比例法解行程题
比例法解答行程应用题
1.一辆汽车从甲地开往乙地,每小时行50千米,返回时每小时行60千米,已知去时用了6小时,那么返回时用了几小时?2.甲、乙两车分别从A,B两地同时出发相向而行,甲车每小时行50千米,乙车的速度是甲车的4/5.当甲车行至全程的2/5时,乙车距中点还有36千米。
A,B两地相距多少千米?3.甲、乙两车同时分别从A,B两地同时出发相向而行,当甲车行了全程的1/4时,乙车行了全程的1/3,当乙车行完全程时,甲车距终点还有20千米。
A,B两地相距多少千米?4.甲、乙两车的速度分别是50千米/时、40千米/时,乙车先从B站开往A站,当到离B站72千米的D地时,甲车从A站开往B站,在C地与乙车相遇,如下图。
如果甲、乙两车相遇地C地离A,B两站的路程比是3:4,那么A,B两站之间的路程是多少千米?5.小红骑自行车从甲地到乙地,前一段是上坡路,后一段是下坡路,已知小红上坡每小时行8千米,下坡每小时行22千米,来回一趟共用了3小时。
甲、乙两地相距多少千米?6.一辆汽车从甲地到乙地先上坡后下坡,上坡和下坡的路程比是5:4,汽车上坡和下坡所用时间比是7:3.求这辆汽车上坡和下坡的速度之比。
7.一辆汽车从甲地到乙地,去时每小时行48千米,返回时每小时行60千米,返回时比去时少用了48分钟。
甲、乙两地相距多少千米?8.一辆汽车从甲地到乙地,去时每小时行60千米,返回时速度减少了1/5,这样返回就比去时多用了1小时。
甲、乙两地相距多少千米?9.甲、乙两车分别从A,B两地同时出发,相向而行,甲车每小时行48千米,乙车每小时行42千米。
当乙车行至全程的7/20时,甲车距中点还有24千米,A,B两地相距多少千米?10.甲、乙两车分别从A,B两地同时出发相向而行,甲车每小时行50千米,乙车每小时行60千米,两车相遇时,甲车比乙车少行了50千米.A,B两地相距多少千米?11.甲/乙两车同时分别从A,B两地出发相向而行,当甲车行了全程的3/5时,乙车行了全程的3/4,当乙车行完全程时,甲车距终点还有30千米.A,B两地相距多少千米?12.A,B两地相距380千米,甲、乙两车同时分别从A、B两地出发相向而行,当甲车行了全程的2/3时,乙车行了全程的3/5.那么甲、乙两车相遇时,各行了多少千米?13.甲、乙两车分别从A,B两地同时出发相向而行,甲车每小时行48千米,乙车每小时行60千米,当甲车到达B地时,乙车已超过A地20千米。
比例解决行程问题
比例法解决行程问题例题1:甲、乙二人分别从 A 、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达 A 地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A 、 B 两地相距多少千米?【解析】 两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了 3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以 A 、 B 两地相距2301057÷= (千米). 例题2: 甲、乙两人分别从A 、B 两地出发,相向而行,出发时他们的速度比是3:2。
他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%。
这样,当几B 地时,乙离A 地还有14千米。
那么A 、B 两地间的距离是多少千米?把A 、B 两地的路程平均分成5份,第一次相遇,甲走了3份的路程,乙走了2份的路程,当他们第一次相遇后,甲、乙的速度比为[3×(1+20%)]:[2×(1+30%)]=18:13。
甲到达B 点还需行2份的路程,这时乙行了2÷18×13=149份路程,从图35-3可以看出14千米对应(5—2—149)份 [3×(1+20%)]:[2×(1+30%)]=18:132÷18×13=149(份) 5—(2+149 )=159(份) 14÷159×5=45(千米) 答:A 、B 两地间的距离是45千米。
图35——3B19份例题3:甲、乙两班学生到离校24千米的飞机场参观,一辆汽车一次只能坐一个班的学生。
为了尽快到达机场,两个班商定,由甲班先坐车,乙班步行,同时出发。
甲班学生在中途下车步行去机场,汽车立即返回接途中步行的乙班同学。
比例法解行程问题
千米,则到达所花的时间将比预定长 1,如果速度比预定 8
的增加 1,则到达时间比预定的早1小时,甲乙两地的距离 3
是多少千米?
1
【例4】 (★ ★ ★) 小明家与学校相距6千米,每天小明都以一定的
速度骑自行车去学校,恰好在上课前5分钟赶到。这天, 小明比平时晚出发了10分钟,于是他提速骑车,结果在 上课前1分钟赶到了学校。已知小明提速后的速度是平 时的1.5倍。小明平时骑车的速度是每小时多少千米?
【例5】 (★ ★ ★ ★) 甲、乙二人步行远足旅游,甲出发后1小时,乙
从同地同路出发,步行2小时到达甲于45分钟前曾到过 的地方。此后乙每小时多行500米,经过3小时追上速度 不变的甲。甲每小时行多少米?
Hale Waihona Puke 【本讲小结】 1. 比与比例复习; 2. 行程问题中的比例关系; 3. 比例法解行程问题的运用。
2
时距A,B两地中心处3千米,已知甲车速度是乙车的1.5 倍,求A,B两地的距离。
知识加油站 1. 比与比例复习:
⑴比与比例的意义与表示; ⑵解比例的方法; ⑶正比例与反比例。 2. 行程问题中的比例关系: ⑴路程一定,速度、时间成反比; ⑵时间一定,速度、路程成正比; ⑶速度一定,路程、时间成正比。
一、知识站点: 1. 比与比例复习; 2. 行程问题中的比例关系; 3. 比例法解行程问题的运用。
【例1】 (★) 甲、乙两车往返于A、B两地之间,甲车去时的速
度为 60千米/时,返回时的速度为 40千米/时,乙车往返 的速度都是50千米/时,求甲、乙两车往返一次所用的时 间比。
【例2】 (★ ★) 甲、乙两车同时从A,B两地相向而行,它们相遇
小学数学比例解行程问题含答案
比例解行程问题知识框架比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析 2 个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用v甲,v乙;t甲,t乙;s甲,s乙来表示,大体可分为以下两种情况:1. 当 2 个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s甲v甲t甲,这里因为时间相同,即t甲t乙t, 所以由t甲s甲,t乙s乙s乙v乙t乙v甲v乙得到t s甲s乙,s甲v甲,甲乙在同一段时间t 内的路程之比等于速度比v甲v乙s乙v乙2. 当 2 个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时, 2 个物体所用的时间之比等于他们速度的反比。
s甲v甲t甲,这里因为路程相同,即s甲s乙s ,由s甲v甲t甲,s乙v乙t乙s乙v乙t乙得s v甲t 甲v乙t乙,v甲t乙,甲乙在同一段路程s 上的时间之比等于速度比的反比。
v乙t甲例题精讲【例 1 】甲、乙两人同时A地出发,在A、B两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达A地、B地或遇到乙都会调头往回走,除此以外,两人在AB 之间行走方向不会改变,已知两人第一次相遇的地点距离 B 地1800米,第三次的相遇点距离 B 地800米,那么第二次相遇的地点距离 B 地。
【考点】行程问题之比例解行程【难度】 3 星【题型】填空【解析】设甲、乙两人的速度分别为v1 、v2 ,全程为s ,第二次相遇的地点距离B地x 米。
由于甲的速度大于乙的速度,所以甲第一次遇到乙是甲到达 B 地并调头往回走时遇到乙的,这时甲、乙合走了两个全程,第一次相遇的地点与B地的距离为v1 2s s v1 v2 s,那v1 v2 v1 v2么第一次相遇的地点到B地的距离与全程的比为v1 v2;v1 v2 两人第一次相遇后,甲调头向B地走,乙则继续向B 地走,这样一个过程与第一次相遇前相似,只是这次的“全程”为第一次相遇的地点到 B 地的距离,即1800米。
比例法解行程问题
相同时间内,甲乙两车的速度比与路程比相等
全程的60%,客车每小时比货车快15千米,两地的距离是多少千米?
A、4:3
B、4:5
C、5:4
D、3:4
9
2、货车的速度是客车的
那么有:7x-5x=42 解得x=21
10
,货车和客车分别从甲乙两地同时相向而行,在
设:离客车两到地达甲中地点时,3千货车米走处了x相千米遇得,: 相遇后,两车分别用原来的速度继续前行,到达甲乙
比例法解行程问题
课前回忆
甲、乙两辆汽车的速度比为3:4,它们分别行驶3小时之后的路程比 是多少?
