导数与函数的单调性
导数与函数的单调性解析与归纳
导数与函数的单调性解析与归纳导数与函数的单调性在微积分中占据着重要的地位,它们能够帮助我们更深入地了解函数的性质。
本文将围绕导数与函数的单调性展开讨论,并对其中的解析与归纳进行详细阐述。
一、导数的定义与计算方法函数的导数可以理解为函数在某一点上的变化率。
导数的定义可以用极限来表达,即函数在某点处的导数等于该点附近的函数值变化量与自变量变化量的比值,在数学中可以表示为:\[ f'(x) = \lim_{{\Delta x\to 0}}\frac{{f(x+\Delta x)-f(x)}}{{\Delta x}} \]具体计算导数的方法有多种,如基本的导数运算法则、链式法则、高阶导数等。
这些计算方法能够帮助我们在具体问题中快速求得函数的导数。
二、导数与单调性的关系函数的单调性指的是函数在定义域上的增减性质。
导数与函数的单调性有着密切的联系,具体而言,函数在某一区间上单调递增的条件是其导函数大于零,而单调递减的条件是导函数小于零。
通过导数的符号变化,我们可以判断函数的单调性。
三、导数与函数单调性的解析和证明为了判断函数的单调性,我们需要分析函数的导数在定义域内的符号变化。
具体解析单调性的方法有以下几个步骤:1. 求得函数的导数;2. 找出导数的零点,即导数为零的点,这些点即为函数可能改变单调性的位置;3. 针对导函数的零点,作出符号变化表,利用导函数的符号变化可以得出函数的单调性。
举个例子,考虑函数 $f(x) = x^3 - 3x^2 + 2x$,我们可以按照上述步骤解析其单调性:1. 求导得到 $f'(x) = 3x^2 - 6x + 2$;2. 根据 $f'(x) = 0$,我们可以解得导数的零点为 $x_1 = 1-\frac{{\sqrt{3}}}{{3}}$ 和 $x_2 = 1+\frac{{\sqrt{3}}}{{3}}$;3. 绘制导数的符号变化表:\[\begin{array}{ccccc}x & (-\infty, x_1) & x_1 & (x_1, x_2) & x_2 \\f'(x) & \text{负} & 0 & \text{正} & \text{负} \\\end{array}\]根据符号变化表可以得出函数在 $(-\infty, x_1)$ 单调递减,在 $(x_1, x_2)$ 单调递增,在 $(x_2, +\infty)$ 单调递减。
导数与函数的单调性
导数与函数的单调性导数与函数的单调性是微积分中的重要概念,它们能够帮助我们理解函数的变化趋势以及函数在不同区间的单调性。
在本文中,我们将探讨导数与函数的单调性之间的关系,并介绍如何通过导数来确定函数的单调性。
一、导数的定义与意义导数描述了函数在某一点的变化率。
对于函数f(x)来说,其导数可以用以下形式表示:f'(x) = lim┬(h→0)〖(f(x+h)-f(x))/h 〗其中,h表示自变量x的增量。
导数的几何意义是函数曲线在某一点处的切线的斜率。
二、导数与函数的单调性导数在函数上的正负性与函数的单调性密切相关。
具体而言,当导数大于0时,函数是递增的;当导数小于0时,函数是递减的。
三、通过导数确定函数的单调性要通过导数确定函数的单调性,我们需要进行以下几个步骤:1. 求取函数的导数。
2. 解方程 f'(x) = 0,求得导数的零点。
3. 在导数的零点处画出数轴,将数轴分为小区间。
4. 取各个小区间上的代表点,代入原函数并求出函数值。
5. 通过函数值的正负确定函数在小区间上的单调性。
举例来说,我们考虑函数f(x) = x^2,进行上述步骤:1. 求取导数:f'(x) = 2x2. 解方程 f'(x) = 0:2x = 0解得 x = 0。
3. 在数轴上画出导数的零点x = 0,并将数轴分为三个小区间:(-∞,0),(0,+∞)。
4. 取小区间上的代表点,例如取小区间 (-∞,0) 的代表点 x = -1,取小区间 (0,+∞) 的代表点 x = 1。
5. 分别代入原函数 f(x) = x^2,求出函数值:f(-1) = (-1)^2 = 1f(1) = (1)^2 = 1根据函数值的正负性,我们可以得出以下结论:在小区间 (-∞,0) 上,函数递增;在小区间 (0,+∞) 上,函数递增。
结论:函数f(x) = x^2 在整个定义域上都是递增的。
通过上述例子,我们可以看出导数与函数的单调性之间的联系。
导数与函数的单调性
导数与函数的单调性函数的单调性在(a,b)内函数f(x)可导,f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.辨明导数与函数单调性的关系(1)f′(x)>0(或<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件.注意:由函数f(x)在区间[a,b]内单调递增(或递减),可得f′(x)≥0(或≤0)在该区间恒成立,而不是f′(x)>0(或<0)恒成立,“=”不能少.1.如图所示是函数f(x)的导函数f′(x)的图象,则下列判断中正确的是()A.函数f(x)在区间(-3,0)上是减函数B.函数f(x)在区间(-3,2)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(-3,2)上是单调函数2.函数f(x)=x3-3x+1的单调增区间是()A.(-1,1)B.(-∞,1)C.(-1,+∞)D.(-∞,-1),(1,+∞)3.已知函数f(x)=x sin x,x∈R,则f(1),f()A.f(1)>B.f(1)>C.f(1)>D.f(1)4.(选修11P93练习T1(2)改编)函数f (x )=e x -x 的单调递增区间是________.5.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是________.考点一利用导数判断或证明函数的单调性(2015·高考重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性.导数法证明函数f (x )在(a ,b )内的单调性的步骤(1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.考点二求函数的单调区间已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.导数法求函数单调区间的一般步骤(1)确定函数f (x )的定义域;(2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0;(4)根据(3)的结果确定函数f (x )的单调区间.2.(2015·高考四川卷节选)已知函数f (x )=-2x ln x +x 2-2ax +a 2,其中a >0.设g (x )是f (x )的导函数,讨论g (x )的单调性.考点三已知函数的单调性求参数的范围(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.高考对函数单调性的考查主要有以下四个命题角度:(1)根据f (x )在区间A 上单调递增(减),求参数的取值范围;(2)根据f (x )在区间A 上存在单调递增(减)区间,求参数的取值范围;(3)根据f (x )在区间A 上为单调函数,求参数的取值范围;(4)根据f (x )在区间A 上不单调,求参数的取值范围.(1)(2014·高考课标全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是()A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)(2)已知函数g (x )=13x 3-12ax 2+2x .①若g (x )在(-2,-1)内为减函数,求实数a 的取值范围;②若g (x )在区间(-2,-1)内不单调,求实数a 的取值范围根据函数单调性确定参数范围的方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.3.(1)(2016·九江第一次统考)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间13,2上是增函数,则实数a 的取值范围为________.(2)设f (x )=-13x 3+12x 2+2ax .若f (x )则a 的取值范围为________.方法思想——分类讨论思想研究函数的单调性(2015·高考江苏卷节选)已知函数f(x)=x3+ax2+b(a,b∈R).试讨论f(x)的单调性.已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.(1)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程1.(2016·九江模拟)函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)2.已知函数f(x)=2x3-6ax+1,a≠0,则函数f(x)的单调递减区间为()A.(-∞,+∞)B.(-a,+∞)C.(-∞,-a)和(a,+∞)D.(-a,a)x3+ax+4,则“a>0”是“f(x)在R上单调递增”的3.(2016·长春调研)已知函数f(x)=12()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.对于在R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有()A.f(x)≥f(a)B.f(x)≤f(a)C.f(x)>f(a)D.f(x)<f(a)5.(2016·郑州第一次质量预测)已知定义在R上的函数f(x)满足f(-3)=f(5)=1,f′(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示,则不等式f(x)<1的解集是()A.(-3,0)B.(-3,5)C.(0,5)D.(-∞,-3)∪(5,+∞)6.已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则a的取值范围是()A.0<a<34B.12<a<34C.a≥34D.0<a<127.函数f(x)=1+x-sin x在(0,2π)上的单调情况是________.8.(2016·石家庄二中开学考试)已知函数f(x)=ln x+2x,若f(x2+2)<f(3x),则实数x的取值范围是________.9.已知函数f(x)=e|x-a|(a为常数),若f(x)在区间[1,+∞)上是增函数,则a的取值范围是________.10.若函数f(x)=ax3+3x2-x恰好有三个单调区间,则实数a的取值范围是________.11.(2016·云南省第一次统一检测)已知函数f(x)=ln x-x1+2x.(1)求证:f(x)在区间(0,+∞)上单调递增;(2)若f[x(3x-2)]<-13,求实数x的取值范围.1.(2016·河北省衡水中学模拟)已知函数f(x)x,a∈R.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a=-1时,求证:f(x)在(0,+∞)上为增函数.2.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)函数f(x)是否为R上的单调函数?若是,求出a的取值范围;若不是,请说明理由.三年高考两年模拟1.(2016·全国Ⅰ)若函数f(x)=x-13sin2x+a sin x在(-∞,+∞)单调递增,则a的取值范围是()A.[-1,1]B.-1,13C.-13,13 D.-1,-132.(2016·江西赣中南五校模拟)已知函数y=f(x)对任意的x -π2,f′(x)·cos x+f(x)sin x>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是()A.2B.2C.f(0)>2D.f(0)>23.(2015·福建)若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()A.<1k B.>1k-1C.<1k-1D.>kk-14.(2015·新课标全国Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)5.(2014·新课标全国Ⅱ)若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是()A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)6,(2014·新课标全国Ⅰ)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)7.(2015·陕西)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.-1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上8.(2014·新课标全国Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件9.(2016·河南八市模拟)已知函数f(x)=sin x-cos x,且f′(x)=12f(x),则tan2x的值是()A.-23B.-43C.4 3D.3 410.(2015·江西新余模拟)如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=ln x+f′(x)的零点所在的区间是()B.(1,2)D.(2,3)11.(2015·河北恒台模拟)设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n (x )=f n -1′(x ),n ∈N ,则f 2015(x )=()A.sin xB.-sin xC.cos xD.-cos x12.(2016·河南郑州一模)函数f (x )=e x cos x 的图象在点(0,f (0))处的切线方程是()A.x +y +1=0B.x +y -1=0C.x -y +1=0D.x -y -1=013.(2016·福建漳州八校模拟)设函数f ′(x )是函数f (x )(x ∈R )的导函数,f (0)=1,且3f (x )=f ′(x )-3,则4f (x )>f ′(x )的解集为()14.(2015·黑龙江绥化模拟)已知函数y =f (x -1)的图象关于直线x =1对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,若a =20.2f (20.2),b =(ln 2)f (ln 2),c a ,b ,c的大小关系是()A.a >b >cB.b >a >cC.c >a >bD.a >c >b15.(2015·辽宁沈阳模拟)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x ≠0时,f ′(x )+f (x )x >0,若a =12f b =-2f (-2),c a ,b ,c 的大小关系正确的是()A.a <c <bB.b <c <aC.a <b <cD.c <a <b16.(2015·河北唐山模拟)已知函数f (x )=a e x +x 2,g (x )=sin πx2+bx ,直线l 与曲线y =f (x )切于点(0,f (0))且与曲线y =g (x )切于点(1,g (1)).(1)求a ,b 的值和直线l 的方程.(2)证明:f(x)>g(x).17.(2015·山东潍坊模拟)已知函数f(x)=x4+ax-ln x-32,其中a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x,求a的值.(2)讨论函数f(x)的单调区间.三年高考两年模拟1C2A3C4A5D6C7A8C9D10C11D12C13B14B15A3.(2016·山东,20)设f(x)=x ln x-ax2+(2a-1)x,a∈R.(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值.求实数a的取值范围.。
利用导数判断函数的单调性
利用导数判断函数的单调性知识要点梳理1. 函数的导数与函数的单调性的关系: (1)(函数单调性的充分条件)设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在这个区间内为增函数;如果在这个区间内/y <0,那么函数y=f(x) 在这个区间内为减函数。
(2)(函数单调性的必要条件)设函数y=f(x) 在某个区间内有导数,如果函数y=f(x) 在这个区间内为增函数,那么在这个区间内/y ≥0;如果函数y=f(x) 在这个区间内为减函数。
那么在这个区间内/y ≤0。
2. 求可导函数的单调区间的一般步骤和方法: ①确定函数()f x 的定义域;②计算导数'()f x ,令'()0f x =,解此方程,求出它们在定义域区间内的一切实根; ③把函数()f x 的间断点(即f(x)的无定义的点)的横坐标和上面的各实根按由小到大的顺序排列起来,然后用这些点把()f x 的定义域分成若干个小区间;④确定'()f x 在各个开区间内的符号,根据'()f x 的符号判定函数()f x 在每个相应小区间的增减性(若'()f x >0,则f(x)在相应区间内为增函数;若'()f x <0,则f(x)在相应区间内为减函数。
)疑难点、易错点剖析:1.利用导数研究函数的单调性比用函数单调性的定义要方便,但应注意f ’(x)>0(或f ’(x)<0)仅是f(x)在某个区间上递增(或递减)的充分条件。
在区间(a,b )内可导的函数f(x)在(a,b )上递增(或递减)的充要条件应是'()0('()0)f x f x ≥≤或,x (,)a b ∈恒成立,且f ’(x)在(a,b ) 的任意子区间内都不恒等于0。
这就是说,函数f(x)在区间上的增减性并不排斥在该区间内个别点x 0处有f ’(x 0)=0,甚至可以在无穷多个点处f ’(x 0)=0,只要这样的点不能充满所给区间的任何子区间,因此在已知函数f(x)是增函数(或减函数)求参数的取值范围时,应令'()0('()0)f x f x ≥≤或恒成立,解出参数的取值范围,然后检验参数的取值能否使f ’(x)恒等于0,若能恒等于0,则参数的这个值应舍去,若f ’(x)不恒为0,则由'()0('()0)f x f x ≥≤或,x (,)a b ∈恒成立解出的参数的取值范围确定。
导数与函数的单调性
2.函数 f(x)=x·ex-ex+1 的递增区间是( )
A.(-∞,e)
B.(1,e)
C.(e,+∞)
D.(e-1,+∞)
解析:由 f(x)=x·ex-ex+1, 得 f′(x)=(x+1-e)·ex, 令 f′(x)>0,解得 x>e-1, 所以函数 f(x)的递增区间是(e-1,+∞).
