25.2用列举法求概率(4)

合集下载

人教版九年级数学上册优质课课件《25.2列表法求概率》

人教版九年级数学上册优质课课件《25.2列表法求概率》

拓广探索
• 在围棋盒中有x颗黑色棋子 和y颗白色棋子,从盒中随 机地取出一个棋子,如果它 是黑色棋子的概率是3/8, 写出表示x和y关系的表达 式.如果往盒中再放进10颗 黑色棋子,则取得颗黑色棋 子的概率为1/2,求x和y的 值.
小结
拓展
从表面上看,随机现象的每一次观察结果都是偶 然的,但多次观察某个随机现象,立即可以发现: 在大量的偶然之中存在着必然的规律.
本题中元音字母: A E I 辅音字母: B C D H
• 例题选讲 • 甲乙两个同学做“石头、剪刀、布”的 游戏,在一个回合中两人能分出胜负的 概率是多少? • 分析:(1)一个回合:那么是几次等 可能试验?树形图应该画几级?(甲、 乙独立出拳的,应该算两次) • (2)每一个级别里应该画几条树枝? (每个试验的结果有几种可能性)
用列表法求概率时应注意各种结果出现的 可能性必须相同. 用列表格法的优缺点及局限性. 有放回还是无放回的问题
要学会建立适当的数学模型
小结
拓展
回 味 无 穷
用树状图或表格表示概率
1、利用树状图或表格可以清晰地表示出某 个事件发生的所有可能出现的结果;从而较 方便地求出某些事件发生的概率.
2 根据不同的情况选择恰当的方法表示某个事 件发生的所有可能结果。 3.当试验包含两步时,列表法比较方便,当然, 此时也可以用树形图法,当试验在三步或三 步以上时,用树形图法方便.
.“手心手背”是同学们中间广为流传的游戏, 游戏时甲、乙、丙三方每次做“手心”“手背” 两种手势中的一种,规定:⑴出现三个相同手 势不分胜负须继续比赛;⑵出现一个“手心” 和或一个“手背”和两个“手心”时,则一种 手势者为胜,两种相同手势者为负。 假定甲、乙、丙三人每次都是等可能地做这 两种手势,那么,甲、乙、丙三位同学胜的 概率是否一样?这个游戏对三方是否公平? 若公平,请说明理由,若不公平,如何修改 游戏规则才能使游戏对三方都公平?

25.2-用列举法求概率-(共27张)PPT课件

25.2-用列举法求概率-(共27张)PPT课件

(3)至少有一次骰子的点数为3的概率是 11
36
2021
9
总结
当一次试验要涉及两个
因素(如:同时掷两个骰子)或一
个因素做两次试验(如:一个骰
子掷两次)并且可能出现的结果
数目较多时,为不重不漏地列出
所有可能的结果,通常可以采用
列表法,也可以用树形图。
2021
10
想一想:
如果把上题中的“同时掷两个骰子” 改为 “把一个骰子掷两次”,所得的结果有变 化吗?
25.2 用列举法求概率
2021
1
在一次试验中,如果可能出现的结果
只有_有_限__个,且各种结果出现的可能性大 小_相__等_,我们可以通过列举试验结果的方 法,分析出随机事件发生的概率。
2021
2
2021
3
2021
4
方法一:枚举法 正正 正反 反正 反反
方法二:列表法
第一枚 第二枚
正正 正反
没有变化
2021
11
试一试:
小明和小亮做扑克游戏,桌面上放有两堆牌,分 别是红桃和黑桃的1,2,3,4,5,6,小明建议:我从红桃 中抽取一张牌,你从黑桃中取一张,当两张牌数字 之积为奇数时,你得1分,为偶数我得1分,先得 到10分的获胜”。如果你是小亮,你愿意接受这 个游戏的规则吗? 为什么?
这个游戏对小亮和小明公 平吗?
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?
(2)取出的3个小球上全是辅音字母的概率是多少?解:由树形图得,有12种可能的结果, 并且它们发生的可能性都相等。

A
(1)只有一个元音字母(记为事件
B
A)的结果有5种,则 P(A)= 5

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册
A.


B.


1
2
1
(1,1)
(1,2)
2
(2,1)
(2,2)
C.




D.
由列表可知,两次摸出小球的号码之积共有
4种等可能的情况,
)
知识讲解
知识点2 用列表法求概率
【例 2】一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,
2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(3)至少有一个骰子的点数为2.
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(B )
A.


B.


C.


D.


随堂练习
2. 某次考试中,每道单项选择题一般有4个选项,某同学有两道题不
会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两
道题全对的概率是( B )
A.


B.


C.


D.


随堂练习
3. 在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机

九年级数学上册 25.2.2 用列举法求概率(树状图)教案 新人教版(2021-2022学年)

九年级数学上册 25.2.2 用列举法求概率(树状图)教案 新人教版(2021-2022学年)
三、教学目标
知识与
技能
能通过树状图法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果.
过程与
方法
通过自主探究,合作交流的过ห้องสมุดไป่ตู้,感悟数形结合的思想,提高思维的条理性,提高分析问题和解决问题的能力。
通过画树状图求概率的过程提高学习兴趣,感受数学的简捷美,以及数学应用的广泛性。

情感态度与价值观
1。用列举法求概率的基本步骤是什么?
2。列举一次试验的所有可能结果时,学过哪些方法?
3。同时抛掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是多少?
4。随机掷一枚均匀的硬币两次,一枚硬币正面向上,一枚硬币反面向上的概率是多少?
抢答题:
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形。游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。问:游戏者获胜的概率是多少?
四、巩固提高,完善新知
1。抛掷三枚质地均匀的硬币,三枚正面朝上的概率是多少?为什么?
2。将分别标有数字1,2,3的三张质地、规格和背面均相同的卡片洗匀后,背面朝上放在桌子上。随机地抽取一张作为十位数字,不放回,再抽取一张作为个位数字,试用树状图探究:组成的两位数恰好是偶数的概率为多少?
3.箱子中装有3个只有颜色不同的球,其中2个是白球、1个是红球,3个人依次从箱子中任意摸出1个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是多少?
25。2.2用列举法求概率
课标依据
能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果。

人教版数学九上25.2 用列举法求概率(精品课件共2课时52页)

