【配套K12】2018年高考数学总复习第九章平面解析几何第8讲曲线与方程课时作业

合集下载

2018版高考数学理人教大一轮复习讲义教师版文档第九章

2018版高考数学理人教大一轮复习讲义教师版文档第九章

1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点的轨迹方程的基本步骤【知识拓展】1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系:(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( √ ) (2)方程x 2+xy =x 的曲线是一个点和一条直线.( × )(3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (4)方程y =x 与x =y 2表示同一曲线.( × ) (5)y =kx 与x =1ky 表示同一直线.( × )1.(教材改编)已知点F (14,0),直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ) A .双曲线 B .椭圆 C .圆 D .抛物线答案 D解析 由已知|MF |=|MB |,根据抛物线的定义知, 点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2017·广州调研)方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A .两条直线 B .两条射线C .两条线段D .一条直线和一条射线答案 D解析 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条射线和一条直线.3.(2016·南昌模拟)已知A (-2,0),B (1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则P 点的轨迹方程是( ) A .(x +2)2+y 2=4(y ≠0) B .(x +1)2+y 2=1(y ≠0) C .(x -2)2+y 2=4(y ≠0) D .(x -1)2+y 2=1(y ≠0) 答案 C解析 由角的平分线性质定理得|P A |=2|PB |, 设P (x ,y ),则(x +2)2+y 2=2(x -1)2+y 2,整理得(x -2)2+y 2=4(y ≠0),故选C.4.过椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点M 作x 轴的垂线,垂足为N ,则线段MN 中点的轨迹方程是________________. 答案 x 2a 2+4y 2b2=1解析 设MN 的中点为P (x ,y ), 则点M (x,2y )在椭圆上,∴x 2a 2+(2y )2b 2=1,即x 2a 2+4y 2b2=1(a >b >0). 5.(2016·唐山模拟)设集合A ={(x ,y )|(x -3)2+(y -4)2=45},B ={(x ,y )|(x -3)2+(y -4)2=165},C ={(x ,y )|2|x -3|+|y -4|=λ}.若(A ∪B )∩C ≠∅,则实数λ的取值范围是________. 答案 [255,4]解析 由题意可知,集合A 表示圆(x -3)2+(y -4)2=45上的点的集合,集合B 表示圆(x -3)2+(y -4)2=165上的点的集合,集合C 表示曲线2|x -3|+|y -4|=λ上的点的集合,这三个集合所表示的曲线的中心都在(3,4)处,集合A 、B 表示圆,集合C 则表示菱形,可以将圆与菱形的中心同时平移至原点,如图所示,可求得λ的取值范围是[255,4].题型一 定义法求轨迹方程例1 如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0);由曲线的对称性, 得B (x 0,-y 0), 设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).②由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).思维升华 应用定义法求曲线方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程,用待定系数法求解.已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线. 解 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系.由|O 1O 2|=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有|MO 1|=r -1;由动圆M 与圆O 2外切,有|MO 2|=r +2. ∴|MO 2|-|MO 1|=3<4=|O 1O 2|.∴点M 的轨迹是以O 1、O 2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29-4y 27=1 (x ≤-32).题型二 直接法求轨迹方程例2 (2016·广州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解 (1)依题意得,c =5,e =c a =53,因此a =3,b 2=a 2-c 2=4, 故椭圆C 的标准方程是x 29+y 24=1.(2)若两切线的斜率均存在,设过点P (x 0,y 0)的切线方程是y =k (x -x 0)+y 0, 则由⎩⎪⎨⎪⎧y =k (x -x 0)+y 0,x 29+y 24=1,得x 29+[k (x -x 0)+y 0]24=1, 即(9k 2+4)x 2+18k (y 0-kx 0)x +9[(y 0-kx 0)2-4]=0, Δ=[18k (y 0-kx 0)]2-36(9k 2+4)[(y 0-kx 0)2-4]=0,整理得(x 20-9)k 2-2x 0y 0k +y 20-4=0.又所引的两条切线相互垂直, 设两切线的斜率分别为k 1,k 2, 于是有k 1k 2=-1,即y 20-4x 20-9=-1,即x 20+y 20=13(x 0≠±3). 若两切线中有一条斜率不存在,则易得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧ x 0=-3,y 0=2或⎩⎪⎨⎪⎧ x 0=3,y 0=-2或⎩⎪⎨⎪⎧x 0=-3,y 0=-2, 经检验知均满足x 20+y 20=13.因此,动点P (x 0,y 0)的轨迹方程是x 2+y 2=13.思维升华 直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程的纯粹性和完备性.在平面直角坐标系xOy 中,点P (a ,b )为动点,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.解 (1)设F 1(-c,0),F 2(c,0)(c >0).由题意,可得|PF 2|=|F 1F 2|,即(a -c )2+b 2=2c , 整理得2⎝⎛⎭⎫c a 2+c a -1=0, 得c a =-1(舍去)或c a =12.所以e =12. (2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2的方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3(x -c ).消去y 并整理,得5x 2-8cx =0. 解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c ,⎩⎨⎧x 2=85c ,y 2=335c .不妨设A ⎝⎛⎭⎫85c ,335c ,B (0,-3c ).设点M 的坐标为(x ,y ),则AM →=⎝⎛⎭⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y . 于是AM →=⎝⎛⎭⎫8315y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →=-2, 即⎝⎛⎭⎫8315y -35x ·x +⎝⎛⎭⎫85y -335x ·3x =-2. 化简得18x 2-163xy -15=0. 将y =18x 2-15163x代入c =x -33y ,得c =10x 2+516x >0.所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0). 