题型三 函数单调性的应用 命题点 1 比较大小或解不等式 例 2 (1)已知定义在 R 上的函数 f(x),g(x)满足:对任意 x∈R,都有 f(x)>0,g(x)
>0,且 f′(x)g(x)-f(x)g′(x)<0.若 a,b∈R+且 a≠b,则有( ) A.fa+2 bga+2 b>f( ab)g( ab) B.fa+2 bga+2 b<f( ab)g( ab)
③若 a<0,则由 f′(x)=0 得 x=ln-a2. 当 x∈-∞,ln-a2时,f′(x)<0; 当 x∈ln-a2,+∞时,f′(x)>0. 故 f(x)在-∞,ln-a2上单调递减, 在ln-a2,+∞上单调递增.
综上所述,当 a=0 时,f(x)在(-∞,+∞)上单调递增; 当 a>0 时,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增; 当 a<0 时,f(x)在-∞,ln-a2上单调递减,在ln-a2,+∞上单调递增.
题组三 易错排查 6.函数 f(x)=x3+ax2-ax 在 R 上单调递增,则实数 a 的取值范围是________. 解析:f′(x)=3x2+2ax-a≥0 在 R 上恒成立,即 4a2+12a≤0,解得-3≤a≤0, 即实数 a 的取值范围是[-3,0]. 答案:[-3,0]
7.若函数
导数与函数的单调性
第2节导数在研究函数中的应用知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数的关系(1)函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值.(2)函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.3.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.第1课时导数与函数的单调性考点一 求函数的单调区间【例1】 (经典母题)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间.解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x , 故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x =⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x =12x (x +1)(x +4)e x . 令g ′(x )<0,得x (x +1)(x +4)<0,解之得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4).【迁移探究1】 若本例中函数f (x )变为“f (x )=ln x -12x 2+x ”,试求f (x )的单调区间.解 因为f (x )=ln x -12x 2+x ,且x ∈(0,+∞),所以f ′(x )=1x -x +1=-⎝ ⎛⎭⎪⎫x -1-52⎝ ⎛⎭⎪⎫x -1+52x. 令f ′(x )=0,所以x 1=1+52,x 2=1-52(舍去).由f ′(x )>0,得0<x <1+52;由f ′(x )<0,得x >1+52.所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1+52,单调递减区间为⎝ ⎛⎭⎪⎫1+52,+∞.【迁移探究2】若本例的函数变为“f(x)=x22-a ln x,a∈R”,求f(x)的单调区间.解因为f(x)=x22-a ln x,所以x∈(0,+∞),f′(x)=x-ax=x2-ax.(1)当a≤0时,f′(x)>0,所以f(x)在(0,+∞)上为单调递增函数.(2)当a>0时,f′(x)=(x+a)(x-a)x,则有①当x∈(0,a)时,f′(x)<0,所以f(x)的单调递减区间为(0,a).②当x∈(a,+∞)时,f′(x)>0,所以f(x)的单调递增区间为(a,+∞).综上所述,当a≤0时,f(x)的单调递增区间为(0,+∞),无单调递减区间. 当a>0时,函数f(x)的单调递减区间为(0,a),单调递增区间为(a,+∞). 规律方法求函数单调区间的步骤:(1)确定函数f(x)的定义域;(2)求f′(x);(3)在定义域内解不等式f′(x)>0,得单调递增区间;(4)在定义域内解不等式f′(x)<0,得单调递减区间.【训练】已知函数f(x)=x4+ax-ln x-32,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=1 2x.(1)求a的值;(2)求函数f(x)的单调区间.解(1)对f(x)求导得f′(x)=14-ax2-1x,由f(x)在点(1,f(1))处的切线垂直于直线y=12x知f′(1)=-34-a=-2,解得a=5 4.(2)由(1)知f(x)=x4+54x-ln x-32(x>0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.但-1∉(0,+∞),舍去.当x ∈(0,5)时,f ′(x )<0;当x ∈(5,+∞)时,f ′(x )>0.∴f (x )的增区间为(5,+∞),减区间为(0,5).考点二 证明(判断)函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0.(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0.f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增.②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2. 当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减, 在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增. (2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].规律方法 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.【训练】 (2015·全国Ⅱ卷改编)已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0恒成立,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 考点三 导数在函数单调性中的应用【例3】 (1)(2018·武汉模拟)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( )A.a <b <cB.b <c <aC.a <c <bD.c <a <b解析 设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2, ∵当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0.∴g (x )在(0,+∞)上是减函数.由f (x )为奇函数,知g (x )为偶函数,则g (-3)=g (3),又a =g (e),b =g (ln 2),c =g (-3)=g (3),∴g (3)<g (e)<g (ln 2),故c <a <b .答案 D【训练】.已知f (x )=1+x -sin x ,则f (2),f (3),f (π)的大小关系正确的是( )A.f (2)>f (3)>f (π)B.f (3)>f (2)>f (π)C.f (2)>f (π)>f (3)D.f (π)>f (3)>f (2)(2)已知函数f (x )=ln x ,g (x )=12ax 2+2x .①若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;②若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解 ①h (x )=ln x -12ax 2-2x ,x >0. ∴h ′(x )=1x -ax -2.若函数h (x )在(0,+∞)上存在单调减区间,则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x ,所以只要a >G (x )min .(*)又G (x )=⎝ ⎛⎭⎪⎫1x -12-1, 所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞).②由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x ,所以a ≥G (x )max .又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4], 因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1, 所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x, ∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x≤0, 当且仅当x =4时等号成立.(***)∴h (x )在[1,4]上为减函数.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞. 规律方法 1.已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围.2.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.3.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.【训练】 (2018·郑州质检)若函数f (x )=13x 3-32x 2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________.(2018·兰州模拟)已知函数f (x )=12x 2-2a ln x +(a -2)x .(1)当a =-1时,求函数f (x )的单调区间;(2)是否存在实数a ,使函数g (x )=f (x )-ax 在(0,+∞)上单调递增?若存在,求出a 的取值范围;若不存在,说明理由.解 (1)当a =-1时,f (x )=12x 2+2ln x -3x ,则f ′(x )=x +2x -3=x 2-3x +2x =(x -1)(x -2)x. 当0<x <1或x >2时,f ′(x )>0,f (x )单调递增;当1<x <2时,f ′(x )<0,f (x )单调递减.∴f (x )的单调增区间为(0,1)和(2,+∞),单调减区间为(1,2).(2)假设存在实数a ,使g (x )=f (x )-ax 在(0,+∞)上是增函数,∴g ′(x )=f ′(x )-a =x -2a x -2≥0恒成立.即x 2-2x -2a x≥0在x ∈(0,+∞)上恒成立. ∴x 2-2x -2a ≥0当x >0时恒成立,∴a ≤12(x 2-2x )=12(x -1)2-12恒成立.又φ(x )=12(x -1)2-12,x ∈(0,+∞)的最小值为-12. ∴当a ≤-12时,g ′(x )≥0恒成立.又当a =-12,g ′(x )=(x -1)2x当且仅当x =1时,g ′(x )=0. 故当a ∈⎝ ⎛⎦⎥⎤-∞,-12时,g (x )=f (x )-ax 在(0,+∞)上单调递增.解析 因为f (x )=1+x -sin x ,所以f ′(x )=1-cos x , 当x ∈(0,π]时,f ′(x )>0,所以f (x )在(0,π]上是增函数,所以f (π)>f (3)>f (2).答案 D9.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23. (1)求a 的值;(2)求函数f (x )的单调区间.解 (1)由f (x )=x 3+ax 2-x +c ,得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1, 解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),令f ′(x )>0,解得x >1或x <-13;令f ′(x )<0,解得-13<x <1.所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1.。
【高中数学】导数与函数的单调性
=ex(x+1),当 x∈(0,+∞)时,f′(x)>0,∴函数 f(x)=xex 在(0,+∞)上为增函数;对于 C,
高中数学学科
f′(x)=3x2-1,令 f′(x)>0,得 x>
3或 x<-
3,∴函数
f(x) = x3 - x
在
-∞,-
3 3
和
3
3
3,+∞ 3
上单调递增;对于
D,f′(x)=-1+1=-x-1,令
-∞,-4
即 f(x)的单调递增区间是
3 ,(0,+∞).
3.下列函数中,在(0,+∞)上为增函数的是( )
A.f(x)=sin 2x
B.f(x)=xex
C.f(x)=x3-x
D.f(x)=-x+ln x
kπ-π,kπ+π
解析:选 B 对于 A,f(x)=sin 2x 的单调递增区间是 4
4 (k∈Z);对于 B,f′(x)
x
x
f′(x)>0,得
0<x<1,
∴
函数 f(x)=-x+ln x 在区间(0,1)上单调递增.综上所述,应选 B.
4.已知函数 f(x)=x2+2cos x,若 f′(x)是 f(x)的导函数,则函数 f′(x)的图象大致是( )
解析:选 A 设 g(x)=f′(x)=2x-2sin x,g′(x)=2-2cos x≥0,所以函数 f′(x)在 R
ax2
a
由 f′(x)=ax-1<0,得 0<x<1,
ax2
a
1,+∞
0,1
∴函数 f(x)在 a
上单调递增,在 a 上单调递减.
高中数学学科
综上所述,当 a<0 时,函数 f(x)在(0,+∞)上单调递增;
函数的单调性与导数-图课件
通过图示方式深入探讨函数的单调性单调性
定义
函数单调性是指函数在 定义域内逐渐增大或逐 渐减小的趋势。
单调递增的函数图像
函数图像由左下向右上 倾斜。
单调递减的函数图像
函数图像由左上向右下 倾斜。
如何判断函数的单调性
一阶导数与函数单调性的关系
当函数的一阶导数永远大于零时,函数递增; 当一阶导数永远小于零时,函数递减。
二阶导数与函数凹凸性的关系
当函数的二阶导数大于零时,函数凹;当二 阶导数小于零时,函数凸。
导数与函数单调性的应用
1 极值问题
利用导数找出函数的 极值点,从而解决实 际问题。
2 函数最大值最小
值问题
导数能够帮助我们判断函数的单调性和凹凸 性。
如何应用导数解决实际问题
导数不仅仅是理论工具,还可以解决许多实 际问题。
学习建议
1 深入理解导数的概念
掌握导数的定义和性质,加深对导数与函数关系的理解。
2 多做练习题
通过大量的练习题巩固导数与函数单调性的知识。
通过导数的性质,求 出函数的最大值和最 小值。
3 拐点问题
使用导数的变化来确 定函数的拐点。
实例分析
对给定函数F(x)进行单调性分析
通过分析函数F(x)的导数,确定函数F(x)在不同 区间的单调性。
利用导数求函数的最值
运用导数的概念和性质,求出函数的最大值和 最小值。
总结与思考
函数单调性与导数的关系
(完整版)导数与函数单调性
a 0
a 0
4
4a 2
0
a
1或a
1
a
1
当a 1时f ( x)在R上单调递增
(2)解:f ( x) ax2 2x a
由题设知f ( x)在(2,)上单调递增
f ( x) 0对x (2,)恒成立,
即ax2 2x a 0在x (2,)上恒成立
a
2 x2
x
1
在x
(2,
)上
恒
5 a 4 时f ( x)在(2, )上单调递增
5
方法总结
(1)已知函数f(x)在某个区间上的单调性, 求参数的取值范围时,将问题转化为导数 f'(x)在区间上大于等于0(或小于等于0) 恒成立。
(2)不等式恒成立问题,可转化为求最值问 题
巩固练习
1. f ( x) x3 ax2 x 6 在(0,1)上单调递减, 求a的 取 值 范 围
x
x
x
令f ( x) 2( x 1)(x 1) 0得 1 x 0或x 1 x
令f ( x) 2( x 1)(x 1) 0得0 x 1或x 1 x
函数f ( x)的单调递增区间是(1,0)和(1,)
函数f ( x)的单调递减区间是(,1)和(0,1)
方法总结
求可导函数f(x)单调区间的一般方法和步骤如下: ⑴确定函数f(x)的定义区间; ⑵求函数f(x)的导数f'(x); ⑶令f'(x)>0,所得x的范围(区间)为函数f(x) 的单调增区间;令f'(x)<0,得单调减区间.
令f '( x) 0得x
函数的单调递增区间是(,)
综上,当m 0时,单增区间是(1 m,1 m) 单减区间是(- ,1 m)和(1 m, )
导数与函数单调性的关系
.
