广东省2012年新课程高考冲刺全真模拟试卷(一,文数)
广东省2012届高三全真数学模拟试卷(文科)及答案
广东省2012届高三全真数学模拟试卷(文科)及答案广东省2012届高三全真模拟卷数学文科6一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示,U表示全集,则用A、B表示阴影部分正确的是()A.B.C.D.2.若复数是实数(是虚数单位),则实数的值为()A.-2B.-1C.1D.23.已知向量=()A.B.C.D.4.已知数列是公差为的等差数列,且成等比数列,则的前项和为()A.B.C.D.5.下面说法正确的是()A.命题“使得”的否定是“使得”;B.实数是成立的充要条件;C.设为简单命题,若“”为假命题,则“”也为假命题;D.命题“若则”的逆否命题为假命题.6.已知、是两个不同平面,是两条不同直线,则下列命题不正确的是() A.则B.m∥n,m⊥α,则n⊥αC.n∥α,n⊥β,则α⊥βD.m∥β,m⊥n,则n⊥β7.一只小蜜蜂在一个棱长为的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体中心的距离不超过,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A.B.C.D.8.阅读如图所示的算法框图,输出的结果S的值为()A.B.C.0D.9.已知△中,,,分别是,的等差中项与等比中项,则△的面积等于()A.B.C.或D.或10.已知为椭圆上的一点,分别为圆和圆上的点,则的最小值为()A.5B.7C.13D.15二、填空题:(本大题共5小题,考生作答4小题,每小题5分,满分20分)(一)必做题(11~13题)11.一个容量为的样本,数据的分组及各组的频数如下表:(其中)分组10,20)20,30)30,40)40,50)50,60)60,70)频数2x3y24则样本在区间10,50)上的频率为.12.已知函数那么不等式的解集为.13.若目标函数在约束条件下的最大值是,则直线截圆所得的弦长的范围是______________.(二)选做题:请在14、15题中选做一题,如果两题都做,以第一题的得分为最后得分.14.(坐标系与参数方程选做题)在极坐标系中,直线被曲线:所截得弦的中点的极坐标为.15.(几何证明选讲选做题)如图所示,AB是半径等于的⊙的直径,CD是⊙的弦,BA,DC的延长线交于点P,若PA=4,PC=5,则___________.三、解答题(共80分)16.(本题满分12分)已知向量,且满足.(1)求函数的解析式;(2)求函数的最大值及其对应的值;(3)若,求的值.17.(本题满分12分)某学校共有高一、高二、高三学生名,各年级男、女生人数如下图:已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.(1)求的值;(2)现用分层抽样的方法在全校抽取名学生,问应在高三年级抽取多少名?(3)已知,求高三年级中女生比男生多的概率.18.(本题满分14分)如图:、是以为直径的圆上两点,,,是上一点,且,将圆沿直径折起,使点在平面的射影在上,已知.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.19.(本题满分14分)设曲线在点处的切线与y轴交于点.(1)求数列的通项公式;(2)设数列的前项和为,猜测的最大值并证明你的结论.20.(本题满分14分)已知椭圆的离心率,且椭圆过点.(1)求椭圆的方程;(2)若为椭圆上的动点,为椭圆的右焦点,以为圆心,长为半径作圆,过点作圆的两条切线,(,为切点),求点的坐标,使得四边形的面积最大.21.(本题满分14分)已知函数.(1)若,试确定函数的单调区间;(2)若,且对于任意,恒成立,试确定实数的取值范围;(3)设函数,求证:.参考答案一.选择题(每小题5分,共50分)题号12345678910答案ACBCDDBACB二、填空题:(每小题5分,共20分)11.12.13.14.15.(或三、解答题:(共80分)16.解:(1),即,所以所以…………………………………………4分(2)当,即时,………………8分(3),即……………………………………………………9分两边平方得:,所以…………………………10分…………………………12分17.解:(1)由已知有;3分(2)由(1)知高二男女生一起人,又高一学生人,所以高三男女生一起人,按分层抽样,高三年级应抽取人;7分(3)因为,所以基本事件有:一共11个基本事件.9分其中女生比男生多,即的基本事件有:共5个基本事件,11分故女生必男生多的事件的概率为12分18解:(1)证明:依题意:…………………………2分平面∴……………2分∴平面.……………………………5分(2)证明:中,,∴………………………………6分中,,∴.……………………………………………………………………7分∴.…………………………………………………………8分∴在平面外∴平面.…………………………………………………………10分(3)解:由(2)知,,且∴到的距离等于到的距离为1.………………………………11分∴.……………………………………………………12分平面∴.……………14分19.解:(1),…………………………1分∴点P处的切线斜率,…………………………2分∴切线方程为:,…………………………4分令得:,故数列的通项公式为:.…………………………………6分(2)------①…………………7分两边同乘得:------②①②得:………8分∴……………………10分其中,,,猜测的最大值为.证明如下:…………………11分(i)当为奇数时,;…………………12分(ii)当为偶数时,,设,则.,∴.…………13分故的最大值为,即的最大值为.………………14分20.解:(1)依题意得,………………………………3分解得,………………………………4分所以椭圆的方程为.………………………………5分(2)设,圆:,其中,…………7分…………8分又在椭圆上,则………………………………9分所以,………………………………10分令,,………………………11分当时,,当时,………………………12分所以当时,有最大值,即时,四边形面积取得最大值……13分此时点的坐标为或………………………………………14分21.解:(1)由得,所以.由得,故的单调递增区间是,由得,故的单调递减区间是.……………4分(2)由可知是偶函数.于是对任意成立等价于对任意成立.由得.……………………………………6分①当时,.此时在上单调递增.故,符合题意.……………………………………8分②当时,.当变化时的变化情况如下表:单调递减极小值单调递增由此可得,在上,.依题意,,又.综合①,②得,实数的取值范围是.………………………10分【(方法二)由对任意成立等价于恒成立当,恒成立,则,又,所以此时………6分当,恒成立,则,令,则,……7分易知为上偶函数,考察,,,当时,,当时,,所以当时,,所以……………………………9分综上…………………………………………………………10分】(3),,…………………………………………………………11分,……………………………………12分由此得,………………………………………13分故.…………………………14分。
2012年广州市高三第一次模拟考试试题答案
2012年广州市普通高中毕业班综合测试(一)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.11.0 12.[]0,1 13.35,10 14.15三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和二倍角的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭……………………………………………………………………………1分 tantan 341tan tan34ππ+=ππ-…………………………………………………………………………3分 2==-………………………………………………………………………4分(2)解法1:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭…………………………………………………………5分()tan α=+π………………………………………………………………6分tan 2α==.………………………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ① 因为22sin cos 1αα+=, ② 由①、②解得21cos 5α=.………………………………………………………………………………9分 所以2cos 22cos 1αα=-………………………………………………………………………………11分132155=⨯-=-.………………………………………………………………………12分解法2:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭…………………………………………………………5分()tan α=+π………………………………………………………………6分tan 2α==.………………………………………………………………7分所以22cos 2cos sin ααα=-……………………………………………………………………………9分2222cos sin cos sin αααα-=+…………………………………………………………………………10分 221tan 1tan αα-=+………………………………………………………………………………11分143145-==-+.……………………………………………………………………………12分17.(本小题满分12分)(本小题主要考查频率、频数、统计和概率等知识,考查数形结合、化归与转化的数学思想方法,以及运算求解能力)(1)解:由于图中所有小矩形的面积之和等于1,所以10(0.0050.010.02⨯++0.0250.01)1a +++=.………………………………………………1分 解得0.03a =.……………………………………………………………………………………………2分 (2)解:根据频率分布直方图,成绩不低于60分的频率为110(0.0050.01)-⨯+0.85=.…………3分由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为6400.85544⨯=人. …………………………………………………………………5分 (3)解:成绩在[)40,50分数段内的人数为400.052⨯=人,分别记为A ,B .……………………6分成绩在[]90,100分数段内的人数为400.14⨯=人,分别记为C ,D ,E ,F .…………………7分 若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两名学生,则所有的基本事件有:(),A B ,(),A C ,(),A D ,(),A E ,(),A F ,(),B C ,(),B D ,(),B E ,(),B F ,(),C D ,(),C E ,(),C F ,(),D E ,(),D F ,(),E F 共15种.…………………………………………9分如果两名学生的数学成绩都在[)40,50分数段内或都在[]90,100分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[)40,50分数段内,另一个成绩在[]90,100分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10.记“这两名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有:(),A B ,(),C D ,(),C E ,(),C F ,(),D E ,(),D F ,(),E F 共7种.……………………11分所以所求概率为()715P M =.…………………………………………………………………………12分 18.