题型三 相关点法求轨迹方程例3 (2016·大连模拟)如图所示,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ). 解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12,所以点A 的坐标为(-1,14),故切线MA 的方程为y =-12(x +1)+14.因为点M (1-2,y 0)在切线MA 及抛物线C 2上, 所以y 0=-12×(2-2)+14=-3-224,①y 0=-(1-2)22p =-3-222p .②由①②得p =2.(2)设N (x ,y ),A (x 1,x 214),B (x 2,x 224),x 1≠x 2.由N 为线段AB 的中点,知 x =x 1+x 22,③y =x 21+x 228.④所以切线MA ,MB 的方程分别为 y =x 12(x -x 1)+x 214,⑤y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为 x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O , AB 的中点N 为点O ,坐标满足x 2=43y .因此AB 的中点N 的轨迹方程是x 2=43y .思维升华 “相关点法”的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y );(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.设直线x -y =4a 与抛物线y 2=4ax 交于两点A ,B (a 为定值),C 为抛物线上任意一点,求△ABC 的重心的轨迹方程. 解 设△ABC 的重心为G (x ,y ),点C 的坐标为(x 0,y 0),A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧x -y =4a ,y 2=4ax ,消去y 并整理得 x 2-12ax +16a 2=0. ∴x 1+x 2=12a ,y 1+y 2=(x 1-4a )+(x 2-4a )=(x 1+x 2)-8a =4a .∵G (x ,y )为△ABC 的重心, ∴⎩⎨⎧x =x 0+x 1+x 23=x 0+12a 3,y =y 0+y 1+y 23=y 0+4a3,∴⎩⎪⎨⎪⎧x 0=3x -12a ,y 0=3y -4a . 又点C (x 0,y 0)在抛物线上,∴将点C 的坐标代入抛物线的方程得 (3y -4a )2=4a (3x -12a ), 即(y -4a 3)2=4a3(x -4a ).又点C 与A ,B 不重合,∴x 0≠(6±25)a , ∴△ABC 的重心的轨迹方程为 (y -4a 3)2=4a 3(x -4a )(x ≠(6±253)a ).22.分类讨论思想在曲线方程中的应用典例 (12分)已知抛物线y 2=2px 经过点M (2,-22),椭圆x 2a 2+y 2b2=1的右焦点恰为抛物线的焦点,且椭圆的离心率为12.(1)求抛物线与椭圆的方程;(2)若P 为椭圆上一个动点,Q 为过点P 且垂直于x 轴的直线上的一点,|OP ||OQ |=λ(λ≠0),试求Q 的轨迹.思想方法指导 (1)由含参数的方程讨论曲线类型时,关键是确定分类标准,一般情况下,根据x 2,y 2的系数与0的关系及两者之间的大小关系进行分类讨论. (2)等价变换是解题的关键:即必须分三种情况讨论轨迹方程. (3)区分求轨迹方程与求轨迹问题. 规范解答解 (1)因为抛物线y 2=2px 经过点M (2,-22), 所以(-22)2=4p ,解得p =2. 所以抛物线的方程为y 2=4x ,其焦点为F (1,0),即椭圆的右焦点为F (1,0),得c =1. 又椭圆的离心率为12,所以a =2,可得b 2=4-1=3,故椭圆的方程为 x 24+y 23=1. [3分](2)设Q (x ,y ),其中x ∈[-2,2], 设P (x ,y 0),因为P 为椭圆上一点,所以x 24+y 23=1,解得y 20=3-34x 2. 由|OP ||OQ |=λ可得|OP |2|OQ |2=λ2, 故x 2+3-34x 2x 2+y2=λ2,得(λ2-14)x 2+λ2y 2=3,x ∈[-2,2].[6分]当λ2=14,即λ=12时,得y 2=12,点Q 的轨迹方程为y =±23,x ∈[-2,2], 此轨迹是两条平行于x 轴的线段;[8分] 当λ2<14,即0<λ<12时,得到x 23λ2-14+y 23λ2=1,此轨迹表示实轴在y 轴上的双曲线满足x ∈[-2,2]的部分;[10分] 当λ2>14,即λ>12时,得到x 23λ2-14+y 23λ2=1.此轨迹表示长轴在x 轴上的椭圆满足x ∈[-2,2]的部分.[12分]1.(2017·宜春质检)设定点M 1(0,-3),M 2(0,3),动点P 满足条件|PM 1|+|PM 2|=a +9a (其中a是正常数),则点P 的轨迹是( ) A .椭圆 B .线段 C .椭圆或线段 D .不存在答案 C解析 ∵a 是正常数,∴a +9a≥29=6.当|PM 1|+|PM 2|=6时,点P 的轨迹是线段M 1M 2; 当a +9a >6时,点P 的轨迹是椭圆,故选C.2.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( ) A .x +y =5 B .x 2+y 2=9 C.x 225+y 29=1 D .x 2=16y答案 B解析 ∵M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,∴M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),故直线与M 的轨迹有交点,满足题意;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),故椭圆x 225+y 29=1与M 的轨迹有交点,满足题意;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,∴Δ>0,满足题意.3.(2016·银川模拟)已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ) A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0 D .2x -y +5=0 答案 D解析 由题意知,M 为PQ 中点, 设Q (x ,y ),则P 为(-2-x,4-y ), 代入2x -y +3=0,得2x -y +5=0.4.(2016·太原模拟)已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为( ) A .4 B .3 C .2 D .1 答案 B解析 ∵e 是方程2x 2-5x +2=0的根, ∴e =2或e =12.mx 2+4y 2=4m 可化为x 24+y 2m=1,当它表示焦点在x 轴上的椭圆时, 有4-m 2=12,∴m =3; 当它表示焦点在y 轴上的椭圆时, 有m -4m=12,∴m =163; 当它表示焦点在x 轴上的双曲线时, 可化为x 24-y 2-m =1,有4-m2=2,∴m =-12. ∴满足条件的圆锥曲线有3个.5.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为( ) A .y =-2x B .y =2x C .y =2x -8 D .y =2x +4答案 B解析 设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,∴⎩⎨⎧x +x12=1,y +y12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y . ∵点R (x 1,y 1)在直线y =2x -4上,∴y 1=2x 1-4,∴-y =2(2-x )-4,即y =2x .6.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( ) A .直线 B .椭圆 C .圆 D .双曲线 答案 A解析 设C (x ,y ),则OC →=(x ,y ),OA →=(3,1),OB →=(-1,3),∵OC →=λ1OA →+λ2OB →,∴⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,又λ1+λ2=1,∴x +2y -5=0,表示一条直线.7.