导数与函数的单调性的关系
㈠与为增函数的关系。
能推出为增函数,但反之不一定。
如函数
在上单调递增,但,∴是为增函数的充分不必要条件。
㈡时,与为增函数的关系。
若将的根作为分界点,因为规定,即抠去了分界点,此时为增函数,就一定有。
∴当时,是为增函数的充分必要条件。
㈢与为增函数的关系。
为增函数,一定可以推出,但反之不一定,因为,即为或。
当函数在某个区间内恒有,则为常数,函数不具有单调性。
∴
是为增函数的必要不充分条件。
函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。
因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。
但在实际应用中还会遇到端点的讨论问题,要谨慎处理。
;.。
2 第2讲 导数与函数的单调性
第2讲 导数与函数的单调性1.函数的单调性与导数的关系(1)函数f (x )在(a ,b )内可导,且f ′(x )在(a ,b )任意子区间内都不恒等于0,当x ∈(a ,b )时. f ′(x )≥0⇔函数f (x )在(a ,b )上单调递增; f ′(x )≤0⇔函数f (x )在(a ,b )上单调递减.(2)f ′(x )>0(<0)在(a ,b )上成立是f (x )在(a ,b )上单调递增(减)的充分条件. [提醒]利用导数研究函数的单调性,要在定义域内讨论导数的符号.判断正误(正确的打“√”,错误的打“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) 答案:(1)× (2)√函数f (x )=cos x -x 在(0,π)上的单调性是( ) A .先增后减 B .先减后增 C .增函数D .减函数解析:选D.因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D.(教材习题改编)函数f (x )的导函数f ′(x )有下列信息: ①f ′(x )>0时,-1<x <2; ②f ′(x )<0时,x <-1或x >2; ③f ′(x )=0时,x =-1或x =2. 则函数f (x )的大致图象是( )解析:选C.根据信息知,函数f (x )在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.(教材习题改编)函数f (x )=e x -x 的单调递增区间是________. 解析:因为f (x )=e x -x ,所以f ′(x )=e x -1, 由f ′(x )>0,得e x -1>0,即x >0. 答案:(0,+∞)已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是________. 解析:f ′(x )=3x 2-a ≥0,即a ≤3x 2,又因为x ∈[1,+∞),所以a ≤3,即a 的最大值是3. 答案:3利用导数判断(证明)函数的单调性[典例引领](2017·高考全国卷Ⅰ节选)已知函数f (x )=e x (e x -a )-a 2x .讨论f (x )的单调性.【解】 (分类讨论思想)函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)单调递增. ②若a >0,则由f ′(x )=0得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)单调递增. ③若a <0,则由f ′(x )=0得x =ln ⎝⎛⎭⎫-a2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞单调递增.导数法证明函数f (x )在(a ,b )内的单调性的步骤(1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[通关练习]1.函数f (x )=e 2x +2cos x -4的定义域是[0,2π],则f (x )( ) A .在[0,π]上是减函数,在[π,2π]上是增函数 B .在[0,π]上是增函数,在[π,2π]上是减函数 C .在[0,2π]上是增函数 D .在[0,2π]上是减函数解析:选C.由题意可得f ′(x )=2e 2x -2sin x =2(e 2x -sin x ). 因为x ∈[0,2π],所以f ′(x )≥2(1-sin x )≥0, 所以函数f (x )在[0,2π]上是增函数,故选C. 2.已知函数f (x )=m ln(x +1),g (x )=x x +1(x >-1).讨论函数F (x )=f (x )-g (x )在(-1,+∞)上的单调性.解:F ′(x )=f ′(x )-g ′(x )=m x +1-1(x +1)2=m (x +1)-1(x +1)2(x >-1).当m ≤0时,F ′(x )<0,函数F (x )在(-1,+∞)上单调递减;当m >0时,令F ′(x )<0,得x <-1+1m ,函数F (x )在(-1,-1+1m )上单调递减;令F ′(x )>0,得x >-1+1m ,函数F (x )在(-1+1m ,+∞)上单调递增.综上所述,当m ≤0时,F (x )在(-1,+∞)上单调递减;当m >0时,F (x )在(-1,-1+1m )上单调递减,在(-1+1m,+∞)上单调递增.求函数的单调区间[典例引领](2016·高考北京卷)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4. (1)求a ,b 的值; (2)求f (x )的单调区间.【解】 (1)因为f (x )=x e a -x +bx , 所以f ′(x )=(1-x )e a -x +b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1,解得a =2,b =e. (2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与 1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞). 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).利用导数求函数的单调区间的三种方法(1)当不等式f ′(x )>0或f ′(x )<0可解时,确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从小到大的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间.(3)不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时求导数并化简,根据f ′(x )的结构特征,选择相应的基本初等函数,利用其图象与性质确定f ′(x )的符号,得单调区间.函数f (x )=3+x ln x 的单调递减区间是( )A.⎝⎛⎭⎫1e ,eB.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1e D.⎝⎛⎭⎫1e ,+∞ 解析:选B.因为函数的定义域为(0,+∞)且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得:0<x <1e.故f (x )的单调递减区间是⎝⎛⎭⎫0,1e .函数单调性的应用(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.高考对函数单调性的考查主要有以下两个命题角度: (1)比较大小或解不等式;(2)已知函数单调性求参数的取值范围.[典例引领]角度一 比较大小或解不等式(构造函数法)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1)D .(-∞,+∞)【解析】 由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B. 【答案】 B角度二 已知函数单调性求参数的取值范围已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.【解】 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x -ax -2<0有解.即a >1x 2-2x 有解,设G (x )=1x 2-2x,所以只要a >G (x )min 即可. 而G (x )=(1x -1)2-1,所以G (x )min =-1. 所以a >-1.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )ma x ,而G (x )=(1x -1)2-1,因为x ∈[1,4],所以1x ∈[14,1],所以G (x )ma x =-716(此时x =4),所以a ≥-716,即a 的取值范围是[-716,+∞).1.本例条件变为:若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. 解:由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立, 所以当x ∈[1,4]时,a ≤1x 2-2x 恒成立,又当x ∈[1,4]时,(1x 2-2x )min =-1(此时x =1),所以a ≤-1,即a 的取值范围是(-∞,-1].2.本例条件变为:若h (x )在[1,4]上存在单调递减区间,求a 的取值范围.解:h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x 有解,又当x ∈[1,4]时,(1x 2-2x)min =-1,所以a >-1,即a 的取值范围是(-1,+∞).(1)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式. (2)利用函数的单调性求参数的取值范围的解题思路①由函数在区间[a ,b ]上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间[a ,b ]上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值.[提醒] f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任意一个非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.[通关练习]1.已知函数f (x )=x 3-3x ,若在△ABC 中,角C 是钝角,则( ) A .f (sin A )>f (cos B ) B .f (sin A )<f (cos B ) C .f (sin A )>f (sin B )D .f (sin A )<f (sin B )解析:选A.因为f (x )=x 3-3x ,所以f ′(x )=3x 2-3=3(x +1)(x -1),故函数f (x )在区间(-1,1)上是减函数,又A 、B 都是锐角,且A +B <π2,所以0<A <π2-B <π2,所以sin A <sin ⎝⎛⎭⎫π2-B =cos B ,故f (sin A )>f (cos B ),故选A. 2.已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)若f (x )在(2,+∞)上为单调函数,求实数a 的取值范围.解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知当a ≤0时,f (x )在(0,+∞)上单调递增,符合要求;当a >0时,f (x )在⎝⎛⎭⎫1a ,+∞上单调递减,则2≥1a ,即a ≥12.所以实数a 的取值范围是(-∞,0]∪⎣⎡⎭⎫12,+∞.导数与函数单调性的关系(1)f ′(x )>0(或<0)是f (x )在(a ,b )内单调递增(或递减)的充分不必要条件; (2)f ′(x )≥0(或≤0)是f (x )在(a ,b )内单调递增(或递减)的必要不充分条件.利用导数研究函数的单调性的思路根据函数的导数研究函数的单调性,在函数解析式中含有参数时要进行分类讨论,这种分类讨论首先是在函数的定义域内进行,其次要根据函数的导数等于零的点在其定义域内的情况进行,如果这个点不止一个,则要根据参数在不同范围内取值时,导数等于零的根的大小关系进行分类讨论,在分类解决问题后要整合为一个一般的结论.化归转化思想的应用(1)已知函数f (x )在D 上单调递增求参数的取值范围,常转化为f ′(x )≥0在D 上恒成立,再通过构造函数转化为求最值或图象都不在x 轴下方的问题,已知函数f (x )在D 上单调递减求参数的取值范围,常转化为f ′(x )≤0在D 上恒成立,再通过构造函数转化为求最值或图象都不在x 轴上方的问题.(2)已知函数f (x )在D 上不单调,①将其转化为其导数在该区间不会恒大于零或恒小于零;②构造函数,通过构造函数,把复杂的函数转化为简单的函数.易误防范(1)求单调区间应遵循定义域优先的原则.(2)注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别. (3)利用导数求函数的单调区间时,要正确求出导数等于零的点,不连续点及不可导点. (4)若f (x )在给定区间内有多个单调性相同的区间不能用“∪”连接,只能用“,”隔开或用“和”连接.1.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是( ) A .增函数 B .减函数 C .先增后减D .先减后增解析:选A .在(0,2π)上有f ′(x )=1-cos x >0恒成立,所以f (x )在(0,2π)上单调递增. 2.函数f (x )=axx 2+1(a >0)的单调递增区间是( )A .(-∞,-1)B .(-1,1)C .(1,+∞)D .(-∞,-1)或(1,+∞)解析:选B.函数f (x )的定义域为R ,f ′(x )=a (1-x 2)(x 2+1)2=a (1-x )(1+x )(x 2+1)2.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1). 3.(2018·太原模拟)函数f (x )=e xx的图象大致为( )解析:选B.由f (x )=e xx ,可得f ′(x )=x e x-e xx 2=(x -1)e xx 2,则当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,故选B.4.(2018·四川乐山一中期末)f (x )=x 2-a ln x 在(1,+∞)上单调递增,则实数a 的取值范围为( ) A .a <1 B .a ≤1 C .a <2D .a ≤2解析:选D.由f (x )=x 2-a ln x ,得f ′(x )=2x -ax ,因为f (x )在(1,+∞)上单调递增,所以2x -ax ≥0在(1,+∞)上恒成立,即a ≤2x 2在(1,+∞)上恒成立,因为x ∈(1,+∞)时,2x 2>2,所以a ≤2故选D.5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C.因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝⎛⎭⎫12=b , 又f (x )=f (2-x ), 所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C. 6.函数f (x )=x 4+54x -ln x 的单调递减区间是________.解析:因为f (x )=x 4+54x -ln x ,所以函数的定义域为(0,+∞),且f ′(x )=14-54x 2-1x =x 2-4x -54x 2,令f ′(x )<0,解得0<x <5,所以函数f (x )的单调递减区间为(0,5). 答案:(0,5)7.若f (x )=x sin x +cos x ,则f (-3),f ⎝⎛⎭⎫π2,f (2)的大小关系为________(用“<”连接). 解析:函数f (x )为偶函数,因此f (-3)=f (3). 又f ′(x )=sin x +x cos x -sin x =x cos x ,当x ∈⎝⎛⎭⎫π2,π时,f ′(x )<0.所以f (x )在区间⎝⎛⎭⎫π2,π上是减函数,所以f ⎝⎛⎭⎫π2>f (2)>f (3)=f (-3). 答案:f (-3)<f (2)<f ⎝⎛⎭⎫π28.