19-3-2梯形(常用辅助线)
19.3.2梯形的的判定
探究二
1、连结梯形两腰中点的线段叫做梯形的中位线。
A E B
D F C
2、梯形的中位线平行于两底,并且等于两底和的一半。
已知在梯形ABCD中,AD//BC,如果AE=EB,DF=FC , 求证:(1)EF//AD//BC (2)EF= 1 (AD+BC)
2
A E B D F C
M
3、梯形中位线与三角形中位线定理的联系
19.3.2梯形的判定
复习回顾
1 梯形问题中常用的辅助线:
A D
A D
B
作一腰的平行线
A D
E
C
B
E
作高
E
F
C
A
D C
Байду номын сангаас
B
C
E
B
作对角线的平行线交下 底的延长线于一点
延长两腰交一点
2 等腰梯形的性质有哪些? 等腰梯形两腰相等
等腰梯形同一底边上的两个角相等
等腰梯形的对角线相等 说出以上定理的逆命题
1、两腰相等的梯形是等腰梯形 2、同一底上两个角相等的梯形是等腰梯形 3、对角线相等的梯形是等腰梯形
6、存在既是直角梯形,又是等腰梯形的梯形( 是上底,在下面的是下底( 8、等腰梯形中可能有直角梯形( ) )
)
7、梯形中,互相平行的两边叫做梯形的底,在上面的
9、直角梯形不可能等腰梯形(
10、等腰梯形两底角相等( )
)
例题分析
例1 、已知梯形ABCD,AB∥CD,现在要求添加一个条 件,例如BC=AD,使梯形ABCD是等腰梯形,那么除了 BC=AD之外,还可以添加什么条件,能使梯形ABCD是等 腰梯形?甲、乙、丙、丁四名同学分别添加了一个条件: 甲:∠A=∠B; 乙:∠B+∠D=180°; 丙:∠A=∠D; 丁:此梯形是轴对称图形. 那些同学的条件符合要求?给出理由,能添加其它的一 个条件,使梯形ABCD是等腰梯形吗?
数学:19.3《梯形》(第2课时)课件(人教新课标版八年级下)
能求出梯形ABCD的面积吗?有几种方法?
1 2
当堂导练
例六变式训练
导学讲义P69课后练习3
梯形ABCD中,AD ∥BC,AE ⊥BC,AE=12,BD=15, AC=20,求梯形ABCD面积 解:过点D作DF ∥AC交BC延长线于F 作DM ⊥BC于点M 因为AD ∥BC,所以得证□ADFC 所以AD=CF ,AC=DF=20 因为DM⊥BC ,DM=AE=12 F 所以BM=9,FM=16(勾股定理) 所以BF=9+16=25=BC+AD 所以梯形面积 =(AD+BC)*DM/2
梯形(二)
梯形中常见辅助线
青羊实验中学八年级数学组 樊刚
预习反馈:
1根据转化思想,梯形的问题应该转 化成什么图形的问题去解决? 2梯形常用的辅助线有哪些? 它们各自的作用是什么?
当堂导学 一、延长两腰,将梯形转化成三角形.
例一:如图,梯形ABCD中,AD∥BC, AD=5,BC=9,∠B=80°,∠C =50°.求AB的长.
把上下底之差、两腰转化到同一个三角形中。可利用三角 形知识解决问题。
F
C
还有其它的平移一腰的方式吗?
当堂导学
例2 如图,梯形ADCB中,AD∥BC,BC=
8cm,AB=7cm,AD=6cm,求DC的取值 范围. 若DC为奇数,则梯形是什么梯形?
