵968>952,∴当x=18时,W最大=968;(3)当1≤x<20时,令﹣2x2+72x+320=870,解得x1=25,x2=11,∵抛物线W=﹣2x2+72x+320的开口向下,∴11≤x≤25时,W≥870,∴11≤x<20,∵x为正整数,∴有9天利润不低于870元,当20≤x≤30时,令28x+112≥870,解得x≥271 14,∴27114≤x≤30∵x为正整数,∴有3天利润不低于870元,∴综上所述,当天利润不低于870元的天数共有12天.【题目点拨】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兰州市重点中学市联考2019年数学高二年级上学期期末考试试题一、选择题1.曲线2()(1)x f x e x x =--在点(0,(0))f 处的切线方程是( ) A .10x y ++= B .10x y -+= C .210x y -+=D .210x y ++=2.已知0a >且1a ≠,下列四组函数中表示相等函数的是( ) A .log a yx =与1(log )x y a -=B .2y x =与2log xa y a =C .log ax y a =与y x =D .2log a y x =与2log a y x =3.只用1,2,3,4四个数字组成一个五位数,规定这四个数字必须同时使用,且同一数字不能相邻出现,这样的五位数有( ) A.96B.144C.240D.2884.在复平面内,复数12z i =-对应的向量为OA ,复数2z 对应的向量为OB ,则向量AB 所对应的复数为( ) A. 42i +B. 42i -C. 42i --D. 42i -+5.已知,x y 满足不等式组2402030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,则1z x y =+-的最小值为( )A.0B.2C.1D.36.已知函数()2•xf x a e x =-,对于任意不相等实数1x ,2x ,都有()()()1212•0f x f x x x ⎡⎤-->⎣⎦成立,则实数a 的取值范围是( ) A.()0,∞+ B.()1,+∞ C.2,e ⎡⎫+∞⎪⎢⎣⎭D.[),e +∞7.五进制是以5为底的进位制,主因乃人类的一只手有五只手指. 中国古代的五行学说也是采用的五进制,0代表土,1代表水,2代表火,3代表木,4代表金,依此类推,5又属土,6属水,……,减去5即得.如图,这是一个把k 进制数a (共有N 位)化为十进制数b 的程序框图,执行该程序框图,若输入的k ,a ,n 分别为5,1203,4,则输出的b =( )A .178B .386C .890D .143038.已知两个正数a ,b 满足321a b +=,则32a b+的最小值是( ) A.23B.24C.25D.269.边长为2的两个等边,ABD CBD ∆∆所在的平面互相垂直,则四面体ABCD 的外接球的表面积为( )AB .6πC .203πD .16π10.相关变量,x y 的散点图如图所示,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程11y b x a =+,相关系数为1r ;方案二:剔除点(10,21),根据剩下数据得到线性回归直线方程:22y b x a =+,相关系数为2r .则( )A.1201r r <<<B.2101r r <<<C.1210r r -<<<D.2110r r -<<<11.若一个四面体的四个侧面是全等的三角形,则称这样的四面体为“完美四面体”,现给出四个不同的四面体()1,2,3,4k k k k A B C D k =,记k k k A B C 的三个内角分别为k A ,k B ,k C ,其中一定不是“完美四面体”的为( ) A.111::3:5:7A B C =B.222sin :sin :sin 3:5:7A B C =C.333cos :cos :cos 3:5:7A B C =D.444tan :tan :tan 3:5:7A B C =12.若复数1z i =+,则1zz =+( ) A .1355i -- B .1355i - C .3155i - D .3155i -- 二、填空题13.某校共有教师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为50人,那么n 的值为______. 14.命题“若a<b ,则2a<2b”的否命题是________________15.有10件产品,其中3件是次品,从这10件产品中任取两件,用ξ表示取到次品的件数,则1ξ=的概率是_______;()E ξ=_______.16.曲线y=sin2x 在点(0,0)处的切线方程为______. 三、解答题 17.已知. (1)若函数的单调递减区间为,求函数的图像在点处的切线方程;(2)若不等式恒成立,求实数的取值范围. 18.已知椭圆方程为.(Ⅰ)求椭圆的长轴长、焦点坐标和离心率; (Ⅱ)直线与椭圆交于两点,为坐标原点,求的面积.19.用适当方法证明:已知:,,求证:.20.如图,在四面体中,,.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.21.如图,圆柱内有一个直三棱柱,三棱柱的底面为圆柱底面的内接三角形,且是圆直径,.分别为上的动点,且.(Ⅰ)若该圆柱有一个内切球,求圆柱的侧面积和内切球的体积. (Ⅱ)在(Ⅰ)的条件下,当时,求异面直线与所成角的余弦值.22.已知椭圆的离心率为,右焦点为F(1,0).(1)求此椭圆的标准方程;(2)若过点F 且斜率为1的直线与此椭圆相交于A 、B 两点,求|AB|的值. 【参考答案】***试卷处理标记,请不要删除 一、选择题13.12014.若a b ≥,则22a b ≥15.715 35 16.20x y -=三、解答题 17.(1);(2).【解析】试题分析:⑴求出的导函数,令导函数小于得到不等式的解集,得到相应方程的两个根,将根代入求出的值,得到函数的解析式,求出的导数在的值即曲线的切线斜率,利用点斜式求出切线的方程⑵求出不等式,分离出参数,构造函数,利用导数求出的最大值,令大于等于最大值,求出的范围;解析:(1),由题意,知的解集是,即方程的两根分别是.将或代入方程,得,∴,,∴,∴的图像在点处的切线斜率,∴函数的图像在点处的切线方程为:,即;(2)∵恒成立,即对一切恒成立,整理可得对一切恒成立,设,则,令,得(舍),当时,单调递增;当时,单调递减,∴当时,取得最大值,∴.故实数的取值范围是.点睛:本题考查的知识点是利用导数研究曲线上某点切线方程及函数恒成立的问题,考查了函数的单调性与导数的关系以及函数解析式的求解及常用方法。