(2018·张掖市第一次诊断考试)若函数f (x )=x 33-a 2x 2+x +1在区间(12,3)上单调递减,则实数a 的取值范围是________.解析:f ′(x )=x 2-ax +1,因为函数f (x )在区间(12,3)上单调递减,所以f ′(x )≤0在区间(12,3)上恒成立,所以⎩⎪⎨⎪⎧f ′(12)≤0f ′(3)≤0,即⎩⎪⎨⎪⎧14-12a +1≤09-3a +1≤0,解得a ≥103,所以实数a 的取值范围为[103,+∞).答案:[103,+∞) 9.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间.解:(1)因为f (x )=a (x -5)2+6ln x ,故f ′(x )=2a (x -5)+6x. 令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1),由点(0,6)在切线上,可得6-16a =8a -6,解得a =12. (2)由(1)知,f (x )=12(x -5)2+6ln x (x >0), f ′(x )=x -5+6x =(x -2)(x -3)x. 令f ′(x )=0,解得x =2或3.当0<x <2或x >3时,f ′(x )>0;当2<x <3时,f ′(x )<0,故f (x )的单调递增区间是(0,2),(3,+∞),单调递减区间是(2,3).10.已知函数g (x )=13x 3-a 2x 2+2x +5. (1)若函数g (x )在(-2,-1)内为减函数,求a 的取值范围;(2)若函数g (x )在(-2,-1)内存在单调递减区间,求a 的取值范围.解:因为g (x )=13x 3-a 2x 2+2x +5, 所以g ′(x )=x 2-ax +2.(1)法一:因为g (x )在(-2,-1)内为减函数,所以g ′(x )=x 2-ax +2≤0在(-2,-1)内恒成立.所以⎩⎪⎨⎪⎧g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0.解得a ≤-3.即实数a 的取值范围为(-∞,-3].法二:由题意知x 2-ax +2≤0在(-2,-1)内恒成立,所以a ≤x +2x在(-2,-1)内恒成立, 记h (x )=x +2x, 则x ∈(-2,-1)时,-3<h (x )≤-22,所以a ≤-3.(2)因为函数g (x )在(-2,-1)内存在单调递减区间,所以g ′(x )=x 2-ax +2<0在(-2,-1)内有解,所以a <⎝⎛⎭⎫x +2x ma x. 又x +2x≤-2 2. 当且仅当x =2x即x =-2时等号成立. 所以满足要求的a 的取值范围是(-∞,-22).1.(2018·安徽江淮十校第三次联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .1<a ≤2B .a ≥4C .a ≤2D .0<a ≤3解析:选A. 易知函数f (x )的定义域为(0,+∞),f ′(x )=x -9x ,由f ′(x )=x -9x <0,解得0<x <3.因为函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,所以⎩⎪⎨⎪⎧a -1>0,a +1≤3,解得1<a ≤2,选A.2.(2018·豫南九校联考)已知f ′(x )是定义在R 上的连续函数f (x )的导函数,满足f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞)解析:选A.设g (x )=f (x )e 2x ,则g ′(x )=f ′(x )-2f (x )e 2x<0在R 上恒成立,所以g (x )在R 上递减,又因为g (-1)=0,f (x )>0⇔g (x )>0,所以x <-1.3.已知函数f (x )=-ln x +ax ,g (x )=(x +a )e x ,a <0,若存在区间D ,使函数f (x )和g (x )在区间D 上的单调性相同,则a 的取值范围是________.解析:f (x )的定义域为(0,+∞),f ′(x )=-1x +a =ax -1x,由a <0可得f ′(x )<0,即f (x )在定义域(0,+∞)上单调递减,g ′(x )=e x +(x +a )e x =(x +a +1)e x ,令g ′(x )=0,解得x =-(a +1),当x ∈(-∞,-a -1)时,g ′(x )<0,当x ∈(-a -1,+∞)时,g ′(x )>0,故g (x )的单调递减区间为(-∞,-a -1),单调递增区间为(-a -1,+∞).因为存在区间D ,使f (x )和g (x )在区间D 上的单调性相同,所以-a -1>0,即a <-1,故a 的取值范围是(-∞,-1). 答案:(-∞,-1)4.定义在R 上的奇函数f (x ),当x ∈(-∞,0)时f (x )+xf ′(x )<0恒成立,若a =3f (3),b =(log πe)f (log πe),c =-2f (-2),则a ,b ,c 的大小关系为________.解析:设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x ),因为当x ∈(-∞,0)时,f (x )+xf ′(x )<0恒成立,所以此时g ′(x )=f (x )+xf ′(x )<0,即此时函数g (x )=xf (x )在(-∞,0)上单调递减,因为f (x )是奇函数,所以g (x )=xf (x )是偶函数,即当x >0时,函数g (x )=xf (x )单调递增,则a =3f (3)=g (3),b =(log πe)f (log πe)=g (log πe), c =-2f (-2)=g (-2)=g (2),因为0<log πe <1<2<3,所以g (3)>g (2)>g (log πe),即a >c >b .答案:a >c >b5.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x -ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程;(2)判断函数f (x )的单调性.解:(1)因为a =e ,所以f (x )=e x -e x -1,f ′(x )=e x -e ,f (1)=-1,f ′(1)=0.所以当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1.(2)因为f (x )=e x -ax -1,所以f ′(x )=e x -a .易知f ′(x )=e x -a 在(0,+∞)上单调递增.所以当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;当a >1时,由f ′(x )=e x -a =0,得x =ln a ,所以当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0,所以f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.6.(2018·武汉市武昌区调研考试)已知函数f (x )=12x 2+(1-a )x -a ln x . (1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <a 时,f (a +x )<f (a -x ).解:(1)f (x )的定义域为(0,+∞).由已知,得f ′(x )=x +1-a -a x =x 2+(1-a )x -a x =(x +1)(x -a )x. 若a ≤0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增.若a >0,则由f ′(x )=0,得x =a .当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0.此时f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)证明:令g (x )=f (a +x )-f (a -x ),则g (x )=12(a +x )2+(1-a )(a +x )-a ln(a +x )-[12(a -x )2+(1-a )(a -x )-a ln(a -x )]=2x -a ln(a +x )+a ln(a -x ).所以g ′(x )=2-a a +x -a a -x =-2x 2a 2-x 2.当0<x<a时,g′(x)<0,所以g(x)在(0,a)上是减函数.而g(0)=0,所以g(x)<g(0)=0.故当0<x<a时,f(a+x)<f(a-x).。
导数与函数的单调性、极值、最值
[变式训练] (2017·北京卷)已知函数 f(x)=excos x-x. (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)求函数 f(x)在区间0,π2上的最大值和最小值.
解:(1)因为 f(x)=excos x-x,所以 f(0)=1, f′(x)=ex(cos x-sin x)-1,所以 f′(0)=0, 所以 y=f(x)在(0,f(0))处的切线方程为 y=1. (2)f′(x)=ex(cos x-sin x)-1,令 g(x)=f′(x),
考点 2 利用导数求函数的最值(讲练互动) 【例】 (2019·广东五校联考)已知函数 f(x)=ax+ln x,其中 a 为常数. (1)当 a=-1 时,求 f(x)的最大值; (2)若 f(x)在区间(0,e]上的最大值为-3,求 a 的值. 解:(1)易知 f(x)的定义域为(0,+∞), 当 a=-1 时,f(x)=-x+ln x,f′(x)=-1+1x=1-x x, 令 f′(x)=0,得 x=1. 当 0<x<1 时,f′(x)>0;当 x>1 时,f′(x)<0.
由题设知 f′(1)=0,即(1-a)e=0,解得 a=1. 此时 f(1)=3e≠0. 所以 a 的值为 1. (2)f′(x)=[ax2-(2a+1)x+2]ex =(ax-1)(x-2)ex. 若 a>12,则当 x∈(1a,2)时,f′(x)<0; 当 x∈(2,+∞)时,f′(x)>0.
②当 a>0 时,令 f′(x)=0,得 ex=a,即 x=ln a, 当 x∈(-∞,ln a)时,f′(x)<0;
当 x∈(ln a,+∞)时,f′(x)>0, 所以 f(x)在(-∞,ln a)上单调递减,在(ln a,+∞) 上单调递增,故 f(x)在 x=ln a 处取得极小值且极小值为 f(ln a)=ln a,无极大值. 综上,当 a≤0 时,函数 f(x)无极值; 当 a>0 时,f(x)在 x=ln a 处取得极小值 ln a,无极大 值.
导数与函数的单调性-高考数学重难点题型(新高考地区专用)(解析版)
专题3.3 导数与函数的单调性-重难点题型精讲1.函数的单调性与导数的关系条件 恒有 结论函数y =f (x )在区间(a,b)上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数2一般地,如果一个函数在某一范围内导数的绝对值较大,那么在这个范围内函数值变化得快,这时,函数的图象就比较“陡峭”(向上或向下);如果一个函数在某一范围内导数的绝对值较小,那么在这个范围内函数值变化得慢,函数的图象就“平缓”一些. 常见的对应情况如下表所示.【题型1 不含参函数的单调性】 【方法点拨】确定不含参函数的单调性、单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间;(4)由此可得出函数f (x )的单调性;【例1】(2022•扬州开学)下列函数中,在(1,+∞)上为增函数的是( ) A .y =x 3﹣3xB .y =lnx ﹣xC .y =x +4xD .y =x 2﹣3x +1【解题思路】根据题意,依次分析选项中函数的单调性,即可得答案. 【解答过程】解:根据题意,依次分析选项:对于A ,y =x 3﹣3x ,其导数y ′=3x 2﹣3,在区间(1,+∞)上,y ′>0,函数为增函数,符合题意, 对于B ,y =lnx ﹣x ,其导数y ′=1x −1=1−xx ,在区间(1,+∞)上,y ′<0,函数为减函数,不符合题意,对于C ,y =x +4x,其导数y ′=1−4x 2,在区间(1,2)上,y ′<0,函数为减函数,不符合题意, 对于D ,y =x 2﹣3x +1是二次函数,在区间(1,32)上为减函数,不符合题意, 故选:A .【变式1-1】(2022春•湖北期末)函数f (x )=−12x 2﹣lnx 的递减区间为( ) A .(﹣∞,1)B .(0,1)C .(1,+∞)D .(0,+∞)【解题思路】先对函数求导,然后结合导数与单调性关系可求. 【解答过程】解:f ′(x )=﹣x −1x<0,x >0, 故函数的单调递减区间为(0,+∞). 故选:D .【变式1-2】(2022春•长寿区期末)函数f(x)=x −6x −5lnx 的单调递减区间为( ) A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)【解题思路】求出函数的导数,解关于导函数的不等式,求出函数的递减区间即可.【解答过程】解:∵f(x)=x −6x−5lnx ,定义域是(0,+∞),∴f ′(x )=1+6x 2−5x =x 2−5x+6x 2=(x−2)(x−3)x 2,令f ′(x )<0,解得2<x <3, 故f (x )的递减区间是(2,3), 故选:B .【变式1-3】(2022春•吉林期末)函数f (x )=﹣lnx +x 的递增区间是( ) A .(﹣∞,0)∪(1,+∞) B .(﹣∞,0)和(1,+∞)C .(1,+∞)D .(﹣1,+∞)【解题思路】先写出函数的定义域,求导后,再解不等式f '(x )>0,即可.【解答过程】解:因为f (x )=﹣lnx +x ,所以f '(x )=−1x +1,定义域为(0,+∞), 令f '(x )>0,则−1x +1>0,解得x >1, 所以f (x )的递增区间为(1,+∞). 故选:C .【题型2 含参函数的单调性】 【方法点拨】(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 【例2】(2022春•巴宜区校级期末)已知函数f (x )=2x 3﹣ax 2+b . (1)若函数f (x )在x =1处取得极小值﹣4,求实数a ,b 的值; (2)讨论f (x )的单调性. 【解题思路】(1)根据题可得{f ′(1)=0f(1)=−4,解得a ,b .(2)求导并令f ′(x )=0,得x =0或x =a 3,分三种情况:当a =0时,当a <0时,当a >0时,讨论f (x )的单调性.【解答过程】解:(1)f ′(x )=6x 2﹣2ax , 则{f ′(1)=0f(1)=−4,即{6−2a =02−a +b =−4,解得{a =3b =−3.(2)f ′(x )=6x 2﹣2ax =2x (3x ﹣a ), 令f ′(x )=0,得x =0或x =a 3,当a =0时,f ′(x )≥0,f (x )在(﹣∞,+∞)上单调递增,当a <0时,在(﹣∞,a3),(0,+∞)上f ′(x )>0,f (x )单调递增,在(a3,0)上f ′(x )<0,f (x )单调递减,当a >0时,在(﹣∞,0),(a3,+∞)上f ′(x )>0,f (x )单调递增,在(0,a3)上f ′(x )<0,f (x )单调递减,综上所述,当a =0时,f (x )在(﹣∞,+∞)上单调递增,当a <0时,f (x )在(﹣∞,a3),(0,+∞)上单调递增,在(a3,0)上单调递减,当a >0时,f (x )在(﹣∞,0),(a 3,+∞)上单调递增,在(0,a3)上单调递减.【变式2-1】(2022春•满洲里市校级期末)已知函数f (x )=x 2﹣(a +2)x +alnx (a ∈R ). (1)a =﹣2,求函数f (x )在(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.【解题思路】(1)当a =﹣2时,求出f (x )的解析式,对f (x )求导,利用导数的几何意义求出切线斜率,求出f (1),利用点斜式即可求得切线方程;(2)对f (x )求导,再对a 分类讨论,利用导数与单调性的关系求解即可. 