(本小题满分14分)(本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:因为平面⊥PAC 平面ABC ,平面PAC 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC .…………………………………………………………………………………2分记AC 边上的中点为E ,在△ABC 中,因为AB BC =, 所以AC BE ⊥.因为AB BC ==4=AC ,所以BE ===………………………………………………………4分所以△ABC 的面积12ABC S AC BE ∆=⨯⨯=.……………………………………………………5分 因为2=PD ,所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯123=⨯=7分 (2)证法1:因为PD ⊥AC ,所以△PCD 为直角三角形.因为2PD =,3CD =,所以PC =9分连接BD ,在Rt △BDE 中,因为90BED ∠=o,BE =,1DE =,所以BD ===10分由(1)知PD ⊥平面ABC ,又BD ⊂平面ABC , 所以PD ⊥BD .在Rt △PBD 中,因为90PDB ∠=o,2PD=,BD =,BPACDE所以PB ===12分在PBC ∆中,因为BC =PB =PC =,所以222BC PB PC +=.………………………………………………………………………………13分 所以PBC ∆为直角三角形.……………………………………………………………………………14分证法2:连接BD ,在Rt △BDE 中,因为90BED ∠=o,BE =,1DE =,所以BD ===8分在△BCD 中,3CD=,BCBD =,所以222BC BD CD +=,所以BC BD ⊥.………………10分由(1)知PD ⊥平面ABC , 因为BC ⊂平面ABC , 所以BC PD ⊥. 因为BD PD D =,所以BC ⊥平面PBD .…………………………………………………………………………………12分 因为PB ⊂平面PBD ,所以BC PB ⊥.所以PBC ∆为直角三角形.……………………………………………………………………………14分 19.(本小题满分14分)(本小题主要考查等差数列、等比数列、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识) (1)解:因为数列{}n a 是等差数列,所以()11n a a n d =+-,()112n n n S na d -=+.……………………………………………………1分 依题意,有52722270,.S a a a =⎧⎪⎨=⎪⎩即()()()1211151070,621.a d a d a d a d +=⎧⎪⎨+=++⎪⎩………………………………………3分 解得16a =,4d =.……………………………………………………………………………………5分 所以数列{}n a 的通项公式为42n a n =+(*n ∈N ).…………………………………………………6分(2)证明:由(1)可得224n S n n =+.……………………………………………………………………7分所以()21112422n S n n n n ==++11142n n ⎛⎫=- ⎪+⎝⎭.…………………………………………………8分 BPACDE所以123111111n n n T S S S S S -=+++++L 1111111111111114342443541142n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………9分 111114212n n ⎛⎫=+-- ⎪++⎝⎭ 31118412n n ⎛⎫=-+ ⎪++⎝⎭.………………………………………………………………………10分因为311108412n T n n ⎛⎫-=-+< ⎪++⎝⎭,所以38n T <.………………………………………………11分 因为11110413n n T T n n +⎛⎫-=-> ⎪++⎝⎭,所以数列{}n T 是递增数列.………………………………12分所以116n T T ≥=.………………………………………………………………………………………13分 所以1368n T ≤<.…………………………………………………………………………………………14分20.(本小题满分14分)(本小题主要考查函数的性质、导数、函数零点、不等式等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力)(1)解:因为32()f x x ax b =-++,所以22()3233a f x x ax x x ⎛⎫'=-+=--⎪⎝⎭.……………………1分 当0a =时,()0f x '≤,函数()f x 没有单调递增区间;……………………………………………2分 当0a >时,令()0f x '>,得203a x <<. 故()f x 的单调递增区间为20,3a ⎛⎫⎪⎝⎭;…………………………………………………………………3分 当0a <时,令()0f x '>,得203ax <<. 故()f x 的单调递增区间为2,03a ⎛⎫⎪⎝⎭.…………………………………………………………………4分 综上所述,当0a =时,函数()f x 没有单调递增区间;当0a >时,函数()f x 的单调递增区间为20,3a ⎛⎫ ⎪⎝⎭; 当0a <时,函数()f x 的单调递增区间为2,03a ⎛⎫⎪⎝⎭.……………………………………5分(2)解:,由(1)知,[]3,4a ∈时,()f x 的单调递增区间为20,3a ⎛⎫ ⎪⎝⎭,单调递减区间为(),0-∞和2,3a ⎛⎫+∞ ⎪⎝⎭. …………………………………6分所以函数()f x 在0x =处取得极小值()0f b =,……………………………………………………7分函数()f x 在23ax =处取得极大值324327a a f b ⎛⎫=+ ⎪⎝⎭.………………………………………………8分由于对任意[]3,4a ∈,函数()f x 在R 上都有三个零点,所以()00,20.3fa f <⎧⎪⎨⎛⎫> ⎪⎪⎝⎭⎩即30,40.27b a b <⎧⎪⎨+>⎪⎩……………………………………………………………………10分 解得34027a b -<<.……………………………………………………………………………………11分 因为对任意[]3,4a ∈,3427a b >-恒成立,所以33max44342727a b ⎛⎫⨯>-=-=- ⎪⎝⎭.………………13分 所以实数b 的取值范围是()4,0-.……………………………………………………………………14分21.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .…………………………………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,=2b =.所以双曲线C 的方程为2214y x -=.……………………………………………………………………3分(2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩………………………………………………………………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k-=+.…………………………………………………………6分同理可得,21244k x k +=-.…………………………………………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =), 则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分 因为APAT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.……………………………………5分 因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………………………………6分所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.……………………………………………………7分 所以121x x ⋅=.……………………………………………………………………………………………8分 证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,………………………………………4分联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩…………………………………………………………………………5分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦,解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分 将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.…………………………………………………………………………………………8分 (3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =---,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.…………………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.…………………………………………10分因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.……………………………11分由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤,221245S S t t-=--. 设()45t t f t =--,则()()()222241t t f t t t-+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减.因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.……………………………………………12分当2t =,即1x ()()2212max21S S f -==.………………………………………………13分所以2212S S -的取值范围为[]0,1.……………………………………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.。
广东省2012年高考数学仿真模拟试题文科数学