6
7 7 6 2 E 8 解:过点D作DE ∥AB交BC于E 因为 AD ∥BC,所以四边形ABED为 平行四边形。 所以AD=BE=6,AB=DE=7,CE=2。 在△CDE中,DE-CE<DC<DE+CE, 所以5cm<DC<9cm. 当DC为奇数时,DC=7cm,
12 15 E
20 M
全等梯形问题中常见的8种辅助线的作法(有答案解析)
全等梯形问题中常见的8种辅助线的作法(有答案解析)梯形是一种四边形,其中两条边是平行而另外两条边不平行。
在解决全等梯形问题时,我们可以使用一些辅助线的方法来简化问题并找到解答。
以下是常见的8种辅助线的作法,每种方法都附有答案解析。
1. 垂直辅助线法:垂直辅助线法是最基本的辅助线作法之一,它通过引入垂直辅助线来将梯形划分为上下两个小三角形或小梯形,并利用全等三角形的性质来解题。
2. 高度辅助线法:高度辅助线法通过引入高度辅助线来找到梯形的高,并利用相似三角形的性质来解题。
3. 中位线辅助线法:中位线辅助线法通过引入中位线辅助线来将梯形划分为两个全等的平行四边形,并利用平行四边形的性质来解题。
4. 对角线辅助线法:对角线辅助线法通过引入对角线辅助线来将梯形划分为两个全等的三角形,并利用全等三角形的性质来解题。
5. 平行边辅助线法:平行边辅助线法通过引入平行边辅助线来将梯形划分为两个全等的梯形,并利用梯形的性质来解题。
6. 外接圆辅助线法:外接圆辅助线法通过引入外接圆辅助线来找到梯形的外接圆,并利用外接圆的性质来解题。
7. 中心对称辅助线法:中心对称辅助线法通过引入中心对称辅助线来将梯形划分为两个全等的三角形,并利用全等三角形的性质来解题。
8. 连接线辅助线法:连接线辅助线法通过引入连接线辅助线来划分梯形并利用形成的图形的性质来解题。
这些辅助线的作法可以帮助我们在解决全等梯形问题时更简单而有条理地进行推导和解答。
通过灵活运用这些方法,我们可以提高解决问题的效率和准确性。
请注意:本文档中的答案解析仅供参考,具体解答的正确性应根据实际情况进行确认。
梯形中添加辅助线的六种常用技巧
梯形中添加辅助线的六种常用技巧Prepared on 22 November 2020梯形中添加辅助线的六种常用技巧浙江唐伟锋梯形是不同于平行四边形的一类特殊四边形,解决梯形问题的基本思路是通过添加辅助线,将梯形进行割补、拼接转化为三角形、平行四边形问题进行解决。
一般而言,梯形中添加辅助线的常用技巧主要有以下几种——一、平移一腰从梯形的一个顶点作一腰的平行线,将梯形转化为平行四边形和三角形,从而利用平行四边形的性质,将分散的条件集中到三角形中去,使问题顺利得解。
例1、如图①,梯形ABCD中AD∥BC,AD=2cm,BC=7cm,AB=4cm,求CD的取值范围。
解:过点D作DE∥AB交BC于E,∵AD∥BC,DE∥AB∴四边形ABED是平行四边形(两组对边分别平行的四边形是平行四边形)∴DE=AB=4cm,BE=AD=2cm∴EC=BC-BE=7-2=5cm在△DEC中,EC-DE<CD<EC+DE(三角形两边之和大于第三边,两边之差小于第三边)∴1cm<CD<9cm。
二、延长两腰将梯形的两腰延长,使之交于一点,把梯形转化为大、小两个三角形,从而利用特殊三角形的有关性质解决梯形问题。
例2、如图②,已知梯形ABCD中,AD∥BC,∠B=∠C,求证:梯形ABCD是等腰梯形。
证明:延长BA、CD,使它们交于E点,∵AD∥BC∴∠EAD=∠B,∠EDA=∠C(两直线平行,同位角相等)又∵B=∠C∴∠EAD=∠EDA∴EA=ED,EB=EC(等角对等边)∴AB=DC∴梯形ABCD是等腰梯形(两腰相等的梯形是等腰梯形)。
三、平移对角线从梯形上底的一个顶点向梯形外作一对角线的平行线,与下底延长线相交构成平行四边形和一特殊三角形(直角三角形、等腰三角形等)。
例3、如图③,已知梯形ABCD中,AD=1.5cm,B C=3.5cm,对角线AC⊥BD,且BD=3cm,AC=4cm,求梯形ABCD的面积。
解:过点D作DE∥AC交BC延长线于E∵AD∥BC,DE∥AC∴四边形ACED是平行四边形(两组对边分别平行的四边形是平行四边形)∴CE=AD=1.5cm,DE=AC=4cm∵AC ⊥BD∴DE ⊥BD∴S 梯形ABCD =111()()222AD BC h CE BC h BE h +⨯=+⨯=⨯(h 为梯形的高) 211346cm 22BD DE =⨯=⨯⨯= 。
八年级数学下册《19.3 梯形(二)》教案 新人教版