解:设甲速为3x,乙速为4x 那么:甲3小时行驶的路程可表示为:3×3x=9x
乙3小时行驶的路程可表示为:3×4x=12x 那么:甲3小时行驶的路程:乙3小时行驶的路程
=9x:12x=3:4
相同时间内,甲乙两车的速度比与路程比相等
答:客车到达甲地时,货车离乙地还有11.4千米
活学活用:
1、客车3小时所行的路程是汽车4小时所行路程的60%,客车与小汽车的
速度比为:〔
〕〔2021年中大附中〕
A、4:3
B、4:5
C、5:4
D、3:4
2、甲、乙两辆船同时从A地开往B地,乙船的速度是甲船的1.2倍,经过12 小时,乙船到达B地,此时甲船离B地还有54千米,求A、B两地的路程。 〔2021年天河外国语〕
答:甲乙两地相距294千米。
相那同么时 有间10内x设-,9甲:x=乙6客两车车的解到速得度:达比x=甲与6 路地程时比相,等货车走了x千米得:
相设同:时 货间车内的,速5甲度4乙为: x两13车=x,的1客速0车度:9的比速与度路为程1比解5x相得等:x=48.6
比例法解行程
1、甲、乙两车分别从A、B两地同时出发。
(1)甲车的速度是40千米/时,乙车的速度时20千米/时。
2小时各自走完全程,两车行驶的路程之比是()。
(2)如果两地距离未知,甲车的速度是50千米/时,乙车的速度是30千米/时。
各自走完全程,两车行驶的时间之比是()。
2、(1)同样的时间内,小良走了5份路,小崔走了4份路,则小良、小崔的速度比为()。
(2)一段路程小良4小时走完,小崔3小时走完,小良和小崔的速度比是()。
3、(1)小钟、小鑫两人的速度比为4:5,两人同时出发,行走的时间比为3:7,则小钟、小鑫走的路程比为()。
(2)小钟、小鑫两人要走的路程比为3:2,小钟、小鑫的速度比为4:3,则小钟、小鑫的时间比为()。
(3)小钟、小鑫两人的路程比为7:8,两人用的时间比为6:5,小钟的速度为70千米/时,则小鑫的速度为()。
4、小叶、小黄两人的速度比为3:5,两人同时出发,行走的时间比为7:4.若小叶最终走了42千米,则小黄走了()千米。
5、一艘轮船从甲地顺水航行10小时到乙港,返回时逆水航行用了12小时,逆水航行的速度比顺水航行的速度慢()%。
6、小乐和小唐两人同时从A地出发前往B地,小唐骑车的速度时15米/秒,小乐步行的速度是5米/秒。
如果小唐到达B地后立刻返回,那么两人在哪里相遇?7、小奕、小迪两人同时从A地出发前往B地,小奕骑车的速度时16米/秒,小迪步行的速度是72千米/时。
如果小迪到达B地后立刻返回,那么两人在哪里相遇?8、一艘轮船从甲地顺水航行4小时到乙港,返回时逆水航行用了5小时,逆水航行的速度比顺水航行的速度慢()%。
9、一个圆的半径是10米,当这个圆的半径增加20%后,周长增加了()%,面积增加了()%。
10、甲乙两车分别从A、B两地同时出发。
甲车的速度是50千米/时,乙车的速度是40千米/时。
相遇时甲乙的路程之比是()。
11、(1)丁丁、牛牛两人同时出发,速度比为2:3,行走的时间比为3:5,则丁丁、牛牛走的路程比为()。
行程问题的解题技巧和方法
行程问题的解题技巧和方法
行程问题是数学中常见的问题之一,它涉及到速度、时间、距离等基本概念。
在解题时,我们需要根据题目中所给出的信息,运用合适的方法进行求解。
以下是一些常用的解题技巧和方法:
1. 基本公式法:行程问题的基本公式为:路程=速度×时间。
利用这个公式,我们可以很方便地求解各类行程问题。
2. 比例法:比例法是行程问题中常用的方法之一。
如果题目中给出的比例关系正确,我们可以通过比例关系来求解问题。
3. 假设法:假设法适用于一些无法确定具体数值的行程问题。
通过假设一些数值,然后根据题目中给出的信息,进行分析推理,进而求解问题。
4. 方程法:方程法是行程问题中最常见的方法之一。
通过建立方程,我们可以将行程问题转化为代数问题,然后通过解方程来求解答案。
5. 正反比法:正反比法适用于一些行程问题中的速度变化情况。
如果题目中给出的速度变化规律正确,我们可以通过正反比关系来求解问题。
6. 比例分配法:比例分配法适用于一些行程问题中的比例关系不正确,但可以分解成两个比例关系的情况。
通过比例分配,我们可以将问题转化为两个比例关系的问题,然后求解答案。
总之,行程问题的解题技巧和方法有很多种,我们需要根据具体情况进行选择。
在学习过程中,我们应该注重基础知识的掌握和技巧的应用,这样才能在解题时更加从容自信。
行程比例关系
路程相同的情况下:速度比等于时间的反比速度相同的情况下:路程比等于时间的正比时间相同的情况下:路程比等于速度的正比实践出真知例1. 甲、乙两车的速度之比是5:3,两车分别从A、B两地同时出发并匀速行驶。
如果两车相向而行,则经过0.5小时相遇;如果两车同向而行,甲车追上乙车需要几小时?[分析与解]因为甲、乙两车的速度之比是5:3,所以可把A、B 两地之间的路程平均分为8小段,则当甲、乙两车相向而行相遇时,甲车行了5小段路程,乙车行了3小段路程,即0.5小时内甲车比乙车多行了2小段路程。
当甲、乙两车同向而行甲车追上乙车时,甲车要比乙车多行8小段路程,结合前面的分析,用比例法可求得甲多行这8小段路程需要(小时),即甲车追上乙车需要2小时。
例2. 一队伍以8千米/时的速度前进,队尾的一名战士有事要报告给队首的队长,当他以10千米/时的速度向前追上队长后,立即以同样的速度返回队尾,共用去10分,求队伍有多长?[分析与解]分析题意,可知队尾这名战士追及的路程和他返回队尾所行的路程都等于队伍的长。
这样,根据“追及问题”和“相遇问题”的计算关系式:追及路程=速度差×追及时间、相遇路程=速度和×相遇时间,可得:速度差×追及时间=速度和×相遇时间,进而根据比例知识可得:相遇时间:追及时间=速度差:速度和=(10-8):(10+8)=1:9。
根据题意可知,相遇时间与追及时间的总和是10分,故可求得相遇时间是(分),追及时间是(分)。
所以,这个队伍长(千米)。
甲、乙,丙三个机器人参加跑步比赛,当甲跑到终点时,已离终点还有20千米,丙离终点还有40千米;当乙跑到终点时,丙离终点还有24千米。
问题:这次比赛要跑多少千米?问题:这次比赛要跑多少千米?看题后知道:乙跑到终点时,丙离终点还有40千米,而乙跑到终点时,丙离终点还有24千米,那么乙跑20千米的时间丙只跑了16千米,由此可知它们的速度比是5:4,时间比是4:5。
比例解行程问题
比例解行程问题1、甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?2、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB两地相距多少千米?3、两列火车同时从两个城市相对开出,6.5小时相遇。
相遇时甲车比乙车多行52千米,乙车的速度是甲车的23。
求两城之间的距离。
4、甲、乙两车分别从AB两地同时相向而行,3小时相遇。
已知甲车行1小时距B地340千米,乙车行1小时距A地360千米。
AB两地相距多少千米?(420)5、客车由甲城到乙城需行10小时,货车从乙城到甲城需行15小时,两车同时相向开出,相遇时客车距离乙城还有192千米,求两城间的距离。
6、甲、乙两车同时从AB两地相对而行,5小时相遇,已知甲、乙两车速度的比是2:3,甲车行完全程需多少小时?7、甲、乙两车同时从AB两地相对而行,4小时相遇,已知甲、乙两车速度的比是3:5,乙车行完全程需多少小时?8、客车和货车同时从AB两地相对开出,客车每小时行60千米,货车每小时行全程的115,相遇时客车和货车所行路程的比是5:4。
AB两地相距多少千米?9、客车和货车同时从甲、乙两地相对开出,客车每小时行全程的15,货车每小时行50千米。
相遇时客车和货车所行的路程的比是3:2。
甲、乙两地相距多少千米?10、甲、乙两个城市相距若干千米,一列客车与一列货车同时从两个城市相对开出,3小时后相遇,相遇时客车比货车多行60千米,货车与客车速度比是9:11。
货车平均每小时行多少千米?11、甲、乙两车同时相对而行,甲车行全长需8小时,乙车每小时56千米,相遇时,甲、乙两车所行路程的比是3:4,这时乙车行了多少千米?12、甲、乙两车同时从AB两地相向而行,4小时后相遇,相遇后甲又行了3小时到达B地,这时乙车离A地70千米,AB两地相距多少千米?13、小强和小军分别从AB两地同时相对而行,8分钟相遇,相遇后又行6分钟小军到达A地,这时小强离B地160米,AB两地相距多少米?14、甲、乙两车同时从AB两地相向而行,当甲到达B地时,乙车距A地30千米,当乙车到达A地时,甲车超过B地40千米,AB两地相距多少千米?15、快车从A地,慢车从B地同时出发相向而行,经过4小时相遇,相遇后两车仍按原速度继续前进,又经过5小时慢车到达A地,这时快车已超过B地90千米。
巧用比例解决行程问题
用比例解决行程问题1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米 ?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4那么余下的5/6是3/4×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5那么AB距离=640/(1-1/5)=800米5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7甲3小时行75×3=225千米AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇(225-15)/(1-3/7)=210/(4/7)=367.5千米6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么甲的速度=1/30乙的速度=1/20甲拿完东西出发时,乙已经走了1/20×9=9/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和=1/20+1/30=1/12那么再有(11/20)/(1/12)=6.6分钟相遇7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度? 解:甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。
比例法解行程问题(易淑珍)
3、甲乙两车分别从A,B两地同时出发相向而 行,甲车每小时行50千米,乙车每小时行60 千米,两车相遇时,甲车比乙车少行了50千 米, A,B两地相距多少千米?