广东省2012年高考文科数学仿真模拟试题命题:邓军民(广州市第二中学) 中国高考吧:www .gaokao8.net一、选择题(本大题共10小题,每小题5分,共50分). 1. 若集合2{|4}M x x =>,{|13}N x x =<≤,则()R NM =ð( )A .{|21}x x -≤<B .{|22}x x -≤≤C .{|12}x x <≤D .{|2}x x <2.在复平面内,与复数i+11对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. “1=a ” 是“002=-=+y a x y x 和直线直线垂直”的A . 充分而不必要条件B 必要而不充分条件C . 充要条件D .既不充分也不必要条件4. 下列函数在其定义域内既是奇函数又是增函数的是 ( )A . lg y x =B .tan y x =C .3xy = D .13y x =5.已知长方形ABCD 中,AB=4,BC=1,M 为AB 的中点,则在此长方形内随机取一点P ,P 与M 的距离小于1的概率为( )A .4π B .1-4π C .8π D .18π-6.若变量y x ,满足1020y x y x y ≤⎧⎪+≥⎨⎪--≤⎩,则y x z 2-=的最大值为( )A. 1B. 2C. 3D. 47. 阅读右面程序框图,如果输出的函数值在区间11[,]42内,则输入的实数x 的取值范围是( )A .(,2]-∞-B .[2,1]--C .[1,2]-D .[2,)+∞ 8. 已知θ为锐角,向量(sin ,cos )a θθ=,(cos ,sin )b θθ=, 若a b ,则函数()sin(2)f x x θ=-的一条对称轴是( ) A .x π=B .2x π=C .4x π=D .78x π=9.已知ABC ∆的顶点B 、C在椭圆2211216x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另一个焦点在BC 边上,则ABC ∆的周长是( )A .B .C .8D .16正(主)视侧(左)视俯视图10.设等差数列{}n a的前n项和为n S,已知()37712012(1)1a a-+-=,()32006200612012(1)1a a-+-=-,则下列结论正确的是( )A.20122012S=,20127a a<B.20122012S=,20127a a>C.20122012S=-,20127a a<D.20122012S=-,20127a a>二、填空题(本大题共4小题,每小题5分,共20分).11.已知1(,22aλλ→=+,(3,2)bλ→=,如果→a⊥→b,则实数λ= .12.一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积.13.同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第23个图案中需用黑色瓷砖___________块.【选做题】(请在下列两题中任选一题作答)14.(坐标系与参数方程选做题)已知曲线C的极坐标方程为θρcos2=,则曲线C上的点到直线tttx(21⎧=+-=为参数)的距离的最小值为.15.(几何证明选讲选做题)如图,半径为2的⊙O中,90AOB∠=︒,D为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为.二、解答题(本大题共6小题,共80分).16.(本小题满分12分)在ABC∆中,a、b、c分别是三内角A、B、C的对应的三边,已知222b c a bc+=+.(Ⅰ)求角A的大小:(Ⅱ)若222sin2sin122B C+=,判断ABC∆的形状.17.(本小题满分12分)(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由. 附:独立性检验的随机变量2K的计算公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++为样本容量.独立性检验的随机变量2K临界值参考表如下:如图,矩形ABCD 中,3AB =,4=BC .E ,F 分别在线段BC 和AD 上,EF ∥AB ,将矩形ABEF 沿EF 折起.记折起后的矩形为MNEF ,且平面⊥MNEF 平面ECDF .(Ⅰ)求证:NC ∥平面MFD ; (Ⅱ)若3EC =,求证:FC ND ⊥; (Ⅲ)求四面体NFEC 体积的最大值. 19.(本小题满分14分) 已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ) 若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值;(Ⅱ) 求()f x 的单调区间;(Ⅲ) 设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.20. (本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为3e =,以原点为圆心,椭圆短半轴长为半径的圆与直线20x y -+=相切,,A B 分别是椭圆的左右两个顶点, P 为椭圆C 上的动点.(Ⅰ)求椭圆的标准方程;(Ⅱ)若P 与,A B 均不重合,设直线PA 与PB 的斜率分别为12,k k ,证明:12k k 为定值; (Ⅲ)M 为过P 且垂直于x 轴的直线上的点,若OPOMλ=,求点M 的轨迹方程,并说明轨迹是什么曲线.21. (本小题满分14分)已知函数2()f x x x =+,'()f x 为函数()f x 的导函数.(Ⅰ)若数列{}n a 满足1'()n n a f a +=,且11a =,求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足1b b =,1()n n b f b +=.(ⅰ)是否存在实数b ,使得数列{}n b 是等差数列?若存在,求出b 的值;若不存在,请说明理由; (ⅱ)若b>0,求证:111ni i i b b b =+<∑.广东省2012年高考文科数学仿真模拟试题答案命题:邓军民(广州市第二中学) 中国高考吧:www .gaokao8.net一、选择题(本大题共10小题,每小题5分,共50分).二、填空题(本大题共4小题,每小题5分,共20分).11.113--或 12. 2 13. 100 14.5554- ; 15. .三、解答题(本大题共6小题,共80分). 16.(本小题满分12分)解:(Ⅰ)在ABC ∆中,2222cos b c a bc A +-=,又222b c a bc +=+∴1cos ,23A A π== ……………………………5分 (Ⅱ)∵222sin 2sin 122B C+=,∴1cos 1cos 1B C -+-= ……………………7分∴2cos cos 1,cos cos()13B C B B π+=+-=,∴22cos cos cos sin sin 133B B B ππ++=,1cos 12B B +=,∴sin()16B π+=, ∵0B π<<,∴,33B C ππ==, ∴ABC ∆为等边三角形.……………………12分17.(本小题满分12分)解:(1)由表可知,积极参加班级工作的学生有24人,而总人数为50人,则抽到积极参加班级工作的学生的概率24125025P ==; ……………………5分 (2)由公式222()50(181967)11.5()()()()25252426n ad bc K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯10.828>;………………10分所以有99.9%的把握认为学习积极性与对待班级工作的态度有关系,即有99.9%的把握认为学习积极性高的学生积极参加班级工作.……………………12分 18.(本小题满分14分)解:(Ⅰ)证明:因为四边形MNEF ,EFDC 都是矩形,所以 MN ∥EF ∥CD ,MN EF CD ==.所以 四边形MNCD 是平行四边形,所以 NC ∥MD , ………………3分 因为 NC ⊄平面MFD ,所以 NC ∥平面MFD . ………………4分 (Ⅱ)证明:连接ED ,设EDFC O =.因为平面⊥MNEF 平面ECDF ,且EF NE ⊥,所以 ⊥NE 平面ECDF ,所以 FC NE ⊥. ………………6分又 EC CD =, 所以四边形ECDF 为正方形,所以 FC ED ⊥. ………………7分 所以 ⊥FC 平面NED ,所以 FC ND ⊥.………………9分 (Ⅲ)解:设x NE =,则x EC -=4,其中04x <<.由(Ⅰ)得⊥NE 平面FEC , 所以四面体NFEC 的体积为11(4)32NFEC EFC V S NE x x ∆=⋅=-. ………………11分 所以 21(4)[]222NFEC x x V +-≤=. ………………13分 当且仅当x x -=4,即2=x 时,四面体NFEC 的体积最大. ………………14分19.(本小题满分14分) 解:(Ⅰ)2()(21)f x ax a x '=-++(0)x >,(1)(3)f f ''=,解得23a =. ……………3分 (Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ……………………5分①当0a ≤时,0x >,10ax -<, 在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<, 故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ……………………6分 ②当102a <<时,12a >, 在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<, 故()f x 的单调递增区间是(0,2)和1(,)a+∞,单调递减区间是1(2,)a. …………………7分③当12a =时,2(2)()2x f x x -'=, 故()f x 的单调递增区间是(0,)+∞. ……………………8分④当12a >时,102a <<, 在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<, 故()f x 的单调递增区间是1(0,)a和(2,)+∞,单调递减区间是1(,2)a.……………………9分 (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <.……………………10分 由已知,max ()0g x =,由(Ⅱ)可知,①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤.……………………11分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a aa==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<, 所以,22ln 0a --<,max ()0f x <, ……………………13分 综上所述,ln 21a >-. ……………………14分 20.(本小题满分14分)解:(Ⅰ)由题意可得圆的方程为222x y b +=, ∵直线20x y -+=与圆相切,∴d b ==,即b =,又3c e a ==,即a =,222a b c =+,解得a =1c =, 所以椭圆方程为22132x y +=. ……………………3分 (Ⅱ)设000(,)(0)P x y y ≠,(A,B ,则2200132x y +=,即2200223y x =-,则1k =2k = 即22200012222000222(3)2333333x x y k k x x x --⋅====----, ∴12k k 为定值23-. ……………………6分 (Ⅲ)设(,)M x y,其中[x ∈.由已知222OP OMλ=及点P 在椭圆C 上可得2222222222633()x x x x y x y λ+-+==++, 整理得2222(31)36x y λλ-+=,其中[x ∈.……………………8分①当λ=26y =,所以点M的轨迹方程为y x =≤≤,轨迹是两条平行于x 轴的线段;②当3λ≠时,方程变形为2222166313x y λλ+=-,其中[x ∈,当03λ<<时,点M 的轨迹为中心在原点、实轴在y轴上的双曲线满足x ≤≤当13λ<<时,点M 的轨迹为中心在原点、长轴在x轴上的椭圆满足x ≤≤ 当1λ≥时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆.……………………14分 21.(本小题满分14分)解:(Ⅰ)因为 2()f x x x =+, 所以 '()21f x x =+.所以 121n n a a +=+, 所以 112(1)n n a a ++=+,且11112a +=+=, 所以数列{1}n a +是首项为2,公比为2的等比数列.所以 11222n n n a -+=⋅=, 即21nn a =-. ……………………4分(Ⅱ)(ⅰ)假设存在实数b ,使数列{}n b 为等差数列,则必有2132b b b =+,且1b b =,221()b f b b b ==+,22232()()()b f b b b b b ==+++.所以 22222()()()b b b b b b b +=++++, 解得 0b =或2b =-.当0b =时,10b =,1()0n n b f b +==,所以数列{}n b 为等差数列; 当2b =-时,12b =-,22b =,36b =,442b =,显然不是等差数列. 所以,当0b =时,数列{}n b 为等差数列. ……………………9分(ⅱ)10b b =>,1()n n b f b +=,则21()n n n n b f b b b +==+;所以 21n n n b b b +=-;所以 211111111n n n n n n n n n n n n n n n b b b b b b b b b b b b b b b ++++++⋅-====-⋅⋅⋅. 因为 210n n n b b b +=->,所以 1110n n n b b b b b +->>>>=>;所以11122311*********()()()ni i i n n n b b b b b b b b b b b=+++=-+-++-=-<∑.……………………14分。