19.3 梯形(二)一、教学目标:1.通过探究教学,使学生掌握“同一底上两底角相等的梯形是等腰梯形”这个判定方法,及其此判定方法的证明.2.能够运用等腰梯形的性质和判定方法进行有关的论证和计算,体会转化的思想,数学建模的思想,会用分析法寻求证明题思路,从而进一步培养学生的分析能力和计算能力. 3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.二、重点、难点1.重点:掌握等腰梯形的判定方法并能运用.2.难点:等腰梯形判定方法的运用.三、例题的意图分析本节课安排的例题与练习较多,可供老师们选用...例1是教材P119的例2,这是一道计算题,讲解时要让学生注意,已知中并没有给出等腰梯形的条件,它需要先判定梯形ABCD为等腰梯形,然后再用其性质得出结论.例2、例3、例4都是补充的题目.其中例2是一道文字题,这道题在进行证明时,可采用“平移对角线”或“作高”两种不同的方法,通过讲解例2,可以再次给学生介绍解决梯形问题时辅助线的添加方法.例3是一道证明等腰梯形的题,它需要先证明其四边形是梯形,即先证出EG∥AB,此时还要由AE,BG延长交于O,说明EG≠AB,才能得出四边形ABGE是梯形.然后再利用同底上的两角相等得出这个梯形是等腰梯形.选讲此题的目的是为了让学生了解和掌握证明一个四边形是等腰梯形的步骤与方法.例4是一道作图题,新教材P119的练习4就是一道画梯形图的题,此例4与练习4相同.通过此题的讲解与练习,就是要加强学生对梯形概念的理解,并了解梯形作图的一般方法.让学生知道梯形的画图题,也常常是通过分析,找出需要添加的辅助线,先画出三角形或四边形,再根据它们之间的联系画出所要求的梯形.四、课堂引入1.复习提问:(1)什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?(2)等腰梯形有哪些性质?它的性质定理是怎样证明的?(3)在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题.2.【提出问题】:前面所学的特殊四边形的判定基本上是性质的逆命题.等腰梯形同一底上两个角相等的逆命题是什么?命题:同一底上的两个角相等的梯形是等腰梯形问:这个命题是否成立?能否加以证明,引导学生写出已知、求证.启发:能否转化为特殊四边形或三角形,鼓励学生大胆猜想,和求证.已知:如图,在梯形ABCD中,AD∥BC,∠B=∠C.求证:AB=CD.分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,命题就容易证明了.证明方法1:过点D作DE∥AB交BC于点F,得到△DEC.∵AB∥DE,∴∠B=∠1,∵∠B=∠C,∴∠1=∠C.∴DE=DC.又∵AD∥BC,∴DE=AB=DC.证明时,可以仿照性质证明时的分析,来启发学生添加辅助线DE.证明方法二:用常见的梯形辅助线方法:过点A作AE⊥BC,过D作DF⊥BC,垂足分别为E、F(见图一).证明方法三:延长BA、CD相交于点E(见图二).图一图二通过证明:验证了命题的正确性,从而得到:等腰梯形判定方法等腰梯形判定方法在同一底上的两个角相等的梯形是等腰梯形.几何表达式:梯形ABCD中,若∠B=∠C,则AB=DC.【注意】等腰梯形的判定方法:①先判定它是梯形,②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.五、例、习题分析例1(教材P119的例2)例2(补充)证明:对角线相等的梯形是等腰梯形.已知:如图,梯形ABCD中,对角线AC=BD.求证:梯形ABCD是等腰梯形.分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.在ΔABC和ΔDCB中,已有两边对应相等,要能证∠1=∠2,就可通过证ΔABC ≌ΔDCB得到AB=DC.证明:过点D作DE∥AC,交BC的延长线于点E,又 AD∥BC,∴四边形ACED为平行四边形,∴ DE=AC .∵ AC=BD ,∴ DE=BD ∴∠1=∠E∵∠2=∠E ,∴∠1=∠2又 AC=DB,BC=CE,∴ΔABC≌ΔDCB.∴ AB=CD.∴ 梯形ABCD 是等腰梯形.说明:如果AC 、BD 交于点O ,那么由∠1=∠2可得OB=OC ,OA=OD ,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.问:能否有其他证法,引导学生作出常见辅助线,如图,作AE⊥BC,DF⊥B C ,可证 Rt ΔABC≌R t ΔCAE ,得∠1=∠2.例3(补充) 已知:如图,点E 在正方形ABCD 的对角线AC 上,CF⊥BE 交BD 于G ,F 是垂足.求证:四边形ABGE 是等腰梯形.分析:先证明OE =OG ,从而说明∠OEG =45°,得出EG ∥AB ,由AE ,BG 延长交于O ,显然EG≠AB.得出四边形ABGE 是梯形,再利用同底上的两角相等得出它为等腰梯形.例4 (补充)画一等腰梯形,使它上、下底长分别4cm 、12cm ,高为3cm ,并计算这个等腰梯形的周长和面积.分析:梯形的画图题常常通过分析,找出需添加的辅助线,归结为三角形或平行四边形的作图,然后,再根据它们之间的联系,画出所要求的梯形.