人教版数学九上25.2 用列举法求概率(精品课件共2课时52页)
3
于4为事件B. () = 16
第1次
第2次
1
2
3
4
1
2
3
4
(1,1)
(2,1)
(3,1)
(4,1)
(1,2)
(2,2 )
(3,2)
(4,2)
(1,3)
15
5
2.一个不透明的袋中有四个完全相同的小球,把它们分别标号为
1,2,3,4.随机地摸取一个小球然后放回,再随机地摸出一个小球.
求下列事件的概率:
(1)两次取出的小球标号相同;
(2)两次取出的小球标号和等于4.
解:(1)记两次取出的小球标号
4
1
相同为事件A. () = 16 = 4
(2)记两次取出的小球标号和等
一共有结果
4种
一正一反的结果 2种
2
1
P(老师赢) = = .
4
2
2
1
P(学生赢)= = .
4
2
两面一样的结果 2种
答:因为P(老师赢) = P(学生赢),
所以这个游戏公平.
“同时掷两枚质地均匀的硬币”与“先后两次掷
一枚硬币”,这两种试验的所有可能结果一样吗?
第一次 第二次 所有可能的结果
(正,正)
的m种结果)求事件发生的概率的方法,我们称为直接列举法.
注意:(1)为保证结果不重不漏,直接列举时,要有一定的顺序性.
(2)用列举法求概率的前提条件有两个:
①所有可能出现的结果是有限个;
②每个结果出现的可能性相等.
(3)所求概率是一个准确数,一般用分数表示.
新知探究 跟踪训练
例1 若我们把十位上的数字比个位和百位上数字都小的三位数称

用列表法求概率

用列表法求概率

的周围的正方形中有3
个地雷,我们把这个
区域记为A区,A区外
记为B区,,下一步
小王应该踩在A区还
是B区?
引例:掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上;
“掷两枚硬币”共有几种结果?
正正
正反 反正 反反
为了不重不漏地列出所有这些结果, 你有什么好办法么?
2
1×2=2 2×2=4 3×2=6 4×2=8 5×2=10 6×2=12
3
1×3=3 2×3=6 3×3=9 4×3=12 5×3=15 6×3=18
4
1×4=4 2×4=8 3×4=12 4×4=16 5×4=20 6×4=24
5
1×5=5 2×5=10 3×5=15 4×5=20 5×5=25 6×5=30
乙转盘 4 5 6 7
45 67




共 12 种可能的结果
45 √
67 √
与求“指列针表所”指法数对字比之,结和果为怎偶么数样的?概率。
例2、同时掷两个质地相同的骰子,计算下列事件的概率:
(1)两个骰子的点数相同;(2)两个骰子的点数和是9;
(3)至少有个骰子的点数是2。
解:一 二 1
2
3
4
5
5、甲、乙两人各掷一枚质量分布均匀的正方体骰子,如果点数 之积为奇数,那么甲得1分;如果点数之积为偶数,那么乙得1分。 连续投10次。 (1)请你想一想,谁获胜的机会大?,谁得分高,谁就获胜并说明理由 (2)你认为游戏公平吗?如果不公平,请你设计一个公平的游戏。
列出所有可能的结果:
1

人教版数学九年级上册25.2.1《用列举法求概率》教案

人教版数学九年级上册25.2.1《用列举法求概率》教案

人教版数学九年级上册25.2.1《用列举法求概率》教案一. 教材分析《用列举法求概率》是人教版数学九年级上册第25章第二节的第一课时,本节课主要内容是让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。

教材通过引入实际问题,引导学生用列举法列出所有可能的结果,再找出符合条件的结果,从而计算概率。

本节课的内容对于学生来说比较抽象,需要通过大量的练习来理解和掌握。

二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,如随机事件、必然事件等,并掌握了用树状图法求概率的方法。

但是,由于九年级学生的逻辑思维能力和空间想象能力还在发展阶段,对于用列举法求概率的方法可能会感到困惑。

因此,在教学过程中,教师需要耐心引导,让学生逐步理解和掌握列举法求概率的方法。

三. 教学目标1.知识与技能目标:让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。

2.过程与方法目标:通过学生自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:用列举法求概率的方法。

2.难点:如何引导学生理解和掌握用列举法求概率的方法,以及如何解决实际问题。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。

