七年级数学二元一次方程组解应用题练习
人教版七年级下册数学第八章二元一次方程组应用题训练
人教版七年级下册数学第八章二元一次方程组应用题训练1.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品,要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共多少块?2.甲乙二人相距21千米,二人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可以追上乙.求二人的平均速度各是多少?3.在某工程建设中,有A、B两种卡车搬运沙土.据了解,3辆A种卡车与2辆B种卡车一次共可搬运沙土38立方米,2辆A种卡车与3辆B种卡车一次共可搬运沙土42立方米,求每辆A种卡车和每辆B 种卡车分别可搬运沙土多少立方米?4.泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.5.我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励,现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.求甲、乙两种奖品的单价.6.某厂计划生产A,B两种产品600件,已知两种产品的成本价和销售价如下表:(1)若该厂生产600件A,B两种产品时,恰好用了2300元,求两种产品各生产了多少件?(2)若该厂销售完600件A,B两种产品时,利润恰好是成本价的30%,应如何安排生产?此时利润为多少元?(利润=销售价-成本价)7.嘉琪记录了她连续两天陪妈妈去水果店买水果的账目:第一天买了2斤香蕉和1斤苹果,共花了11元,第二天买了1斤香蕉和3斤苹果,共花了43元.已知两天中,香蕉和苹果的单价相同.她的记录是否正确?若正确,请算出香蕉和苹果的单价,若错误,请说明理由.8.我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?9.海南省今年海南西瓜收成良好,小华家也喜获丰收,小华家今年种植“黑美人”西瓜5亩,“无籽”西瓜20亩,共收70000千克,按市场价“黑美人”每千克2.4元,“无籽”西瓜每千克4元出售,收入264000元.问小华家今年收获的“黑美人”西瓜和“无籽”西瓜亩产各多少千克?10.为了抗击新冠病毒,保护学生和教师的生命安全,新希望中学花费34200元购进甲、乙两种医用口罩共计1000盒,甲、乙两种口罩的售价分别是30元/盒、36元/盒;甲、乙两种口罩的数量分别是20个/盒、30个/盒.(1)求新希望中学甲、乙两种口罩各购进了多少盒.(2)按照教育局要求,学校必须储备两周的用量,新希望中学师生共计800人,每人每天2个口罩,问购买的口罩数量是否能满足教育局的要求?11.近年来,新能源汽车深受人们的喜爱,某4S店上周销售A型新能源汽车2辆,销售B型新能源汽车3辆,销售额为98万元;本周销售A型新能源汽车3辆,销售B型新能源汽车1辆,销售额为91万元;这两周这两款型号的新能源车销售单价不变,求出每辆A型车和B型车的售价各为多少万元?12.我国很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人?多少辆车?13.北京冬奥会和冬残奥会期间,吉祥物冰嫩嫩和雪融融成了名副其实的国民顶流.最近,小李从某网站上发现正在预售A,B两种印有吉祥物图案的挂件.如果定购3件A种挂件和2件B种挂件,需支付360元;如果定购2件A种挂件和3件B种挂件,需支付370元.求这两种挂件每件的售价.14.2022年北京冬奥会和冬残奥会的吉祥物“冰墩墩”和“雪容融”深受大家的喜爱.奥林匹克官方旗舰店有出售“冰墩墩”和“雪容融”的手办玩具和摆件,玩具A和摆件B是其中的两款产品.据了解,购买2个玩具A和3个摆件B用了410元,购买3个玩具A和2个摆件B用了420元.求每个玩具A和每个摆件B点的价格.15.《孙子算经》是我国古代重要的数学著作,其中有如下问题:今有人盗库绢,不知所失几何,但闻草中分绢,人得六匹,盈六匹;人得七匹,不足七匹.问人、绢各几何?大意是:有几个盗贼偷了仓库里的绢,不知道具体偷盗了多少匹绢,只听盗贼在草丛中分绢时说:“每人分6匹,会剩下6匹;每人分7匹,还差7匹.”问有多少盗贼?多少匹绢?16.垃圾分类投放可以变废为宝,某市有甲,乙两个发电厂,每焚烧1吨垃圾甲发电厂比乙发电厂多发40度电,甲发电厂焚烧20吨垃圾,比乙发电厂焚烧30吨垃圾少发1 800度电,求焚烧1吨垃圾,甲发电厂和乙发电厂各发多少度电?17.5月19日是“中国旅游日”,为拓宽学生视野,某校组织去井冈山开展研学旅行活动.在此次活动中,小明、小亮等同学随家长一同到某游乐园游玩.已知成人票每张35元,学生票按成人票五折优惠.他们一共12人,门票共需350元.(1)小明他们一共去了几个成人,几个学生?(2)如果团体票(16人或16人以上)按成人票六折优惠,请你帮助小明算一算,用哪种方式购票更省钱?18.《算法统宗》是中国古代数学名著之一,其中记载了这样的数学问题:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,把绳子折成三折来量,井外余绳4尺;把绳子折成四折来量,井外余绳1尺,问绳长、井深各是多少尺?”请问此问题中的绳长、井深各是多少尺?19.为了进一步丰富校园活动,学校准备购买一批足球和篮球,购买2个篮球和3个足球共需425元,购买3个篮球和4个足球所花的钱一样多.(1)求篮球和足球的单价各是多少?(2)若学校购买15个篮球8个足球共需多少元?20.某酒店客房部有三人间通客房、双人间普通客房,收费标准为三人间150元/间,双人间140元/间.为了吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团优惠期间到该酒店入住,住了三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去1310元,则该旅游团住了三人间普通客房和双人间普通客房各多少间?。
二元一次方程组经典应用题及答案