广东省2012届高三数学(文)仿真模拟试题18
广东省2012届高三数学文科仿真模拟卷18一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,0,1,1,2A B =-=,则AB 等于A .{}1,0,1-B .{}0,1C .{}1D .{}1,22.已知命题:p “若=,则||||=”,则命题p 及其逆命题、否命题、逆否命题中,正确命题的个数是( )A .1个B .2个C .3个D .4个 3.在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A .21B .22C .23D .244.某几何体的直观图如右图所示,则该几何体的侧(左)视图的面积为A .25a πB .25a C.2(5a π+ D.2(5a +5.函数2()12sin ()4f x x π=-+,则()6f π= A..12-C .12D6.已知为虚数单位,a 为实数,复数(12i)(i)z a =-+在复平面内对应的点为M ,则“12a >”是“点M 在第四象限”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.已知ABC ∆中,︒=∠45A ,6=AB ,2=BC ,则=∠CA .︒30B .︒60C .︒120D .︒60或︒1208.已知双曲线22221(0,0)x y a b a b-=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若5PF =,则双曲线的离心率为A .2B .C D9.右图给出的是计算201614121+⋅⋅⋅+++的值的一个程序框图,判断其中框内应填入的条件是A .10>iB .10<iC .20>iD .20<i 10. 已知0,0x y >>,若2282y x m m x y+>+恒成立,则实数m 的取值范围是 A .4m ≥或2m -≤ B .2m ≥或4m -≤C .24m -<<D .42m -<<二、填空题:本大共5小题,考生作答4小题,每小题5分,满分20分) (一)必做题(11~13题)11.某学校共有师生4200人,现用分层抽样的方法,从所有师生中抽取一个容量为140的样本,已知从学生中抽取的人数为130,那么该学校的教师人数是__________.12. 已知直线22x y +=分别与x 轴、y 轴相交于,A B 两点,若动点(,)P a b 在线段AB 上,则ab 的最大值为__________.13. 已知函数f (x +1)是定义在R 上的奇函数,若对于任意给定的不等实数x 1、x 2,不等式1212()[()()]0x x f x f x --<恒成立,则不等式f (1-x )<0的解集为__________.(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程)参数方程⎩⎨⎧+-=+=θθsin 33cos 33y x (θ为参数)表示的图形上的点到直线x y =的最短距离为.15.(几何证明选讲)如图,圆O 上一点C 在直径AB 上的射影为D .2=AD ,52=AC ,则=AB .三、解答题:本大题共6小题,满分80分,16.(本小题满分12分)已知函数1()cos 2f x x x ππ=+,x R ∈. (Ⅰ)求函数f (x )的最大值和最小值;(Ⅱ)如图,函数f (x )在[-1,1]上的图象与x 轴的交点从左到右分别为M 、N ,图象的最高点为P,求PM 与PN 的夹角的余弦.17.(本小题满分12分)“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏, “石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不B分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的. (Ⅰ)写出玩家甲、乙双方在1次游戏中出示手势的所有可能结果; (Ⅱ)求出在1次游戏中玩家甲不输于玩家乙的概率. 18.(本小题满分14分)在数列{a n }中,已知a 1=1,a 2=3,a n+2= 3a n+1- 2a n .(Ⅰ)证明数列{a n+1- a n }是等比数列,并求数列{a n }的通项公式; (Ⅱ)设b n =)1(log 2+n a ,{b n }的前n 项和为S n ,求证21111321<++++nS S S S . 19.(本小题满分14分)如图,四边形ABCD 与''ABB A 都是边长为a 的正方形,点E 是A A '的中点,'A A ⊥平面ABCD.(Ⅰ)计算:多面体A 'B 'BAC 的体积; (Ⅱ)求证:CA '//平面BDE ;(Ⅲ) 求证:平面AC A '⊥平面BDE . 20.(本小题满分14分)椭圆22221(0)x y a b a b+=>>上任一点P 到两个焦点的距离的和为6,焦距为,A B分别是椭圆的左右顶点.(Ⅰ)求椭圆的标准方程;(Ⅱ)若P 与,A B 均不重合,设直线PA 与PB 的斜率分别为12,k k ,证明:12k k 为定值; (Ⅲ)设(,)(0)C x y x a <<为椭圆上一动点,D 为C 关于y 轴的对称点,四边形ABCD的面积为()S x ,设2()()3S x f x x =+,求函数()f x 的最大值.21.(本小题满分14分)已知函数x axxx f ln 1)(+-=(a 为常数). (Ⅰ)求)(x f ';(Ⅱ)当a =1时,求)(x f 在∈x ⎥⎦⎤⎢⎣⎡e e ,1 上的最大值和最小值()71828.2≈e ;(Ⅲ)求证:1ln1n n n>-.1(>n ,且)*N n ∈16.解:解:(Ⅰ)∵1()cos 2f x x x ππ=+ =sin()6x ππ+…………2分∵x R ∈ ∴1sin()16x ππ-≤+≤,∴函数()f x 的最大值和最小值分别为1,—1.…………4分(Ⅱ)解法1:令()sin()06f x x ππ=+=得,6x k k Z πππ+=∈,∵[1,1]x ∈- ∴16x =-或56x = ∴15(,0),(,0),66M N -…………6分 由sin()16x ππ+=,且[1,1]x ∈-得13x = ∴ 1(,1),3P …………8分∴11(,1),(,1),22PM PN =--=-…………10分∴cos ,||||PM PN PM PN PM PN ⋅<>=⋅35=.…………12分解法2:过点P 作PA x ⊥轴于A ,则||1,PA = 由三角函数的性质知1||12MN T ==, …………6分 ||||PM PN ===,…………8分由余弦定理得222||||||cos ,2||||PM PN MN PM PN PM PN +-<>=⋅…………10分=521345524⨯-=⨯.…………12分 解法3:过点P 作PA x ⊥轴于A ,则||1,PA = 由三角函数的性质知1||12MN T ==,…………6分||||PM PN ===…………8分在Rt PAM ∆中,||cos ||PA MPA PM ∠===…………10分 ∵PA 平分MPN ∠ ∴2cos cos 22cos 1MPN MPA MPA ∠=∠=∠-23215=⨯-=.…………12分 17.解:(Ⅰ)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是:(石头,石头);(石头,剪刀);(石头,布);(剪刀,石头);(剪刀,剪刀);(剪刀,布);(布,石头);(布,剪刀);(布,布).…………6分(Ⅱ)由(Ⅰ)知,基本事件共有9个,玩家甲不输于玩家乙的基本事件分别是:(石头,石头);(石头,剪刀);(剪刀,剪刀);(剪刀,布);(布,石头);(布,布),共有6个.所以,在1次游戏中玩家甲不输于玩家乙的概率6293P ==.…………12分 18.解:解:(Ⅰ)由a n +2= 3a n +1- 2a n 得a n +2- a n +1= 2(a n +1- a n ),a 2-a 1=2,所以,{ a n +1- a n }是首项为2,公比为2的等比数列. …………………3分 a n +1-a n =2×2n -1=2n ,………………………………………………………4分a n =a 1+(a 2-a 1)+ (a 3-a 2)+…+(a n - a n -1)=1+2+22+…+2n -1=2121--n =2n-1;…7分(Ⅱ)b n =)1(log 2+n a =log 22n=n ,………………………………………………8分S n =2)1(+n n ,………………………………………………………………9分 )111(2)1(21+-=+=n n n n S n , 所以)]111()3121()211[(21111321+-++-+-=++++n n S S S S n =2)111(+-n <2. ………………………14分 19.解:(Ⅰ)多面体A 'B 'BAC 是一个以A 'B'BA 为底,C 点为 顶点的四棱锥,由已知条件,知BC ⊥平面A 'B 'BA , ∴3211333C A B BAA B BA a V S BC a a ''''-=⋅=⋅⋅=……4分 (Ⅱ)设AC 交BD 于M ,连结ME . ABCD 为正方形,所以M 为AC 中点,又E 为A A '的中点∴ME 为AC A '∆的中位线C A ME '//∴………………6分又BDE C A BDE ME 平面平面⊄⊂' ,//'C A ∴平面BDE . ………………9分(Ⅲ)ABCD BD AC ∴⊥为正方形 ………………………… 10分.''.','AC A BD A A A AC BD A A ABCD BD ABCD A A 平面又平面平面⊥∴=⊥∴⊂⊥ ……………………12分'.BD BDE A AC BDE ⊂∴⊥平面平面平面…………………………………………14分20.解:(Ⅰ)由题意得,26a =,∴3a =, ----------------1分又2c =,∴c =2221b a c =-=,故椭圆的方程为2219x y +=;-------------3分(Ⅱ)设000(,)(0)P x y y ≠,(3,0)A -,(3,0)B ,则220019x y +=,即220019x y =-,则0103y k x =+,0203y k x =-, --------------------4分即2202001222200011(9)1999999x x y k k x x x --⋅====----,∴12k k 为定值19-.----------------8分 (Ⅲ)由题意可知,四边形ABCD 是梯形,则1()(62)2S x x y =+⋅,且2219x y =-,-----9分于是222232(3)(1)()9()(3)(1)3(03)33993x x S x x x x f x x x x x x +-===+-=--++<<++--------10分 22()133x f x x '=--+,令()0f x '=,解之得11,x =或3x =-(舍去) ----------11分当01x <<,()0f x '>,函数()f x 单调递增; -----------------12分当13x <<,()0f x '<,函数()f x 单调递减; ---------------------13分所以()f x 在1x =时取得极大值,也是最大值329. -----------------14分21.解:(Ⅰ) 21)(axax x f -='.…………………………………………………2分 (Ⅱ)当1=a 时,21)(x x x f -=',其中⎥⎦⎤⎢⎣⎡∈e e x ,1,而⎪⎭⎫⎢⎣⎡∈1,1e x 时,0)(<'x f ;(]e x ,1∈时,0)(>'x f ,∴1=x 是)(x f 在⎥⎦⎤⎢⎣⎡e e ,1 上唯一的极小值点, ………………………………4分∴[]0)1()(min ==f x f .…………………………………………………5分 又01)2(112)(1>--=----=-⎪⎭⎫ ⎝⎛ee e e e e ef e f ,………………………6分 ∴)(1e f e f >⎪⎭⎫ ⎝⎛, ∴[]21)(max -=⎪⎭⎫⎝⎛=e e f x f .……………………………7分 综上,当1=a 时,)(x f 在⎥⎦⎤⎢⎣⎡e e ,1 上的最大值和最小值分别为2-e 和0. ………………………8分(Ⅲ)若1=a 时,由(2)知x xxx f ln 1)(+-=在[)+∞,1上为增函数,……………………………………10分 当1>n 时,令1-=n nx ,则1>x ,故0)1()(=>f x f ,……………………12分即01ln 11ln 1111>-+-=-+---=⎪⎭⎫⎝⎛-n n n n n n n n nn n f , ∴1ln1n n n>-. ………………………………………………………………14分。