如图,先算出AB 长,可画等腰三角形ABE ,然后完成 AECD 的画图.画法:①画ΔABE ,使BE=12—4=8cm ..②延长BE 到C 使EC=4cm.③分别过A 、C 作AD ∥BC ,CD ∥AE,AD 、CD 交于点D .四边形ABCD 就是所求的等腰梯形.解:梯形ABCD 周长=4+12+5×2=26cm ..)(梯形224312421cm S ABCD =⨯+⨯= 答:梯形周长为26cm ,面积为242cm .六、随堂练习1.下列说法中正确的是( ).(A )等腰梯形两底角相等(B )等腰梯形的一组对边相等且平行(C )等腰梯形同一底上的两个角都等于90度(D )等腰梯形的四个内角中不可能有直角2.已知等腰梯形的周长25cm,上、下底分别为7cm 、8cm ,则腰长为_______cm .3.已知等腰梯形中的腰和上底相等,且一条对角线和一腰垂直,求这个梯形的各个角的度数.4.已知,如图,在四边形ABCD 中,AB >DC ,∠1=∠2,AC=BD ,求证:四边形ABCD 是等腰梯形.(略证 BCDADC BDC ADC ∠=∠⇒∆≅∆,AD=BC ,CBA DAB ACB ADB ∠=∠⇒∆≅∆,∴ AB ∥DC )5.已知,如图,E 、F 分别是梯形ABCD 的两底AD 、BC 的中点,且EF ⊥BC ,求证:梯形ABCD 是等腰梯形.七、课后练习1.等腰梯形一底角60 ,上、下底分别为8,18,则它的腰长为______,高为______,面积是_________.2.梯形两条对角线分别为15,20,高为12,则此梯形面积为_________.3.已知:如图,在四边形ABCD 中,∠B=∠C ,AB 与CD 不平行,且AB=CD .求证:四边形ABCD 是等腰梯形.4.如图4.9-9,梯形ABCD 中,AB ∥CD ,AD=BC ,CE ⊥AB 于E ,若AC⊥BD 于G .求证:CE=21(AB+CD ).。
解决梯形问题常添加的四种辅助线
分析 : 有 些 学 生 看 到 条 件 B + C = 9 0 。 , 想补成 以 B C 为斜 边 的直 角 三 角 形 , 于是 延 长 B A、 C D交 于 点 G, 再 连接 G E, 虽 然 得 出 的答 案 是 正 确 的 , 但 没有 说 明 E、 F 、 G三点共线 ( 事 实 上我
A D = B C . 因 此需 要 构造 全 等 三角 形 . 故 分别 过 点 C 、 D作 D E上A B ,
C F上AB, 垂 足 分 别 为 E、 F, 利用 S AS证 明 AADE ̄ aBC F, 问 题 得 以解 决 。
E分别作 E N ∥D C, E M∥A B , 可得出 E MN + E N M= B + c =
差为 6 c m, 腰长为 6 c m. 求 梯形 中较小 内角 的度 数 。
例: 如图 ( 4 ) 在直角梯形 A B C D中 , 若A D = 4 , B C = 7 , D C = 5 ,
则 A B的长 为 多少 ? 分析 : 结 合 图形 , 很 容 易 想 到 过点 A作 A E上B C交 B C 于点 E.可 得 矩 形 A E C D 和 直 角 AA E B ,利 用 勾 股 定 理 求 得 A B =
形 : 若 对 角 线垂 直 , 则 这个 三角 形 是 直 角 三 角 形 ; 若 对 角 线 相 等 又垂 直 . 则 这个 三角 形 是 等 腰 直 角 三 角形 , 这些结论的得出 , 为
梯 形 是 一种 特 殊 的 四边 形 , 在解 决 与 之相 关 的 问题 时 常 需要
用 特 殊 的 方法 来 处 理 。 即 当根 据 题 目的 已知 条 件 无 法 直 接求 解 或证明结论时. 就 需 要 我 们添 加 适 当 的辅 助 线 把 它 转 化 成较 熟
初中几何辅助线大全-整理
初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
初中几何辅助线大全(潜心整理)
初中几何辅助线口诀三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线作辅助线的方法一、中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二、垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三、边边若相等,旋转做实验。
梯形中常见的辅助线
梯形中的常见辅助线一、平移1、平移一腰:例1.如图所示,在直角梯形ABCD中,/ A = 90° AB // DC, AD = 15, AB = 16, BC = 17.求CD的长.例2如图,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