实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决——行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发 2.5 小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是 6千米/每小时,乙的速度是 3.6千米/每小时。
两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20 (x-y)=28014 (x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱 5.2万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需9周完成,需工钱 4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:1三:列二元一次方程组解决——商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(注:获利=售价—进价)求该商场购进A、B两种商品各多少件;解:设购进A的数量为x件、购进 B的数量为y件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略四:列二元一次方程组解决——银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为 2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X+Y=4000X*2.25%*3+Y*2.7%*3=303.75解得:X=1500,Y=2500。
初中七年级数学列二元一次方程组解应用题专项训练(含答案)
第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
二元一次方程组应用题30道专项练习
二元一次方程组应用题1、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,求原来的两位数。
2、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:项目第一次第二次甲种货车辆数/辆 2 5乙种货车辆数/辆 3 6累计运货吨数/吨 15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问:货车应付运费多少元3、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。
问一工多少名学生、多少辆汽车。
4、某校举办物理竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分,则这次物理竞赛中,及格的学生有多少人,不及格的学生有多少人。
5、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,两小时后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度。
6、甲乙两地相距60千米,A、B两人骑自行车分别从甲乙两地相向而行,如果A 比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。
求A、B两人骑自行车的速度7、某公司去年的总收入比总支出多50万元,今年比去年的总收入增加10%,总支出节约20%,今年的总收入比总支出多100万元.求去年的总收入与总支出。
8、王大伯承包了25亩地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元.其中茄子每亩用了1700元,获得纯利2400元;种西红柿每亩用了1800元,获得纯利2600元,问王大伯一共获纯利多少元]9、小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明即返回原地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.请求出两人的速度.10、2004年岁末的印度洋海啸,牵动着世界人民的心.某国际医疗救援队用甲、乙两种原料为手术后的病人配置营养品.每克甲原料含单位的蛋白质和1单位的铁质,每克乙原料含单位蛋白质和单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?11、车间里有90 名工人,每人每天能隆产螺母24 个或螺栓15 个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺母正好配套12、某区中学生足球联赛共8 轮(即每个队均需要赛8 场),胜一场得 3分,平一场得1 分,负一场得0 分.在这次足球联赛中,雄师队踢平的场数是所负场所的2 倍,共得17 分.你知道雄师队胜了几场球吗13、10 年前,母亲的年龄是儿子的6 倍;10 年后,母亲的年龄是儿子的2 倍.求母子现在的年龄.14、已知一艘轮船载重量是500 吨,容积是1000 立方米.现有甲、乙两种货待装,甲种货物每吨体积是7 立方米,乙种货物每吨体积是2 立方米,求怎么样货才能最大限度的利用船的载重量和体积?15、某市现有42万人口,计划一年后城镇人口增加%,农村人口增加%,这样全市人口将增加1%。
二元一次方程组应用题练习
▪ (2)工厂满负荷全面转产,是否可以如期 完成任务?
• 8;某铁路桥长1000米,现有 一列火车从桥上通过,测得该
火车从开始上桥到完全过桥共 用了1分钟,整列火车完全在桥 上的时间共40秒,求火车的速 度和长度?
❖ 9;实验中学组织爱心捐款活动,九年级一班55 名同学共捐款1180元,捐款情况见下表,表中捐 款10元和20元的人数不小心被墨水污染看不清楚, 请你帮助确定表中的数据。
3;现在要做418朵小红花,小明 先做了2天,后来小亮加入和小明 一起做了2天,不但全部完成,还 要多做了2朵;如果小亮先做3天, 小明和小亮一起做3天,那么能多 做32朵,问小明、小亮每天各能 做几朵小红花?
4:农场有两片试验田,甲试验 田的面积比这两片试验田的总面 积的一半少7公顷,乙试验田的 面积比这两片试验田的总面积的 三分之一多32公顷,问甲、乙 两片试验田各有多少公顷?