例3:甲乙两车分别从A,B两地同时出发相向 1 而行,当甲车行了全程的 4 时,乙车行了全 程的 1 ,当乙车行完全程时,甲车距离终点 3 还有20千米,A,B两地相距多少千米? 1 分析:由条件“甲车行了全程的 时,乙车 4 1 行了全程的 ”可以求出两车在相同的时间 3 1 1 里所行的路程比是: 4 ÷ 3 =3:4 就是说乙车行完全程时,甲车距中点还有 4-3=1(份)的路程,这1份的路程就是20 千米。 1 因此AB两地相距:20÷ 4 =80(km) 答: A,B两地相距80千米。
趣味数学系列课(六年级)
比例法解答行程应用题
制作:宜春市实验小学
比例法解答行程应用题
在行程应用题中, 如果路程一定,那么时间和速度成反比; 如果时间一定,那么路程和速度成正比; 如果速度பைடு நூலகம்定,那么路程和时间成正比。 利用这些性质,我们可以很方便地解答一些行程应 用题。
3、A,B两地相距380千米,甲乙两车分别从A,B两地同 3 时出发相向而行,当甲车行了全程的 5 时,乙车行 了全程的 2 ,那么甲乙两车相遇时,各行多少千米?
3
例4: 甲.乙两车的速度分别是50千米/时.40千米/时, 乙车先从B站开住A站,当到离B站72千米的D 地时,甲车从A站开往B站,在C地与乙车相遇, 如下图,如果甲.乙两车相遇地C地离A,B两站 的路程比是2:4,那么A,B两站之间的路程是多 少千米? A 甲车 C D B 乙车
16.行程问题(1)
【例21】1997年小学数学奥林匹克决赛A卷第12题
从电车总站每隔一定时间开出一辆电车,甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分钟15秒遇上迎面开来的一辆电车,则,电车总站每隔多少分钟开出一辆电车。
********************************************
【例24】
小明家在颐和园。如果他骑车到RDF中,每隔3分钟能见到一辆332路公共汽车迎面开来;如果他步行到RDF中,每隔4分钟能见到一辆332路公共汽车迎面开来。已知任意两辆332路汽车的发车间隔都是一样的,并且小明骑车速度是小明步行速度的3倍。请问:如果小明坐332路汽车到RDF中,每隔多少分钟能见到一辆332路公共汽车迎面开来?
四、发车间隔
【例17】求平均速度
一辆车往返于A、B两地,来回的速度分别是v1,v2,求全程的平均速度。
*********************************
【例18】
甲乙两地各有一个车站,每隔相同的时间向对面发一次车。小明从甲地出发,每隔12分钟被车追上一次,每隔6分钟与车相遇一次。求发车间隔时间。
三、变速问题
【例15】
某人开车从甲地到乙地,行驶全程的72%后,因大雾降低了速度,结果4小时到达乙地。已知他第一小时比第三小时多行了30千米,第二小时比第四小时多行了40千米,那么甲乙两地相距多少千米?
***************************************
【例16】(2011年3月枫杨小升初测试题)AB两地相距8千米,小明骑自行车从A地去B地,开始以每分钟120米的速度行驶,后来改为每分钟160米的速度行驶,共用了1小时到达B地。小明是在离A地________米的地方改变速度的.
行程问题例题
行程问题 - 例题答案模块一、时间相同速度比等于路程比【例 1】甲、乙二人分别从 A 、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进, 甲到达 B 地和乙到达A 地后都立即沿原路返回,二人第二次相遇的地点距第一次相遇的地点 30 千米,那么 A 、 B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比, 即两个人相遇时所走过的路程比为 4 : 3 .第一次相遇时甲走了全程的 4/7;第二次相遇时甲、乙两个人共走了 3 个全程,三个全程中甲走了43 1 5 个全程,与第一次相遇地点的距离为775 (1 4) 2 个全程.所以A 、B 两地相距77 7302105 (千米 ).7【例 2】B 地在 A ,C 两地之间.甲从 B 地到 A 地去送信,甲出发 10 分后,乙从 B 地出发到 C 地去送另一封信,乙出发后 10 分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B 地出发骑车去追赶甲和乙,以便把信调过来.甲、乙的速度相等,丙的速度是甲、乙速度的 3 倍,丙从出发到把信调过来后返回 B 地至少要用多少时间。
【解析】根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:A 10 分钟10 分钟B C10 分钟因为丙的速度是甲、乙的 3 倍,分步讨论如下:(1〕假设丙先去追及乙,因时间相同丙的速度是乙的 3 倍,比乙多走两倍乙走需要 10 分钟,所以丙用时间为: 10÷〔3-1〕=5〔分钟〕此时拿上乙拿错的信A 10 分钟10 分钟B C5分钟10 分钟5分钟当丙再回到 B 点用 5 分钟,此时甲已经距B 地有 10+10+5+5=30〔分钟〕,同理丙追及时间为30÷〔3-1〕=15〔分钟〕,此时给甲应该送的信,换回乙应该送的信在给乙送信,此时乙已经距B 地: 10+ 5+5+15+15=50〔分钟〕,此时追及乙需要: 50÷〔3-1〕=25〔分钟〕,返回 B 地需要 25 分钟所以共需要时间为5+5+15+15+25+ 25=90〔分钟〕〔2〕 同理先追及甲需要时间为120 分钟【例 3】( “圆明杯〞数学邀请赛 ) 甲、乙两人同时从 A 、 B 两点出发,甲每分钟行80 米,乙每分钟行 60 米,出发一段时间后, 两人在距中点的 C 处相遇;如果甲出发后在途中某地停留了 7 分钟,两人将在距中点的 D 处相遇,且中点距 C 、 D 距离相等,问 A 、 B 两点相距多少米?【分析】甲、乙两人速度比为 80:60 4:3 ,相遇的时候时 间相等,路程比等于速度之比, 相遇时甲走了全程的 4 ,乙走了全程的 3 .第二次甲停77留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的 4,甲7行了全程的 3 .由于甲、乙速度比为 4 : 3 ,根7据时间一定, 路程比等于速度之比, 所以甲行走期间乙走了 37 34 ,所以甲停留期间乙行了 4 3 3 1 ,所以 A 、 B 两点的距离为7 7 4 4607=1680 (米).41【例 4】甲、乙两车分别从A、B两地同时出发,相向而行.出发时,甲、乙的速度之比是5 :4,相遇后甲的速度减少20% ,乙的速度增加 20% .这样当甲到达 B 地时,乙离 A 地还有 10 千米.那么 A、B 两地相距多少千米?