2.互动教学法:通过学生之间的合作交流,培养学生解决问题的能力。

3.引导发现法:教师引导学生发现列举法求概率的步骤和方法,培养学生自主学习的能力。

六. 教学准备1.教学课件:制作课件,展示相关例题和练习题。

2.练习题:准备一些实际问题,让学生课后练习。

七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如抛硬币、抽奖等,引导学生思考如何求解这些问题。

让学生意识到用列举法求概率的重要性。

2.呈现(10分钟)教师展示一些简单的例题,如抛硬币两次,求正正、正反、反正、反反的概率。

25.2 用列举法求概率讲义 学生版

25.2 用列举法求概率讲义 学生版

第25章概率初步25.2 用列举法求概率学习要求1、会通过列举法分析随机事件可能出现的结果,求出“结果发生的可能性相等”的随机事件的概率.2、能运用列表法和树状图法计算一些事件发生的概率.知识点一:直接列举法求概率例1.把1枚质地均匀的普通硬币重复掷两次,落地后出现一次正面一次反面的概率是()A.1 B.C.D.变式1.从长度分别为2、3、4、5的4条线段中任取3条,能构成钝角三角形的概率为()A.B.C.D.变式2.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.变式3.学校组织初三数学备课组全体教师去外校听课,安排了两辆车,按1~2编号,程、李两位教师可任意选坐一辆车.(1)用画树状图的方法或列表法列出所有可能的结果;(2)求程、李两位教师同坐2号车的概率.变式4.在2017年“KFC”乒乓球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛.(1)列表或画树状图表示乙队所有比赛结果的可能性;(2)求乙队获胜的概率.知识点二:列表法求概率例2.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?变式1.将A,B两男选手和C、D两女选手随机分成甲、乙两组参加乒乓球比赛,每组2人.(1)求男女混合选手在甲组的概率;(2)求两个女选手在同一组的概率.变式2.现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃4.把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)求两次抽得的数字和是奇数的概率.(提示:三张扑克牌可以分别简记为红2、红3、黑4)变式3.班主任老师让同学们为班会活动设计一个抽奖方案,拟使中奖概率为60%.(1)小明的设计方案:在一个不透明的盒子中,放入10个球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有个,白球应有个;(2)小兵的设计方案:在一个不透明的盒子中,放入4个黄球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖.该设计方案是否符合老师的要求?试说明理由.变式4.一个不透明的布袋里装有3个完全相同的小球,每个球上面分别标有数字﹣1、0、1,小明先从布袋中随机抽取一个小球,然后放回搅匀,再从布袋中随机抽取一个小球,求第一次得到的数与第二次得到的数绝对值相等的概率(请用“画树状图”或“列表”等方法写出分析过程).变式5.有2个信封A、B,信封A装有四张卡片上分别写有1、2、3、4,信封B装有三张卡片分别写有5、6、7,每张卡片除了数字没有任何区别.从这两个信封中随机抽取两张卡片.(1)请你用列表法或画树状图的方法描述所有可能的结果;(2)把卡片上的两个数相加,求“得到的和是3的倍数”的概率.变式6.五•一期间,某商场开展购物抽奖活动,在不透明的抽奖箱中有4个分别标有数字1、2、3、4的小球,每个小球除数字外其余都相同.顾客随机抽取一个小球,不放回,再随机摸取一个小球,若两次摸出球的数字之和为“7”,则抽中一等奖,请用画树状图(或列表)的方法,求顾客抽中一等奖的概率.变式7.在不透明的布袋中装有1个白球,2个红球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个红球的概率;(2)若在布袋中再添加x个白球,充分搅匀,从中摸出一个球,使摸到白球的概率为,求添加的白球个数x.知识点三:画树状图求概率例3.不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同.从中任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是()A.B.C.D.变式1.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A.B.C.D.变式2.一个不透明的口袋中有3个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同,甲先从口袋中随机摸出一个小球,记下数字后放回;乙再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求摸出的两个小球上的数字之和为偶数的概率.变式3.我校开展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督查.(1)请补全如下的树状图;(2)求恰好选中两名男学生的概率.变式4.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.变式5.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.变式6.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.变式7.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.变式8.已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.变式9.某单位A,B,C,D四人随机分成两组赴北京,上海学习,每组两人.(1)求A去北京的概率;(2)用列表法(或树状图法)求A,B都去北京的概率;(3)求A,B分在同一组的概率.变式10.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.变式11.交通信号灯(俗称红绿灯),至今已有一百多年的历史了.“红灯停,绿灯行”是我们日常生活中必须遵守的交通规则,这样才能保障交通的顺畅和行人的安全,下面这个问题你能解决吗?小刚每天骑自行车上学都要经过三个安装有红灯和绿灯的路口,假如每个路口红灯和绿灯亮的时间相同,那么,小刚从家随时出发去学校,他至少遇到一次红灯的概率是多少?不遇红灯的概率是多少?(请用树形图分析)变式12.一个不透明的袋子中,装有红黑两种颜色的小球(除颜色不同外其他都相同),其中一个红球,两个分别标有A、B黑球.(1)小李第一次从口袋中摸出一个球,并且不放回,第二次又从口袋中摸出一个球,则小李两次都摸出黑球的概率是多少?试用树状图或列表法加以说明;(2)小张第一次从口袋中摸出一个球,摸到红球不放回,摸到黑球放回.第二次又从口袋中摸出一个球,则小张第二次摸到黑球的概率是多少?试用树状图或列表法加以说明.拓展点一:游戏中的公平性问题例4.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是()A.让比赛更富有情趣 B.让比赛更具有神秘色彩C.体现比赛的公平性 D.让比赛更有挑战性变式1.甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是()A.游戏的规则由甲方确定B.游戏的规则由乙方确定C.游戏的规则由甲乙双方商定D.游戏双方要各有50%赢的机会变式2.(2014•玉林一模)小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜;若和为偶数则小亮胜.获胜概率大的是()A.小明 B.小亮 C.一样 D.无法确定变式3.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A.此规则有利于小玲 B.此规则有利于小丽C.此规则对两人是公平的 D.无法判断变式4.把一个可以自由转动的均匀转盘3等分,并在各个扇形内分别标上数字(如图),小明和小亮用图中的转盘做游戏;分别转动转盘两次,若两次数字之积是偶数,小明获胜,否则小亮获胜.你认为游戏是否公平?请说明理由.变式5.把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒(记为A盒、B盒)中搅匀,再从两个盒子中各随机抽取一张.(1)从A盒中抽取一张卡片,数字为奇数的概率是多少?(2)若取出的两张卡片数字之和为奇数,则小明胜;若取出的两张卡片数字之和为偶数,则小亮胜;试分析这个游戏是否公平?请说明理由.变式6.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)随机抽取一张卡片,求恰好抽到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则如图所示.你认为这个游戏公平吗?请说明理由.变式7.小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相同的扇形)做游戏.同时转动两个转盘,如果所得颜色能配成紫色,那么小明获胜;如果所得颜色相同,那么小亮获胜,这个游戏对双方是否公平?请说明理由.变式8.在一个口袋中有3个完全相同的小球,把它们分别标号1、2、3.小李先随机地摸出一个小球,小张再随机地摸出一个小球.记小李摸出球的标号为x,小张摸出的球标号为y.小李和小张在此基础上共同协商一个游戏规则:当x>y时小李获胜,否则小张获胜.①若小李摸出的球不放回,求小李获胜的概率;②若小李摸出的球放回后小张再随机摸球,问他们制定的游戏规则公平吗?请说明理由.变式9.如图在圆盘的圆周上均匀的分布着0﹣9的10个数,箭头固定并指向0,圆盘可以任意旋转,记P k (k=1,2…9)表示箭头落在0﹣k之间的概率.如P3=.(1)求当k=8时的概率P8.(2)若规定,k取到奇数时,甲同学获胜,k取到偶数时,乙同学获胜,这样的规定是否公平?请说明理由.(3)请你设计一个规定,能公平的选出两位同学去参加某项活动.并说明你的规定是符合要求的.变式10.小红和小慧玩纸牌游戏.如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小慧从剩余的3张牌中也抽出一张.小慧说:抽出的两张牌的数字若都是偶数,你获胜;若一奇一偶,我获胜.(1)请用树状图表示出两人抽牌可能出现的所有结果;(2)若按小慧说的规则进行游戏,这个游戏公平吗?请说明理由.变式11.为从小明和小刚中选出一人去观看元旦文艺汇演,现设计了如下游戏,规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏是否公平.变式12.如图,小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英得1分,否则小丽得1分,这个游戏对双方公平吗?(红色+蓝色=紫色)用树状图或表格求右面两个转盘配成紫色的概率.变式13.假期,六盘水市教育局组织部分教师分别到A、B、C、D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1)若去C地的车票占全部车票的30%,则去C地的车票数量是张,补全统计图.(2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.易错点:分析事件的可能结果时易重复或者遗漏例5.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.变式1.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个.(1)先从袋中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:若A为必然事件,则m的值为,若A为随机事件,则m的取值为;(2)若从袋中随机摸出2个球,正好红球、黑球各1个,求这个事件的概率.变式2.在一个不透明的袋子中,放入了2个红球和m个白球,已知从中摸出一个球是红球的概率为0.4.(1)求m的值;(2)如果从中一次摸出2个球,求至少有一个是红球的概率,请用画树状图或列表的方法进行分析.变式3.不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.变式4.袋中装有除颜色外完全相同的2个红球和1个绿球.(1)现从袋中摸出1个球后放回,混合均匀后再摸出1个球.请用画树状图或列表的方法,求第一次摸到绿球,第二次摸到红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.。