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论: ①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________. 答案 ②③解析 因为原点O 到两个定点F 1(-1,0),F 2(1,0)的距离的积是1,且a >1,所以曲线C 不过原点,即①错误;因为F 1(-1,0),F 2(1,0)关于原点对称,所以|PF 1||PF 2|=a 2对应的轨迹关于原点对称,即②正确;因为S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2≤12|PF 1||PF 2|=12a 2,即△F 1PF 2的面积不大于12a 2,所以③正确.8.(2017·西安月考)已知△ABC 的顶点A ,B 坐标分别为(-4,0),(4,0),C 为动点,且满足sin B +sin A =54sin C ,则C 点的轨迹方程为________________.答案 x 225+y 29=1(x ≠±5)解析 由sin B +sin A =54sin C 可知b +a =54c =10,则|AC |+|BC |=10>8=|AB |,∴满足椭圆定义. 令椭圆方程为x 2a ′2+y 2b ′2=1,则a ′=5,c ′=4,b ′=3,则轨迹方程为 x 225+y 29=1(x ≠±5). 9.如图,P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,且OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.答案 x 24a 2+y 24b2=1解析 由于OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →,设Q (x ,y ),则OP →=-12OQ →=(-x 2,-y 2),即P 点坐标为(-x 2,-y2),又P 在椭圆上,则有(-x 2)2a 2+(-y2)2b 2=1,即x 24a 2+y 24b2=1.10.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线焦点的轨迹方程是________________. 答案 x 24+y 23=1(y ≠0)解析 设抛物线的焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1, 则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,∴|F A |+|FB |=4>2=|AB |,故F 点的轨迹是以A ,B 为焦点, 长轴长为4的椭圆(去掉长轴两端点).11.已知实数m >1,定点A (-m,0),B (m,0),S 为一动点,点S 与A ,B 两点连线斜率之积为-1m 2. (1)求动点S 的轨迹C 的方程,并指出它是哪一种曲线;(2)若m =2,问t 取何值时,直线l :2x -y +t =0(t >0)与曲线C 有且只有一个交点? 解 (1)设S (x ,y ),则k SA =y -0x +m ,k SB =y -0x -m. 由题意,得y 2x 2-m 2=-1m 2, 即x 2m2+y 2=1(x ≠±m ). ∵m >1,∴轨迹C 是中心在坐标原点,焦点在x 轴上的椭圆(除去x 轴上的两顶点),其中长轴长为2m ,短轴长为2.(2)m =2,则曲线C 的方程为x 22+y 2=1(x ≠±2).由⎩⎪⎨⎪⎧2x -y +t =0,x 22+y 2=1, 消去y ,得9x 2+8tx +2t 2-2=0. 令Δ=64t 2-36×2(t 2-1)=0,得t =±3. ∵t >0,∴t =3.此时直线l 与曲线C 有且只有一个交点.12.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过左焦点且倾斜角为45°的直线被椭圆截得的弦长为423.(1)求椭圆E 的方程;(2)若动直线l 与椭圆E 有且只有一个公共点,过点M (1,0)作l 的垂线,垂足为Q ,求点Q 的轨迹方程.解 (1)因为椭圆E 的离心率为22, 所以a 2-b 2a =22.解得a 2=2b 2,故椭圆E 的方程可设为 x 22b 2+y 2b 2=1, 则椭圆E 的左焦点坐标为(-b,0),过左焦点且倾斜角为45°的直线方程为l ′:y =x +b . 设直线l ′与椭圆E 的交点为A ,B , 由⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =x +b消去y , 得3x 2+4bx =0,解得x 1=0,x 2=-4b 3.因为|AB |=1+12|x 1-x 2| =42b 3=423, 解得b =1.故椭圆E 的方程为x 22+y 2=1.(2)①当切线l 的斜率存在且不为0时,设l 的方程为y =kx +m ,联立直线l 和椭圆E 的方程, 得⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,消去y 并整理, 得(2k 2+1)x 2+4kmx +2m 2-2=0. 因为直线l 和椭圆E 有且只有一个交点, 所以Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0. 化简并整理,得m 2=2k 2+1.因为直线MQ 与l 垂直,所以直线MQ 的方程为y =-1k (x -1).联立方程组⎩⎪⎨⎪⎧y =-1k (x -1),y =kx +m ,解得⎩⎪⎨⎪⎧x =1-km1+k 2,y =k +m1+k 2,所以x 2+y 2=(1-km )2+(k +m )2(1+k 2)2=k 2m 2+k 2+m 2+1(1+k 2)2=(k 2+1)(m 2+1)(1+k 2)2=m 2+11+k 2, 把m 2=2k 2+1代入上式得x 2+y 2=2.(*) ②当切线l 的斜率为0时,此时Q (1,1)或Q (1,-1),符合(*)式.③当切线l 的斜率不存在时,此时Q (2,0)或Q (-2,0)符合(*)式. 综上所述,点Q 的轨迹方程为x 2+y 2=2.*13.(2016·河北衡水中学三调)如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于点Q .(1)求动点Q 的轨迹Γ的方程;(2)设直线l 与(1)中轨迹Γ相交于A ,B 两点,直线OA ,l ,OB 的斜率分别为k 1,k ,k 2(其中k >0),△OAB 的面积为S ,以OA ,OB 为直径的圆的面积分别为S 1,S 2,若k 1,k ,k 2恰好构成等比数列,求S 1+S 2S 的取值范围.解 (1)连接QF ,根据题意,|QP |=|QF |,则|QE |+|QF |=|QE |+|QP | =4>|EF |=23,故动点Q 的轨迹Γ是以E ,F 为焦点, 长轴长为4的椭圆.设其方程为x 2a 2+y 2b2=1(a >b >0),可知a =2,c =a 2-b 2=3,则b =1, ∴点Q 的轨迹Γ的方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m , A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得, (1+4k 2)x 2+8kmx +4m 2-4=0, Δ=16(1+4k 2-m 2)>0,x 1+x 2=-8km1+4k 2,x 1x 2=4(m 2-1)1+4k 2.∵k 1,k ,k 2构成等比数列, ∴k 2=k 1k 2=(kx 1+m )(kx 2+m )x 1x 2,整理得km (x 1+x 2)+m 2=0, ∴-8k 2m 21+4k 2+m 2=0,解得k 2=14. ∵k >0,∴k =12.此时Δ=16(2-m 2)>0, 解得m ∈(-2,2).又由A ,O ,B 三点不共线得m ≠0, 从而m ∈(-2,0)∪(0,2). 故S =12|AB |d =121+k 2|x 1-x 2|·|m |1+k 2=12(x 1+x 2)2-4x 1x 2·|m | =2-m 2|m |.又x 214+y 21=x 224+y 22=1, 则S 1+S 2=π4(x 21+y 21+x 22+y 22)=π4(34x 21+34x 22+2) =3π16[(x 1+x 2)2-2x 1x 2]+π2=5π4为定值. ∴S 1+S 2S =5π4×1(2-m 2)m2≥5π4, 当且仅当m =±1时等号成立. 综上,S 1+S 2S ∈[5π4,+∞).。