【解答过程】解:(1)当a =﹣2时,f (x )=x 2﹣2lnx ,f ′(x)=2x −2x切线的斜率k =f ′(1)=0,f (1)=1,则切线方程为y ﹣1=0,即y =1. (2)函数f (x )的定义域为(0,+∞),且f ′(x)=2x −(a +2)+ax =(2x−a)(x−1)x , ①当a ≤0时,a 2≤0,由f ′(x )>0,得x >1;由f ′(x )<0,得0<x <1. 则函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).②当0<a2<1,即0<a <2时,由f ′(x )>0,得0<x <a2或x >1;由f ′(x )<0,得a2<x <1.则函数f (x )的单调递增区间为(0,a2),(1,+∞), 函数f (x )的单调递减区间为(a2,1).③当a 2=1,即a =2时,f ′(x )≥0恒成立,则函数f (x )的单调递增区间为(0,+∞).④当a2>1,即a >2时,由f ′(x )>0,得0<x <1或x >a 2;由f ′(x )<0,得1<x <a2, 则函数f (x )的单调递增区间为(0,1),(a2,+∞),函数f (x )的单调递减区间为(1,a2). 综上所述,当a ≤0时,函数f (x )在(1,+∞)上单调递增,在(0,1)上单调递减; 当0<a <2时,函数f (x )在(0,a2)和(1,+∞)上单调递增,在(a2,1)上单调递减; 当a =2时,函数f (x )在(0,+∞)上单调递增;当a >2时,函数f (x )在(0,1)和(a 2,+∞)上单调递增,在(1,a 2)上单调递减. 【变式2-2】(2022春•蓝田县期末)已知函数f (x )=alnx ﹣ax ﹣3(a ≠0). (Ⅰ)讨论函数f (x )的单调性;(Ⅱ)当a =﹣1时,证明:在(1,+∞)上,f (x )+2>0. 【解题思路】(Ⅰ)先求导,再分类讨论导函数的符号即可求解;(Ⅱ)构造函数g (x )=f (x )+2,再利用导数求出g (x )的最值,从而得证. 【解答过程】解:(Ⅰ)∵f ′(x)=a x −a =a(1−x)x ,x >0, ①当a >0时,x ∈(0,1),f ′(x )>0;x ∈(1,+∞),f ′(x )<0, ∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; ②当a <0时,x ∈(0,1),f ′(x )<0;x ∈(1,+∞),f ′(x )>0, ∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.综合可得:当a >0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a <0时,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增. (Ⅱ)证明:当a =﹣1时,令g (x )=f (x )+2=﹣lnx +x ﹣1,x >1, ∴g ′(x)=−1x +1=x−1x >0, ∴g (x )在(1,+∞)上单调递增, ∴g (x )>g (1)=0,故在(1,+∞)上,f (x )+2>0.【变式2-3】(2022春•南沙区期末)已知函数f (x )=2lnx ﹣ax 2﹣2(a ﹣1)x +1(a ∈R ).(1)求函数f(x)的单调区间;(2)若函数f(x)有两个不同的零点x1,x2,求实数a的取值范围.【解题思路】(1)先对函数求导,然后结合导数与单调性关系对a进行分类讨论,进而可求函数的单调区间;(2)结合(1)中单调性的讨论及函数零点存在条件可建立关于a的不等式,结合函数的性质解不等式可求a的范围.【解答过程】解:(1)f′(x)=2x−2ax﹣2(a﹣1)=−2ax2−2(a−1)x+2x=−2(ax−1)(x+1)x,因为x>0,x+1>0,故当a≤0时,f′(x)>0,此时f(x)在(0,+∞)上单调递增,当a>0时,x>1a时,f′(x)<0,0<x<1a时,f′(x)>0,故f(x)在(0,1a )上单调递增,在(1a,+∞)上单调递减,综上,当a≤0时,f(x)的单调递增区间为(0,+∞),没有单调递减区间,当a>0时,f(x)的单调递增区间为(0,1a ),单调递减区间为(1a,+∞);(2)当a≤0时,f(x)的单调递增区间为(0,+∞),没有单调递减区间,此时函数最多一个零点,不符合题意;当a>0时,f(x)的单调递增区间为(0,1a ),单调递减区间为(1a,+∞),又x→+∞时,f(x)→﹣∞,x→0且x>0时,f(x)→﹣∞,若使f(x)有2个零点,则f(1a )=−2lna+1a−1=2ln1a+1a−1>0,令t=1a,则t>0,即2lnt+t﹣1>0,令g(t)=2lnt+t﹣1,则g(t)在t>0时单调递增且g(1)=0,所以t>1,所以0<a<1,故a的取值范围为(0,1).【题型3 利用函数的单调性比较大小】【方法点拨】根据题目条件,构造函数,利用导数研究函数的单调性,利用函数的单调性来比较大小,即可得解. 【例3】(2022春•眉山期末)已知实数x ,y ,z 满足e y lnx ﹣ye x =0,ze x −e x ln 1x =0,若y >1,则( ) A .x >y >zB .y >x >zC .y >z >xD .x >z >y【解题思路】首先根据题中的条件得到e y y+e z z=0,从而得到z <0;再根据x >1时,x >lnx 得到e y y>e xx,结合函数g(x)=e xx (x >1)的单调性得到y >x ,从而得到y >x >z . 【解答过程】解:由e y lnx ﹣ye x =0,得e y y =e x lnx ;由ze x −e zln 1x =0,得e z z =e x ln1x,两式相加得e y y+e z z=0,因为y >1,e y >0,所以e z z <0,又因为e z >0,所以z <0;因为e yy =e x lnx,y >1,所以e xlnx>0,即lnx >0,所以x >1.令f (x )=x ﹣lnx (x >1),则f ′(x)=1−1x =x−1x , 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )=x ﹣lnx 在(1,+∞)内单调递增,即x >lnx , 所以e y y=e x lnx>e x x,即e y y>e x x,又令g(x)=e x x (x >1),则g ′(x)=xe x −e x x 2=(x−1)e xx 2(x >1),当x >1时,g ′(x )>0,所以g(x)=e xx在(1,+∞)内单调递增,所以由e y y>e x x,得到y >x .所以y >x >z . 故选:B .【变式3-1】(2022春•绍兴期末)已知a =e 0.2﹣1,b =ln 1.2,c =tan0.2,其中e =2.71828⋯为自然对数的底数,则( ) A .c >a >bB .a >c >bC .b >a >cD .a >b >c【解题思路】观察a =e 0.2﹣1,b =ln 1.2,c =tan0.2,发现都含有0.2,把0.2换成x ,自变量在(0,1)或其子集范围内构造函数,利用导数证明其单调性,比较a ,b ,c 的大小. 【解答过程】解:令f(x)=e x −1−tanx =cosxe x −cosx−sinx cosx ,0<x <π4,令g(x)=cos xe x﹣cos x﹣sin x,则g′(x)=(e x﹣1)(cos x﹣sin x),当0<x<π4时,g′(x)>0,g(x)单调递增,又g(0)=1﹣1=0,所以g(x)>0,又cos x>0,所以f(x)>0,在(0,π4)成立,所以f(0.2)>0,即a>c,令ℎ(x)=ln(x+1)−x,ℎ′(x)=1x+1−1=−xx+1,ℎ(x)在x∈(0,π2)为减函数,所以h(x)<h(0)=0,即ln(x+1)<x,令m(x)=x−tanx,m′(x)=1−1cos2x,m(x)在x∈(0,π2)为减函数,所以m(x)<m(0)=0,即x<tan x,所以ln(x+1)<x<tanx,x∈(0,π2)成立,令x=0.2,则上式变为ln(0.2+1)<0.2<tan0.2,所以b<0.2<c所以b<c,所以b<c<a.故选:B.【变式3-2】(2022春•渭南期末)已知函数f(x)=sin x+cos x﹣2x,a=f(﹣π),b=f(20),c=f(ln2),则a,b,c的大小关系是()A.a>c>b B.a>b>c C.b>a>c D.c>b>a【解题思路】利用导数判断函数f(x)的单调性,进而可比较函数值的大小.【解答过程】解:因为函数f(x)=sin x+cos x﹣2x,所以f′(x)=cos x﹣sin x﹣2=√2cos(x+π4)﹣2<0,所以f(x)为R上的减函数,因为﹣π<ln2<1=20,所以f(﹣π)>f(ln2)>f(20),即a>c>b.故选:A.【变式3-3】(2022•山东开学)已知0<a<4,0<b<2,0<c<3,且16lna=a2ln4,4lnb=b2ln2,9lnc=c2ln3,则()A.c>b>a B.c>a>b C.a>c>b D.b>c>a【解题思路】根据等式关系进行转化,然后构造函数f(x)=lnxx2,研究函数的单调性和图象,利用数形结合进行判断即可.【解答过程】解:由16lna =a 2ln 4,4lnb =b 2ln 2,9lnc =c 2ln 3, 得lna a 2=ln442,lnb b 2=ln222,lnc c 2=ln332,构造函数f (x )=lnxx 2, 得f (a )=f (4),f (b )=f (2),f (c )=f (3), f ′(x )=1x ⋅x 2−2xlnxx 4=x−2xlnx x 4=1−2lnxx 3, 由f ′(x )=0得1﹣2lnx =0,得lnx =12,即x =√e当x >√e 时,1﹣2lnx <0,即f ′(x )<0,则f (x )在(√e ,+∞)上为减函数, 当0<x <√e 时,1﹣2lnx >0,即f ′(x )>0,则f (x )在(0,√e )上为增函数, 则f (2)>f (3)>f (4), 即f (b )>f (c )>f (a ), ∵f (x )在(0,√e )上为增函数, ∴√e >b >c >a >0, 故选:D .【题型4 利用函数的单调性解不等式】 【方法点拨】要充分挖掘条件关系,恰当构造函数,与题设形成解题链条,利用导数研究新函数的单调性,从而转化求 解不等式.【例4】(2021秋•重庆月考)已知f (x )是定义在R 上的可导函数,其导函数为f ′(x ),且f '(x )﹣2f (x )>0,f (12)=e (e 为自然对数的底数),则关于x 的不等式f (lnx )<x 2的解集为( )A .(0,e2)B .(0,√e )C .(1e,e2)D .(e2,√e )【解题思路】令F (x )=f(x)e x ,求导分析单调性,不等式f (lnx )<x 2,可转化为f(lnx)e2lnx <f(12)e 2×12,即g (lnx )<g (12),即可得出答案. 【解答过程】解:令g (x )=f(x)e x ,g ′(x )=e 2x f′(x)−2e 2x f(x)e 4x =f′(x)−2f(x)e 2x>0,所以g (x )在R 上单调递增, 不等式f (lnx )<x 2,则f(lnx)x 2<1,又f (12)=e ,所以f(lnx)e 2lnx<f(12)e 2×12,即g (lnx )<g (12),所以lnx <12, 解得0<x <√e , 故选:B .【变式4-1】(2022春•新邵县期末)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f '(x )g (x )﹣f (x )g '(x )>0,且f (2)=0,则不等式f (x )g (x )>0的解集是( ) A .(﹣∞,﹣2)∪(0,2) B .(﹣2,0)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(2,+∞)【解题思路】令F (x )=f(x)g(x),求导分析F (x )的单调性,根据题意可得F (x )的奇偶性,由f (2)=0,得F (2)=0,则不等式f (x )g (x )>0的解集为F (x )>F (2)解集,即可得出答案. 【解答过程】解:令F (x )=f(x)g(x), F ′(x )=f′(x)g(x)−f(x)g′(x)g 2(x),因为当x <0时,f '(x )g (x )﹣f (x )g '(x )>0, 所以当x <0时,F ′(x )>0, 所以F (x )在(﹣∞,0)上为增函数,因为f (x ),g (x )分别是定义在R 上的奇函数和偶函数, 所以f (﹣x )=﹣f (x ),g (﹣x )=g (x ),所以F(﹣x)=f(−x)g(−x)=−f(x)g(x)=−F(x),所以F(x)在(﹣∞,+∞)上为奇函数,所以F(x)在(0,+∞)上为增函数,因为f(2)=0,所以F(2)=f(2)g(2)=0,所以不等式f(x)g(x)>0的解集为F(x)>0的解集,所以F(x)>F(2),所以x>2或﹣2<x<0,故选:D.【变式4-2】(2022春•辽宁月考)已知函数f(x)在R上存在导函数f'(x),对∀x∈R满足f(x)+f(﹣x)=2x2,在x∈(0,+∞)上,f'(x)<2x若f(2﹣m)﹣f(m)≥4﹣4m,实数m的取值范围是()A.[﹣1,1]B.(﹣∞,1]C.[1,+∞)D.(﹣∞,﹣1]∪[1,+∞)【解题思路】构造函数g(x)=f(x)﹣x2,推出g(x)为奇函数,再由导数判断g(x)的单调性,把不等式f(2﹣m)﹣f(m)≥4﹣4m转化为关于m的一次不等式求解.【解答过程】解:∵f(x)+f(﹣x)=2x2,∴f(x)﹣2x2+f(﹣x)=0,令g(x)=f(x)﹣x2,则g(﹣x)+g(x)=f(﹣x)﹣x2+f(x)﹣x2=0,∴函数g(x)为奇函数.∵x∈(0,+∞)时,g′(x)=f′(x)﹣2x<0,故函数g(x)在(0,+∞)上是单调递减函数,则函数g(x)在(﹣∞,0)上也是单调递减函数.由f(0)=0,得g(0)=0,可得g(x)在R上是单调递减.则f(2﹣m)﹣f(m)≥4﹣4m⇔f(2﹣m)﹣(2﹣m)2≥f(m)﹣m2,即g(2﹣m)≥g(m),∴2﹣m≤m,解得m≥1,∴实数m的取值范围是[1,+∞).故选:C .【变式4-3】(2022春•赣州期末)已知定义在R 上的函数f (x ),其导函数为f '(x ).若f (x )=﹣f (﹣x )﹣cos x ,且当x ≤0时,f ′(x)−12sinx >0,则不等式f (π﹣x )>f (x )+cos x 的解集为( )A .(−∞,π2)B .(π2,+∞) C .(﹣∞,π) D .(π,+∞) 【解题思路】构造函数g(x)=f(x)+12cosx ,然后判断g (x )的奇偶性,然后再由导数分析g (x )的单调性,结合单调性及奇偶性可求.【解答过程】解:设g(x)=f(x)+12cosx ,因为f (x )=﹣f (﹣x )﹣cos x ,所以f (﹣x )=﹣f (x )﹣cos x ,所以g(−x)=f(−x)+12cosx =−f (x )﹣cos x +12cos x =﹣f (x )−12cos x ,即g (x )为奇函数,而g ′(x)=f ′(x)−12sinx >0,则g (x )在R 上单调递增,f (π﹣x )>f (x )+cos x ,即f(π−x)−12cosx >f(x)+12cosx ⇒f(π−x)+12cos(π−x)>f(x)+12cosx ,即g(π−x)>g(x)⇒π−x >x ⇒x <π2,所以x 的范围为(﹣∞,π2). 故选:A .【题型5 函数单调性与导函数图象的关系】【例5】(2022•赫山区校级开学)如图所示是函数f (x )的导函数f ′(x )的图象,则下列判断中正确的是( )A .函数f (x )在区间(﹣3,0)上是减函数B .函数f (x )在区间(﹣3,2)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(﹣3,2)上是单调函数【解题思路】根据函数y=f(x)的导函数f′(x)>0时单调递增,f'(x)<0时单调递减,依次判断选项即可.【解答过程】解:由函数y=f(x)的导函数f′(x)的图像知,A.x∈(﹣3,0)时,f'(x)<0,函数f(x)单调递减,故A正确;B.x∈(﹣3,2)时,f'(x)<0或f'(x)>0,所以函数f(x)先单调递减,再单调递增,故B错误;C.x∈(0,2)时,f'(x)>0,函数f(x)单调递增,故C错误;D.x∈(﹣3,2)时,f'(x)<0或f'(x)>0,所以函数f(x)先单调递减,再单调递增,不是单调函数,故D错误.