记录 天平左边
天平右边
状态
记录 5枚壹圆硬币,1个 1 10克的砝码
记录 15枚壹圆硬币 2
10枚伍角硬币
20枚伍角硬币,1 个10克的砝码
平衡 平衡
请你用数学知识计算出一枚壹圆硬币多少克,一枚伍角硬币 多少克?
21;某旅馆的客房有三人间和二人间 两种,三人间每人每天25元,二人间 每人每天35元,一个50人的旅游团到 该旅馆住宿,租住了若干客房,并且 每间客房正好注满,一天共花去住宿 费1510元,两种客房各租住了多少间?
▪ (1)设安排A型货箱X节,写出X应满足的 不等式组;
▪ (2)请你按要求安排A、B两种货箱的节 数,有哪几种运输方案?请设计出来。
23;用白铁皮做罐头盒,每张铁皮 可制盒身16个或制盒底43个,一个 盒身与两个盒底配成一套罐头盒, 现有150张铁皮,用多少张制盒身, 多少张制盒底,可以使盒身与盒底 正好配套?
人教版七年级下册数学二元一次方程组应用题训练
人教版七年级下册数学二元一次方程组应用题训练1.已知用2辆A型车和1辆B型车装满货物一次可运货10吨,用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请选出最省钱的租车方案,并求出最少租车费.2.小莹和小亮每人带了16元钱到学校附近的文具店购买中性笔和笔记本,他们要购买的中性笔每盒10支,如果整盒买比单支买每支可优惠0.2元.小莹要买2支中性笔和3本笔记本共需花费14元;小亮要买8支中性笔和2本笔记本共需花费16元.(1)单独购买一支中性笔多少元?每本笔记本的单价是多少元?(2)小莹和小亮都还想再买一件单价为1.5元的小工艺品,他们利用所带的钱,能否做到既买全了想要的文具,又都能买到一件小工艺品?请通过运算说明.3.疫情无情,人间有爱,为扎实做好复学工作,某市教育局做好防疫物资调配发放工作,租用A、B两种型号的车给全市各个学校配送消毒液.已知用2辆A型车和1辆B型车装满货物一次可运货16吨;用1辆A型车和2辆B型车装满货物一次可运货20吨.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)教育局现有24吨消毒液需要配送,若计划同时租用A、B两种型号车配送消毒液,恰好一次配送完,且每辆车都装满.求此时的租车方案.(3)在第(2)问条件下,若A型车的租金为300元/辆,B型车的租金为520元/辆.请设计合适的租车方案,并求最少的租车费用.4.如图所示,某居民小区为了绿化小区环境,建设和谐家园,准备将一块周长为228米的长方形空地,设计成长和宽分别相等的9块小长方形.(1)小长方形的长和宽分别为多少米?(2)计划在空地上种各种花卉,经市场预测,绿化每平方米空地造价200元,经计算,要完成这块绿化工程,预计花费多少元?5.为满足防疫需要,学校要储备抗疫物资,购进甲、乙两款医用口罩共250盒,甲、乙两款医用口罩分别是20元/盒、30元/盒,共花了6500元.(1)甲、乙两款医用口罩各购进多少盒?(2)已知甲、乙两款医用口罩每盒的口罩数量分别是50个/盒、100个/盒,按照防疫要求,学校必须储备足够使用10天的口罩,学校师生共900人,按每人每天储备2个口罩计算,问购买的口罩数量是否满足防疫要求?6.一种商品有大小盒两种包装,3大盒、4小盒共装108瓶,2大盒3小盒共装76瓶.(1)大盒与小盒每盒各装多少瓶?(2)已知这种商品一大盒的价格为40元,一小盒的价格为24元,小明购买这种商品共花费200元,试确定小明可能有哪些购买方案.7.目前,新型冠状病毒在我国虽可控可防,但不可松懈.为防范疫情,重庆实验外国语学校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和1瓶乙免洗手消毒液需要84元,购买2瓶甲和3瓶乙免洗手消毒液需要126元.(1)求甲、乙两种免洗手消毒液的价格为多少元/每瓶?(2)若初一年级师生共2000人,平均每人每天都需使用10ml的免洗手消毒液,若初一年级采购甲、乙两种免洗手消毒液共花费7200元,则这批消毒液可使用多少天?8.为了响应“足球进校园”的号召,某校计划为学校足球队购买一批足球,已知在某商店购买4个A品牌的足球和2个B品牌的足球共需680元,购买2个A品牌的足球和3个B品牌的足球共需540元.(1)求A,B两种品牌的足球的单价;(2)学校用4400元购买A,B两种品牌的足球各若干个(两种品牌均要购买),其中购买A品牌足球的数量不少于B品牌足球的数量.①学校至少可以购买多少个A品牌足球?①“五一”期间,该商店对足球进行打折促销,其中A品牌打八折,B品牌打九折,请直接写出学校在打折后购买比在打折前购买最多可节省多少钱?9.某货运公司有A,B两种型号的汽车,用2辆A型车和3辆B型车装满货物一次可运货13吨;用3辆A型车和5辆B型车装满货物一次可运货21吨.某物流公司现有25吨货物,计划同时租用A型车和B型车,一次运完,且恰好每辆车都装满货物.(1)一辆A型车和一辆B型车都装满货物分别可运货多少吨?(2)请你帮该物流公司设计可行的租车方案,直接写出所有方案.10.疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用18900元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,23元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计1000人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?