2018版高考数学一轮总复习第8章平面解析几何8.8曲线与方程课件理

2018版高考数学一轮总复习第8章平面解析几何8.8曲线与方程课件理

考点2
求曲线方程的基本步骤
[必会结论] 1.两个条件 (1)如果曲线C的方程是f(x,y)=0,那么点P0(x0,y0)在 曲线上的充要条件是f(x0,y0)=0. (2)“曲线C是方程f(x,y)=0的曲线”是“曲线C上的 点的坐标都是方程f(x,y)=0的解”的充分不必要条件. 2.求轨迹问题常用的数学思想 (1)函数与方程思想:求平面曲线的轨迹方程就是将几 何条件(性质)表示为动点坐标x,y的方程及函数关系.
+|AB|=4>|AB|,所以曲线M是以A,B为焦点,长轴长为4 的椭圆(挖去与x轴的交点). x2 y2 设曲线M:a2+b2=1(a>b>0,y≠0), 则a =4,b
2 2 |AB| 2 =a - =3, 2 2 2 2
x y 所以曲线M: 4 + 3 =1(y≠0)为所求.
(2)数形结合思想:由曲线的几何性质求曲线方程是 “数”与“形”的有机结合. (3)等价转化思想:通过坐标系使“数”与“形”相互 结合,在解决问题时又需要相互转化.
[双基夯实] 一、疑难辨析 判断下列结论的正误.(正确的打“√”,错误的打 “×”) 1.f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充 要条件.( √ ) 2.方程x2+xy=x的曲线是一个点和一条直线.( × ) 3.到两条互相垂直的直线距离相等的点的轨迹方程是 x2=y2.( × )
4.方程y= x与x=y2表示同一曲线.( × ) x 5.方程 =1表示斜率为1,在y轴上的截距为2的直 y -2 线.( × )
二、小题快练 1.[课本改编]已知M(-2,0),N(2,0),|PM|-|PN|=4, 则动点P的轨迹是( A.双曲线 C.一条射线
解析 线.

【配套K12】2018年高考数学总复习第九章平面解析几何第8讲曲线与方程学案

【配套K12】2018年高考数学总复习第九章平面解析几何第8讲曲线与方程学案

第8讲 曲线与方程最新考纲 1.了解方程的曲线与曲线的方程的对应关系;2.了解解析几何的基本思想和利用坐标法研究曲线的简单性质;3.能够根据所给条件选择适当的方法求曲线的轨迹方程.知 识 梳 理1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上点的坐标与一个二元方程f (x ,y )=0的实数解满足如下关系: (1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,将其转化为x ,y 的方程式,并化简. (5)证明——证明所求方程即为符合条件的动点轨迹方程. 3.两曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解.若此方程组无解,则两曲线无交点.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( ) (2)方程x 2+xy =x 的曲线是一个点和一条直线.( ) (3)动点的轨迹方程和动点的轨迹是一样的.( ) (4)方程y =x 与x =y 2表示同一曲线.( )解析 对于(2),由方程得x (x +y -1)=0,即x =0或x +y -1=0,所以方程表示两条直线,错误;对于(3),前者表示方程,后者表示曲线,错误;对于(4),曲线y =x 是曲线x =y 2的一部分,错误.答案 (1)√ (2)× (3)× (4)×2.已知命题“曲线C 上的点的坐标是方程f (x ,y )=0的解”是正确的,则下列命题中正确的是( )A.满足方程f (x ,y )=0的点都在曲线C 上B.方程f (x ,y )=0是曲线C 的方程C.方程f (x ,y )=0所表示的曲线不一定是曲线CD.以上说法都正确解析 曲线C 可能只是方程f (x ,y )=0所表示的曲线的一部分,因此答案C 正确. 答案 C3.已知M (-1,0),N (1,0),|PM |-|PN |=2,则动点P 的轨迹是( ) A.双曲线 B.双曲线左支 C.一条射线D.双曲线右支解析 由于|PM |-|PN |=|MN |,所以D 不正确,应为以N 为端点,沿x 轴正向的一条射线. 答案 C4.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________. 解析 连接OP ,则|OP |=2,∴P 点轨迹是去掉M ,N 两点的圆,∴方程为x 2+y 2=4(x ≠±2). 答案 x 2+y 2=4(x ≠±2)5.(选修2-1P35例1改编)曲线C :xy =2上任一点到两坐标轴的距离之积为________. 解析 曲线xy =2上任取一点(x 0,y 0),则x 0y 0=2,该点到两坐标轴的距离之积为|x 0||y 0|=|x 0y 0|=2. 答案 26.(2017·宁波月考)设定点F 1(0,-3),F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a(a >0),(1)当a =3时,点P 的轨迹是________; (2)当a ≠3时,点P 的轨迹是________. 解析 ∵a +9a≥2a ·9a =6(a >0).(1)当a =3时,a +9a=6,此时|PF 1|+|PF 2|=|F 1F 2|,P 点的轨迹为线段F 1F 2, (2)当a ≠3,a >0时,|PF 1|+|PF 2|>|F 1F 2|. 由椭圆定义知P 点的轨迹为椭圆. 答案 (1)线段F 1F 2 (2)椭圆考点一 直接法求轨迹方程【例1】 (2017·义乌模拟)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ的角平分线,证明:直线l 过定点.(1)解 如图,设动圆圆心为O 1(x ,y ), 由题意,|O 1A |=|O 1M |,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点. ∴|O 1M |=x 2+42, 又|O 1A |=(x -4)2+y 2,∴(x -4)2+y 2=x 2+42,化简得y 2=8x (x ≠0).当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明 由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk2,① x 1x 2=b 2k,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1, 即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0). 规律方法 利用直接法求轨迹方程(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简. (2)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略.【训练1】 在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13,则动点P 的轨迹方程为________.解析 因为点B 与点A (-1,1)关于原点O 对称,所以点B 的坐标为(1,-1).设点P 的坐标为(x ,y ),由题意得y -1x +1·y +1x -1=-13,化简得x 2+3y 2=4(x ≠±1).故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1).答案 x 2+3y 2=4(x ≠±1) 考点二 定义法求轨迹方程【例2】 已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.解 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R . 因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4>|MN |=2.由椭圆的定义可知,曲线C 是以M ,N 为左,右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为 x 24+y23=1(x ≠-2).规律方法 (1)求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程. (2)理解解析几何中有关曲线的定义是解题关键.(3)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.【训练2】 已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4,动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线. 解 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系.由|O 1O 2|=4,得O 1(-2,0),O 2(2,0). 设动圆M 的半径为r , 则由动圆M 与圆O 1内切, 有|MO 1|=r -1;由动圆M 与圆O 2外切,有|MO 2|=r +2. ∴|MO 2|-|MO 1|=3.∴点M 的轨迹是以O 1,O 2为焦点, 实轴长为3的双曲线的左支. ∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29- 4y 27=1⎝⎛⎭⎪⎫x ≤-32. 考点三 相关点法(代入法)求轨迹方程【例3】 如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0);由曲线的对称性, 得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y = -y 0x 0-3(x -3).②由①②相乘得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上,故y 2=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).规律方法 “相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 0,y 0); (2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 0=f (x ,y ),y 0=g (x ,y );(3)代换:将上述关系式代入主动点满足的曲线方程,便可得到所求被动点的轨迹方程. 【训练3】 已知F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( )A.x 236+y 227=1(y ≠0) B.4x 29+y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D.x 2+4y 23=1(y ≠0) 解析 依题意知F 1(-1,0),F 2(1,0),设P (x 0,y 0),G (x ,y ),则由三角形重心坐标关系可得⎩⎪⎨⎪⎧x =x 0-1+13,y =y3即⎩⎪⎨⎪⎧ x 0=3x ,y 0=3y ,代入x 204+y 203=1,得重心G 的轨迹方程为9x 24+3y 2=1(y ≠0).答案C[思想方法]求轨迹方程的常用方法1.直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程.2.定义法:若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程.3.相关点法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程. [易错防范]1.求轨迹方程时,要注意曲线上的点与方程的解是一一对应关系.检验可从以下两个方面进行:一是方程的化简是否是同解变形;二是是否符合题目的实际意义.2.求点的轨迹与轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等.。