25.2-用列举法求概率--画树形图法

25.2-用列举法求概率--画树形图法
第23页,共28页。
7.小明和小丽都想去看电 影,但只有一张电影票.小 明提议:利用这三张牌,洗 匀后任意抽一张,放回,再 洗匀抽一张牌.连续抽的两
张牌结果为一张5一张4 小明去,抽到两张5的小
丽去,两张4重新抽.小明 的办法对双方公平吗?
第24页,共28页。
8.中央电视台“幸运52”栏目中的“百宝箱”互动 环节,是一种竞猜游戏,游戏规则如下:在20个 商标牌中,有5个商标牌的背面注明一定的奖金 额,其余商标牌的背面是一张哭脸,若翻到哭 脸,就不能得奖,参与这个游戏的观众有三次 翻牌机会(翻过的牌不能再翻).某观众前两次 翻牌均获得若干奖金,那么他第三次翻牌获奖的 概率是 ;
了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几
台.
第9页,共28页。
解:(1) 树状图如下
有6种可能,分别为(A,D),(A,E),(B,D), (B,E),(C,D),(C,E).
第10页,共28页。
还可以用表格求
也清楚的看到,有6种可能,分别为(A,D),(A,
E),(B,D),(B,E),(C,D),(C,
第1页,共28页。
例4:甲口袋中装有2个相同的小球,它们分别写 有字母A和B; 乙口袋中装有3个相同的小球,它 们分别写有字母C、D和E;丙口袋中装有2个相同 的小球,它们分别写有字母H和I。从3个口袋中各 随机地取出1个小球。 (1)取出的3个小球上恰好有1个、2个和3个元音 字母的概率分别是多少?
第25页,共28页。
9.有两组卡片,第一组三张卡片上都写着A、B、B, 第二组五张卡片上都写着A、B、B、D、E。试用 列表法求出从每组卡片中各抽取一张,两张都 是B的概率。
10.将分别标有数字1,2,3 的三张卡片洗匀后,背

25.2 第1课时 用直接列举法和列表法求概率

25.2 第1课时 用直接列举法和列表法求概率

25.2 第1课时用直接列举法和列表法求概率25.2用列举法求概率第1课时用直接列举法和列表法求概率一、基本目标【知识与技能】1.掌握用直接列举法和列表法求简单事件的概率的方法.2.运用概率知识解决计算涉及两个因素的一个事件概率的实际问题.【过程与方法】经历试验操作、观察、记录的过程,探究如何画出适当的表格,列举出事件的所有等可能结果,并总结出用列表法求事件概率的方法.【情感态度与价值观】合作探究如何画出适当的表格列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯.二、重难点目标【教学重点】反正__、__反反__,故这两种试验的所有可能结果__一样__.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】先后两次抛掷一枚质地均匀的硬币.(1)求硬币两次都正面向上的概率;(2)求硬币两次向上的面相反的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列举先后两次抛掷一枚质地均匀的硬币的全部结果,它们是:正正、正反、反正、反反.所有的结果有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足硬币两次都正面向上的结果只有1种,即“正正”,所以P(硬币两次都正面向上)=14.(2)硬币两次向上的面相反的结果共有2种,即“正反”“反正”,所以P(硬币两次向上的面相反)=24=12.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较少,且各种结果出现的可能性大小相等,那么我们可以直接列举出试验结果,从而求出随机事件发生的概率.【例2】有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取1张,记下数字后放回洗匀,再从中随机抽取1张.(1)求两次抽到的数都是偶数的概率;(2)求第一次抽到的数比第二次抽到的数大的概率;(3)求两次抽到的数相等的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列表如下:第一次第二次1234 51(1,1)(2,1)(3,1)(4,1)(5,1)2(1,2)(2,2)(3,2)(4,2)(5,2)3(1,3)(2,3)(3,3)(4,3)(5,3)4(1,4)(2,4)(3,4)(4,4)(5,4)5(1,5)(2,5)(3,5)(4,5)(5,5)由表可以看出,可能出现的结果一共有25种,并且它们出现的可能性相等.(1)两次抽到的数都是偶数的结果有4种,即(2,2),(2,4),(4,2),(4,4),所以P(两次抽到的数都是偶数)=4 25.(2)第一次抽到的数比第二次抽到的数大的结果有10种,即(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),所以P(第一次抽到的数比第二次抽到的数大)=1025=25. (3)两次抽到的数相等的结果有5种,即(1,1),(2,2),(3,3),(4,4),(5,5),所以P (两次抽到的数相等)=525=15. 【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性大小相等,那么我们可以列表列举出试验结果,从而求出随机事件发生的概率.【活动2】 巩固练习(学生独学)1.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是( B )A.12B .13 C.14 D .152.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( C )A.18B .16C .14D .123.李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤.若任意组合穿着,则李玲穿着“衣裤同色”的概率是__13__. 4.同时掷两枚质地均匀的六面体骰子,计算下列事件的概率:(1)两枚骰子点数的和是6;(2)两枚骰子点数都大于4;(3)其中一枚骰子的点数是3.解:列表如下: 第一枚第二1 2 3 4 5 6枚1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1) 2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2) 3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3) 4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4) 5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5) 6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6) 由表可以看出,同时掷两枚质地均匀的六面体骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子点数的和是6的结果有5种,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P(两枚骰子点数的和是6)=5 36.(2)两枚骰子点数都大于4的结果有4种,即(5,5),(5,6),(6,5),(6,6),所以P(两枚骰子点数都大于4)=436=19.(3)其中一枚骰子的点数是3的结果有11种,即(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(3,1),(3,2),(3,4),(3,5),(3,6),所以P(其中一枚骰子的点数是3)=1136.【活动3】拓展延伸(学生对学)【例3】如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色).小明转动的A盘被等分成4个扇形,小亮转动的B 盘被等分成3个扇形,两人分别转动转盘一次.两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?【互动探索】(引发学生思考)结合概率的相关知识,要使游戏对双方公平,则两人获胜的概率之间有什么关系?【解答】列表如下:红蓝黄蓝(红,(蓝,(黄,蓝)蓝)蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红(红,红)(蓝,红)(黄,红)由表可知,两人分别转动转盘一次,可能出现的结果共有12种,并且它们出现的可能性相同.其中能配成紫色的结果有3种,所以P(小明获胜)=312=14,P(小亮获胜)=1-14=34.因为14≠34,所以这个游戏对双方不公平.【互动总结】(学生总结,老师点评)判断一个游戏对双方是否公平,就看双方获胜的概率是否相等.若相等,则公平.否则,不公平.环节3课堂小结,当堂达标(学生总结,老师点评) 请完成本课时对应练习!。