【解析】两车相遇时甲走了全程的5 ,乙走了全程的94,之后甲的速度减少 20% ,乙的速度增9加20% ,此时甲、乙的速度比为5 (1 20%) : 4 (1 20%) 5: 6,所以甲到达 B 地时,乙又走了 46 8,距离 A 地 581 ,所以9 5 15 9 15 451450 (千米 ).A 、B 两地的距离为1045【例 5】早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是 15 千米.下午 3 点时,两人之间的距离还是l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发?【解析】从题中可以看出小王的速度比小张块.下午2 点时两人之间的距离是l5 千米.下午 3点时,两人之间的距离还是l5 千米,所以下午 2 点时小王距小张 15 千米,下午 3点时小王超过小张15 千米,可知两人的速度差是每小时30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走30 千米,那小张 3 小时走了 15 30 45 千米,故小张的速度是45 ÷3 =15 千米 /时,小王的速度是 15 +30 =45 千米 /时.全程是 45 ×3=135 千米,小张走完全程用了135 +15= 9小时,所以他是上午 10 点出发的。
用比例法解行程问题
了 全 程 的 詈 × 吾 = , 乙 车 距 中 点 还 有 全 程 的 吾 一 = , 由 此 可 以
求出A 、 B 两地的路程是 3 6 +杀 = 2 4 0 ( 千米) 。
【 例2 】 从 甲地到 乙地 , A车需要 行驶 1 0小时 , B车 需要 行驶 8小 时。 现
在 两车 分别从 甲、 乙两地 同时 出发 , 相 向而行 , 相遇 时 , A车 离 中点还 有 3 0
间: 追及 时 间=速 度差 : 速度 和 …( 1 0 8 ) : ( 1 0+ 8 ) =1 : 9 。根据 题 意可 知 , 相
1
遇 时 间与 追及 时间的总和 是 1 0 分钟 , 故可求得 相遇 时间是 1 0 x
I T
=1 ( 分)
n
钟, 追 及 时间是 1 0 x
斛 捌 浏
・ ~ 用 , " 1 4 比例 法解 行程 问题
。
江西
文 辉
在 行程 问题 中, 如果 时间一 定 , 那 么路程 和速度 成正 比例 ; 如 果路程 一
定, 那 么 时间和速 度成 反 比例 ; 如 果速度 一 定 , 那么 路程 和时 间成 正 比例 。
利用这 些性 质 , 可 以很 方便地 解答 一些较 复 杂 的行 程 问题 。
还有 3 0千米 ” 可知, 相遇 时 B车 比 A车 多行 了 3 0 x 2 =6 0 ( 千米 ) 。所 以甲、
乙 两地相距6 0 +  ̄ - = 5 4 0 ( 千米) 。
铸
浙江 陶 云娥
在学 习 《 长方体 和 正方体 》 时, 双胞 胎 马大虎 和 马小虎 都 出现 了错误 。 现在, 让 我们 一起 来看 看他俩 错 在哪 儿 了。 【 例1 】 一 个 长方体 由 3个 同样 大小的正 方体拼 成 , 如 果去掉 旁边 的一 个 正 方体 ,长方体 的表 面积 就减 少 2 4 c m 。原 长方体 的 表 面积是 多少平
比例法解行程问题
比例法解行程问题
行程问题是指涉及速度、时间、距离等量的问题,通常可以通过比例法来解决。
假设两个物体在同一方向上行驶,速度分别为v1和v2,它们的距离为d。
我们可以利用以下公式来计算它们的行程时间t1和t2:
t1 = d/v1
t2 = d/v2
如果我们知道其中一个物体的速度和行程时间,可以通过代入公式中的变量来计算另一个物体的速度或行程时间。
例如,如果我们知道物体A的速度为v1,行程时间为t1,而物体B的速度为v2,我们可以通过以下步骤计算它们之间的距离d:
1. d = v1 × t1(物体A的行程距离)
2. d = v2 × t2(物体B的行程距离)
将步骤1和2中的d相等得到:v1 × t1 = v2 × t2
通过移项,我们可以得到以下比例关系:v1 : v2 = t2 : t1
利用这个比例关系,我们可以通过已知的速度和时间来计算未知的速度或时间。
小升初奥数思维训练第15讲:行程(三) 行程中的比例(含答案解析)
而本来这三分钟甲能多走80×3=240(米),
这就说明C点与D点之间的距离为240米,由条件“A、B中点E到C点的距离是到D点距离的2倍”可以得到中点到C、D两点之间的距离.不过这里要分两种情况:
(一)中点E在C、D之间,那么ED、EC的距离和为240米,EC的距离为:240÷(2+1)×2=160米
综上所述,A、B两地之间距离为2240米或6720米.
【点睛】如果只涉及到距离关系,没有提到位置关系,而且这些点在同一条直线上,那么就不只有一种位置关系.
8.A、B两地间有一座桥,甲、乙两人分别从A、B两地同时出发,3小时后在桥上相遇.如果甲加快速度,每小时多行2千米,而乙提前0.5小时出发,则仍旧在桥上相遇.如果甲延迟0.5小时出发,乙每小时少走2千米,还会在桥上相遇,则A、B两地相距多少千米?
【答案】 小时
【解析】
【详解】关键是找到步行距离、汽车行驶距离、总路程之间的比例关系.由于题目条件只涉及速度和总路程,所以如果要求出时间必须首先将速度和路程对应起来,即明确学生或者大巴车的行程路段,因此我们应该画出整个行程过程的线段示意图.
如图所示:虚线为学生步行部分,实线为大巴车行驶路段,由于大巴车的速度是学生的11倍,所以大巴车第一次折返点D到出发点A的距离是乙班学生搭车前步行距离AB的(11+1)÷2=6倍,如果将乙班学生搭车前步行距离AB看作是一份的话,大巴车第一次折返点到出发点的距离AD为6份,大巴车第一次折返点D到接到乙班学生B又行驶了5份距离,同样的大巴车在B点接到乙班学生到在E点追上甲班学生所走的路程也应该是6份距离,而从E点回来到C点接到丙班的距离为5份,大巴车从C点到终点F的距离为6份,这样大巴车一共行驶了6+5+6+5+6=28份距离,而A到F的总距离为6-5+6-5+6=8份,所以大巴车一共行驶了8÷8×28=28(千米),所花的总时间为28÷55= 小时.
六年级上册第14讲 比例解行程问题
16
【课堂精练】
9. 甲乙两车分别从A、B两地出发,相向而行,出发时,甲乙的速度比是5:4, 相遇后,甲的速度减少20%,这样,当甲到达B地时,乙离A地还有10千米。 问A、B两地相距多少千米? A 10千米 甲 5份 4份 S甲:S乙 = 5:4 V甲现 : 5×(1-20%)=4 V现甲:V乙 = 4:4=1:1 S: 10×(5+4)=90千米 答: A、B两地相距90千米。
t甲 : 5×2=10分
V甲 :2500÷10=250米/分 答:甲的速度是每分钟250米。
8
【课堂精练】
1. 甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点 12千米,AB两地相距多少千米?