高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程配套课时作业 理(含解析)新人教A版-新人

高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程配套课时作业 理(含解析)新人教A版-新人

第8讲 曲线与方程配套课时作业1.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线 答案 D解析 由已知知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2019·某某模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 答案 B解析 由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆.故选B.3.到点F (0,4)的距离比到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2B .y =-16x 2C .x 2=16y D .x 2=-16y 答案 C解析 由条件知,动点M 到F (0,4)的距离与到直线y =-4的距离相等,所以点M 的轨迹是以F (0,4)为焦点,直线y =-4为准线的抛物线,其标准方程为x 2=16y .4.(2019·某某模拟)设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2x D .(x -1)2+y 2=2 答案 D解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥PA ,且|MA |=1.又∵|PA |=1,∴|PM |=|MA |2+|PA |2=2,即|PM |2=2,∴(x -1)2+y 2=2.5.在△ABC 中,已知A (-1,0),C (1,0),且|BC |,|CA |,|AB |成等差数列,则顶点B 的轨迹方程是( )A.x 23+y 24=1B.x 23+y 24=1(x ≠±3)C.x 24+y 23=1 D.x 24+y 23=1(x ≠±2) 答案 D解析 因为|BC |,|CA |,|AB |成等差数列,所以|BC |+|BA |=2|CA |=4.所以点B 的轨迹是以A ,C 为焦点,半焦距c =1,长轴长2a =4的椭圆.又B 是三角形的顶点,A ,B ,C 三点不能共线,故所求的轨迹方程为x 24+y 23=1,且x ≠±2.故选D.6.动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8x B .y 2=-8x C .y 2=4x D .y 2=-4x 答案 B解析 设双曲线x 2-y 23=1的左焦点为F (-2,0),因为动圆M 经过F 且与直线x =2相切,所以圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .7.(2019·某某某某检测)已知F 1,F 2是双曲线的两个焦点,Q 是双曲线上任意一点,从焦点F 1引∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线 答案 B解析 不妨设点Q 在双曲线的右支上,延长F 1P 交直线QF 2于点S ,∵QP 是∠F 1QF 2的平分线,且QP ⊥F 1S ,∴P 是F 1S 的中点.∵O 是F 1F 2的中点,∴PO 是△F 1SF 2的中位线,∴|PO |=12|F 2S |=12(|QS |-|QF 2|)=12(|QF 1|-|QF 2|)=a (定值),∴点P 的轨迹为圆. 8.设线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,且|AB |=5,OM →=35OA →+25OB →,则点M 的轨迹方程为( )A.x 29+y 24=1B.y 29+x 24=1C.x 225+y 29=1 D.y 225+x 29=1 答案 A解析 设M (x ,y ),A (x 0,0),B (0,y 0),由OM →=35OA →+25OB →,得(x ,y )=35(x 0,0)+25(0,y 0),则⎩⎪⎨⎪⎧x =35x 0,y =25y 0,解得⎩⎪⎨⎪⎧x 0=53x ,y 0=52y ,由|AB |=5,得⎝ ⎛⎭⎪⎫53x 2+⎝ ⎛⎭⎪⎫52y 2=25,化简得x 29+y 24=1.9.已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线 答案 C解析 以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,轨迹是圆;当λ>0且λ≠1时,轨迹是椭圆;当λ<0时,轨迹是双曲线;当λ=0时,轨迹是直线.综上,动点M 的轨迹不可能是抛物线.10.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1) B .y 2-x 248=1C .y 2-x 248=-1 D .x 2-y 248=1 答案 A解析 由题意,得|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2.故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.∵双曲线中c =7,a =1,∴b 2=48,∴焦点F 的轨迹方程为y 2-x 248=1(y ≤-1).11.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线 答案 D解析 在平面ABCD 内过点P 作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又因为|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1,即|PF |2=|PM |2,即|PF |=|PM |,所以点P 满足到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线,所以点P 的轨迹为抛物线.12.(2019·某某质量检查)已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N 满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为( )A .-2B .-12 C.12 D .2答案 D解析 因为|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以x 1+x 2=6mk 1-3k 2=12①,y 1+y 2=k (x 1+x 2)+2m =12k +2m =2②,由①②解得k =2,故选D.13.由动点P 向圆x 2+y 2=1引两条切线PA ,PB ,切点分别为A ,B ,∠APB =60°,则动点P 的轨迹方程为________.答案 x 2+y 2=4解析 设P (x ,y ),x 2+y 2=1的圆心为O ,因为∠APB =60°,OP 平分∠APB ,所以∠OPB =30°,因为|OB |=1,∠OBP 为直角,所以|OP |=2,所以x 2+y 2=4.14.(2019·某某模拟)△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.答案x 29-y 216=1(x >3)解析 如图,令内切圆与三边的切点分别为D ,E ,F ,可知|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=|AE |-|BE |=8-2=6<|AB |=10.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,其方程为x 29-y 216=1(x >3).15.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C ,则曲线C 的方程为________.答案x 24+y 23=1(x ≠-2) 解析 设圆M 的半径为r 1,圆N 的半径为r 2,圆P 的半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).16.若过抛物线y 2=4x 的焦点作直线与其交于M ,N 两点,作平行四边形MONP ,则点P的轨迹方程为________.答案 y 2=4(x -2)解析 (1)当直线斜率k 存在时,设直线方程为y =k (x -1),点M (x 1,y 1),N (x 2,y 2),P (x ,y ),由OM →=NP →,得(x 1,y 1)=(x -x 2,y -y 2).得x 1+x 2=x ,y 1+y 2=y .由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,联立得x =x 1+x 2=2k 2+4k2.y =y 1+y 2=4kk 2,消去参数k ,得y 2=4(x -2).(2)当直线斜率k 不存在时,直线方程为x =1,由O P →=2O F →得P (2,0),适合y 2=4(x -2).综合(1)(2),点P 的轨迹方程为y 2=4(x -2).17.(2019·某某质检)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左、右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程. 解 (1)设A (x 0,y 0),则S 矩形ABCD =4|x 0y 0|, 由x 209+y 20=1,得y 20=1-x 209, 从而x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94.当x 20=92,y 20=12时,S max =6.从而t 2=x 20+y 20=5,t =5,所以当t =5时,矩形ABCD 的面积取到最大值6. (2)由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3),①直线A 2B 的方程为y =-y 0x 0-3(x -3),② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③,得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).18.(2019·某某某某模拟)已知动点M (x ,y )满足:x +12+y 2+x -12+y 2=2 2.(1)求动点M 的轨迹E 的方程;(2)设过点N (-1,0)的直线l 与曲线E 交于A ,B 两点,点A 关于x 轴的对称点为C (点C 与点B 不重合).证明:直线BC 恒过定点,并求该定点的坐标.解 (1)由已知,动点M 到点P (-1,0),Q (1,0)的距离之和为22,且 |PQ |<22,所以动点M 的轨迹为椭圆,且a =2,c =1,所以b =1,所以动点M 的轨迹E 的方程为x 22+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),则C (x 1,-y 1), 由已知得直线l 的斜率存在,设斜率为k , 则直线l 的方程为y =k (x +1).由⎩⎪⎨⎪⎧y =k x +1,x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.又直线BC 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2), 即y =y 2+y 1x 2-x 1x -x 1y 2+x 2y 1x 2-x 1, 令y =0,得x =x 1y 2+x 2y 1y 2+y 1=2kx 1x 2+k x 1+x 2k x 1+x 2+2k=2x 1x 2+x 1+x 2x 1+x 2+2=4k 2-41+2k 2-4k21+2k 2-4k 21+2k 2+2=-2, 所以直线BC 恒过定点D (-2,0).19.(2016·全国卷Ⅲ)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.解 由题意知F ⎝ ⎛⎭⎪⎫12,0. 设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b , R ⎝ ⎛ -12,⎭⎪⎫a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba=-b =k 2.所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a |·|FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得2×12|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=0(舍去)或x 1=1.设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时, 由k AB =k DE 可得2a +b =yx -1(x ≠1). 而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为y 2=x -1.20.(2019·某某模拟)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点.(1)求椭圆Γ的方程;(2)设点A 在椭圆Γ上,点B 在直线y =2上,且OA ⊥OB ,求证:1|OA |2+1|OB |2为定值;(3)设点C 在椭圆Γ上运动,OC ⊥OD ,且点O 到直线CD 的距离为常数3,求动点D 的轨迹方程.解 (1)∵椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点,∴b =c =2,∴a =2+2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)证明:设A (x 0,y 0),则OB 的方程为x 0x +y 0y =0,由y =2,得B ⎝⎛⎭⎪⎫-2y 0x 0,2,∴1|OA |2+1|OB |2=1x 20+y 20+14+4y 20x 2=4+x 24x 20+y 2=4+x 24⎝⎛⎭⎪⎫x 20+2-x 22=12, ∴1|OA |2+1|OB |2为定值12. (3)设C (x 1,y 1),D (x ,y ),由OC ⊥OD ,得x 1x +y 1y =0,①由点C 在椭圆上,得x 214+y 212=1,②联立①②,得x 21=4y 22x 2+y 2,y 21=4x 22x 2+y2.③由OC ⊥OD ,点O 到CD 的距离为3,得|OC |·|OD |=3|CD |, ∴|OC |2·|OD |2=3(|OC |2+|OD |2).将③代入得 1|OC |2+1|OD |2=1x 21+y 21+1x 2+y2 =14y 22x 2+y 2+4x 22x 2+y2+1x 2+y 2=2x 2+y 2+44x 2+y 2=13, 化简,得点D 的轨迹方程为y 212-x 26=1.。