故选:A.【变式5-1】(2022春•平顶山期末)已知函数y=f(x)的部分图象如图所示,且f'(x)是f(x)的导函数,则()A.f'(﹣1)=f'(﹣2)<0<f'(1)<f'(2)B.0>f'(2)>f'(1)>f'(﹣1)=f'(﹣2)C.f'(2)<f'(1)<0<f'(﹣1)=f'(﹣2)D.f'(2)<f'(1)<0<f'(﹣2)<f'(﹣1)【解题思路】根据函数图象的特征,判断函数的单调性,进而判断导数的变化情况,即可得答案.【解答过程】解:由函数图象可知,当x≤0时,函数y=f(x)匀速递增,故f′(x)是一个大于0的常数,当x≥0时,函数y=f(x)递减,且递减幅度越来越快,∴f′(x)<0,且y=f′(x)单调递减,则f′(2)<f′(1)<0<f′(﹣1)=f′(﹣2),故选:C.【变式5-2】(2022春•莆田期末)定义在(﹣1,3)上的函数y=f(x),其导函数y=f'(x)图象如右图所示,则y=f(x)的单调递减区间是()A.(﹣1,0)B.(﹣1,1)C.(0,2)D.(2,3)【解题思路】利用导函数的图像,即可得出答案.【解答过程】解:由f′(x)的图像可知在(0,2)上,f′(x)<0,f(x)单调递减,故选:C.【变式5-3】(2022春•遵义期末)函数f(x)的导函数为f'(x)的图象如图所示,关于函数f(x),下列说法不正确的是()A.函数在(﹣1,1),(3,+∞)上单调递增B.函数在(﹣∞,﹣1),(1,3)上单调递减C.函数存在两个极值点D.函数有最小值,但是无最大值【解题思路】由导函数的图像,分析原函数f(x)的单调性,最值,极值,即可得出答案.【解答过程】解:由图像可知在(﹣∞,﹣1),(1,3)上,f′(x)<0,f(x)单调递减,在(﹣1,1),(3,+∞)上,f′(x)>0,f(x)单调递增,故A、B正确;在x=﹣1,x=3处函数f(x)取得极小值,在x=1处函数f(x)取得极大值,故C错误;函数的最小值为f(﹣1)和f(3)中的最小值,因为x→+∞时,函数f(x)→+∞,所以函数f(x)无最大值,故D正确,故选:C.【题型6 根据函数的单调性求参数】【方法点拨】根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增(减)函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0(f′(x)≤0)且在(a,b)内的任一非空子区间上,f′(x)不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.【例6】(2022•安徽开学)已知函数f(x)=4cosx−13mx3在[3π4,2π]上单调递增,则实数m的取值范围为()A.(−∞,−16√39π]B.(−∞,−16√29π2]C.(−∞,−32√39π]D.(−∞,−32√29π2]【解题思路】由函数的单调性可知导数f′(x)≥0在[3π4,2π]上恒成立,分离参数后,利用导数求g(x)=−4sinxx2的最小值即可得解.【解答过程】解:由题意得,f′(x)=﹣4sin x﹣mx2,又f′(x)≥0在[3π4,2π]上,则﹣4sin x﹣mx2≥0,∴−4sinxx2≥m.令g(x)=−4sinxx2,可知当x∈[3π4,π)时,g(x)<0,当x∈[π,2π]时,g(x)≥0,当x∈[3π4,π)时,g′(x)=4x3(2sinx−xcosx)>0,∴函数g(x)在[3π4,π)上单调递增,∴g(x)min=g(3π4)=−32√29π2,则m≤−32√29π2,∴实数m的取值范围为(−∞,−32√29π2).故选:D.【变式6-1】(2022春•清远期末)已知函数f (x )=alnx +2x 在[1,+∞)上单调递增,则实数a 的最小值为( )A .﹣2B .2C .﹣1D .1【解题思路】求出原函数的导函数,问题转化为a ≥﹣2x 在x ∈[1,+∞)时恒成立,再求出﹣2x 在[1,+∞)上的最大值得答案.【解答过程】解:由f (x )=alnx +2x ,得f ′(x )=a x +2,∵函数f (x )=alnx +2x 在[1,+∞)上单调递增,∴a x +2≥0,即a ≥﹣2x 在x ∈[1,+∞)时恒成立, 而﹣2x 在[1,+∞)上的最大值为﹣2,∴a ≥﹣2,即实数a 的最小值为﹣2.故选:A .【变式6-2】(2022春•中山市校级月考)设函数f(x)=13x 3−27lnx 在区间[a ﹣1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .[4,+∞)C .(﹣∞,2]D .(0,3] 【解题思路】利用导数求函数的单调递减区间,再结合区间的包含关系,列式求实数a 的取值范围.【解答过程】解:f′(x)=x 2−27x =x 3−27x ,x >0,令f '(x )≤0,得0<x ≤3, 因为函数f(x)=13x 3−27lnx 在区间[a ﹣1,a +1]上单调递减,所以{a −1>0a +1≤3,故1<a ≤2, 所以a 的取值范围为(1,2].故选:A .【变式6-3】(2022春•道里区校级月考)若函数f (x )=(x 2﹣ax ﹣a )e x 在区间(﹣2,0)内单调递减,则实数a 的取值范围是( )A .[1,+∞)B .[0,+∞)C .(﹣∞,0]D .(﹣∞,1]【解题思路】结合导数与单调性关系可把问题转化为f ′(x )=[x 2+(2﹣a )x ﹣2a ]e x ≤0在(﹣2,0)上恒成立,分离常数后可求.【解答过程】解:由题意得f ′(x )=[x 2+(2﹣a )x ﹣2a ]e x ≤0在(﹣2,0)上恒成立,因为e x >0,即x2+(2﹣a)x﹣2a≤0在(﹣2,0)上恒成立,所以(x﹣a)(x+2)≤0在(﹣2,0)上恒成立,所以x﹣a≤0在(﹣2,0)上恒成立,所以a≥x在(﹣2,0)上恒成立,所以a≥0.故选:B.。
导数与函数的单调性
导数与函数的单调性函数是数学中的重要概念,而导数是研究函数变化率的工具。
在本文中,我们将探讨导数与函数的单调性之间的关系。
一、导数的定义与计算方法导数描述了函数在某一点的变化率。
对于函数f(x),其在点x处的导数可以用以下公式表示:f'(x) = lim(h→0) [f(x+h) - f(x)] / h导数可以理解为函数在某一点的瞬时变化率,也即函数的切线斜率。
二、导数与函数的单调性函数的单调性指的是函数递增或递减的性质。
导数与函数的单调性之间有如下关系:1. 若在某一区间上,函数的导数恒大于零(即导数大于零),则该函数在该区间上是递增的。
这是因为导数大于零意味着函数的变化率始终为正,即函数逐渐增大。
2. 若在某一区间上,函数的导数恒小于零(即导数小于零),则该函数在该区间上是递减的。
这是因为导数小于零意味着函数的变化率始终为负,即函数逐渐减小。
3. 若在某一区间上,函数的导数恒为零(即导数等于零),则该函数在该区间上是常数函数。
这是因为导数为零意味着函数的变化率为零,即函数在该区间上不变化。
基于以上关系,我们可以通过计算函数的导数来确定其在某一区间上的单调性。
三、示例考虑函数f(x) = x^2,我们将通过求导的方式来分析其单调性。
1. 计算导数:f'(x) = lim(h→0) [f(x+h) - f(x)] / h= lim(h→0) [(x+h)^2 - x^2] / h= lim(h→0) (x^2 + 2xh + h^2 - x^2) / h= lim(h→0) (2xh + h^2) / h= lim(h→0) 2x + h= 2x2. 根据导数的计算结果,得知当2x > 0时,即x > 0时,函数f(x)的导数大于零,即函数递增;当2x < 0时,即x < 0时,函数f(x)的导数小于零,即函数递减。
综上所述,对于函数f(x) = x^2,其在负无穷到0的区间上递减,在0到正无穷的区间上递增。
最经典总结-导数与函数的单调性
最经典总结-导数与函数的单调性第11讲:导数与函数的单调性在高考中,了解函数的单调性与导数的关系以及利用导数研究函数的单调性是非常重要的。
多项式函数不超过三次的单调区间的求解也是常见的考点,通常占5~12分。
函数的单调性可以通过导数来判断。
如果在某个区间内,函数y=f(x)的导数f'(x)>0,则在这个区间上,函数y=f(x)是增加的;如果在某个区间内,函数y=f(x)的导数f'(x)<0,则在这个区间上,函数y=f(x)是减少的。
导数与函数单调性的关系是:f'(x)>0(或f'(x)<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;f'(x)≥0(或f'(x)≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件(f'(x)=不恒成立)。
自测题:1.函数f(x)=x^3-6x^2的单调递减区间为( )A。
(0,4)B。
(0,2)C。
(4,+∞)D。
(-∞,0)解析:f'(x)=3x^2-12x=3x(x-4),由f'(x)<0,得0<x<4,因此单调递减区间为(0,4)。
答案:A。
2.函数f(x)=cosx-x在(0,π)上的单调性是( )A。
先增后减B。
先减后增C。
增函数D。
减函数解析:f'(x)=-sinx-1<0,在(0,π)上是减函数,因此选D。
答案:D。
3.已知f(x)=x^3-ax在[1,+∞)上是增函数,则a的最大值是( )A。
1B。
2C。
3D。
4解析:f'(x)=3x^2-a≥0,即a≤3x^2,又因为x∈[1,+∞),所以a≤3,即a的最大值是3.答案:C。
题型一:判断或证明函数的单调性(基础拿分题,自主练透)例题:已知函数f(x)=ax^3+x^2(a∈R)在x=-处取得极值。
1.确定a的值;2.若g(x)=f(x)ex,讨论g(x)的单调性。
最经典总结-导数与函数的单调性
第11讲 导数与函数的单调性◆高考导航·顺风启程◆[知识梳理]函数的单调性如果在某个区间内,函数y =f (x )的导数f ′(x ) > 0,则在这个区间上,函数y =f (x )是增加的;如果在某个区间内,函数y =f (x )的导数f ′(x ) < 0,则在这个区间上,函数y =f (x )是减少的.[知识感悟]导数与函数单调性的关系(1)f ′(x )>0(或f ′(x )<0)是f (x )在(a ,b )内单调递增(或递减)的充分不必要条件; (2)f ′(x )≥0(或f ′(x )≤0)是f (x )在(a ,b )内单调递增(或递减)的必要不充分条件(f ′(x )=0不恒成立).[知识自测]1.f (x )=x 3-6x 2的单调递减区间为( ) A .(0,4) B .(0,2) C .(4,+∞)D .(-∞,0)[解析] f ′(x )=3x 2-12x =3x (x -4),由f ′(x )<0,得0<x <4,∴单调递减区间为(0,4). [答案] A2.函数f (x )=cos x -x 在(0,π)上的单调性是( ) A .先增后减 B .先减后增 C .增函数D .减函数 [解析] ∵f ′(x)=-sin x -1<0. ∴f (x )在(0,π)上是减函数,故选D. [答案] D3.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则a 的最大值是 ________ .[解析] f ′(x )=3x 2-a ≥0,即a ≤3x 2, 又∵x ∈[1,+∞),∴a ≤3,即a 的最大值是3. [答案] 3题型一 判断或证明函数的单调性(基础拿分题,自主练透)(高考重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性. [解] (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝⎛⎭⎫-43=0, 即3a ·169+2·⎝⎛⎭⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝⎛⎭⎫12x 3+x 2e x, 故g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =⎝⎛⎭⎫12x 3+52x 2+2x e x =12x (x +1)(x +4)e x . 令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.方法感悟导数法证明函数f (x )在(a ,b )内的单调性的步骤 1.求f ′(x );2.确认f ′(x )在(a ,b )内的符号;3.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.提醒:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.【针对补偿】1.已知函数f (x )=-a ln x +2a 2x+x (a ≠0),讨论f (x )的单调性.[解] 依题意得函数的定义域为(0,+∞). 因为f ′(x )=-a x -2a 2x 2+1=x 2-ax -2a 2x 2=(x +a )(x -2a )x 2(x >0).①当a >0时,由f ′(x )>0,及x >0得x >2a ; 由f ′(x )<0,及x >0得0<x <2a .所以当a >0时,函数f (x )在(2a ,+∞)上单调递增,在(0,2a )上单调递减. ②当a <0时,由f ′(x )>0及x >0得x >-a ; 由f ′(x )<0及x >0得0<x <-a .所以当a <0时,函数f (x )在(0,-a )上单调递减, 在(-a ,+∞)上单调递增.综上所述,当a <0时,函数f (x )在(0,-a )上单调递减,在(-a ,+∞)上单调递增. 当a >0时,函数f (x )在(2a ,+∞)上单调递增,在(0,2a )上单调递减. 题型二 求函数的单调区间(重点保分题,共同探讨)(2016·天津高考节选)设函数f (x )=x 3-ax -b ,x ∈R ,其中a ,b ∈R ,求f (x )的单调区间.[解] 由f (x )=x 3-ax -b ,可得f ′(x )=3x 2-a . 下面分两种情况讨论:(1)当a ≤0时,有f ′(x )=3x 2-a ≥0恒成立, 所以f (x )的单调递增区间为(-∞,+∞). (2)当a >0时,令f ′(x )>0,得x >3a 3或x <-3a3; 令f ′(x )<0,得-3a 3<x <3a 3. 所以f (x )的单调递减区间为⎝⎛⎭⎫-3a 3,3a 3,单调递增区间为⎝⎛⎭⎫-∞,-3a 3,3a 3,+∞.方法感悟求函数的单调区间的“两个”方法方法一1.确定函数y =f (x )的定义域; 2.求导数y ′=f ′(x );3.解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; 4.解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.方法二1.确定函数y =f (x )的定义域;2.求导数y ′=f ′(x ),令f ′(x )=0,解此方程,求出在定义区间内的一切实根; 3.把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间;4.确定f ′(x )在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性. 【针对补偿】2.(2016·北京卷)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. [解] (1)因为f (x )=x e a -x +bx , 所以f ′(x )=(1-x )e a -x +b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1.即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e. (2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知, f ′(x )与1-x +e x-1同号.令g (x )=1-x +e x -1, 则g ′(x )=-1+e x -1. 所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞). 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).题型三 已知函数的单调性求参数的范围(高频考点题,多角突破) 考向一 函数f (x )在R 上单调递增(减)求参数取值范围 1.