S甲:S乙=7:5 甲比乙多行: 1份: 12×2=24千米 24÷(7 - 5)=12千米
=9
: 4
速度比(9×2):(4×3) = 18 = S犬:S兔= 3 3 : : : 12 2 2
S: 15×3=45千米
答:猎犬至少要跑45米才能追上兔子。
18
Thanks And Your Slogan Here
Speaker name and title
4
【典型例题】
例2:甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千 米处相遇,两地相距多少千米? 相遇时所用时间相等 15千米
甲
4份 7份 S甲:S乙=4:7
乙
乙比甲多行:
1份:
15×2=30千米
30÷(7 - 4)=10千米
全程: 10×(7+4)=110千米 答:两地相距110千米。
全程: 12×(7+5)=144千米
答:两地相距144千米。
五年级奥数-用比例解行程问题(含答案解析)
1. 理解行程问题中正比例和反比例关系.2. 用比例和份数思想解行程问题.本讲是在秋季所学的火车过桥和流水行船的行程问题基础上,讲解运用比例性质解多次相遇追及行程问题.体会比例解决问题的优势.距离、速度、时间这三个数量之间的关系,可以用下面的公式来表示:距离=速度⨯时间.显然,知道其中的两个量,就可以求出第三个量,这是我们在小学课堂中经常解决的问题.同时对于三者之间的关系,我们还可以发现:当时间相同时,路程和速度成正比;当速度相同时,路程和时间成正比;当路程相同时,速度和时间成反比.也就是说:设甲、乙两个人,所走的路程分别为S 甲、S 乙;速度分别为V 甲、V 乙;所用时间分别为T 甲、T 乙时,由于S V T =⨯甲甲甲,S V T =⨯乙乙乙,有如下关系:⑴当时间相同即T T =乙甲时,有::S S V V =乙乙甲甲; ⑵当速度相同即V V =乙甲时,::S S T T =乙乙甲甲; ⑶当路程相同即S S =乙甲时,::V V T T =乙乙甲甲.【例 1】 甲、乙二人分别从A 、B 两地同时相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲到B 地、乙到A 地后立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么,A 、B 两地相距___千米.用比例解行程问题用比例解多次相遇问题乙21BA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此:30:203:2S V V ===乙乙甲甲:S ,设全程为5份,则一个全程中,甲走了3份,乙走了2份,所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了3个全程,一个全程甲走3份,3个全程甲共走339⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[铺垫] 甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?[分析] (方法一)10分钟两人共跑了(3+2)⨯60⨯10=3000 米 3000÷100=30个全程.我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1,3,5,7,,29共15次. (方法二)第一次两个人相遇需要100÷(3+2)=20(秒),从第一次开始到第二次相遇要走两个全程需要:200÷(3+2)=40(秒)所以一个相遇:(10⨯60-20)÷40+1=15.5(次),即为15次.[拓展] 老师可以把【例 1】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2-1=5(个全程),甲走了:3⨯5=15(份)在B 点,第四次相遇甲乙共走:4⨯2-1=7(个全程),甲走了:3⨯7=21(份)在D 点,已知BD 是20千米,所以AB 的长度是20÷4⨯(2+3)=25(千米).【例 2】 甲、乙二人同时从A 地出发同向而行去往B 地,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲、乙到B 地后立即返回A 地.已知二人第三次相遇的地点距第一次相遇的地点是20千米(两人相遇指迎面相遇),那么,A 、B 两地相距___千米.FE乙甲21DCBA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此::30:203:2S S V V ===乙乙甲甲,设全程为5份,则一个全程中,甲走了3份,乙走了2份,第一次相遇,甲、乙一共行了两个全程,一个全程甲走3份,2个全程甲共走了326⨯=(份)所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了4个全程,一个全程甲走3份,4个全程甲共走3412⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[拓展] 老师可以把【例 2】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2=6(个全程),甲走了:3⨯6=18(份)在第D 点,第四次相遇甲乙共走:4⨯2=8(个全程),甲走了:3⨯8=24(份)在F 点,已知DF 是20千米,所以AB 的长度是20⨯(2+3)=100(千米).[总结] 设一个全程中甲走的路程为M ,乙走的路程为N⑴甲乙二人从两端出发的直线型多次相遇问题: ⑵ 同一出发点的直线型多次相遇问题【例 3】 甲、乙两车分别从A 、B 两地同时出发相向而行,在A 、B 两地之间不断往返行驶.甲车速度是乙车速度的37,并且甲、乙两车第2008次相遇的地点和第2009次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇),那么,A 、B 两地之间的距离是多少千米? 20092008甲DBA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此3:7S V V ==乙乙甲甲:S :,设全程为10份,则一个全程中,甲走了3份,乙走了7份,通过总结的规律分析第2008次相遇时,甲走:(2008⨯2-1)⨯3=12045(份),120451012045÷=,所以第2008次相遇地点是在从A 地向右数5份的C 点,第2009次相遇时甲走:(2009⨯2-1)3⨯=12051(份),120511012051÷=,所以第2009次相遇地点在从B 点向左数1份的D 点,由图看出CD 间距离为4份,A 、B 两地之间的距离是120410300÷⨯=(千米).[总结] 对于份数比较大找相遇地点时,用甲走的总份数除以全程份数,得到商和余数,当商为偶数时,从甲的出发点向终点数余数的份数即为相遇地点,当商为奇数时,从终点向甲的起点数余数的份数即为相遇地点[巩固] 甲、乙二人分别从A 、B 两地同时出发,往返跑步.甲每分跑180米,乙每分跑240米.如果他们的第100次相遇点与第101次相遇点的距离是160米,求A 、B 两点间的距离为多少米?101100乙甲A相遇次数 甲乙共走的路程和 甲共走的路程 乙共走的路程1 1 M N2 3 3M 3N3 5 5M 5N… … … …n 21n - (21)n M - (21)n N - 相遇次数 甲乙共走的路程和 甲共走的路程 乙共走的路程1 2 M N 2 4 4M 4N 3 6 6M 6N … … … … n2n 2nM 2nN[分析]因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此180:2403:4S V V====乙乙甲甲:S:,设全程为7份,则一个全程中,甲走了3份,乙走了4份,通过总结的规律分析第100次相遇时,甲走:(100⨯2-1)⨯3=597(份),5977852÷=,所以第100次相遇地点是在从B地向左数2份的C点,第101次相遇时甲走:(101⨯2-1)3⨯=603(份),6037861÷=,所以第101次相遇地点在从A点向右数1份的D点,由图看出CD间距离为4份,A、B两地之间的距离是16047280÷⨯=(米).【例 4】小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第六次相遇的地点离乙村多远(相遇指迎面相遇)?【分析】画示意图如下.2123.5乙甲第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5⨯3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).第六次相遇时,两人已共同走了两村距离26111⨯-=倍的行程.其中张走了3.51138.5⨯=(千米),38.58.54 4.5÷=,就知道第六次相遇处,离乙村4.5千米.[巩固]甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.[分析]第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4⨯3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米.