25.2用列举法求概率--上课用

25.2用列举法求概率--上课用
2.小王将一黑一白的两双相同号码的袜子一只一只
地扔进抽屉里,当他随意地从抽屉里拿出两只袜子时,恰
好成双的概率是多少?
知识点一.用枚举法求概率(等可能事件结果有限个):
思考:“同时抛掷两枚质地均匀的硬币”与“先后两
次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结
果一样吗?
知识点一.用枚举法求概率(等可能事件结果有限个):
知识点二.用列表法求概率(等可能事件结果较多个):
改为“把一枚质地均匀的骰子掷两次”,得到的结果有变 化吗?为什么?
思考:如果把例2中的“同时掷两枚质地均匀的骰子”
知识点二.用列表法求概率(等可能事件结果较多个):
2.在一个不透明的布袋中有4个完全相同的乒乓球, 把它们分别标号为1,2,3,4,随机地摸出一个乒乓球,
知识点二.用列表法求概率(等可能事件结果较多个):
练习3.有6张看上去无差别的卡片,上面分别写着
1,2,3,4,5,6.随机抽取1张后,放回并混在一起,再随机抽
取1张,那么第二次取出的数字能够整除第一次取出的数字
的概率是多少?
三.课堂小结:
1.用列表法求概率时要注意些什么? 2.什么时候用列表法?
反思:用列表法求概率 1.步骤: ①列表:分清一次试验所涉及的两个因素,一个为横行, 一个为竖行,制作表格;
②计数:通过表格中的数据,分别求出某事件发生的数量
m与该试验的结果总数m的值;
③计算:利用概率公式
2.适用条件:
P ( A)
m n
计算出事件的概率.
如果事件中各种结果出现的可能性均等,含有两次操作 (如掷骰子两次)或两个条件(如两个转盘)的事件.
练习3.在一个不透明的口袋中装有红球2个,黑球2

25.2用列举法求概率课堂(教案)

25.2用列举法求概率课堂(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了概率的基本概念、列举法的应用以及在实际问题中的应用。通过实践活动和小组讨论,我们加深了对概率和列举法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天在《25.2用列举法求概率》这节课中,我发现学生们对概率的概念有了基本的理解,但在运用列举法求解具体问题时,还存在一些困难。让我来谈谈我对这节课的几点观察和思考。
3.加强课堂互动,关注学生个体差异,提高教学效果;
4.在实践活动和小组讨论中,注重引导学生关注细节,提高列举的准确性;
5.定期进行复习,巩固所学知识,提高学生的学科素养。
-在实际问题中,如掷两个骰子,求两个骰子点数之和为7的概率,如何构建数学模型并计算概率。
在教学过程中,教师需要针对以上重点和难点内容,采用直观演示、案例分析、小组合作等教学方法,帮助学生深入理解概率概念,掌握列举法的应用,并能够将理论知识应用到解决实际问题的过程中。通过反复练习和讲解,确保学生对本节课的核心知识理解透彻。
-理解概率的定义,明确概率是反映事件发生机会的大小的量;
-学会运用列举法(列表法和树状图法)求解简单事件的概率;
-掌握如何从具体实例中抽象出事件的所有可能结果,并进行分析。
举例:
-抛掷硬币事件的概率,理解正面向上的机会是1/2;
-抛掷骰子事件的概率,分析得到偶数点的机会是1/2;
-扑克牌抽取事件的概率,计算得到红桃的机会是1/4。
在实践活动和小组讨论中,学生们表现出了较高的参与度。通过分组讨论和实验操作,他们不仅巩固了所学的概率知识,还学会了如何将列举法应用于实际问题。然而,我也发现部分小组在列举过程中容易遗漏或重复某些情况,这说明学生们在细节处理上还需加强。

人教版九年级数学上册25.2用列表法求概率一等奖优秀教学设计

人教版九年级数学上册25.2用列表法求概率一等奖优秀教学设计

人教版义务教育课程标准实验教科书九年级上册25.2用列举法求概率教学设计一、教材分析1、内容解析:在一次实验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举实验结果的方法,求出随机事件发生的概率。