2、平移两腰:例3 如图,在梯形ABCD 中,AD//BC,/ B + Z C=90° , AD=1 , BC=3 , E、F 分别是AD、BC 的中点,连接EF,求EF的长。
3、平移对角线:例4、已知:梯形ABCD 中,AD//BC , AD=1 , BC=4 , BD=3 , AC=4,求梯形ABCD 的面积.例5 如图,在等腰梯形ABCD 中,AD//BC , AD=3 , BC=7 , BD= 5 - 2,求证:AC 丄BD。
例6如图,在梯形ABCD 中,AD//BC , AC=15cm , BD=20cm,高DH=12cm,求梯形ABCD 的面积。
二、延长即延长两腰相交于一点,可使梯形转化为三角形。
例7如图,在梯形ABCD 中,AD//BC,/ B=50 °,/ C=80 ° , AD=2 , BC=5,求CD 的长。
例8.如图所示,四边形ABCD中,AD不平行于BC, AC = BD , AD = BC.判断四边形ABCD的形状,并证明你的结论三、作对角线即通过作对角线,使梯形转化为三角形。
例9如图6,在直角梯形ABCD中,AD//BC ,AB 丄AD , BC=CD , BE 丄CD 于点E,求证:四、作梯形的高1、作一条高例10如图,在直角梯形ABCD中,AB//DC,/ ABC=90 ° , AB=2DC,对角线AC丄BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE是等腰梯形。
2、作两条高例11、在等腰梯形ABCD 中,AD//BC , AB=CD,/ ABC=60 ° , AD=3cm , BC=5cm ,AD=DE 。
初中数学常见辅助线做法
初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
数学人教版八年级下册第十八章梯形的中位线和常用辅助线--
(A)ab/2 D (B) ab (C)( a+b)/2 F (D) ab/4
C
2
(二)、选择题:
1. 梯形中位线的长是高的2倍,面 积是18cm ,则梯形的中位线的长 是( B).
(A)6√2 cm (B)6 cm (C)3√2 cm 3 cm
( D)
2. 如图,直角梯形ABCD的中位线 EF的长为a,垂直于底的 腰长 AB 为b, 图中阴影部分的面积 为( A ).
A
E
A D
E
B
F
C
梯形的中位线平行于两底, 并且等于两底和的一半·
A
E D
∵EF是梯形ABCD的中位线
F ∴
EF ∥A D∥ BC
B
C
1 EF (AD+BC) 2
已知,梯形ABCD中,AD∥BC,E是 腰AB的中点,DE ⊥CE, 求证: AD+BC=CD。
A E D
证明:(一) 延长DE交CB 延长线于F
A 15 B 8 F C ED Nhomakorabea构造旋转变换
其 他 方 法
F是梯形的腰DC的中点
A
D
F
B C
E
梯形ABCD面积与哪个图形面 积相等?
梯形中位线的定义
A D
E
B
F 连接梯形两腰中 点的线段叫梯形 的中位线
C
已知:点 E和F分别是梯形ABCD的腰 AB、DC的中点,猜想EF与AD+BC的 数量关系,以及EF与AD、BC的位置 关系,并加以证明。
54º
B
E
O
补 三 B
A
D C
角 1、 若梯形ABCD是等腰梯形时,
ΔOBC是什么三角形?
(完整版)初中几何辅助线大全
初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
梯形常用的辅助线
MN : I
_ _
EF:3 . 2
图2
温 馨 小 提 示 : 移 腰 把 条 件 集 中 , 取 平 移 点 是 关 键 , 用 的 平 选 常 平 移 点 有 : 个 顶 点 、 腰 中点 、 边 上 的 中点 等 . 四 一 底 二 、 移 对 角 线 平
分 析 : 目中 有 “ E 分 B D” “ E上A 结合 等腰 三角 题 C平 C 和 C B”
,
形 “ 线合一 ” 三 ,可 想 到 延 长 B C A、D相 交 于 ,,易 知 A B 为 等 腰 三 角 形 ( B= F) 且 CF C C ,
B E AC E AC E E= F, B F .设 A 口 则 B E= , E= E 2, F= a AF= 设 A C E 的 面 积 为 ., B s 则 AF D的 面 积 为 S , C F 面 积 为 2 . 由 A 一1 A B 的 S B
故梯形A C 面积 的最 大值为2. BD 5
温 馨 小 提 示 : 当 两腰 或 两 条 对 角线 在 数 量 或 位 置 上 有 特 殊 关
系 时 , 过 平 移 , 将 分 散 的 条 件 集 中起 来 . 定 要 选 择 好 集 中的 通 可 一 位 置 , 角 线 通 常 集 中到 梯 形 的 四 个 顶 点 处 . 对