【例 5】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑.甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动.甲、乙两人在第几次相遇时距A地最近?最近距离是多少米?【分析】(300240)302400 6.75+⨯÷=(个),即甲乙共行了6.75个全程,共相遇了3次,甲乙两人的速度比是300:2405:4=,设全程为9份,第一次相遇甲行5份,乙行4份,所以第一次相遇地点距A地是全程的59,第二次相遇时两人共行了3个全程,甲行的距A地9(359)3-⨯-=份,所以第二次相遇地点距A地是全程的13,第三次相遇时两人共行了5个全程,55927⨯÷=甲行的距A地7份,所以第三次相遇地点距A地是全程的79,所以第二次相遇距A地最近,最近距离是124008003⨯=(米)【例 6】A、B是一圈形道路的一条直径的两个端点,现有甲、乙两人分别从A、B两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇,当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第二十一次相遇时,甲跑完几圈又几米?【分析】 甲、乙第一次相遇时共跑0.5圈,乙跑了100米;第二次相遇时,甲、乙共跑1.5圈,则乙跑了1003300⨯=米,此时甲差60米跑一圈,则可得0.5圈是30060240-=米,一圈是480米. 第一次相遇时甲跑了240100140-=米,以后每次相遇甲又跑了1402280⨯=米,所以第二十一次相遇时甲共跑了:140280(211)5740+⨯-=(米),574048011460÷=.即跑完11圈又460米.[铺垫] 甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长?[分析] 第一次相遇,两人共走了0.5圈;第二次相遇,两人共走了1.5圈.所以第二次相遇时,乙一共走了BAD 1003300=⨯=(米),又知到AD 60=(米),所以圆形场地的半周长为30060240-=(米),那么,周长为2402480⨯=米.【例 7】 A 、B 两地相距13.5千米,甲、乙两人分别由A 、B 两地同时相向而行,往返一次,甲比乙早返回原地,途中两人第一次相遇于C 点,第二次相遇于点D ,CD 相距3千米,则甲.乙两人的速度比是为多少?【分析】 方法一:根据题意画图如下乙甲21DB设甲、乙第一次相遇时分别走的路程为x 千米,y 千米,依题意列方程组得,3313.53313.5x y y x --=⎧⎨+-=⎩解得7.56x y =⎧⎨=⎩,所以甲乙的速度比,即为甲乙路程比7.5:65:4==方法二:用甲、乙代表两个人第一次相遇走的路程,可以整体的分析从开始到第二次相遇甲走的路程为:3⨯甲,乙走的路程为:3⨯乙,甲乙二人的路程差为:3⨯(甲-乙);分开考虑甲一共走的路程为:一个全程+乙+3,乙一共走的路程为:一个全程+甲-3,两个人的路程差为:(一个全程+乙+3)-(一个全程+甲-3)=乙-甲+6.综合列式为:3(甲-乙)=乙-甲+6,得到:甲-乙=1.5,由于,甲+乙=13.5,所以甲=7.5(千米),乙=6(千米),所以甲乙的速度比,即为甲乙路程比7.5:65:4==.【例 8】 两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A ,B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车过B 点后恰好又回到A 点.此时甲车立即返回(乙车过B 点继续行驶),再过多少分与乙车相遇?DC 甲B A乙甲ABC乙甲AB【分析】 设右图中C 表示甲、乙第一次相遇地点.因为乙从B 到C 又返回B 时,甲恰好转一圈回到A ,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C 点距B 点809090-=(米).因此相同时间内,甲乙所行路程比为180:902:1=,所以甲乙二人的速度比为2:1,因此乙每分行驶20210÷=(米),甲、乙第二次相遇,即分别同时从A ,B 出发相向而行相遇需要90(1020)3÷+=(分).[拓展] 如图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?乙甲[分析] 甲看到乙的时候,甲和乙在同一条边上,甲乙两人之间的距离最多有300米长,当甲追上乙一条边(300米)需300(9070)15÷-=(分),此时甲走了9015300 4.5⨯÷=(条)边,甲、乙不在同一条边上,甲看不到乙.甲再走0.5条边就可以看到乙了,即甲走5条边后可看到乙,共需2300590163⨯÷=分钟,即16分40秒.【例 9】 甲、乙二人分别从A 、B 两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A 、B 两地的距离.【分析】 先画图如下:C262666乙甲BA方法一: 若设甲、乙二人相遇地点为C ,甲追及乙的地点为D ,则由题意可知甲从A 到C 用6分钟.而从A 到D 则用26分钟,因此甲从C 走到D 之间的路程时,所用时间应为:26620-=(分).用比例解其他行程问题同理乙从C走到D之间的路程时,所用时间应为:26632+=(分),所以相同路程内甲乙所用时间比为20:325:8=,因此甲、乙二人的速度比为8:5,所以甲的速度为505880÷⨯=(米/分),A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)方法二:设甲的速度是x米/分钟那么有(50)26(50)6x x-⨯=+⨯解得80x=A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)[拓展]甲、乙两人分别从A、B两地同时相向出发.相遇后,甲继续向B地走,乙马上返回,往B地走.甲从A地到达B地.比乙返回B地迟0.5小时.已知甲的速度是乙的34.甲从A地到达地B共用了多少小时?[分析]相遇时,甲、乙两人所用时间相同.由题意知,甲乙二人速度比为3:4,所以甲乙二人所行的路程比为3:4,从相遇到返回B地,甲乙所行路程相同,所以返回所用时间比为4:3,又知甲从A地到达B地比乙返回B地迟0.5小时,即从相遇点到B地这同一段路程中,甲比乙多用0.5小时.可求出从相遇点到B地甲用了0.542⨯=(小时),相遇时,甲乙二人所行的路程比为3:4,甲用时为243 1.5÷⨯=(小时)甲从A地到达地B共用2 1.5 3.5+=(小时)【例10】一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【分析】设原速度是1. 后来速度为(120%) 1.2+=,速度比值:1:(120%)5:6+=这是具体地反映:距离固定,时间与速度成反比.时间比值6:5这样可以把原来时间看成6份,后来就是5份,这样就节省1份,节省1个小时.原来时间就是1⨯6=6小时.同样道理,车速提高30%,速度比值:1:(130%)10:13+=时间比值:13:10这样节省了3份,节省1小时,可以推出行驶一段时间后那段路程的原时间为13 3所以前后的时间比值为(6-133):1335:13=.所以总共行驶了全程的5135=+518.[巩固](第三届走美试题)从上海开车去南京,原计划中午11:30到达.但出发后车速提高了17,11点钟就到了.第二天返回,同一时间从南京出发.按原速行驶了120千米后,再将车速提高16,到达上海时恰好11:10.上海、南京两市的路程是千米.[分析]由题意设原来速度和车速提高了17后速度比为7:8,则所用时间比为8:7,设原计划用时8份,提速后用时7份,差的一份正好是30分钟,,则原计划用时为240分钟,返回时间缩短20分钟,是由于车速提高16,原来计划速度与返回提速后速度比为6:7,则返回提速后这段路程内所用时间比为7:6,设这段路程原计划用时7份,提速后用时为6份,差的一份正好是20分钟,所以返回提速后用时120分钟,原计划用时140分钟,则原速行驶120千米用时240140100-=(分钟),上海、南京两市的路程是120100240288÷⨯=(千米)【例11】甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比是3:2,他们第一次相遇后甲的速度提高了20﹪,乙的速度提高了30﹪,这样,当甲到达B地时,乙离A地还有14千米,那么A、B两地的距离是多少千米?【分析】 因为他们第一次相遇时所行的时间相同,所以第一次相遇时甲、乙两人行的路程之比也为3:2,设第一次相遇时甲、乙两人行的路程分别是3份,2份相遇后,甲、乙两人的速度比为[][]3(120%):2(130%)18:13⨯+⨯+=,到达B 地时,即甲又行了2份的路程,这时乙行的路程和甲行的路程比是13:18,即乙的路程为21318⨯=419.乙从相遇后到达A 还要行3份的路程,还剩下4531199-=(份),正好还剩下14千米,所以1份这样的路程是514199÷=(千米).A 、B 两地有这样的325+=(份),因此A 、B 两地的总路程为:9545⨯=(千米)【例12】 (第五届走美决赛试题)小王8点骑摩托车从甲地出发前往乙地,8点15追上一个骑车人.小李开大客车8点15从甲地出发前往乙地,8点半追上这个骑车人.小张8点多也从甲地开小轿车出发前往乙地,速度是小李的1.25倍.