当每次实验涉及两个因数时,为了更清晰、不重不漏的列举出实验的结果。

教科书给出了以表格形式呈现的列举法——列表法。

这种方法适合列举每次实验涉及两个因素,且每个因素的取值个数较多的情形。

相对于直接列举,用表格列举体现了分步分析对思考较复杂问题时所起到的作用。

将实验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中。

就形成了不重不漏的列举出这两个因数所有可能结果的表格。

这种分步分析问题的方法将在下节课树状图法和高中分步乘法计算原理的学习中进一步运用。

另外,通过求概率,学生将进一步体会概率的意义,逐步培养随机观念。

2、目标和目标解析:(1)、目标:①用列举法求简单随机事件的概率,进一步培养随机观念。

②感受分步分析对思考较复杂问题时起到的作用。

(2)、目标解析:达成目标1的标志是:学生清晰的知道,对于结果种数有限且每种结果等可能的随机实验中的事件,可以用列举法求概率。

当每次实验涉及两个因数,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将实验的所有结果不重不漏的列举出来,学生能够利用列表法正确计算简单随机事件的概率。

结合具体问题进一步体会概率是如何定量地刻画随机事件发生可能性的大小。

目标2体现在学生探索、归纳列表法的过程中。

学生在问题的引导下思考如何才能将涉及两个因素实验的所有可能的结果不重不漏的表示出来。

将体会“分步”策略对分析复杂问题起到的作用。

3、教学重、难点教学重点:用列表法求简单随机事件的概率。

教学难点:列表格不重不漏的列举随机实验的所有结果。

突破难点的方法:让学生合作探究,自主学习,体验列举实验结果过程。

二、教学准备:多媒体课件、导学案。

25.2用直接列举法和列表法求概率

25.2用直接列举法和列表法求概率

解:容易知道3辆汽车开来的先后顺序有如下6种可能情况:
(上中下), (上下中),
(中上下), (中下上), (下上中), (下中上).
假定6种顺序出现的可能性相等, 在各种可能顺序之下,
甲乙两人分别会乘坐的汽车列表如下:
顺序 上中下 上下中 中上下 中下上 下上中 下中上


甲乘到上等、中等、下等3种汽
所以:P(点数相同)= 6 = 1
36 6
P(点数和为9)= 4 = 1
36 9
P(至少一个为2)=1361
把事件所有等可能的结果用列表的方法一一列举出来, 从而求事件概率的方法叫列表法
适用用两次(两步)(总结果数较多)时,为不重不漏地 列出所有可能结果,通常采用列表法. ※(放回和不放回如何影响表格中的总数)ቤተ መጻሕፍቲ ባይዱ
果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,
因为红色和蓝色在一起配成了紫色。问:游戏者获胜的
概率是多少?
解:所有等可能的结果有:
红黄、红蓝、红绿、白黄、白
蓝、白绿 共6种,
其中:红蓝配成紫色的有1种
所以
P(获胜)=
1 6
思 老师向空中抛掷两枚同样的一元硬币,如果落 考 地后一正一反,老师赢;如果落地后两面一样,你
们赢.请问,你们觉得这个游戏公平吗?
“掷两枚硬币”所有结果如下:








解:所有等可能的结果有:
正正、正反、反正、反反共4
种,
其中 一正一反的有两种,两
面一样的有两种
所以 P(老师赢)=2 =1
42
P(你们赢)=24
=
1 2

人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案

人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案

人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案一、选择题1.连续掷三枚质地均与的硬币,三枚硬币都是正面朝上的概率是()A.12B.14C.18D.192.有三张正面分别写有数字1,2,−3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,然后放回卡片,再将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,则记录的两个数字乘积是正数的概率是()A.12B.13C.23D.593.盒子中装有1个红球和2个绿球,每个球除颜色外都相同,从盒子中任意摸出1个球,不放回,再任意摸出1个球,两球都是绿球的概率是()A.23B.13C.29D.124.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.595.有三张正面分别写有数字﹣2,3,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为点P的横坐标,然后放回再从这三张卡片中随机抽取一张,以其正面的数字作为点P的纵坐标,则点P在第三象限的概率是()A.49B.13C.19D.296.骰子是一种正方体玩具,它的六个面上各写有1,2,3,4,5,6,每面写一个数,每个数写一面,且相对两面的两个数的和为7.用七颗骰子投掷后,规定向上的七个面上的数的和是10时甲胜,如果向上的七个面上的数的和是39时则乙胜.则甲乙二人获胜的可能性是()A.甲大B.乙大C.同样大D.无法确定谁大7.王琳与蔡红在某电商平台购买了同款发卡,并且两人在收货之后都从“好评、一般、差评”中勾选了一项作为反馈,若三种评价是等可能的,则两人中至少有一个给出“差评”的概率是()A.13B.49C.59D.238.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出2个小球(第一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是( )A.13B.12C.23D.34二、填空题9.两个不透明的袋中都各装有一个红球和一个黄球两个球,它们除颜色外其他均相同.现随机从两个袋中各摸出一个球,两个球的颜色是一红一黄的可能结果有种.10.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在奇数区域的概率是.11.某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是.12.从1,2,3,4四个数中,随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率是.13.“双减”政策后,各校积极探索“课内提质增效,课后丰富多彩”的有效策略,某校的课后服务活动设置了四大板块课程:A.体育活动;B劳动技能;C经典阅读;D科普活动.若小明和小亮两人随机选择一个板块课程,则两人所选的板块课程恰好相同的概率是.三、解答题14.一个纸箱内装有三张正面分别标有数字﹣4,6,4的卡片,卡片除正面数字外其他均相同.将三张卡片搅匀后,从中随机摸出一张卡片记下数字,放回后搅匀,再从中随机摸出一张卡片并记下数字.请用列表法或画树状图法求两次取得数字的绝对值相等的概率.15.在学校组织的国学比赛中,小明晋级了总决赛,比赛过程分两个环节,参赛选手须在每个环节中抽取一道题目.第一环节:写字注音、成语故事、国学常识、成语接龙(分别用A1,A2,A3,A4表示);第二环节:成语听写、诗词对句、经典诵读(分别用B1,B2,B3表示).求小明参加总决赛抽取题目都是成语题目(成语故事,成语接龙,成语听写)的概率.16.将5个完全相同的小球分装在甲.乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上的数之和为5的概率.(2)摸出的两个球上的数之和为多少时的概率最大?17.我校开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了一些学生(每名学生必选且只能选择这五项活动中的一种).根据以下统计图提供的信息,请解答下列问题:(1)本次被调查的学生有名;补全条形统计图;(2)扇形统计图中“排球”对应的扇形的圆心角度数是;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全市中学生篮球比赛,请用列表法或画树状图法分析甲和乙同学同时被选中的概率.参考答案1.C2.D3.B4.B5.C6.C7.C8.C9.210.1311.2312.1213.1414.解:列树状图如下所示:由树状图可知一共有9种等可能性的结果数∵|−4|=4,|4|=4,|6|=6∴当两次摸到相同的数字,或者摸到一个4,一个-4,那么两次摸到的数的绝对值就相等∴由树状图可知两次取得数字的绝对值相等的结果数有5种.∴P两次取得数字的绝对值相等=5915.解:画树状图如下:共有12种等可能的结果,其中小明参加总决赛抽取题目都是成语题目的结果有2种∴小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率为212=16.16.(1)解:根据题意画出树状图如下:所有等可能的结果总数为6,其中和为5的结果为1种所以摸出的两个球上的数之和为5的概率为16;(2)解:所有可能的结果总数为6,其中和为5的结果为1种,和为4的结果为1种,和为6的结果为2种,和为7的结果为1种,和为8的结果为1种∴摸出的两个球上的数之和为6的概率最大.17.(1)解:100;选择“足球”的人数为35%×100=35(名).补全条形统计图如下:(2)18°(3)解:画树状图如下:共有12种等可能的结果,其中甲和乙同学同时被选中的结果有2种∴甲和乙同学同时被选中的概率为212=16.。