高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程课件 理

高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程课件 理
12/11/2021
第十一页,共四十二页。
(√) (×) (×) (×)
(×)
二、易错纠偏 常见误区 (1)混淆“轨迹”与“轨迹方程”出错; (2)忽视轨迹方程的“完备性”与“纯粹性”.
12/11/2021
第十二页,共四十二页。
1.(1)平面内与两定点 A(2,2),B(0,0)距离的比值为 2 的点的轨迹是________. (2)设动圆 M 与 y 轴相切且与圆 C:x2+y2-2x=0 相外切,则动圆圆心 M 的轨迹方程为 ________.
12/11/2021
第七页,共四十二页。
二、教材衍化
1.已知点 F14,0,直线 l:x=-14,点 B 是 l 上的动点,若过点 B 垂直于 y 轴的直线
与线段 BF 的垂直平分线交于点 M,则点 M 的轨迹是
()
A.双曲线
B.椭圆
C.圆
D.抛物线
解析:选 D.由已知|MF|=|MB|,根据抛物线的定义知,点 M 的轨迹是以点 F 为焦点,
直线 l 为准线的抛物线.
12/11/2021
第八页,共四十二页。
2.曲线 C:xy=2 上任一点到两坐标轴的距离之积为________. 解析:在曲线 xy=2 上任取一点(x0,y0),则 x0y0=2,该点到两坐标轴的距离之积为|x0||y0| =|x0y0|=2. 答案:2
12/11Байду номын сангаас2021
12/11/2021
第十九页,共四十二页。
已知坐标平面上动点 M(x,y)与两个定点 P(26,1),Q(2,1),且|MP|= 5|MQ|. (1)求点 M 的轨迹方程,并说明轨迹是什么图形; (2)记(1)中轨迹为 C,若过点 N(-2,3)的直线 l 被 C 所截得的线段长度为 8,求直线 l 的方程.

2018届高考(新课标)数学(理)大一轮复习课件:第九章 平面解析几何 9-8

2018届高考(新课标)数学(理)大一轮复习课件:第九章 平面解析几何 9-8

-8km 4m2-12 ∴x1+x2= 2 ,x1x2= .① 4k +3 4k2+3 ∵以 MN 为直径的圆过点 A,A 点的坐标为(2,0), → ·AN → =0,即(x -2)(x -2)+y y =0.② ∴AM 1 2 1 2 ∵y1=kx1+m,y2=kx2+m, ∴y1y2=k2x1x2+km(x1+x2)+m2.③ 将①③代入②得 7m2+16km+4k2=0. m 2 m ∴ k =-7或 k =-2,且都满足 Δ>0.
(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲 线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无 解,两条曲线就没有交点. (2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交
点问题,就是求由它们的方程所组成的方程组的实数解问题.
【答案】 (x-2)2+y2=4(0≤x<1)
题型一 定义法求轨迹方程
【例1】 已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切 ,圆心P的轨迹为曲线C.求C的方程.
【解析】 由已知得圆 M 的圆心为 M(-1,0),半径 r1=1; 圆 N 的圆心为 N(1,0),半径 r2=3.设圆 P 的圆心为 P(x,y),半 径为 R.因为圆 P 与圆 M 外切并且与圆 N 内切,所以|PM|+|PN| =(R+r1)+(r2-R)=r1+r2=4>2=|MN|. 由椭圆的定义可知,曲线 C 是以 M,N 为左,右焦点,长半 x2 y2 轴长为 2, 短半轴长为 3的椭圆(左顶点除外), 其方程为 4 + 3 = 1(x≠-2).
线叫做___________.
这个方程的解 曲线上的点 曲线的方程 方程的曲线