广东省2012届高考语文模拟仿真试题(1)
2012届高考模拟仿真试题·广东(一)1、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同...的一组是( )A.机杼./枢.纽扉.页/蜚.声黑白相间./间.不容发B.奢侈./豆豉.旧箧./面颊.脉.脉含情/脉.络分明C.鞭笞./苔.藓垣.墙/盘桓.押解.赴京/解.甲归田D.联袂./昧.心蹒跚./姗.姗低声呜咽./吞咽.口水【解析】C。
chī/tái,yuán/huán,jiâ/jiě。
A.zhù/shū,fēi,jiàn/jiān;B.chǐ,qiâ/jiá,mò/mài;D.mâi,shān,yâ/yàn。
2.下面语段中画线的词语,使用不恰当...的一项是( )共和、民主、宪政,它们本来不只是理念,更应该是生活方式,最大多数普通人的日常生活方式。
但是百年以来,这些现代理念始终不能在物换星移中完成两个转换,即从理念到日常生活方式的转换,从小众话语到大众话语的转换。
仿佛海市蜃楼,固然万般华美千般绚烂,但始终接不上地气,与最大多数普通人的日常生活无缘。
其曲高和寡,无力影响现实轨道,也就是逻辑的反其道而行之。
A.物换星移 B.海市蜃楼 C.曲高和寡 D.反其道而行之【解析】D。
反其道而行之:其,他的;道,方法,办法。
采取同对方相反的办法行事。
不合语境。
A.物换星移:景物改变了,星辰的位置也移动了。
形容时序世事的变迁。
B.海市蜃楼:指光线通过不同密度的空气层,发生折射或全反射时,把远处景物显示在空中或地面的奇异幻景。
比喻虚无缥缈的或虚幻的事物。
C.曲高和寡:曲调高深,能跟着唱的人很少。
旧指知音难得,现比喻言论或作品不通俗,能了解的人很少。
3.下列句子中,没有..语病的一项是( )A.8月10日晚的深圳大梅沙海滨公园,被青春占领:3000多名年轻的来自五大洲的大学生齐聚深圳,在这里拉开世界大学生沙滩音乐会的帷幕。
广东省2012届高三数学文科仿真模拟卷1
广东省2012届高三数学文科仿真模拟卷1第Ⅰ卷(选择题 共50分)一.选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若复数(1)(1)i ai ++(,a R i ∈是虚数单位)是纯虚数,则a =A .1-B .0C .1D .2 2.设等差数列{n a }的前n 项和为n S ,若515S =,则3a =A. 3B. 4C. 5D.63.双曲线14222-=-y x 的渐近线方程为A .x y 2±=B .y x 2±=C .x y 22±= D .y x 22±=4.给出下列四个命题,其中假命题是A .命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=无实数根,则0m ≤”.B .“1x =”是“2320x x -+=”的充分不必要条件.C .若命题p :,10x R x x ∈++<2存在使得,:,10p x R x x ⌝∈++≥2则存在都有. D .若“p q 且”为假命题,则,p q 中至少有一个为假命题.5.设,m n 是两条不同的直线,,,αβγ是三个不同的平面。
有下列四个命题:①若,,m m βαβα⊂⊥⊥则; ②若//,,//m m αβαβ⊂则; ③若,,,n n m m αβαβ⊥⊥⊥⊥则; ④若,,αγβγαβ⊥⊥⊥则. 其中正确命题的序号是A .①③B .①②C .③④D .②③6.某公司2006~2011年的年利润x (单位:百万元)与年广告支出y (单位:百万元)的统计资料支出y 0.62 0.74 0.81 0.89 1 1.11根据统计资料,则A.利润中位数是16,x 与y 有正线性相关关系B.利润中位数是17,x 与y 有正线性相关关系C.利润中位数是17,x 与y 有负线性相关关系D.利润中位数是18,x 与y 有负线性相关关系7.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿. 可见“行行出状元”,卖油翁的技艺让人叹为观止. 若铜钱是直径为3cm 的圆,中间有边长为1cm 的正方形孔,若随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴正好落入孔中的概率是A. π94B. 43πC. 94πD. 34π8.若右边的程序框图输出的S 是30,则条件①可为 A .3n ≤ B .4n ≤C .5n ≤D .6n ≤9.已知变量,x y 满足条件10290x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,若目标函数z ax y =+仅在点(3,3)处取得最小值,则a 的取值范围是A .10a -<<B .01a <<C .1a <-D .1a <-或1a >10.已知椭圆C :22221x y a b +=(0a b >>)32,过右焦点F 且斜率为k (0k >)的直线与C 相交于A 、B 两点,若3AF FB =.则k = A 2 B .1 C .3 D . 2第Ⅱ卷(非选择题 共100分)二.填空题(本题5小题,每小题5分,共25分.把答案填在答题卡的相应位置) 11.若三点(1,3),(,0),(0,1)A B a C 共线,则a 的值等于 .12.△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知2,3a b ==,则sin sin()AA C =+ .13.已知奇函数()f x 满足(2)(),(0,1)f x f x x +=-∈且当时,()2xf x =,则72()f 的值为 .14.给出下列六种图象变换方法:①图象上所有点的横坐标缩短到原来的,纵坐标不变; ②图象上所有点的横坐标伸长到原来的2倍,纵坐标不变; ③图象向右平移个单位; ④图象向左平移个单位; ⑤图象向右平移个单位; ⑥图象向左平移个单位.请用上述变换中的两种变换,将函数sin y x =的图象变换到函数y =sin(2x+)的图象,那么这两种变换的序号依次是 (填上一种你认为正确的答案即可). 15.(考生注意:请在下列三题中任选一题作答,若多做,按所做的第一题评分)A .(不等式选做题)若不等式121a x x -≤+对一切非零实数x 恒成立,则实数a 的取值范围是 . B .(几何证明选做题)如图,圆O 的直径AB =8,C 为圆 周上一点,BC =4,过C 作圆的切线,过A 作直线的 垂线AD ,D 为垂足,AD 与圆O 交于点E ,则线段 AE 的长为 .C .(坐标系与参数方程选做题)在平面直角坐标系xOy 中,已知圆5cos 1:5sin 2x C y θθ=-⎧⎨=+⎩(θ为参数)和直线46:32x t l y t =+⎧⎨=--⎩(为参数),则直线截圆C所得弦长为 .三.解答题(本题6小题,共75分。
广东省2012届高三全真模拟卷数学文 11
广东省2012届高三全真模拟卷数学文科11一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中, 只有一项是符合题目要求的) 1.下列各式中正确的是( )(A) 0=Ф (B)}0{⊆Φ (C)}0{=Φ (D).Φ∈02.若复数(1+bi)(2+i)是纯虚数(i 是虚数单位,b 是实数),则b=( ) (A) -2 (B )⋅-21 (C)21(D)2 3.“21=m ”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=O 相互垂直”的( ) (A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件 4.函数||log 22x y =的图像大致是( )5.曲线y=2x 2在点P(1,2)处的切线方程是( ) (A) 4x-y-2=0 (B) 4x+y-2=O (C) 4x+y+2=O (D) 4x-y+2=06.命题:“对任意的x ∈R ,0322≤--x x ”的否定是( ) (A) 不存在032.,2≤--∈x x R x (B )存在032,2≤--∈x x R x (C) 存在x ∈R ,x 2-2x-3>0 (D) 对任意的x ∈R ,x 2-2x-3>07. 椭圆12222=+by a x 的右焦点与抛物线y 2=8x 的焦点相同,离心率为21,则此椭圆的方程为( )(A )116..1222=+y x (B )1121622=+y x(C )1644822=+y x (D )1486422=+y x 8.已知圆)0.(4)2()(:22>=-+-a y a x C 及直线l :x-y+3=O ,当直线l 被圆C 截得的 弦长为32时,则a=( )(A )2 (B )22- (C )12- (D )12+9.在△ABC 中,b c ==,,若点D 满足BD 2=,则AD =( )(A )c b 3231+(B )c b 3235-(C )c b 3132- (D )c b 3132+10. 右图给出的是计算201614121++++ 的值的一个算法流程图,其中判断框内应填入的条件是( )(A )i>10 (B)i ≥10 (C) i<10 (D)i ≤10二、填空题(本大题共4小题,每小题5分,共20分) 1l. 如图,一个简单空间几何体的三视图,其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的表面积是 。
广东省2012届高三数学文科仿真模拟卷3