25.2用列举法求概率用列表法求概率(教案)2021-2022学年九年级数学人教版上册

25.2用列举法求概率用列表法求概率(教案)2021-2022学年九年级数学人教版上册
(3)计算事件A的概率,即P(A) =事件A的结果数/所有可能的结果数。
本节课将结合具体例题,让学生在实际操作中掌握列举法和列表法求概率的方法。
二、核心素养目标
本节课旨在培养学生的数学核心素养,主要包括以下方面:
1.逻辑推理:通过列举法和列表法的应用,让学生掌握求解概率问题的基本方法,提高逻辑推理能力,能够从具体实例中抽象出一般性规律,形成严密的逻辑思维。
2.数据分析:培养学生从实际问题中提取信息,运用列表法整理数据,分析事件概率的能力,提高对数据敏感度和数据分析能力。
3.数学建模:引导学生将实际问题转化为数学模型,运用列举法和列表法求解概率问题,培养学生建立数学模型解决问题的能力。
4.数学抽象:通过具体实例,让学生体会概率问题的抽象性,提高数学抽象思维,培养学生从具体情境中提炼数学问题的能力。
5.数学运算:培养学生熟练运用列举法和列表法进行概率计算,提高数学运算的准确性和速度。
本节课将紧密结合课本内容,以实际问题为载体,有针对性地提升学生的数学核心素养。
三、教学难点与重点
1.教学重点
(1)掌握列举法求概率的基本步骤:找出所有可能结果,确定事件A的所有可能结果,计算事件A的概率。
举例:抛掷一枚硬币,求正面朝上的概率。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题,如掷骰子、抽卡片等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如抛硬币、掷骰子等。这个操作将演示概率的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
举例:在求取出红球的概率时,正确计算红球的数量(3个)除以总球数(3+2+5=10个),得出概率为3/10。