高考数学大一轮复习第九章平面解析几何9.8曲线与方程课件

高考数学大一轮复习第九章平面解析几何9.8曲线与方程课件

题型分类 深度剖析
题型一 定义法求轨迹方程
例1 已知两个定圆O1和O2,它们的半径分别是1和2,且|O1O2|=4.动 圆M与圆O1内切,又与圆O2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线. 解答
思维升华
应用定义法求曲线方程的关键在于由已知条件推出关于动点的等量关 系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程, 用待定系数法求解.
跟踪训练1 已知△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心
在直线x=3上,则顶点C的轨迹方程是
答案
解析
A.x92-1y62 =1
B.1x62 -y92=1
C.x92-1y62 =1 (x>3)
D.x92-1y62 =1 (x>4)
如图,|AD|=|AE|=8,
|BF|=|BE|=2,|CD|=|CF|,
C.圆
D.双曲线
答案
解析
设 C(x,y),则O→C=(x,y),O→A=(3,1),O→B=(-1,3), ∵O→C=λ1O→A+λ2O→B, ∴x=3λ1-λ2,
y=λ1+3λ2, 又λ1+λ2=1,∴x+2y-5=0,表示一条直线.
1 2 3 4 5 6 7 8 9 10 11 12 13
设 Q(x,y),则O→P=-12O→Q=(-2x,-2y),
即 P 点坐标为(-2x,-2y),又 P 在椭圆上, 则有-a22x2+-b22y2=1,即4xa22+4yb22=1.
1 2 3 4 5 6 7 8 9 10 11 12 13
10.已知圆的方程为x2+y2=4,若抛物线过点A(-1,0),B(1,0)且以圆 的切线为准线,则抛物线的焦点轨迹方程是__x_42_+__y3_2_=__1_(y_≠__0. )

(北京专用)高考数学一轮复习第九章平面解析几何第八节曲线与方程课件理

(北京专用)高考数学一轮复习第九章平面解析几何第八节曲线与方程课件理

1,
1
n m
由 x可得myy2-n4,my-4n=0,(*) 因为 y(2yīn4wxèi)直线l'与曲线E有唯一公共点A,
所以Δ=16m2+16n=0,即n=-m2.
第十六页,共29页。
所以(suǒyǐ)(*)可化简为y2-4my+4m2=0, 所以(suǒyǐ)A(m2,2m), 因为n=-m2,
第二十六页,共29页。
3于-1点A已,B知,且曲 线=E-2: ax.2若+b点y2B=的1(坐a>标0,b为>(00),,2经),过求(曲jīn线ggEu的ò)方点33程M,0. 的直线l与曲线E交
MB MA
第二十七页,共29页。
解故析 =(j iě ,x ī)= 设. A(x0,y0),∵B(0,2),M33 ,0,

a2 b2
MN中点的轨迹方程是 x2+ 4=y21 .
a2 b2
答案(dáàxn2 ) 4 y2+ =1 a2 b2
解析(jiě xī) 设MN的中点为P(x,y),则点M(x,2y),又点M在椭圆上x2 ,∴(2 y)2+ =
1,即所求的轨迹方程为 + =1.
x2 4y2
a2 b2
a2 b2
第九页,共29页。
所 所以以 NNA·A ⊥N=NP(Pm, 2-1,2m)· =-2m22,+21-m2-n2n=0, 所以点N在以AP为直径的圆C上. 证法(zhènɡ fǎ)二:依题意可设直线l':y=kx+b(k≠0), 由 可得k2x2+2(bk-2)x+b2=0,(*) 因为 y直线kxl'与 b曲, 线E有唯一公共点A, 所以 y2 即 4x

高考数学大一轮复习 第九章 平面解析几何 9.8 曲线与方程教师用书(2021年最新整理)

高考数学大一轮复习 第九章 平面解析几何 9.8 曲线与方程教师用书(2021年最新整理)

方程教师用书编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2018版高考数学大一轮复习第九章平面解析几何9.8 曲线与方程教师用书)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2018版高考数学大一轮复习第九章平面解析几何9.8 曲线与方程教师用书的全部内容。