易 知 四 边 形A E D C是 平 行 四 边 形 , 且 S AB S E , 而 有 S 形 BD J B . A D- A C 进  ̄ D 梯 Ac= △ E s D
1
B
j
C
图 3
AB D是 直 角 三 角 形 , = + = + E 船 C 叩 C D= + =1 , 7 3 0
初中数学常用辅助线添加技巧
初中数学常用辅助线添加技巧初中数学常用辅助线添加技巧一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形; 当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
梯形中常见的辅助线(含答案)
梯形中常见的辅助线中考要求例题精讲我们可以看到,梯形本身的性质并不多,所以实际解梯形的问题时,往往通过添加辅助线将梯形分成三角形或平行四边形,三角形是最简单的直线形,而平行四边形具有很好的对称性质.下面给出几个常见的添加辅助线的方法.1. 作梯形的高:一般是过梯形的一个顶点作高,其好处是将梯形分成一个直角三角形和一个直角梯形,从而可以用勾股定理,如果过梯形的两个顶点分别作高,则会出现矩形.2. 过梯形的一个顶点作另一腰的平行线:这样便将梯形分成了一个平行四边形和一个三角形,这样做的好处是可以将两条腰拉到同一个三角形中,并且三角形的另一条边恰好是梯形的两底之差,从而将问题集中到三角形中.3. 延长梯形的两腰交于一点:这样做可以同样地使问题转化为三角形的问题.4. 过梯形一腰的中点作另一腰的平行线:可以将梯形等积变换成一个平行四边形.5. 连接梯形一个顶点和另一腰上的中点并延长交另一底边:可以将梯形等积变换成一个三角形. 常见的辅助线添加方式如下:梯形中的辅助线较多,其实质是采用割补法将梯形问题划归为三角形、平行四边形问题处理.解题时要根据题目的条件和结论来确定作哪种辅助线.常见辅助线1.梯形问题通常是通过分割和拼接转化为三角形或平行四边形,其分割拼接的方法有如下几种(如图):(1)平移一腰,即从梯形的一个顶点______,把梯形分成一个平行四边形和一个三角形(图1所示);图1(2)从同一底的两端______,把梯形分成一个矩形和两个直角三角形(图2所示);图2(3)平移对角线,即过底的一端______,可以借助新得的平行四边形或三角形来研究梯形(图3所示);图3(4)延长梯形的两腰______,得到两个三角形,如果梯形是等腰梯形,则得到两个等腰三角形(图4所示);图4(5)以梯形一腰的中点为______,作某图形的中心对称图形(图5、图6所示);图5 图6(6)以梯形一腰为______,作梯形的轴对称图形(图7所示).图7【答案】(1)作一腰的平行线;(2)作另一底边的垂线;(3)作对角线的平行线;(4)交于一点;(5)对称中心;(6)对称轴.【例1】等腰梯形ABCD中,AD∥BC,若AD=3,AB=4,BC=7,则∠B=.【答案】60°【例2】如图,直角梯形ABCD中,AB∥CD,CB⊥AB,△ABD是等边三角形,若AB=2,则BC=______.【答案】3【例3】在梯形ABCD中,AD∥BC,AD=5,BC=7,若E为DC的中点,射线AE交BC的延长线于F 点,则BF=______.【答案】12【例4】梯形ABCD中,AD∥BC,若对角线AC⊥BD,且AC=5cm,BD=12cm,则梯形的面积等于( ).A.302cmcm D.1692cm C.902cm B.602【答案】A【例5】 如图,等腰梯形ABCD 中,AB ∥CD ,对角线AC 平分∠BAD ,∠B =60°,CD =2,则梯形ABCD的面积是( ).A .33B .6C .36D .12【答案】A【例6】 等腰梯形ABCD 中,AB ∥CD ,AD =BC =8,AB =10,CD =6,则梯形ABCD 的面积是( ).A .516B .1516C .1716D .1532【答案】B【例7】 已知:如图,等腰梯形ABCD 中,AD ∥BC ,对角线AC =BC +AD .求∠DBC 的度数.【答案】60°.提示:过D 点作DE ∥AC ,交BC 延长线于E 点【例8】 已知,等腰梯形ABCD 中,AD ∥BC ,∠ABC =60°,AC ⊥BD ,AB =4cm ,求梯形ABCD 的周长.【答案】.348【例9】 如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,∠C =45°,AD =1,BC =4,E 为AB 中点,EF∥DC 交BC 于点F ,求EF 的长.【答案】.223【例10】 如图,在梯形ABCD 中,AD ∥BC ,AB ⊥AC ,∠B =45°,AD =2,BC =42,求DC 的长.【答案】.10【例11】 如图,已知等腰梯形周长是20,AD BC ∥,AD BC <,120BAD ∠=︒,对角线AC 平分BCD ∠,求梯形ABCD 的面积.DCB AE DCB A【答案】过点A 作AE BC ⊥,垂足为E .