当他追上骑车人后,速度提高了20%.结果小王、小李、小张三人一同于9点整到达乙地.小王、小李、骑车人的速度始终不变.骑车人从甲地出发时是 点 分,小张从甲地出发时是8点 分 秒.【分析】9:009:009:009:00骑车人小张小李8:15小王8:00乙地15分15分由题意知小王与小李从甲地到乙地所用时间分别是60分、45分,因此小王与小李的速度比是3:4,又小张速度是小李的1.25倍,因此小王、小李、小张的速度比为3:4:5,设小王、小李、小张的速度分别为3、4、5.由上图可以看小李比小王15分钟多行的路程恰是骑车人15分钟的路程,因此骑车人的速度为(43)15151-⨯÷=,即小王的速度是骑车人的3倍,而小王追上骑车人要15分钟,所以骑车人行这段路程要45分钟,因此骑车人是8点30分出发的.小王从甲地到乙地要1小时,可知全程为603180⨯=,因此骑车人到乙地要3小时,骑车人在9点时恰好行了全程的一半,由题意小张追上骑车人后速度变为6,从追上骑车人到到达乙地小张比骑车人多行了180290÷=,因此小张以速度6行驶路程所用时间为90(61)18÷-=(分),所行路程为186108⨯=,则追赶骑车人所用时间为(180108)514.4-÷=(分),因此小张从甲地到乙地共用时间为1814.432.4+=(分)=32分24秒,即小张从甲地出发时是8点27分36秒[巩固] 甲从A 出发步行向B .同时,乙、丙两人从B 地驾车出发,向A 行驶.甲乙两人相遇在离A 地3千米的C 地,乙到A 地后立即调头,与丙在C 地相遇.若开始出发时甲就跑步,速度提高到步行速度的2.5倍,则甲、丙相遇地点距A 地7.5千米.求AB 两地距离. [分析] 设BC 间的路程为S ,甲的速度为v 甲,乙的速度为v 乙,丙的速度为v 丙,由题意知,3v v S=甲乙,6v S v S +=乙丙,则36)v S v S S ⨯+=⨯甲丙(,甲提速后速度变为2.5v 甲.则2.57.5(7.53)v v S =--甲丙,即34.5v v S =-甲丙,所以36)34.5S S S S ⨯+=⨯-(,解得18S =,所以AB 两地间路程为18321+=(千米)1.甲、乙两车同时分别从相距55千米的AB 两地相向开出,甲行驶了23千米后跟乙相遇,相遇后两车继续前进,到达对方出发地后立刻返回.问:⑴ 第2次相遇点距B 地多少千米?⑵第6次相遇点距A 地多少千米?【分析】 通过分析,我们可以发现:一个全程里甲走23千米,⑴ 第2次相遇共3全程,故甲走了23⨯3=69(千米),甲走了一个全程多了一点,故距离B 地就是69-55=14(千米).⑵第6次相遇总共是11个全程,故甲走了23⨯11=253(千米),25355433÷=,甲走了4个全程多点,多的那部分就是我们要求的距A 的距离为:33千米.2. 甲、乙两列车同时从A 、B 两地相对开出,第一次在离A 地75千米处相遇.相遇后继续前进,到达对方出发地后都又立刻返回,第二次相遇在离B 地55千米处,求A 、B 两地相距多远.【分析】 通过画图找出行程之间的关系.第一次相遇就相当于甲车和乙车一共走了一个全程,根据总结:第2次相遇总共走了3个全程,则甲就走了3个75千米,3⨯75=225千米,画图可以知道甲走了一个全程多了那55千米,所以全程为225-55=170千米.3. 甲、乙两车分别从A 、B 两地出发,并在A 、B 两地间不断往返行驶,已知甲车的速度是15千米/小时,乙车的速度是25千米/小时,甲乙两车第三次相遇地点与第四次相遇的地点相差100千米,求A 、B 两地的距离是多少千米?【分析】 甲、乙两车的速度比为:15:253:5=,所以可以把全程分成8份,每走一个全程甲走3份,乙走5份,第三次相遇甲乙共走:3215⨯-=(个全程),甲走了:3515⨯=(份),第四次相遇甲乙共走:4217⨯-=(个全程),甲走了:3721⨯=(份),画图知到两次相遇点100米是4份,所以AB 的长度是10048200÷⨯=(千米).4. 甲、乙两车的速度分别为52千米/时和40千米/时.他们同时从A 地出发去B 地,在A 、B 两地间往返而行,从开始走到第三次相遇,共用了6小时.A 、B 两地相距多少千米?【分析】 从开始走到第一次相遇,两车走的路程是两个AB 之长;而到第三次相遇,两车走的路程总共就是6个AB 之长是:(52+40)⨯6=552(千米),A 、B 两地相距的路程是:552÷6=92(千米).5. 一列火车从甲地开往乙地,如果将车速提高,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度.【分析】 根据题意可知车速提高后与原来速度比为(1+20%) :1=6:5,由于所行路程相同,所以所用时间比为5:6,所差时间是1小时,即1份是1小时,所以原来行完全程需要6小时,同理可求出行完240千米后所用时间为40⨯5=200(分钟)=133(时),所以行240千米所用时间为6-133=83(时),火车速度为240÷83=90(千米/时),甲乙两地间的距离为90⨯6=540(千米)6.一只小船第一次顺流航行65千米,逆流航行21千米,一共用了10小时;第二次顺流航行20千米,逆流航行12千米,用了4小时.那么船在静水中航行64千米需要多长时间?【分析】如果把第二次航行中顺流和逆流的航程增加到2.5倍,显然时间会变成:4 2.510⨯=小时;顺流航行20 2.550⨯=千米;逆流航行12 2.530⨯=千米.而第一次航行也是花了10小时,但是顺流航程和逆流航程分别是65和21千米.通过比较很容易看出第二次航行比第一次少了,655015-=千米的顺流航程,但是多了30219-=千米的逆流航程.顺流走15千米所花的时间和逆流走9千米所花的时间相等,由此可知顺流速度和逆流速度比应该是15:95:3=,因此相同时间内顺水路程和逆水路程比为5:3,逆流航行21千米相当于顺流航行35千米,所以顺水速度为(6535)1010+÷=(千米/时),逆水速度为10536÷⨯=(千米/时),静水速度为(106)28+÷=(千米/时),船在静水中航行64千米需要6488÷=(小时)。
小学数学应用题专项练习——比例法解行程
比例法解行程1.甲、乙两车分别从 A、B 两地同时出发甲车的速度是50千米/时,乙车的速度是40千米/时相遇时甲、乙的路程之比是2.按要求完成下列各题。
(1)丁丁、牛牛两人同时出发,速度比为2:3,行走的时间比为3:5,则丁丁、牛牛走的路程比为_____(2)丁丁、牛牛两人要走的路程比为5:4,丁丁、牛牛的速度比为3:2,贝丁丁、牛牛的时间比为___3.甲乙两车同时从 A 地出发前往 B 地,两车的速度比为5:1,如果甲到达 B 地后立刻返回,请问两车在哪里相遇?4.甲、乙两列火车的速度比是5:4,两火车同时从 A、B 两站相对开出,当走到离 B 站72千米的地方时两车相遇,求 A、B 两站的距离是多少千米。
5.小仓周日去登山,上山时速度为4千米/时,到达山顶后不休息,马上沿原路下山,下山的速度为6千米/时,若上山下山一共用时3小时,求这段山路的长度。
6.小强参加长跑比赛,本打算30分钟跑完。
跑到中途天下大雨,速度降低了20%,继续跑了2400米,结果迟到了5分钟到达,则长跑的路程为________米7.艾迪从家去图书馆,到图书馆后发现没有开门后立即返回。
已知去的时候的速度与回来时候的速度比为3:5,若去用了30分钟,则回来需要多少分钟8.艾迪和薇儿进行了一次跑步比赛,两人在起点同时出发,全程保持匀速,速度之比为11:8,结果艾迪比薇儿早6秒到达终点,那么薇儿跑完全程用了多久?9.甲、乙两船分别从相距120千米的 A、B 两地同时开出,相向而行,两船的速度比为5:3,相遇时,甲船已经开过中点的距离为多少千米。
10.小宿和小黑两人在暑假某一天相约去爬山,两人先同时从家出发,约定在汉堡店见面,两人的家相距100米,已知两人的速度之比是3:2,则两人在汉堡店相遇时各走了()米11.薇儿每天早上7点从家里出发,走路去学校。
平时保持每分钟35米,可以比规定时间提早8分钟到校;但今天她特别开心,步伐轻快,毎分钟走50米,比规定时间提早17分钟到校那么薇儿家距离学校有多远?12.甲、乙两人分别从A、B 两地同时出发相向而行,到达对面后掉头返回,如此往返。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例法【例 1】 (第8届迎春杯决赛试题)小明和小刚进行200米短跑比赛(假定二人的速度均保持不变)。
当小刚跑了180米时,小明距离终点还有50米,那么,当小刚到达终点时,小明距离终点还有多少米?【解】当小刚跑了180米时,小明跑了200-50=150米,二人的路程之比为180:150=6:5,小刚到达终点时,由于速度不变,二人的路程比依然为6:5。
若设小刚路程200米为6份的话,小明的行程应为5份,则其离终点还有1份距离=31336200=÷米。
【练习】小刚与小勇进行50米赛跑,结果:当小刚到达终点时,小勇还落后小刚10米;第二次赛跑,小刚的起跑线退后10米,两人仍按第一次的速度跑,比赛结果将是____解:小刚到达终点时,二人的路程分别为50米和40米,路程之比为5:4。
若小刚退后10米,当到达终点时其路程为60米,由于速度不变,从而路程之比也不变,此刻乙跑了60÷5×4=48米,还差2米才到终点,因此还是小刚胜出。
【点评】在赛跑问题中,多数时候隐含了时间相等的条件,从而路程之比=速度之比的正比例关系式会得到大量应用。