线与方程教师用书1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点的轨迹方程的基本步骤【知识拓展】1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系:(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.( √)(2)方程x2+xy=x的曲线是一个点和一条直线.( ×)(3)到两条互相垂直的直线距离相等的点的轨迹方程是x2=y2.( ×)(4)方程y=错误!与x=y2表示同一曲线.(×)(5)y=kx与x=错误!y表示同一直线.(×)1.(教材改编)已知点F(错误!,0),直线l:x=-错误!,点B是l上的动点,若过点B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是()A.双曲线B.椭圆C.圆D.抛物线答案D解析由已知|MF|=|MB|,根据抛物线的定义知,点M的轨迹是以点F为焦点,直线l为准线的抛物线.2.(2016·广州模拟)方程(2x+3y-1)(错误!-1)=0表示的曲线是()A.两条直线B.两条射线C.两条线段D.一条直线和一个射线答案D解析原方程可化为错误!或错误!-1=0,即2x+3y-1=0(x≥3)或x=4,故原方程表示的曲线是一条射线和一条直线.3.(2016·南昌模拟)已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则P点的轨迹方程是()A.(x+2)2+y2=4(y≠0)B.(x+1)2+y2=1(y≠0)C.(x-2)2+y2=4(y≠0)D.(x-1)2+y2=1(y≠0)答案C解析由角的平分线性质定理得|PA|=2|PB|,设P(x,y),则x+22+y2=2x-12+y2,整理得(x-2)2+y2=4(y≠0),故选C.4.过椭圆错误!+错误!=1(a〉b〉0)上任意一点M作x轴的垂线,垂足为N,则线段MN中点的轨迹方程是________________.答案错误!+错误!=1解析设MN的中点为P(x,y),则点M(x,2y)在椭圆上,∴错误!+错误!=1,即错误!+错误!=1(a>b〉0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲 曲线与方程基础巩固题组 (建议用时:40分钟)一、选择题1.方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A.两条直线 B.两条射线C.两条线段D.一条直线和一条射线解析 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条直线和一条射线. 答案 D2.(2017·嘉兴一中质检)若方程x 2+y 2a=1(a 是常数),则下列结论正确的是( )A.任意实数a 方程表示椭圆B.存在实数a 方程表示椭圆C.任意实数a 方程表示双曲线D.存在实数a 方程表示抛物线解析 当a >0且a ≠1时,方程表示椭圆,故选B. 答案 B3.(2017·长春模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( ) A.4x 221-4y225=1 B.4x 221+4y225=1 C.4x 225-4y221=1D.4x 225+4y221=1解析 ∵M 为AQ 的垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹是以定点C ,A 为焦点的椭圆.∴a =52,∴c=1,则b 2=a 2-c 2=214,∴M 的轨迹方程为4x 225+4y221=1.答案 D4.设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则点P 的轨迹方程是( ) A.y 2=2x B.(x -1)2+y 2=4 C.y 2=-2xD.(x -1)2+y 2=2解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥PA ,且|MA |=1,又∵|PA |=1,∴|PM |=|MA |2+|PA |2=2, 即|PM |2=2,∴(x -1)2+y 2=2. 答案 D5.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( ) A.直线B.椭圆C.圆D.双曲线解析 设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎪⎨⎪⎧λ1= y +3x10,λ2=3y -x10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5 ,所以点C 的轨迹为直线,故选A. 答案 A 二、填空题6.(2017·湖州月考)已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹方程是________;轨迹所包围的图形的面积为__________. 解析 设P (x ,y ),由|PA |=2|PB |, 得(x +2)2+y 2=2(x -1)2+y 2, ∴3x 2+3y 2-12x =0, 即x 2+y 2-4x =0.∴P 的轨迹为以(2,0)为圆心,半径为2的圆. 即轨迹所包围的面积等于4π. 答案 x 2+y 2-4x =0 4π7.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为________.解析 设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,∴⎩⎪⎨⎪⎧x +x12=1, y +y 12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y .∵点R (x 1,y 1)在直线y =2x -4上,∴y 1=2x 1-4,∴-y =2(2-x )-4,即y =2x .答案 y =2x8.在△ABC 中,|BC →|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,则顶点A 的轨迹方程为________.解析 以BC 的中点为原点,中垂线为y 轴建立如图所示的坐标系,E ,F 分别为两个切点.则|BE |=|BD |,|CD |=|CF |,|AE |=|AF |.∴|AB |-|AC |=22<|BC |=4,∴点A 的轨迹为以B ,C 的焦点的双曲线的右支(y ≠0)且a =2,c =2,∴b =2,∴轨迹方程为x 22-y 22=1(x >2).答案x 22-y 22=1(x >2) 三、解答题9.(2017·温州十校模拟)已知点C (1,0),点A ,B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.解 (1)连接CP ,OP ,由AC →·BC →=0,知AC ⊥BC , ∴|CP |=|AP |=|BP |=12|AB |,由垂径定理知|OP |2+|AP |2=|OA |2, 即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9, 化简,得x 2-x +y 2=4.(2)存在.根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px (p >0)上,其中p2=1.∴p =2,故抛物线方程为y 2=4x ,由方程组⎩⎪⎨⎪⎧y 2=4x ,x 2-x +y 2=4得x 2+3x -4=0, 解得x 1=1,x 2=-4,由x ≥0, 故取x =1,此时y =±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).10.如图所示,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ). 解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12,所以A 点坐标为⎝ ⎛⎭⎪⎫-1,14, 故切线MA 的方程为y =-12(x +1)+14.因为点M (1-2,y 0)在切线MA 及抛物线C 2上,于是y 0=-12(2-2)+14=-3-224,① y 0=-(1-2)22p =-3-222p .②由①②得p =2.(2)设N (x ,y ),A ⎝⎛⎭⎪⎫x 1,x 214,B ⎝ ⎛⎭⎪⎫x 2,x 224,x 1≠x 2.由N 为线段AB 的中点知x =x 1+x 22,③y =x 21+x 228.④切线MA ,MB 的方程分别为y =x 12(x -x 1)+x 214,⑤y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M 的坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0, 所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O ,AB 的中点N 为点O ,坐标满足x 2=43y .因此AB 的中点N 的轨迹方程为x 2=43y .能力提升题组 (建议用时:30分钟)11.已知△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( ) A.x 29-y 216=1 B.x 216-y 29=1 C.x 29-y 216=1(x >3)D.x 216-y 29=1(x >4)解析 如图,|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=8-2=6<10=|AB |,根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支(y ≠0),方程为x 29-y 216=1(x >3).答案 C12.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为( ) A.y 2=8x B.y 2=-8x C.y 2=4xD.y 2=-4x解析 MN →=(4,0),MP →=(x +2,y ),NP →=(x -2,y ).∴|MN →|=4,|MP →|=(x +2)2+y 2,MN →·NP →=4(x -2).根据已知条件得4(x +2)2+y 2=4(2-x ).整理得y 2=-8x .∴点P 的轨迹方程为y 2=-8x . 答案 B13.如图,P 是椭圆x 2a 2+y 2b2=1上的任意一点,F 1,F 2是它的两个焦点,O为坐标原点,且OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________. 解析 由于OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →,设Q (x ,y ),则OP →=-12OQ →=⎝ ⎛⎭⎪⎫-x 2,-y 2,即P 点坐标为⎝ ⎛⎭⎪⎫-x2,-y 2,又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b2=1.答案 x 24a 2+y 24b2=114.设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P满足QM →=λMP →,求点P 的轨迹方程.解 由QM →=λMP →知Q ,M ,P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2),则x 2-y 0=λ(y -x 2),即y 0=(1+λ)x 2-λy .① 再设B (x 1,y 1),由BQ →=λQA →, 即(x -x 1,y 0-y 1)=λ(1-x ,1-y 0),解得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)y 0-λ.②将①式代入②式,消去y 0, 得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)2x 2-λ(1+λ)y -λ.③又点B 在抛物线y =x 2上,所以y 1=x 21,再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2, (1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2, 2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0. 因λ>0,两边同除以λ(1+λ),得2x -y -1=0. 故所求点P 的轨迹方程为y =2x -1.15.(2016·全国Ⅲ卷)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.解 由题设F ⎝ ⎛⎭⎪⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0, 且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b , R ⎝ ⎛⎭⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.(1)证明 由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a =a -b a -ab =1a =-aba=-b =k 2.所以 AR ∥FQ . (2)设过AB 的直线为l ,设l 与x 轴的交点为D (x 1,0), 则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12, S △PQF =|a -b |2.由题设可得|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=1,x 1=0(舍去). 设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =y x -1(x ≠1).而a +b 2=y ,所以y 2=x -1(x ≠1). 当AB 与x 轴垂直时,E 与D 重合. 所以,所求轨迹方程为y 2=x -1.。

相关文档
最新文档