∵AD BC ∥,∴BCA CAD ∠=∠∵BCA DCA ∠=∠,∴CAD DCA ∠=∠,∴AD CD =∵120BAD ∠=︒,∴60ABC DCB ∠=∠=︒,30ACD BCA ∠=∠=︒ ∴AB AC ⊥,∴2BC AB =∴520AB =,∴4AB =,23AE = ∴1()1232ABCD S AD BC AE =⋅+⋅=【例12】 如图,在梯形ABCD 中, 860AD BC AB DC B ==∠=︒∥,,,12BC =,联结AC .(1)求AD 的值;(2)若M N ,分别是AB DC ,的中点,联结MN ,求线段MN 的长.【解析】省略【答案】3;⑵8 【例13】 在直角梯形ABCD 中,AB DC ∥,AB BC ⊥,60A ∠=︒,2AB CD =,E F ,分别为AB AD ,的中点,连结EF EC BF CF ,,,。
八年级人教版19.3梯形常用辅助线课件
A
4
B
2
解:(平移腰) 过B作BE∥AD交DC于E
则∠ 1= ∠ D=70°, ∵AB//CDDE=AB=4
70°
40° 11
D
E
7
∵△BCE中, ∠ C=40°∠1=70° C ∴ ∠ 2= ∠1= 70 °
分析: ∠D =70 °, ∠∴CB=CE=CD─DE=11—4=7(cm) C=40° 在一个三角形中结果会如何? 如何才能在一个三角形中?
例2:已知,梯形ABCD中,AD∥BC,E是腰AB的中点,
DE ⊥CE, 求证: AD+BC=CD。 A 证明:(一)延长DE交CB延长线于F D ∵在梯形ABCD中AD//B ,∠A= ∠ ABF
E
∴ AE=BE,∠A= ∠ ABF,∠ AED= ∠ BEF ∴ ΔADE≌ΔBFE
F B
C ∴ DE=FE,AD=BF
如图,直角梯形ABCD的中位线EF的长为a,垂直于底的 腰长 AB 为b, 图中阴影部分的面积为( A ).
A D
(A)ab/2 (C) ( a+b)/2
(B) ab (D) ab/4
E B
F C
(三)、如图,梯Biblioteka ABCD中, AD∥BC, ∠B=60 °, ∠ C=45 AB= 2 3 , AD=2,求梯形周长.
F
B
C
变式2:已知,梯形ABCD中,AD∥BC,E是腰AB的中点, DE平分∠ADC,CE平分∠BCD, 求证: AD+BC=CD, DE ⊥CE
A
E
D
F
B
C
已知,梯形ABCD中,AD∥BC,E是腰AB的中点, DE ⊥CE, 求证: AD+BC=CD。
梯形中常见辅助线的作法
梯形中常见辅助线的作法梯形是一种特殊的四边形,它是平行四边形和三角形的“综合”。
可以通过适当地添加辅助线,构造三角形、平行四边形,再运用三角形、平行四边形的相关知识去解决梯形问题。
下面就梯形中辅助线的常见添加方法举例说明,希望对同学们有所帮助。
一、平移对角线:平移一条对角线,使之经过梯形的另一个顶点。
例1如图,在等腰梯形ABCD中,AB∥CD,AC⊥BD,梯形的高CF为10,求梯形ABCD的面积。
分析:由于等腰梯形ABCD的对角线AC⊥BD且AC=BD,所以我们可以平移一对角线构造一等腰直角三角形,通过验证发现梯形的面积与这个三角形的面积相等,因此只需求出三角形的面积即可。
二、平移一腰或两腰:平移一腰,使之经过梯形的另一个顶点或另条腰的中点;或者同时移动两腰使它们交于一点。
例2如图,等腰梯形ABCD两底之差等于一腰的长,那么这个梯形较小的一个内角是( )A.9O°B.6O°C.45°D.30°例3如图,在梯形ABCD中,AD∥BC.AD<BC,E、F分别为AD、BC的中点,且EF⊥BC。
求证:∠B=∠C。
三、延长两腰:将梯形两腰延长相交构造三角形。
例4在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD+BC=30,BD平分∠ABC,求梯形的周长。
四、作梯形的高:过梯上底的两个端点分别作梯形的高。
例5已知等腰梯形的一个内角为60°,它的上底是3cm,腰长是4cm,则下底是。
梯形中添加辅助线的方法有很多,同学们在学习的过程中还须活学活用,也可以以口诀的形式记忆下来:“移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线”。
梯形辅助线的常见作法[1]
例谈梯形中的常用辅助线一、平移1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。
[例1]如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。
[例2]如图2,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC 的中点,连接EF,求EF的长。