【例 2】 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶240千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米【分析】这是一道“隐性”比例行程题,但其标志很明显——百分数,一般说来凡题目中出现百分比应立即想到将其转化为比例进行研究。
例如本题中,车速提高20%意味着原速度与现速度之比为5:6,车速提高25%意即原速度与现速度之比是4:5。
【解】按照题中的“;”形成的两部分分别进行分析:车速提高20%,从而速度之比为5:6,则时间之比为6:5,已知提速前后所用时间差为1小时,可见原速度走完全程需要6小时,提速后需要5小时。
而在原速行驶240千米后,剩余部分路程提速25%,即速度之比为4:5,则所用时间之比为5:4,而已知提速前后所用时间之差为40分钟,从而不难求剩余路程若按原速度行驶需要时间40×5=200分钟=312小时,从而前240千米用时3233126=-小时,则原速度为90323240=÷千米/小时。
从而甲乙两地距离应为540690=⨯千米。
【点评】本题虽难度不大,但作为比例解行程的方法十分典型,有必要熟练掌握题目中涉及到的几个模型。
这些模型与几何中五大模型的作用类似,会在行程问题中反复出现,且标志明显。
模型1:百分比到比例的转化。
模型2:提速—少时,由提速或降速所造成的时间差,只产生在提速和降速的路程中。
模型3:比差问题,类似和差、和倍、差倍,已知比和差分别求大小数的方法应熟练掌握。
【练习】一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达,如果按原速度行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全程的几分之几?解:车速提高20%,即速度之比为5:6,从而时间比为6:5,已知时间差为1小时,则原用时为6小时。
原速行驶一段距离后,再将速度提高30%,仍然提前1小时到达,这个时间差只能发生在提速部分,这段速度之比为10:13,从而时间之比为13:10,不难求原速度行驶用时1÷3×13=133小时,从而先行驶的部分用时6-133=53小时,其占比为53÷6=518【例3】甲、乙两人分别从A、B两地同时出发,相向而行,在途中C点相遇。
如甲的速度增加10%,乙每小时多走300米,还在C相遇;如果甲早出发1小时,乙每小时多走1000米,则仍在C相遇。
那么两人相遇时距B多少千米?【分析】此题有个明显的特征,即三种方式最终相遇地点一样,这实际明确告知我们三种方式之下路程之比相同!而题目要求两人相遇时距B多少千米,实际是求乙的路程,若能求得乙的速度和时间则问题可解。
【解】按照题中的“;”形成的两部分进行来研究:在甲提速10%,乙提速300米后甲乙相遇地点不变,路程之比没变,可见提速前后两人的速度之比也保持不变。
从而若甲提速10%的话,乙提速300米也应为10%,从而不难求得乙的原速度为3千米/小时。
甲提前出发1小时,乙提速1000米后,两人依然在C点相遇。
换句话说其实就是:乙在提速1000米后比平时少用1个小时到达C点。
而乙在提速1千米后,前后速度之比为3:4,则所用时间之比应为4:3,少用的1小时为1份,则乙原用时应为4小时。
如此乙的速度和时间都已求得,则其路程为3×4=12千米。
即两人相遇时距B 12千米。
【点评】在本题中,双双提速后速度之比保持不变的关系式是不难发现的。
比较难理解的是甲提前1小时出发的意义:由于甲速度未变,从而其到达C点所需的时间是不变的,由此发现乙到达C点实际上是比提速前少用了1小时。
此处又是比差模型的典型应用。
发现“时间差”其实是个不错的标志物。
【例4】甲、乙两人同时A地出发,在A、B两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达A地、B地或遇到乙都会调头往回走,除此以外,两人在AB之间行走方向不会改变,已知两人第一次相遇的地点距离B地1800米,第三次的相遇点距离B地800米,那么第二次相遇的地点距离B地。
【分析】研究甲乙二人的行为轨迹后容易发现,走路比较快的甲实际是在乙和B地之间做折返跑往复运动。
到达B则折返,遇到乙再折返。
需要注意的是,在“折返运动模型”中,二人的“路程和”是个令人舒服的量——两个全程。
另外本题中乙的方向从未改变,只是从一个相遇点直线到下一个相遇点。
其路程也是比较容易得到的量。
如图中所示C、D、E依次为第一次、第二次、第三次的相遇点。
【解】设第二次相遇的地点与B 的距离DB 为x 。
不难发现:第一次相遇到第二次相遇甲乙二人的路程和为1800×2=3600米(其中乙的路程CD=1800-x ); 第二次相遇到第三次相遇甲乙二人的路程和为2x (其中乙的路程为DE=x -800);由于甲乙的速度从未改变,则乙的路程占甲乙路程和的比例应该是一定的,从而有:xx x 280036001800-=-。
解得x =1200米,即第二次相遇时两人距B 地1200米。
【铺垫】甲乙二人以均匀的速度分别从A 、B 两地同时出发,相向而行,他们第一次相遇地点离A 地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B 地3千米处第二次相遇,求两次相遇地点之间的距离。
解:作为多次相遇问题,有必要研究每次相遇时的路程和。
第一次相遇时,两人的路程和为1个全程,其中甲走了4千米。
第二次相遇时,两人的路程和为3个全程,其中甲走了1个全程+3千米。
由于甲乙速度固定不变,第二次相遇时路程和是第一次相遇时路程和的3倍,则甲两次的路程也为3倍关系,从而1个全程=3×4-3=9千米。
去掉两头距离,两次相遇点距离9-(3+4)=2千米。
【点评】本题主要应用行程中另一个常见模型:折返运动模型。
折返运动是多次相遇的一种类型,由于隐含了甲乙速度不变的条件,则任意时间段内,不论是甲乙的路程之比,还是甲与全程之比或者乙与全程之比均保持不变。
甲乙二人的路程和时常为“2个全程”。
这是一个经常需要讨论的量。
折返跑模型应熟练掌握。
【例 5】 A 、B 、C 三辆汽车以相同的速度同时从甲市开往乙市,开车后1小时A 车出了事故,B 和C 车照常前进.A 车停车修理半小时后以原速度的45继续前进,B 、C 两车行至距离甲市300千米处B车出了事故,C 车照常前进.B 车停了半小时后也以原速度的45继续前进.结果到达乙市的时间C 车比B 车早1小时,B 车比A 车早1小时,求甲、乙两市的距离为多少千米?【分析】此题为典型的多人行程问题,且过程较为复杂,对此有必要对每个人各自的行程轨迹进行单独独立分析。
进而对相关人进行两两分析。
例如本题中,需要首先分析A,B,C 各自的过程。
【解】由于故障后的速度统一为原速的54,若设原速度为5份,则故障速度为4份。
过程分析如下: C :以5份的速度行驶完全程,第一个到达终点。
A :以5份的速度行驶1小时后,停车0.5小时,再以4份的速度行驶完全程,最后一个到达终点。
B :以5份的速度行驶300千米后,停车0.5小时,再以4份的速度行驶完全程,第二个到终点。
另已知C 比B 早到1小时,B 比C 早到1小时。
仅分析A 、C 二人的过程:A 、C 共同行驶1小时后,A 停车0.5小时,后减速行驶,最终比C 多用2小时到达。
除去停车的0.5小时,A 在减速路段上的行驶时间实际比C 多用1.5小时,而这段路上A 、C 速度之比为4:5,则所用时间之比为5:4,不难求这段路A 用时7.5小时,C 用时6小时。
而对于C 来说,全程用时6+1=7小时,则B 全程用时7+1=8小时。
再分析B 、C 二人的过程:B 、C 共同行驶300千米后,B 停车0.5小时,后减速行驶,最终比C 多用1小时到达,除去停车的0.5小时,B 在减速的路段上的行驶时间实际比C 多用0.5小时,而在这段路上B 、C 速度之比也是4:5,从而时间之比为5:4,不难求B 用时2.5小时,C 用时2小时。
可见,B 在前300公里用时8-0.5-2.5=5小时,则A 、B 、C 共同的原速度=300÷5=60千米/小时。
由C 的行驶过程可求得全程=60×7=420千米。
【点评】此题首先是一道多人行程问题,多人行程问题最基本的分析方法就是对每个人的行程轨迹进行单独分析,将全过程进行分解,缕清思路。
另一方面,本题是“提速-少时”模型以及“比差”模型的反复的应用。
若能熟练掌握这两个模型,则有可能较快的解决问题。
【例 6】 甲、乙两车分别从相距180千米的A 、B 两地同时出发相向而行,两车在距离A 地80千米处相遇,若出发半小时后甲车突然提速50%,那么两车恰好在AB 的中点相遇,如果出发后20分钟甲车把速度变为原来的一半,那么相遇地点将距A 地_____千米;【分析】当两车在距A 地80千米处相遇时,甲路程=80千米,乙路程=100千米,则甲乙的速度之比=4:5,若甲速度为4份,则乙速度为5份。
【解】甲出发半小时后提速50%就能与乙车在中点相遇,这说明甲的平均速度应等于乙的速度,而甲原速为4份,提速50%达到6份,从而整个过程可描述为甲用4份的速度行驶0.5小时后再用6份的速度行驶了x 小时,最终平均速度为5份,从而路程=)5.0(565.04x x +⨯=+⨯,不难求得x =0.5小时,可见相遇时甲乙均用时0.5+0.5=1小时,由于行驶路程均为180÷2=90千米,显见乙的速度=90÷1=90千米/小时,则甲的速度应为90÷5×4=72千米/小时。