y=h(x)y=g(x)y=f(x)广东省2012届高三数学文科仿真模拟卷3第I 卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M ={x |x 2<4,N ={x |x 2-2x -3<0,则集合M ∩N =( ) A .{x |x <-2 B .{x |x >3} C .{x |-1<x <2 D .{x |2<x <3 2.已知为虚数单位, 则复数11ii-+的虚部为( ) A. 0B. 2C. 1D.1-3.一个几何体的三视图如图所示,那么此几何 体的表面积为 A .144 B .124 C .104 D .844.在同一平面直角坐标系中,画出函数()3sin cos ,()sin(2)3cos(2),u x x x v x x x =-=+ ()2sin 2cos x x x ϕ=+的部分图像如下,则( ) A .()(),()(),()()f x u x g x v x h x x ϕ=== B .()(),()(),()()f x x g x u x h x v x ϕ=== C .()(),()(),()()f x u x g x x h x v x ϕ=== D .()(),()(),()()f x v x g x x h x u x ϕ===5. 设变量x y ,满足约束条件162x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则目标函数z =xy 的取值范围为( )A .[]2,8B .352,4⎡⎤⎢⎥⎣⎦ C .[]2,9 D .358,4⎡⎤⎢⎥⎣⎦6.执行如图的程序框图,如果输入7p =,则输出的=S ( ) A .6364 B. 12764 C. 127128 D. 2551287. 对任意实数,a 函数21y ax ax =++的图象都不经过点,P 则 点P 的轨迹是( )A .两条平行直线 B. 四条除去顶点的射线C. 两条抛物线D. 两条除去顶点的抛物线 8. 如下图所示,两射线OA 与OB 交于点O ,下列5个向量中, ①2OA OB- ②3143OA OB + ③1123OA OB + ④3145OA OB + ⑤3145OA OB - 若以O 为起点,终点落在阴影区域内(含边界)的向量有( )个. A .1 B. 2 C. 3 D.49. 已知数列{}n a 满足1a a =,且111(1)2(1)n n n n n a a a a a +⎧->⎪=⎨⎪≤⎩,对任意的*N n ∈,总有3n n a a +=成立,则a 在(]0,1内的可能值有( )A .1个B .2个C .3个D .4个10.已知定义域为区间[]a b ,的函数()f x ,其图象是一条连续不断地曲线,且满足下列条件:①()f x 的值域为G ,且[]G a b ⊆,;②对任意不同的x 、[]y a b ∈,,都有()()f x f y x y -<-,那么函数()()g x f x x =-在区间[a ,b ]上( )A .没有零点B. 有且只有一个零点C .恰有两个不同的零点D .有无数个不同的零点第Ⅱ卷二.填空题:本大题共5小题,每小题5分,共25分。
广东省2012届高三数学(文)仿真模拟试题7.pdf
广东省2012届高三数学文科仿真模拟卷7 第Ⅰ卷 选择题(共50分) 一、选择题(本大题共10小题,每小题5分,满分50分 1、设全集U={是不大于9的正整数},{1,2,3 },{3,4,5,6}则图中阴影部分所表示的集合为( )A.{1,2,3,4,5,6}B. {7,8,9}C.{7,8}D.{1,2,4,5,6,7,8,9} 2、计算复数(1-i)2-等于( ) A.0B.2 C. 4iD. -4i 3、等比数列中,已知,,则的值为( ) A. B. C. D. 4、满足方程的实数为( ) A. B. C.3 D. 5、函数的最大值是( )A. 2B. 3C. 4D. 5 6、右图是某同学为求50个偶数:2,4,6,…,100的平均数而设计的程序框图的部分内容,则在该程序框图中的空白判断框和处理框中应填入的内容依次是 (A) (B) (C) (D) 7、 ,则的值为( ) A.-10 B.-20 C.10 D.20 8、以下有关命题的说法错误的是 ( ) .命题“若,则”的逆否命题为“若,则” .“”是“”的充分不必要条件 .若为假命题,则、均为假命题 .对于命题,使得,则,则 9、如图,在正方体中,点P是上底面内一动点,则三棱锥的主视图与左视图的面积的比值为( )A. 2B. 1C. 3D. 4 10、设函数,则满足方程根的个数是( ) A.1 个 B.2 个 C.3 个 D.无数个 第Ⅱ卷 非选择题(共100分) 二、填空题(本大题共5小题,每小题5分,满分20分.)的定义域为. 12、设,点落在不等式组:所表示的平面区内的概率13.已知两定点, ,若直线上存在点,使得,则该直线为“型直线”.给出下列直线,其中是“型直线”的是 . ② ③ ④ ★(请考生在以下两个小题中任选一题作答,两题全答的以第小题计分)14.的极坐标方程为:,其中为正数。
以极点为坐标原点,极轴为正半轴,建立平面直角坐标系,在此坐标系下,曲线的方程为(为参数)。
2012年广东高考文综模拟试题
2012年广东高考文综模拟试题参考答案第I卷(每小题4分,共140分)1 2 3 4 5 6 7C A C A BD C8 9 10 11 12 13 14B C B B C D D15 16 17 18 19 20 21C B C CD D A22 23 24 25 26 27 28A A CB B D B29 30 31 32 33 34 35D B B A A D B第II卷(共160分)36、(25分)(1)①文化创新应立足于社会实践,做到源于社会生活,服务于社会生活,会徽立足世界,表达了人类对美好和谐的生活追求。
“东方之冠”吸取中国城市建筑和园林中的精华,表达天人合一、和谐共生的人生追求。
(3分)②继承传统,推陈出新,为中华传统文化注入时代精神。
会徽的“世”字倾诉着中国人民弘扬传统、融入世界的不懈努力。
“东方之冠”吸取中国城市建筑和园林中的精华,表达天人合一、和谐共生的人生追求。
(2分)(2)①提高自主创新能力,建设创新型国家。
(2分)②加快转变经济发展方式,推动产业结构优化升级;促进经济增长方式由主要依靠物质资源消耗向主要依靠科技进步、劳动者素质提高、管理创新转变。
(4分)③坚持扩大内需方针,培育新的消费热点,促进旅游业发展。
(2分)④坚持以人为本,增加就业,实现宏观调控目标。
(2分)⑤坚持全面协调可持续的基本要求,全面推进经济、政治、文化、社会和生态文明建设。
(2分)⑥坚持“引进来”和“走出去”更好结合起来,提高开放型经济水平。
(2分)(3)①要做到一切从实际出发,把主观与客观、理论与实践紧密结合起来。
(2分)②辩证的否定是既肯定又否定,是既克服又保留,其实质是“扬弃”,结合自己的实际,取长补短。
(2分)③要坚持矛盾普遍性与特殊性相结合,坚持共性和个性的统一,既要吸取他国在城市发展中的先进理念,解决共性问题,又要突出地方特点,具有当地人文特色。
(2分)37、(27分)(1)①坚持和完善我国人民民主专政的国体和人民代表大会制度的根本政治制度即政体;②坚持和完善中国共产党领导的多党合作和政治协商制度即具有中国特色的社会主义政党制度;③坚持和完善民族区域自治制度和宗教信仰自由政策;④坚持和发展独具特色的社会主义基层民主自治制度。
2012年新课标版高考模拟系列(一)数学(文)试题
2012年高考模拟系列试卷(一)数学试题(文)【新课标版】第Ⅰ卷为选择题,共60分;第Ⅱ卷为非选择题共90分。
满分100分,考试时间为120分钟。
第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的. 1.若集合211{|log (1)1},{|()1}42xM x x N x =-<=<<,则MN=( )A .{|12}x x <<B .{|13}x x <<C .{|03}x x <<D .{|02}x x <<2.已知向量()525,2,1=-=⋅=b a a 等于( )A .5B .52C .25D .53.在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =( ) A .22 B .23 C .24 D .25 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .34000cm 3B .38000cm 3C .32000cmD .34000cm5.命题“存在R x ∈,使a a a xx 42-+<0,为假命题”是命题“016≤≤-a ”的( )正视图侧视图俯视图A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件6.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,105,45=∠=∠CAB ACB 后,就可以计算出A 、B 两点的距离为 ( )A .m 250B .m 350C .m 225D .m 2225 7.设实数x 和y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .26B .24C .16D .148.已知直线22x y +=与x 轴,y 轴分别交于,A B 两点,若动点(,)P a b 在线段AB 上,则ab 的最大值为( )A .12B .2C .3D .31 9.某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示(如右图).1s ,2s 分别表示甲、乙两班抽取的5名学生学分的标准差,则1s2s .(填“>”、“<”或“=”).A .>B .<C .=D .不能确定10、函数x xy sin 3+=的图象大致是( )11.已知函数2221,0()21,0x x x f x x x x ⎧+-≥=⎨--<⎩,则对任意12,x x R ∈,若120x x <<,下列不等式成立的是( )A .12()()0f x f x +<B . 12()()0f x f x +>第9题图C .12()()0f x f x ->D .12()()0f x f x -<12.设双曲线1422=-y x 的两条渐近线与直线2=x 围成的三角形区域(包括边界)为D ,P ()y x ,为D 内的一个动点,则目标函数y x z -=21的最小值为 ( ) A .2-B .223-C .0D .225-第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
2012年广州市高三第一次模拟考试试题
试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(文科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数y =A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞2.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .23.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的最小正周期为2π,则ω的值为 A .1 B .2 C .4 D .84.在△ABC 中,60ABC ∠=,2AB =,3BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16 B .13 C .12 D .235.如图1是一个空间几何体的三视图,则该几何体的侧面积...为 AB.C .8 D .126.在平面直角坐标系中,若不等式组20,20,x y x y x t +-⎧⎪-+⎨⎪⎩≥≥≤表示的平面区域的面积为4,则实数t 的值为A .1B .2C .3D .4 7.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为A .3B .2C .2或3D .2-或3-8.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .6D .8 9.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件10.已知圆O :222x y r +=,点()P a b ,(0ab ≠)是圆O 内一点,过点P 的圆O 的最短弦所在的直线为1l ,直线2l 的方程为20ax by r ++=,那么A .12l l ∥,且2l 与圆O 相离B .12l l ⊥,且2l 与圆O 相切C .12l l ∥,且2l 与圆O 相交D .12l l ⊥,且2l 与圆O 相离二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.若函数()()2ln 1f x x ax =++是偶函数,则实数a 的值为 .12.已知集合{}13A x x =≤≤,{}3B x a x a =+≤≤,若A B ⊆,则实数a 的取值范围为 .图1俯视图正(主)视图侧(左)视图13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,…,若按此规律继续下去,则5a = ,若145n a =,则n = .