3、平移对角线:过梯形的一个顶点作对角线的平行线,将已知条件转化到一个三角形中。
5,求证:AC⊥BD。
[例3]如图3,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=2[例4]如图4,在梯形ABCD中,AB//DC,AC=15cm,BD=20cm,高DH=12cm,求梯形ABCD的面积。
二、延长即延长两腰相交于一点,可使梯形转化为三角形。
[例5]如图5,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。
三、作对角线即通过作对角线,使梯形转化为三角形。
[例6]如图6,在直角梯形ABCD中,AD//BC,AB⊥AD,BC=CD,BE⊥CD于点E,求证:AD=DE。
四、作梯形的高1、作一条高,从底边的一个端点作另一条底边的垂线,把梯形转化为直角三角形或矩形。
[例7]如图7,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE是等腰梯形。
2、作两条高:从同一底边的两个端点作另一条底边的垂线,把梯形转化为两个直角三角形和一个矩形。
[例8]如图8,在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。
五、作中位线1、已知梯形一腰中点,作梯形的中位线。
[例9]如图9,在梯形ABCD中,AB//DC,O是BC的中点,∠AOD=90°,求证:AB+CD=AD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.3梯形(常用辅助线)导学案(2)(第一课时)
学习目标:
会添加辅助线,把梯形问题转化为平行四边形或三角形问题。
重点:通过梯形性质的应用总结辅助线作法。
难点:梯形辅助线的添加方法。
一、温故知新
1.等腰梯形的两底差等于腰长,腰与下底边两夹角为_______________.
2.一个梯形的两底长分别为6和8,则这个梯形的中位线长为
____________.
3.如图(1),等腰梯形ABCD 中,AB ∥CD ,BD ⊥AD ,BC =CD ,∠A =60°,CD =2cm .(1)求∠CBD 的度数;(2)求下底AB 的长.
二.合作探究 展示质疑
梯形作为特殊的四边形,在求解时常常需要转化为三角形或平行四边形等来解决。
因
此梯形问题中,转化很重要。
【探究】平移一腰
例1如图,已知梯形ABCD 中,AD//BC ,∠B=40。
, ∠C=70。
求证:AB+AD=BC
平行练习:
如图,已知梯形ABCD 中,AD//BC ,AB=DC,∠B=60。
,AD=15cm,BC=49cm,.求它的腰长。
【探究】(二)过同一底两端作高
B D A
C
C
D
A
B
60
D
C
B
A (1)
例2 如图,在梯形ABCD 中,∠B=45。
,∠C=60。
,AD//BC ,AD =3,DC =6,求梯形的面积
平行练习:
如图,在等腰梯形ABCD 中,CD//BA ,AD=BC,若AD=5,CD=2,AB=8, 求梯形的面积
【探究】(三)平移对角线
例3 如图,等腰梯形ABCD 的面积为100cm 2 ,AB ∥CD,AD=BC,且AC ⊥BD,求梯形的高。
平行练习
已知:如图,在梯形ABCD 中,AB ∥DC,对角线AC=BD 求证:AD=BC
19.3梯形(常用辅助线)导学案(2)(第二课时)
B D A
C
A
B
C
D
B
C
D
A
B
C
D
A
【探究】(四)延长两腰
例4如图,已知梯形ABCD 中,AD//BC ,∠B=40 。
, ∠C=70。
求证:AB+AD=BC
平行练习
如图在梯形ABCD 中, ∠B=∠C ,AD ∥BC 求证:梯形ABCD 是等腰梯形。
C
D
A
B
【探究】(五)平移两腰
例5 如图在梯形ABCD 中,AD ∥BC,AD ﹤BC,E 、F 分别为AD 、BC 的中点,且EF ⊥BC ,试说明∠B=∠C
平行练习
B D
A
C
F
C
E
D
A
B
如图在梯形ABCD 中,AD ∥BC, ∠B 与∠C 互余,M,N 分别为AD,BC 的中点 ,求证:MN=
2
1(BC-AD)
【探究】(六)利用中点,割补三角形。
例6. 如图,已知在梯形ABCD 中,AD//BC ,M 、N 为腰AB 、DC 的中点,求证:(1)MN//BC ;
(2)
平行练习
如图,已知梯形ABCD 中,AD//BC ,E 为AB 的中点,且DC=AD+BC 求证:∠DEC=90。
当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。
通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
N
C
M
D
A
B
N
M
B
D
A
C
E B
C
D
A。