九年级数学上册 25.2用列举法求概率 中国福利彩票“双色球”概率计算素材 新人教版-新人教版初中九

九年级数学上册 25.2用列举法求概率 中国福利彩票“双色球”概率计算素材 新人教版-新人教版初中九

中国福利彩票“双色球”概率计算"双色球"彩票以投注者所选单注投注(复式投注按所覆盖的单注计)与当期开出中奖相符的球色和个数确定中奖等级:一等奖:7个相符(6个红色球和1个蓝色球)(红色球顺序不限,下同);二等奖:6个红色球相符;三等奖:5个红色球和1个蓝色球相符;四等奖:5个红色球或4个红色球和1个蓝色球相符;五等奖:4个红色球或3个红色球和1个蓝色球相符;六等奖:1个蓝色球相符(有无红色球相符均可).双色球中头奖的概率:C33(6)*16=(33*32*31*30*29*28)/(6*5*4*3*2)*16=17721088双色球中头奖的概率为1/17721088双色球二等奖的概率为:1/C33(6)=1/((33*32*31*30*29*28)/(6*5*4*3*2)=1/1107568双色球三等奖的概率为:1/(C33(5)*16)=1/((33*32*31*30*29)*16/(5*4*3*2*1))=1/3797376(大家看出问题没有?怪事,比2等奖还低!)双色球四等奖的概率为:1/C33(5)=1/((33*32*31*30*29)/(5*4*3*2*1)=1/2373361/(C33(4)*16)=1/((33*32*31*30)/(4*3*2*1)*16)=1/654720 双色球五等奖的概率为:1/C33(4)=1/(33*32*31*30)/(4*3*2*1)=1/409201/C33(3)*16)=1/((33*32*31)/(3*2)*16)=1/87296双色球六奖概率:1/16=0.0625=6.25%计算分析:双色球为什么中奖概率高呢?而恰恰是这个蓝球,让大家都以为高达百分比的中奖概率去买双色球,但是双色球的头奖的中奖概率是:1/17721088这个概率大家看了不直观,我用汉字表达,中奖概率是一千七百七十二万一千零八十八,这个概率是36选7中奖概率的17721088/8347680=2.12倍,远远的把中头奖最低的36选7拉在了后面,但是反而挂上了中奖率最高的彩票,就是这个蓝色球作的怪,为什么呢?因为不管大小中5元是奖,中500万也是奖,就是这个蓝色球把双色球的中奖概率的区间拉大了即:1/17721088一千七百七十二万一千零八十八分之一和 6.25%百分之六点二五的关系(其实不用宣传到6.7或者6.8已经很吸引人了),所以双色球中奖区间是:0.0625到5.64e-8看看后面的数量级e-8的意思我就不用解释了吧?就是因为蓝球的关系,因为蓝球有16个,而只要中了蓝球就会中六等奖,即5元.举例以双色球第2004-009期为例:全国到开奖为止投注金额为62089966元,当奖金达到17721088×2=35442176(即3500万元就出一个大奖)本期奖金62089966,理论上应该出1.75个大奖,按照最大可能计算算2个大奖.需派出奖金:1000万. 2等奖:1107568×2=2215136(元) 62089966/2215136=28.3=29个 500万*30%=150000(元)需派出奖金:29*150000=4350000元3等奖:3797376*2=7594752(元)62089966/7594752=8.17=9个 3000*9=27000(元)需派出奖金:27000元4等奖:姑且以中奖率低的1/654720来计算654720*2=1309440(元) 62089966/1309440=47.4=48个 48*200=9600(元)需派出奖金:9600(元)5等奖:姑且以中奖率低的1/87296来计算87296*2=174592(元) 62089966/174592=355.63=356个 356*10=3560(元)需派出奖金:3560(元)注意:六等奖最关键看好了!!!!!!六等奖:中奖率0.0625,即16*2=32(元)62089966/32=1940311.4375=1940312个1940312*5=9701560(元)即九百七十万零一千五百六十元,接近1000万,相当于两个500万大奖了.双色球靠中奖率高吸引人,而派出奖金只有5元是最不起眼的,却是双色球的要害!要每期双色球六等奖相当于就要派出2个一等奖!把所有的金额累加:总奖金=一等奖+二等奖+三等奖+四等+奖五等奖+六等奖=10000000+4350000+27000+9600+3560+9701560=24091720(元)剩下奖池奖金:62089966-24091720=37998246(元)看看开奖结果:奖等中奖注数每注奖额一等奖 1 5000000二等奖 15 146095三等奖 289 3000四等奖 14659 200五等奖 251903 10六等奖 3360298 5总派出奖金:1*5000000+15*146095+289*3000+14659*200+251903*10+3360298*5=30310745(元)剩下奖金:62089966-30310745=31779221(元)由于计算的时候4-5等奖采用的最低概率计算,实际剩下金额于计算金额有误差,但是,只要实际剩下比计算剩下的低就应该是正确的了.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10、先后抛掷三枚均匀的硬币,至少出现 一次正面的概率是( )
11、在一次口试中,要从20道题中随机抽出6道 题进行回答,答对了其中的5道就获得优秀, 答对其中的4道题就获得及格,某考生会回答 12道题中的8道,试求: (1)他获得优秀的概率是多少? (2)他获得及格与及格以上的概率有多大?
12、某人有5把钥匙,但忘记了开房门的是哪 一把,于是,他逐把不重复地试开,问 (1)恰好第三次打开房门锁的概率是多少? (2)三次内打开的概率是多少? (3)如果5把内有2把房门钥匙,那么三次内 打开的概率是多少?
5、甲、乙两人参加普法知识问答,共有 10个不同的题目,其中选择题6个,判 断题4个,甲、乙两人依次各抽一题。 (1)甲抽到选择题、乙抽到判断题的 概率是多少? (2)甲、乙两人至少有一人抽到选择 题的概率是多少?
6、把3个歌舞、4个独唱和2个小品排成一 份节目单,计算: (1)节目单中2个小品恰好排在开头和 结尾的概率是多少? (2)节目单中4个独唱恰好排在一起的 概率是多少? (3)节目单中3个歌舞中的任意两个都 不排在一起的概率是多少?
7、某小组的甲、乙、丙三成员,每人在7天内参 加一天的社会服务活动,活动时间可以在7天 之中随意安排,则3人在不同的三天参加社会6册,任意摆放到书架的同一 层上,试计算:自左向右,第一册不在 第1位置,第2册不在第2位置的概率。
9. 有一对酷爱运动的年轻夫妇给他们12个月大 的婴儿拼排3块分别写有“20”,“08"和“北 京”的字块,如果婴儿能够排成"2008北京” 或者“北京2008".则他们就给婴儿奖励,假 设婴儿能将字块横着正排,那么这个婴儿能得 到奖励的概率是___________.
“Q” (3)一张“2”和一张“k”
2、某人有5把钥匙,但忘记了开房门 的是哪一把,于是,他逐把不重复地 试开,问 (1)恰好第三次打开房门锁的概率是 多少? (2)三次内打开的概率是多少? (3)如果5把内有2把房门钥匙,那么 三次内打开的概率是多少?
下面有2个转盘A和B,均被等分,自左向右各转1次: 1)用A盘指针上的数字做十位数字,B盘指针上的数 字做个位数字。求这样组成的二位数是偶数的概率。 2)用2个转盘A和B指针上的数字相乘,求积为 偶数的概率。
3 2 4 8
6 5 7
A
B
2.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
练习
解:设两双袜子分别为A1、A2、B1、B2,则
开始
A1
A2 B1 B2 A2 B1 B2 A1 A2 B1
A1 B1 B2
25.2. 用列举法求概率(4)
芦陵中学 陈新龙
1.小明和小丽用一副不包括大王和小王的 扑克牌玩游戏,小明先抽出两张牌,然后 小丽从剩下的牌中任意抽出一张,如果小 丽的牌的大小在小明的两张牌之间 (看牌 上数的大小),则小丽获胜,如果小明抽 出的两张牌如下:那么,小丽获胜的概率是 多少? (取A=1,J=11,Q=12,K=13) (1)一张“10”和一张 “K” (2)一张“5”和一张
13、用数字1,2,3,4,5组成五位数, 求其中恰有4个相同的数字的概率。
14、把4个不同的球任意投入4个不同 的盒子内(每盒装球不限),计算: (1)无空盒的概率; (2)恰有一个空盒的概率。
课堂总结: 用列表法和树形图法求概率时应注意什 么情况? 利用树形图或表格可以清晰地表示 出某个事件发生的所有可能出现的 结果;从而较方便地求出某些事件 发生的概率.当试验包含两步时,列 表法比较方便,当然,此时也可以用 树形图法,当试验在三步或三步以 上时,用树形图法方便.
A1 A1 B2
4 1 所以穿相同一双袜子的概率为 12 3
3、甲、乙两人参加普法知识问答, 共有10个不同的题目,其中选择题6 个,判断题4个,甲、乙两人依次各 抽一题。 (1)甲抽到选择题、乙抽到判断 题的概率是多少? (2)甲、乙两人至少有一人抽到 选择题的概率是多少?
4 .在6张卡片上分别写有1~6的 整数,随机的抽取一张后放回,再随 机的抽取一张,那么,第一次取出的 数字能够整除第2次取出的数字的 概率是多少?
相关文档
最新文档