解决不等式恒成立问题,常用的方法是分离出参数,构造新函数,求出新函数的最值,得到参数的范围。

18.(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(Ⅰ)将椭圆方程化为标准形式,根据基本概念即可得结果;(Ⅱ)联立直线与椭圆的方程,解出方程组得到交点坐标,故而可得,利用点到直线的距离求出三角形的高即可得面积.试题解析:(Ⅰ)椭圆的标准方程为所以,由知所以所以椭圆的长轴长为,焦点坐标为,离心率.(Ⅱ)设由,消去有所以,代入直线方程得所以原点到直线的距离所以.19.见解析【解析】分析:直接利用作差法比较和的大小得解.详解:.所以.点睛:(1)本题主要考查不等式的证明,意在考查学生对该知识的掌握水平.(2)不等式的证明常用的有比较法、综合法、分析法、放缩法、反证法等,本题运用的是比较法,也可以利用综合法.20.(1)详见解析;(2).【解析】【分析】(1) 设为的中点,连接,.易知,从而平面,故平面平面;(2)以为原点,,,分别为轴、轴、轴、建立空间直角坐标系.求出直线的方向向量,平面的法向量,代入公式即可得到直线与平面所成角的正弦值.【详解】(1)证明:设为的中点,连接,.∵是的中点,∴在中,,即为等边三角形,∴,∴.在中,,,∴,且,于是,可知.∵,∴平面,∵平面,∴平面平面.(2)解:由(1)知,,,两两垂直,以为原点,,,分别为轴、轴、轴、建立空间直角坐标系.则,,,,设平面的法向量,,,则,令,得,又.设直线与平面所成角为,则,即直线与平面所成角的正弦值为.【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.21.(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)由圆柱有一个内切球,求得,进而得到圆柱的底面半径和高,进而求得求得半径,利用球的体积公式,即可求解.(Ⅱ)由题意,以C为坐标原点,所在方向分别为的正方向建立空间直角坐标系分别求得向量的坐标,利用向量的夹角公式,即可求解.【详解】(Ⅰ)由题可知,由于圆柱有一个内切球,所以.因此,圆柱的底面半径为,高为,所以圆柱的侧面积为由题可知,圆柱的内切球的半径为,所以该内切球的体积(Ⅱ)由于,,所以分别为AC、BC的中点.由题可知两两垂直,所以可以以C为坐标原点,所在方向分别为的正方向建立空间直角坐标系(如图).由(Ⅰ)的条件可得:,,即异面直线与所成角的余弦值为.【点睛】本题主要考查了组合体的结构特征的应用,球的体积的计算,以及利用空间向量求解异面直线所成的角,其中解答中正确认识组合体的结构特征,以及建立适当的空间直角坐标系,利用向量的夹角公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.22.(1) ;(2)【解析】试题分析:(1)由;(2)先求得直线方程为,再与椭圆方程联立得.试题解析:(1)由题意知=且c=1.∴a=,b==1.故椭圆的标准方程为+y2=1.(2)由(1)知,椭圆方程为+y2=1,①又直线过点F(1,0),且倾斜角为,斜率k=1.∴直线的方程为y=x-1. ②由①,②联立,得3x2-4x=0,解之得x1=0,x2=.故|AB|=|x1-x2|=|0-|=.。

相关文档
最新文档