已知函数f (x )=x 3-ax -1. (1)讨论f (x )的单调性;(2)若f (x )在R 上为增函数,求实数a 的取值范围. [解] (1)f ′(x )=3x 2-a .①当a ≤0时,f ′(x )≥0,所以f (x )在(-∞,+∞)上为增函数. ②当a >0时,令3x 2-a =0得x =±3a 3; 当x >3a 3或x <-3a 3时,f ′(x )>0; 当-3a 3<x <3a 3时,f ′(x )<0. 因此f (x )在⎝⎛⎭⎫-∞,-3a 3,⎝⎛⎭⎫3a 3,+∞上为增函数,在⎝⎛⎭⎫-3a 3,3a 3上为减函数. 综上可知,当a ≤0时,f (x )在R 上为增函数; 当a >0时,f (x )在⎝⎛⎭⎫-∞,-3a 3,⎝⎛⎭⎫3a 3,+∞上为增函数,在⎝⎛⎭⎫-3a 3,3a 3上为减函数. (2)因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立. 因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数,所以a ≤0,即a 的取值范围为(-∞,0].考向二 函数f (x )在区间A 上是单调递增(减)函数求参数范围2.函数f (x )同1题不变,若f (x )在区间(1,+∞)上为增函数,求a 的取值范围. [解] 因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3, 即a 的取值范围为(-∞,3].考向三 函数f (x )的单调区间是A 求参数3.函数f (x )同1题不变,若f (x )的单调递减区间为(-1,1),求a 的值. [解] 由1题可知,f (x )的单调递减区间为⎝⎛⎭⎫-3a 3,3a 3,∴3a 3=1,即a =3. 考向四 函数f (x )在区间A 上不单调求参数范围4.函数f (x )同1题不变,若f (x )在区间(-1,1)上不单调,求a 的取值范围. [解] ∵f (x )=x 3-ax -1,∴f ′(x )=3x 2-a . 由f ′(x )=0,得x =±3a3(a ≥0).∵f (x )在区间(-1,1)上不单调, ∴0<3a3<1,得0<a <3, 即a 的取值范围为(0,3).考向五 函数f (x )在区间A 上存在单调递增(递减)区间,求参数的取值范围5.设f (x )=-13x 3+12x 2+2ax ,若f (x )在⎝⎛⎭⎫23,+∞上存在单调递增区间,则a 的取值范围为______.[解析] f (x )=-13x 3+12x 2+2ax ,由题意知f ′(x )=-x 2+x +2a >0在⎝⎛⎭⎫23,+∞上有解, 即2a >(x 2-x )min ,令g (x )=x 2-x ,g (x )>g ⎝⎛⎭⎫23=-29.即a >-19.所以a 的取值范围为⎝⎛⎭⎫-19,+∞. [答案] ⎝⎛⎭⎫-19,+∞ 方法感悟已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.提醒:f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.【针对补偿】3.(2018·西安模拟)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. [解] (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x ,所以只要a >G (x )min 即可.而G (x )=⎝⎛⎭⎫1x -12-1,所以G (x )min =-1.所以a >-1.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4), 所以a ≥-716,即a 的取值范围是⎣⎡⎭⎫-716,+∞.◆牛刀小试·成功靠岸◆课堂达标(十四)[A 基础巩固练]1.(2018·九江模拟)函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)[解析] 函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=e x +(x -3)e x =(x -2)·e x .由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2.[答案] D2.(高考课标全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)[解析] 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x <1,所以k ≥1.即k 的取值范围为[1,+∞).[答案] D3.(2017·浙江)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )[解析] 原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D. [答案] D4.(2018·湖南省永州市三模)已知函数f (x )=x 3+ax 2+bx -1在区间[0,1]上单调递减,m =a +b ,则m 的取值范围是( )A.⎝⎛⎦⎤-∞,-32 B.⎣⎡⎭⎫-32,+∞ C.(]-∞,-3D .[-3,+∞)[解析] 依题意,f ′(x )=3x 2+2ax +b ≤0,在[0,1]上恒成立.只需要⎩⎪⎨⎪⎧f ′(0)=b ≤0f ′(1)=3+2a +b ≤0即可,∴3+2a +2b ≤0,∴m =a +b ≤-32.∴m 的取值范围是(-∞,-32].[答案] A5.(2018·长治模拟)函数f (x )=x 2+2m ln x (m <0)的单调递减区间为( ) A .(0,+∞) B .(0,-m )C .(-m ,+∞)D .(0,-m )∪(-m ,+∞)[解析] 由条件知函数f (x )的定义域为(0,+∞). 因为m <0,则f ′(x )=2(x +-m )(x --m )x .当x 变化时,f ′(x ),f (x )的变化情况如下表:∞). [答案] B6.(2018·山西省长治二中、晋城一中、康杰中学、临汾一中、忻州一中五校)定义在(-∞,0)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=6,则不等式f (lg x )<1lg x+5的解集为( )A .(10,10)B .(0,10)C .(10,+∞)D .(1,10)[解析] 由x 2f ′(x )+1>0,得f ′(x )+1x 2>0,设g (x )=f (x )-1x -5,则g ′(x )=f ′(x )+1x 2,故g (x )在(0,+∞)上单调递增,又g (1)=0,故g (x )<0的解集为(0,1),即f (x )<1x +5的解集为(0,1),由0<lg x <1解得1<x <10,则所求不等式的解集为(1,10),故选D.[答案] D7.(2018·青岛模拟)若函数f (x )=x 3+bx 2+cx +d 的单调减区间为(-1,3),则b +c = ________ .[解析] f ′(x )=3x 2+2bx +c ,由题意知-1<x <3是不等式3x 2+2bx +c <0的解集,∴-1,3是f ′(x )=0的两个根,∴b =-3,c =-9,b +c =-12.[答案] -128.(2018·九江第一次统考)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为______.[解析] f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,则2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立, 因为⎝⎛⎭⎫-x +1x max =83,所以2a ≥83,即a ≥43. [答案] ⎣⎡⎭⎫43,+∞9.(2018·衡水中学模拟)已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为 ________ . [解析] 设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减, ∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (-∞,-1)∪(1,+∞)10.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.[解] (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5).[B 能力提升练]1.(2018·湛江一模)若函数f (x )=x +bx (b ∈R )的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( )A .(-2,0)B .(0,1)C .(1,+∞)D .(-∞,-2)[解析] 由题意知,f ′(x )=1-b x 2,∵函数f (x )=x +bx (b ∈R )的导函数在区间(1,2)上有零点,∴当1-bx 2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4),令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意.[答案] D2.(2018·河南新乡三模)定义在(0,+∞)上的函数f (x )满足f (x )>2(x +x )f ′(x ),其中f ′(x )为f (x )的导函数,则下列不等式中,一定成立的是( )A .f (1)>f (2)2>f (3)2B.f (1)2>f (4)3>f (9)4C .f (1)<f (2)2<f (3)3D. f (1)2<f (4)3<f (9)4[解析] ∵f (x )>2(x +x )f ′(x ),∴f (x )>2x (x +1)f ′(x ),∴f (x )12x >(x +1)f ′(x ). ∴f ′(x )(x +1)-f (x )12x<0,∴⎝ ⎛⎭⎪⎫f (x )x +1′<0, 设g (x )=f (x )x +1,则函数g (x )在(0,+∞)上递减, 故g (1)>g (4)>g (9),∴f (1)2>f (4)3>f (9)4, 当f (x )=-x (x +1)时,满足f (x )>2(x +x )f ′(x ),易得f (1)=-2,f (2)2=-1-22,f (3)3=-1-33, ∴f (1)<f (2)2<f (3)3, 当f (x )=-x (x +1)时,满足f (x )>2(x +x )f ′(x ),易得f (1)=-2,f (2)2=-1-2,f (3)3=-1-3, ∴f (1)>f (2)2>f (3)3,故A ,C ,D 都错. [答案] B3.已知函数f (x )=3x a-2x 2+ln x (a >0).若函数f (x )在[1,2]上为单调函数,则a 的取值范围是 ________ .[解析] f ′(x )=3a -4x +1x, 若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a≤4x -1x 在[1,2]上恒成立. 令h (x )=4x -1x,则h (x )在[1,2]上单调递增, 所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a≤3,又a >0,所以0<a ≤25或a ≥1. [答案] ⎝⎛⎦⎤0,25∪[1,+∞) 4.若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是______.[解析] ∵f (x )=x 2-e x -ax ,∴f ′(x )=2x -e x -a ,∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a ≤2ln 2-2.[答案] (-∞,2ln 2-2]5.(2018·山东省德州市四月二模文科)已知函数f (x )=12x 2-2a ln x +(a -2)x ,a ∈R . (1)当a =-1时,求函数f (x )的极值;(2)当a <0时,讨论函数f (x )单调性;(3)是否存在实数a ,对任意的m ,n ∈(0,+∞),且m ≠n ,有f (m )-f (n )m -n>a 恒成立?若存在,求出a 的取值范围;若不存在,说明理由.[解] (1)当a =-1时,f (x )=12x 2+2ln x -3x , f ′(x )=x +2x -3=x 2-3x +2x =(x -1)(x -2)x. 当0<x <1或x >2时,f ′(x )>0,f (x )单调递增;当1<x <2时,f ′(x )<f (x )单调递减,所以x =1时,f (x )极大值=f (1)=-52; x =2时,f (x )极小值=f (2)=2ln 2-4.(2)当a <0时,f ′(x )=x -2a x+(a -2) =x 2+(a -2)x -2a x =(x -2)(x +a )x, ①当-a >2,即a <-2时,由f ′(x )>0可得0<x <2或x >-a ,此时f (x )单调递增; 由f ′(x )<0可得2<x <-a ,此时f (x )单调递减;②当-a =2,即a =-2时,f ′(x )≥0在(0,+∞)上恒成立,此时f (x )单调递增; ③当-a <2,即-2<a <0时,由f ′(x )>0可得0<x <-a 或x >2,此时f (x )单调递增;由f ′(x )<0可得-a <x <2,此时f (x )单调递减.综上:当a <-2时,f (x )增区间为(0,2),(-a ,+∞),减区间为(2,-a ); 当a =-2时,f (x )增区间为(0,+∞),无减区间;当-2<a <0时,f (x )增区间为(0,-a ),(2,+∞),减区间为(-a,2).(3)假设存在实数a ,对任意的m ,n ∈(0,+∞),且m ≠n ,有f (m )-f (n )m -n>a 恒成立, 不妨设m >n >0,则由f (m )-f (n )m -n>a 恒成立可得:f (m )-am >f (n )-an 恒成立, 令g (x )=f (x )-ax ,则g (x )在(0,+∞)上单调递增,所以g ′(x )≥0恒成立,即f ′(x )-a ≥0恒成立,∴x -2a x+(a -2)-a ≥0, 即x 2-2x -2a x≥0恒成立,又x >0, ∴x 2-2x -2a ≥0在x >0时恒成立,∴a ≤⎣⎡⎦⎤12(x 2-2x )min =-12, ∴当a ≤-12时,对任意的m ,n ∈(0,+∞), 且m ≠n ,有f (m )-f (n )m -n>a 恒成立. [C 尖子生专练]已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围. [解] (1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x. 当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1);当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2, ∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x. ∴g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数,即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0. 当g ′(t )<0,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立,由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0,即m <-5且m <-9,即m <-9;由g ′(3)>0,即m >-373. 所以-373<m <-9. 即实数m 的取值范围是⎝⎛⎭⎫-373,-9.。
导数与函数单调性的关系
一、利用导数判断函数的单调性
函数 y=f(x)在某个区间内可导,则 (1)若 f′(x)>0,则 f(x)在这个区间内单调递增. (2)若 f′(x)<0,则 f(x)在这个区间内单调递减. (3)若 f′(x)=0,则 f(x)在这个区间内是常数函数.