(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点, 3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm .15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)若234f απ⎛⎫+= ⎪⎝⎭,求cos 2α的值. 17.(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考 试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)50,40,[)60,50,…,[]100,90后得到如图4的频率分布直方图.(1)求图中实数a 的值;(2)若该校高一年级共有学生640人,试估计该校高一年级 期中考试数学成绩不低于60分的人数; (3)若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.5 12 122 图2图4图318.(本小题满分14分)如图5所示,在三棱锥ABC P -中,AB BC ==平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,2=PD .(1)求三棱锥ABC P -的体积; (2)证明△PBC 为直角三角形.19.(本小题满分14分)已知等差数列{}n a 的公差0d ≠,它的前n 项和为n S ,若570S =,且2a ,7a ,22a 成等比数列. (1)求数列{}n a 的通项公式; (2)设数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为nT ,求证:1368n T <≤.20.(本小题满分14分)已知函数32()f x x ax b =-++(),a b ∈R . (1)求函数()f x 的单调递增区间;(2)若对任意[]3,4a ∈,函数()f x 在R 上都有三个零点,求实数b 的取值范围. 21.(本小题满分14分)已知椭圆2214y x +=的左、右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设点P 、T 的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S -的取值范。
2012年广东高考语文模拟试题(一)及答案
2012年广东高考语文模拟试题(一)及答案考试时间:150分钟分值:150分一、.基础知识题(本大题4小题,每小题3分,共12分)1.下列词语中加点字的读音完全正确的一组是()A. 逋(pū)慢缧绁(xiè)夙(sù)遭闵凶茕(qióng)茕孑立B.央浼(měi)埋怨(mán) 干涸(hé) 讥诮(qiào)C.窈窕(yáo)桂棹(zhào)缔造(dì)瞋(chēn)目D.僭越(jiàn) 笑靥(yè)浩淼(miǎo)风流倜傥(dǎng)2.下面加点的成语使用恰当的一项是()A.《西厢记》写书生张珙与相国小姐崔莺莺在普救寺乌鸟私情,私下结为夫妻的爱情故事。
B.齐白石画展在美术馆开幕了,国画研究院的画家竞相观摩,艺术爱好者也趋之若鹜。
C.现有产品的条形码很容易被仿造,且让消费者很难识别。
最近,科学家们发明出一种DNA产品条码,有了它,造假者只能望其项背。
D.从风格上看,李诗飘逸豪放,杜诗沉郁顿挫,孰优孰劣,各有千秋。
3.下列句子中,没有语病的一项是()A.青少年由于心智尚未成熟,好奇心又强,对事物缺乏分辨力,容易被大众媒介中的不良信息诱导,从而产生思想上、行为上的偏差。
B.当今世界,由于科技进步日新月异,使得进军宇宙已经成为世界各国发展的主流,也越来越成为一个国家综合国力的主要标志。
C.今年大西洋飓风季的首个飓风“艾琳”(Irene)在美国东部时间27日早7时在北卡罗来纳州登陆,已导致10人死亡,至少超过二百万人撤离家园。
D.第二届全省道德模范评选表彰活动,将分评选、推荐、表彰三个阶段进行,最终评出助人为乐、见义勇为等五类道德模范各十名。
4.把下列几个句子组成上下衔接、语意连贯的一段话,最恰当的一组是()最可悲的是我们的孩子,他们___,___,___。
有一位作家写到,她曾带几个孩子到野外去看月亮和海,可是孩子们_ __,,不要误了他们喜欢的一个电视节目。
广东省广州市2012届高三第一次模拟考试数学(文)试题.pdf
注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上用2B铅笔将试卷类型(A)填涂在答题卡相应位置上2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液不按以上要求作答的答案无效4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答漏涂、错涂、多涂的,答案无效5.考生必须保持答题卡的整洁考试结束后,将试卷和答题卡一并交回本大题共小题,每小题5分,满分0分.在每小题给出的四个选项中,只有一项是符合的定义域为 A. B.C. D.(其中,是虚数单位),则的值为 A. B.C. D.的最小正周期为,则的值为 A. B.C. D.中,,,,在上任取一点,使△为钝角三角形的概率为 A. B.C. D.A. B.C. D. 6.在平面直角坐标系中,若不等式组表示的 平面区域的面积为4,则实数的值为 A. B.C. D.在区间上单调递增,则实数的值为 A. B.C. D. 8.与,定义,其中为与的夹角.若, ,则的值为 A. B.C. D.,对于任意正数,是成立的 A.B.C. D.:,点()是圆内一点,过点的圆的最短弦所在的直线为,直线的方程为,那么 A.,且与圆相离B.,且与圆相切 C.,且与圆相交D.与圆相离 二、填空题:本大题共小题,考生作答小题,每小题5分,满分分. (一)必做题(~13题) 是偶函数,则实数的值为 . 12.已知集合,,若,则实数的取值范围为 . 13.,第2个五角形数记作,第3个五角形数记作,第4个五角形数记作,…, 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) . (1)求的值; (2)若,求的值. 17.(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,,后得到如图的频率分布直方图 (1)求图中实数的值; (2)若该校高一年级共有学生0人,试估计该校高一年级数学成绩不低于60分的人数; (3)与两个分数段18.(本小题满分1分)如图5所示,在三棱锥中,,平面平面,于点, ,,. (1)求三棱锥的体积; (2)证明△为直角三角形. 19.(本小题满分1分)的公差,它的前项和为,若,且,,成等比数列. (1)求数列的通项公式;(2)的前项和为,求证:. 20.(本小题满分1分). (1)求函数的单调递增区间;(2)若,函数在上有三个零点,求实数的取值范围.参考答案及评分标准 一、选择题:本大题考查基本知识和基本运算.共小题,每小题5分,满分0分.题号1234567答案 二、填空题:本大题查基本知识和基本运算共小题,每小题5分,满分0分.其中1~15题是选做题,考生只能选做题..11. 12. 13.14. 15.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)…………………………6分 .…………………………7分 所以,即. ① 因为, ② 由①、②解得.………………………9分 所以………………………………11分 .…………………………12分 解法2:因为……………5分 ……………………6分 .………………7分 所以………………9分 …………………10分 ………………………11分 .…………………12分 成绩在分数段内的人数为人,分别记为,,,若从与两个分数段内随机取,则所有的基本事件有:,,,,,,,,,,,,,, 共15种分数段分数段分数段分数段事件,事件包含的基本事件有,,,,,,共7种概率.……………12分 18.(本小题满分1分)本小题主要考查关系等知识,考查化归与转化的数学思想方法,以及运算求解能力) 平面,平面平面, 平面,, 所以平面.…………………………………………………2分 记边上的中点为,在△中,因为, 所以. 因为,, 所以.………………………4分 所以△的面积.……………………5分 因为, 在△中,因为,,, 所以.……………12分 在中,因为,,, 所以.……………………13分 所以为直角三角形.……………………………………………………………………………14分 19.(本小题满分14分)本小题等知识,考查化归与转化的数学思想方法,以及运算求解能力) 是等差数列, 所以,.………………1分 依题意,有即……………3分 解得,.……………………5分 所以数列的通项公式为().…………………………6分 (2)证明:由(1)可得.……………………………………………………………………7分 所以.……8分 所以 ……………9分 当时,,函数没有单调递增区间;……………………2分 当时,令,得. 故的单调递增区间为;…………………3分 当时,令,得. 故的单调递增区间为.……………………4分 综上所述,当时,函数没有单调递增区间; 当时,函数的单调递增区间为; 当时,函数的单调递增区间为.……………5分 因为对任意,.实数的取值范围是.…14分 21.(本小题满分14分)本小题主要考查等知识,考查化归与转化的数学思想方法,以及运算求解能力) ,.…………………………1分 设双曲线的方程为, 因为双曲线的离心率为,所以,即. 所以双曲线的方程为.………………………3分 证法2:设点、(,,), 则,.……………………4分 因为,所以,即.…………5分 因为点和点分别在双曲线和椭圆上,所以,. 即,.……………6分 所以,即.…………7分 所以.………………………8分 (3)解:设点、(,,), 则,. 因为,所以,即.…………………………9分 因为点在双曲线上,则,所以,即. 因为点是双曲线在第一象限内的一点,所以.…………………………………………10分 因为,, 所以.……………11分 由(2)知,,即. 设,则, . 设,则, 高考学习网: 高考学习网:。
广东省东莞市2012届高三数学模拟试题(1)文 新人教A版
广东省东莞市2012届高三文科数学模拟试题(一)一、选择题:本大题共10 小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.1.若集合{}A=|1x x x R ≤∈,,{}B=|0x x x R ≥∈,,则A B ⋂=A. {}|11x x -≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅ 2.已知复数i z +=21,21z ai =-,a R ∈,若z = 12z z ⋅在复平面上对应的点在虚轴上,则a 的值是 A .-12 B .12C .2D .-2 3.已知数列{}n a 的通项公式是()()11nn a n =-+,则12310a a a a ++++=A .55-B .5-C .5D .554.若,x y 满足约束条件2100408x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩,则43z x y =+的最小值为A .20B .22C .24D .285.在回归分析中,残差图中纵坐标为 A.残差 B.样本编号 C._x D.i y 6.如图所示的程序框图运行的结果是A .12012 B .12013 C .20112012 D .201220137.函数sin()y A x ωϕ=+的部分图像如图所示,则其解析式可以是 A .3sin(2)3y x π=+B .3sin(2)3y x π=-+C .13sin()212y x π=+ D .13sin()212y x π=-+8.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y=x 与抛物线C 交于A ,B 两点,若()2,2P 为AB 的中点,则抛物线C 的方程为A .24y x = B. 24y x =- C. 24x y = D. 28y x =9. ,,,A B C D 四位同学分别拿着5342,,,个暖瓶去打开水,热水龙头只有一个。