例1、已知函数f(x)=x-kln x,常数k>0. (1)若x=1是函数f(x)的一个极值点,求f(x)的单调区间; (2)若函数g(x)=xf(x)在区间(1,2)上是增函数,求k的取 值范围.
值点,f'(1)=0⇒k=1,经检验k=1为所求,∴f'(x)=1- 1 .令f'(x)>0⇒x∈(1,+
x
∞),再令f'(x)<0⇒x∈(0,1),∴函数f(x)的单调递增区间是(1,+∞),单调 递减区间是(0,1).
名师诊断
专案突破
对点集训
决胜高考
(2)∵函数g(x)=xf(x)在区间(1,2)上是增函数,∴g'(x)=2x-k(1+ln x)≥0
三、解答题
17.已知函数f(x)=x-kln x,常数k>0. (1)若x=1是函数f(x)的一个极值点,求f(x)的单调区间;
(2)若函数g(x)=xf(x)在区间(1,2)上是增函数,求k的取值范围.
【解析】(1)定义域为(0,+∞),f'(x)=1- k ,因为x=1是函数f(x)的一个极
x
变式训练 2、(2014·兰州模拟)已知函数 f(x)=-x2+ax-ln x(a∈R). (1)当 a=3 时,求函数 f(x)在21,2上的最大值和最小值; (2)当函数 f(x)在21,2上单调时,求 a 的取值范围.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数与函数的单调性一. 复合函数求导1.常用的导数公式及求导法则:①0'=C ,(C 是常数) ②x x cos )(sin '= ③x x sin )(cos '-=④1')(-=n n nx x ⑤a a a x x ln )('=⑥x x e e =')(⑦a x x a ln 1)(log '=⑧x x 1)(ln '= ⑨x x 2'cos 1)(tan = ⑩(xx 2'sin 1)cot -= 2.法则: ''')]([)]([)]()([x g x f x g x f ±=±,)()()()()]()(['''x f x g x g x f x g x f +=)()()()()(])()([2'''x g x f x g x g x f x g x f -= 3.复合函数求导法则:x y '=u y '•x u '若y= f (u ),u=)(x ϕ⇒ y= f [)(x ϕ],则x y '=)()(x u f ϕ''4、求下列函数的导数 (1)y =32)12(1-x(2)4)31(1x y -=x u x u y y '''⋅=x u x u )'31()'(4-⋅=-)3(45-⋅-=-u55)31(1212---==x u 5)31(12x -=. (3)51xxy -=的导数. 解:511⎪⎭⎫⎝⎛-=x x y ,'541151'⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=-x x x x y 254)1()1(1151x x x x x ----⋅⎪⎭⎫ ⎝⎛-=-254)1(1151x x x -⋅⎪⎭⎫ ⎝⎛-=-5654)1(51---=x x . (4)y=x 21-cos xy ˊ=(x 21-)ˊcos x -x 21-sin x=x xcos 212)2(---x 21-sin x=xx 21cos ---x 21-sin x(5)y=ln (x +21x +)y ˊ=211x x ++• [1+(21x +)ˊ]=211x x ++•⎪⎪⎭⎫ ⎝⎛++21221x x=211xx ++•2211xx x +++=211x+(6))1ln(++=x x y 解 利用复合函数求导法求导,得)1(11])1[ln(222'++++='++='x x x x x x y ])1(1[1122'++++=x x x])1(1211[11222'+++++=x x x x11]11[11222+=++++=x x x x x .(8)y =4131+x(7))13sin(ln -=x y . (8)122sin -=x xy (9))2(log 2-x a二. 利用导数判断函数的单调性1、导数与函数图象1.设f′(x)是函数f(x)的导数,y=f′(x)的图象如下图所示,则y=f(x)的图象最有可能是下图中的()解析:由y=f′(x)的图象得当-1<x<1时,f′(x)>0,所以y=f(x)在(-1,1)上单调递增.因为当x<-1和x>1时,f′(x)<0,所以y=f(x)在(-∞,-1)和(1,+∞)上分别单调递减.综合选项得只有B正确.2.设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是().解析:根据y=f′(x)的正负与y=f(x)的单调性的关系,即可求解.答案:D3.已知函数y =xf ′(x )的图象如图(1)所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )[解析] 当0<x <1时xf ′(x )<0∴f ′(x )<0,故y =f (x )在(0,1)上为减函数当x >1时xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此否定A 、B 、D 故选C.4. 函数f (x )=ax 3+bx 2-2x (a 、b ∈R ,且ab ≠0)的图象如图所示,且x 1+x 2<0,则有( )A .a >0,b >0B .a <0,b <0C .a <0,b >0D .a >0,b <0 解析:由题意知f ′(x )=3ax 2+2bx -2.令f ′(x )=0,则x 1、x 2为f ′(x )=0的两个根,即x 1+x 2=-2b 2×3a=-b3a <0,x 1x 2=-23a <0.所以a >0,b >0,选A.2、利用导数求函数的单调区间1.已知函数y =f (x )(x ∈R)上任一点(x 0,f (x 0))处的切线斜率k =(x 0-2)(x 0+1)2,则该函数的单调递减区间为( )A .[-1,+∞)B .(-∞,2]C .(-∞,-1)和(1,2)D .[2,+∞)[解析] 令k ≤0得x 0≤2,由导数的几何意义可知,函数的单调减区间为(-∞,2].2.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( )A.⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2B.⎝ ⎛⎭⎪⎫-π2,0和⎝ ⎛⎭⎪⎫0,π2 C.⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫π2,π D.⎝ ⎛⎭⎪⎫-π2,0和⎝ ⎛⎭⎪⎫π2,π [答案] A[解析] y ′=x cos x ,当-π<x <-π2时, cos x <0,∴y ′=x cos x >0,当0<x <π2时,cos x >0,∴y ′=x cos x >0. 3.求函数y =ln(x 2-x -2)的单调区间[解] 函数y =ln(x 2-x -2)的定义域为(2,+∞)∪(-∞,-1),令f (x )=x 2-x -2,f ′(x )=2x -1<0,得x <12, ∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1).3、利用导数讨论(求)函数中的参数的取值范围1. 若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围为 ( )A .a ≥1B .a =1C .a ≤1D .0<a <1 解析:因为f ′(x )=3x 2-2ax -1,f (x )在(0,1)内单调递减, 所以f ′(0)≤0,f ′(1)≤0,所以a ≥1.答案:A2. 已知f (x )=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c ( )A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152 解析:本题考查导数的基本应用和不等式的性质.由已知得当-1≤x ≤2时,f ′(x )=3x 2+2bx +c ≤0恒成立,所以f ′(-1)≤0且f ′(2)≤0,即⎩⎨⎧c -2b ≤-3,4b +c ≤-12,所以b +c =12(c -2b )+12(4b +c )≤12×(-3)+12×(-12)=-152. 答案:B3.“0<a ≤15”是“函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当0<a ≤15时,2()2(1)2f x ax a x =+-+在区间1(,1]a-∞-上为减函数,由(-∞,4] ⊂1(,1]a -∞-可得函数f(x)在(-∞,4]上也为减函数,反之不成立.所以0<a ≤15是函数2()2(1)2f x ax a x =+-+在区间(-∞,4]上为减函数的充分不必要条件. 答案:A4.设f (x )=ax 3+bx 2+cx +d (a >0),则f (x )为R 上增函数的充要条件是( )A .b 2-4ac >0B .b >0,c >0C .b =0,c >0D .b 2-3ac <0[答案] D[解析] ∵a >0,f (x )为增函数, ∴f ′(x )=3ax 2+2bx +c >0恒成立,∴Δ=(2b )2-4×3a ×c =4b 2-12ac <0,∴b 2-3ac <0.5.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (a )≤f (b )B .bf (b )≤f (a )C .af (b )≤bf (a )D .bf (a )≤af (b )[答案] C[解析] ∵xf ′(x )+f (x )≤0,且x >0,f (x )≥0, ∴f ′(x )≤-f (x )x ,即f (x )在(0,+∞)上是减函数, 又0<a <b ,∴af (b )≤bf (a ).6.已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,实数a 的取值范围为________.[解析] 由已知a >1+ln xx 在区间(1,+∞)内恒成立. 设g (x )=1+ln x x ,则g ′(x )=-ln xx 2<0 (x >1), ∴g (x )=1+ln xx 在区间(1,+∞)内单调递减,∴g (x )<g (1),∵g (1)=1,∴1+ln x x<1在区间(1,+∞)内恒成立,∴a ≥1.7. 已知函数f (x )=x 3-kx 在区间(-3,-1)上不单调,则实数k 的取值范围是 .解析:f ′(x )=3x 2-k .令f ′(x )=0,则x =±k3.因为在(-3,-1)上函数不单调,所以-3<-k3<-1,即3<k <27. 答案:3<k<278.如果函数f(x)=2x2-ln x在定义域的一个子区间(k-1,k+1)上不是单调函数,则实数k的取值范围是()A.k>32B.k<-12C.-12<k<32D.1≤k<32解析:f′(x)=4x-1x,x>0.因为(k-1,k+1)是定义域的一个子区间,所以k-1≥0,k≥1.由题意令f′(x)=0,则4x-1x=0,则x=12.所以12∈(k-1,k+1),即k-1<12<k+1,解得-12<k<32.又k≥1,所以1≤k<32.故选D.9.函数f(x)=-x3+bx在区间(0,1)上单调递增,并且方程f(x)=0的根都在区间[-2,2]内,则b的取值范围是.解析:因为f′(x)=-3x2+b,所以(0)0,(1)30,f bf b'=≥⎧⎨'=-+≥⎩即b≥3.因为2()()f x x x b=--,又f(x)=0的根在[-2,2]内,则b≤0或02,则b≤4,所以b≤4.故b的取值范围为[3,4]四、综合练习1.求证:方程x-12sin x=0只有一个根x=0.[证明]设f(x)=x-12sin x,x∈(-∞,+∞),则f′(x)=1-12cos x>0,∴f(x)在(-∞,+∞)上是单调递增函数.而当x=0时,f(x)=0,∴方程x-12sin x=0有唯一的根x=0.2.(2010·新课标全国文,21)设函数f (x )=x (e x -1)-ax 2.(1)若a =12,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围. [解析] (1)a =12时,f (x )=x (e x-1)-12x 2, f ′(x )=e x -1+xe x -x =(e x -1)(x +1).当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,-1],[0,+∞)上单调递增,在[-1,0]上单调递减. (2)f (x )=x (e x -1-ax ).令g (x )=e x -1-ax ,则g ′(x )=e x -a .若a ≤1,则当x ∈(0,+∞)时,g ′(x )>0,g (x )为增函数,而g (0)=0,从而当x ≥0时g (x )≥0,即f (x )≥0.当a >1,则当x ∈(0,ln a )时,g ′(x )<0,g (x )为减函数,而g (0)=0,从而当x ∈(0,ln a )时g (x )<0,即f (x )<0.综合得a 的取值范围为(-∞,1].3.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11). (1)求a 、b 的值; (2)讨论函数f (x )的单调性. [解析] (1)求导得f ′(x )=3x 2-6ax +3b .由于f (x )的图象与直线12x +y -1=0相切于点(1,-11),所以f (1)=-11,f ′(1)=-12,即⎩⎨⎧1-3a +3b =-113-6a +3b =-12,解得a =1,b =-3. (2)由a =1,b =-3得f ′(x )=3x 2-6ax +3b =3(x 2-2x -3)=3(x +1)(x -3).4.已知函数f(x)=x ln(1+x)-a(x+1),其中a为常数.(1)当x∈[1,+∞)时,f′(x)>0恒成立,求a的取值范围;(2)求g(x)=f′(x)-axx+1的单调区间.解:(1)由题意知,f′(x)=ln(1+x)+x1+x -a>0,则a<ln(1+x)+x1+x.令h(x)=ln(1+x)+x1+x ,则h′(x)=11+x+1(1+x)2.当x∈[1,+∞)时,h′(x)>0,即h(x)在[1,+∞)上单调递增.所以a<h(1)=12+ln 2,所以a的取值范围是⎝⎛⎭⎪⎫-∞,12+ln 2.(2)由(1)易知,g(x)=ln(1+x)+(1-a)xx+1-a,x∈(-1,+∞),则g′(x)=11+x+1-a(x+1)2=x+2-a(x+1)2.①当a>1时,x∈(-1,a-2)时,g′(x)<0,g(x)在(-1,a-2)上单调递减;x∈(a-2,+∞)时,g′(x)>0,g(x)在(a-2,+∞)上单调递增.②当a≤1时,x∈(-1,+∞),g′(x)>0,g(x)在(-1,+∞)上单调递增.综上:当a>1时,g(x)的增区间为(a-2,+∞),减区间为(-1,a-2);当a≤1时,g(x)的增区间为(-1,+∞).令f′(x)>0,解得x<-1或x>3;又令f′(x)<0,解得-1<x<3.综上所述:所以当x∈(-∞,-1)时,f(x)是增函数;当x∈(3,+∞)时,f(x)也是增函数;当x∈(-1,3)时,f(x)是减函数.。