要使他们打完水所花的总时间(含排队、打水的时间)最少,他们打水的顺序应该为 A. D B C A ,,,B. ,,,A B C DC. ,,,A C B DD. 任意顺序10.对任意实数,x y ,定义运算x y ax by cxy *=++,其中,,a b c 是常数,等式右边的运算是通常的加法和乘法运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省2012年新课程高考冲刺全真模拟试卷(一)数学(文)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第⒂题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卷面清洁,不折叠,不破损.5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑.参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.球的表面积、体积公式:24S R π=、343V R π=,其中R 为球的半径.样本数据n x x x ,,21的标准差s =,其中x 为样本平均数.用最小二乘法求线性回归方程系数公式:1221ˆni i i nii x y nx yxnxb==-⋅∑-∑=,ˆay bx =-. 第I 卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.1.已知集合{}0 1 2A =,,,集合{}2B x x =>,则A B = A .{}2 B .{}0 1 2,, C .{}2x x > D .∅2.已知i 为虚数单位,则212i i-++的值等于 ( )A. i -B.12i -C. 1-D. i2.定义{|,,}x A B z z xy x A y B y⊗==+∈∈.设集合{0,2}A =,{1,2}B =3.如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( )A.增函数且最小值为-5B.减函数且最小值是-5C.增函数且最大值为-5D.减函数且最大值是-54.如果实数x,y 满足等式(x -2)2+y 2=3,那么xy 的最大值是( )A .21 B .33 C .23 D .35.阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56.函数tan(42y x ππ=-的部分图象如图所示,则()OA OB AB +⋅=( )A.6B.4C.4-D.6-7.在纪念中国人民抗日战争胜利六十周年的集会上,两校各派3名代表,校际间轮流发言,对日本侵略者所犯下的滔天罪行进行控诉,对中国人民抗日斗争中的英勇事迹进行赞颂,那么不同的发言顺序共有( )A.72种B.36种C.144种D.108种 8.已知函数()y f x =的定义域为2(43,32)a a --, 且(23)y f x =-为偶函数,则实数a 的值为( )A .3或-1B .-3或1C .1D .-19.农民收入由工资性收入和其它收入两部分构成。
06年某地区农民人均收入为3150元(其中工资源共享性收入为1800元,其它收入为1350元),预计该地区自07年起的5年内,农民的工资源共享性收入将以每年的年增长率增长,其它性收入每年增加160元。
根据以上数据,2011年该地区人均收入介于 ( )A .4200元-4400元 B.4400元-4460元 C.4460元-4800元 D.4800元-5000元 10.已知两点M (1,54),N (-4,-54),给出下列曲线方程:①4x+2y-1=0 ②x 2+y 2=3③222xy+=1 ④222xy-=1. 在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )A.①③B.②④C.①②③D.②③④第Ⅱ卷二、填空题:本大题共5小题,其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.每小题5分,满分20分.11.若关于x 的方程x -1x + k=0在x ∈(0,1)没有实数根,则k 的取值范围为 .12、从分别标有数字1,2,3,4的4个大小、形状完全相同的球中,有放回地随机抽取2个球,则抽到的2个球的标号之和不大于5的概率等第6题图于 .13.如图是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆α 千克,则共需油漆的总量为 千克 14.给出下列四个结论:①“若22,am bm <则a b <”的逆命题为真; ②若0()f x 为()f x 的极值,则0()0f x '=; ③函数()sin f x x x =-(x R ∈)有3个零点; ④对于任意实数x ,有()(),()(),f x f x g x g x -=--=且x >0时,()0,()0,f x g x ''>>则x <0时()().f x g x ''>其中正确结论的序号是 .15.(不等式选讲选做题)不等式2|34|1x x x -->+的解集是 三.解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知()f x =x x x x x x cos sin 22sin23sin2cos23cos--,(Ⅰ)求函数)(x f 的最小正周期;(Ⅱ) 当,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数)(x f 的零点.17.(本小题满分12分)甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只。
乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个。
请你根据提供的信息说明:(Ⅰ)第2年全县鱼池的个数及全县出产的鳗鱼总数。
(Ⅱ)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?说明理由。
(Ⅲ)哪一年的规模(即总产量)最大?说明理由。
18.如图(1),A B C ∆是等腰直角三角形,4AC BC ==,E 、F 分别为A C 、A B 的中点,将AEF ∆沿E F 折起,使A '在平面B C E F 上的射影O 恰为E C 的中点,得到图(2). (Ⅰ)求证:E F A C '⊥;(Ⅱ)求三棱锥BC A F '-的体积.19.(本题满分12分) 公差大于零的等差数列{}n a 的前项和为n S ,且满足3425117,22a a a a ⋅=+=。
(1)求数列{}n a 的通项公式; (2)若n n S b n c=+,且数列{}n b 是等差数列,求非零常数的值;(3)在(2)的条件下,求1()(*)(36)nn b f n n N n b +=∈+的最大值。
20.(本题满分13分) 已知圆C:224x y +=.(1)直线l 过点P(1,2),且与圆C 交于A 、B两点,若AB =l 的方程;(2)过圆C 上一动点M 作平行于y 轴的直线m ,设m 与x 轴的交点为N ,若向量OQ OM ON=+ ,求动点Q 的轨迹方程.(3) 若点R(1,0),在(2)的条件下,求RQ的最小值. 21.(本小题满分14分,)已知a R ∈,函数2()||f x x x a =-.(Ⅰ)当2a =时,求使()f x x =成立的x 的集合; (Ⅱ)求函数()y f x =在区间[12],上的最小值.参考答案一、选择题(每小题5分,共50分)2.D 提示:()()()()2122121212i i i i ii i -+⋅--+=++⋅-=3.C 奇函数f(x)在区间[-7,-3]也是单调递增,max ()(3)(3)5f x f f =-=-=- 4.D 提示:数形结合法,yx视为圆(x -2)2+y 2=3上点到原点连线的斜率.5.B提示:(1)0,16k n ==,k=1;(2) 1,49,2k n k ===;依次进行便可.6.A 提示:由tan()142y x ππ=-=,得(3,1)B ,由tan()042y x ππ=-=,得(2,0)A ,由向量数量积运算便可得. 7.A 提示:332A8.D 解析:由题知, 24332,31a a a -<--<<即,又(23)y f x =-为偶函数,则2432332a x a -<-<-2,即2a<x<3-a .所以=.13a ∴=-2-2a 3-a 或,故选D .二、填空题(本大题共5小题,每小题5分,共25分. 把答案填在题中横线上) 11. k<0 12.85 13. 24π+39 14. ④ 15. {5113x |x x x }><--<<或或14.解析:20m =,可知①错;0(),0f x x x ==,则0()f x '不存在,可知②错;由单位圆知sin x x<故只有一个交点,故③错。
由奇函数的增减性一致,偶函数的增减性相反,知x <0时()0,()0f x g x ''><,故④正确。
15.解:原不等式等价于(Ⅰ)22340341x x x x x ⎧--⎪⎨-->+⎪⎩≥或(Ⅱ)22340(34)1x x x x x ⎧--<⎪⎨--->+⎪⎩41145113x x x x x x --<<⎧⎧⇒⎨⎨><--<<⎩⎩或或或≥≤ 5113x x x ⇒><--<<或或 ∴原不等式的解集为{|5113}x x x x ><--<<或或.三、解答题:(本大题共6小题,共75分. 解答应写出文字说明、推理过程或演算步骤)16.解:(Ⅰ)x x x f 2sin 2cos )(-==)42cos(2π+x --------4分故π=T ------------------5分 (Ⅱ)令0)(=x f ,)24cos(2x +π=0,又 ,2x ππ⎡⎤∈⎢⎥⎣⎦ ----------------7分 592444x πππ∴≤+≤3242x ππ∴+=------------------9分故58x π=函数)(x f 的零点是58x π= ---------------12分17.解:由题意可知,图甲图象经过(1,1)和(6,2)两点,从而求得其解析式为y 甲=0.2x+0.8-------------------2分 图乙图象经过(1,30)和(6,10)两点,从而求得其解析式为y 乙=-4x+34.------------------------- 3分 (Ⅰ)当x=2时,y 甲=0.2×2+0.8 =1.2,y 乙= -4×2+34=26,y 甲·y 乙=1.2×26=31.2.所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万只.-----------5分 (Ⅱ)第1年出产鱼1×30=30(万只), 第6年出产鱼2×10=20(万只),可见,第6年这个县的鳗鱼养殖业规划比第1年缩小了--------------------------7分 (Ⅲ)设当第m 年时的规模总出产量为n,那么n=y 甲·y 乙=(0.2m+0.8) (-4m+34)= -0. 8m 2+3.6m+27.2 =-0.8(m 2-4.5m-34)=-0.8(m-2.25)2+31.25------------------10分 因此, .当m=2时,n 最大值=31.2.即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万只. -----------12分又A O ' 垂直平分E C ,A O '∴==------10分∴三棱锥F A B C '-的体积为:114333F A BC A FBC FBC V V S A O ''--∆'==⋅=⨯⨯-------12分19.解:(1)由题知342522a a a a +=+=,34117a a ⋅=,所以,349,13a a ==或3413,9a a ==,所以公差4d =±,又因为0d >,所以4d =,因此43n a n =-----------4分 (2)(143)(21)2n n n S n n --==-,所以n n S b n c=+(21)2()n n n c -=+,由错误!不能通过编辑域代码创建对象。