(3)如果学校再用2000元钱去购买甲、乙两种口罩(两种口罩都要有)若干盒;你认为有哪几种购买方案?11.“同心抗疫,与沪同行”,为解决上海市“吃菜难”问题.嘉兴市要将120吨新鲜蔬菜地心往上海.现有A、B、C三种车型供选择,每辆车的运载能力和运费如下表所示(假设每辆车均满载):(1)若全部蔬菜都用A、B两种车型运送,而运费18600元,那么需这两种车各几辆?(2)为了合理利用资源,该地打算用A、B、C三种车型同时参与运送,已知它们的总车辆数为20辆,请求出所有满足条件的运送方案.12.《九章算术》记载:“今有牛五、羊二,值金十九两;牛二、羊五,值金十六两.问牛、羊各值金几何?”译文如下:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值多少两银子?”根据以上译文,解决下列问题:(1)求每头牛、每只羊各值多少两银子?(2)某人计划用17两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),共有几种不同的购买方案?请列出所有可能的方案.13.一家玩具店购进2022年冬奥会吉祥物冰墩墩与冬残奥会吉祥物雪容融共100个,花去3300元,这两种吉祥物的进价、售价如表:(1)求冰墩墩和雪容融各购进多少个?(2)如果将销售完这100个吉祥物所得的利润全部捐赠,那么这家玩具店捐赠了多少钱?14.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?15.某药店出售A、B两种N95的口罩,已知该店进货4个A种N95口罩和2个B种N95口罩共需22元,进货8个A种N95口罩所需费用比进货4个B种N95口罩所需费用多4元.(1)请分别求出A、B两种N95口罩的进价是多少元?(2)已知药店将A种N95口罩每个提价1元出售,B种N95口罩每个提价20%出售,小雅在该药店购买A、B两种N95口罩(两种口罩均要购买),共花费40元,小雅有哪几种购买方案?16.某天,某蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40kg到菜市场去卖,西红柿和豆角这天的批发价和零售价如下表所示:(1)求这个蔬菜经营户分别购进西红柿和豆角各多少kg?(2)求他当天卖完这些西红柿和豆角能赚多少钱?17.列二元一次方程组解应用题:金百超市投入12000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如表所示:(1)该金百超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,共获得多少利润?18.某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位;若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满.已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元.(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)可以单独租一种车,也可以同时租两种车,要使每个学生都有座位,怎样租用更合算?(通过计算加以说明)19.如图,长青化工厂与A,B两地有公路,铁路相连.这家工厂从A地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B地,已知公路运价为2元/(吨·千米),铁路运价为1.5元/(吨·千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)不计其他因素,这批产品的利润为多少元(利润=销售款-原料费-运输费)?20.2022年端午节,“买一提粽子就有两种味道”的组合粽子十分畅销.某食品生产厂家测算,一提“两味组合粽”中若有6个猪肉粽,4个蜜枣粽,则出厂成本价为21元;一提“两味组合粽”中若有4个猪肉粽,6个蜜枣粽,则出厂成本价为19元.(1)求1个猪肉粽和1个蜜枣粽的出厂成本价各为多少元;(2)若商家推出的这款“两味组合粽”每提10个粽子中至少应有2个猪肉粽,请列式表示这款“两味组合粽”一提的出厂成本价w与蜜枣粽数量x之间的函数关系,并求出出厂成本价最低时的搭配方案.。
初一下册数学二元一次方程组应用题
初一下册数学二元一次方程组应用题1.一次篮球、排球比赛共有48个队,520名运动员参加。
已知每个篮球队有10名球员,每个排球队有12名球员,请问篮球和排球各有多少队参赛?2.某厂买进甲、乙两种材料共56吨,用去9860元。
已知甲种材料每吨190元,乙种材料每吨160元,请问甲、乙两种材料各买多少吨?3.某人用元买进甲、乙两种股票。
在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元。
请问甲、乙两股票各是多少元?4.一次篮球、排球比赛共有48个队,520名运动员参加。
已知每个篮球队有10名球员,每个排球队有12名球员,请问篮球和排球各有多少队参赛?5.某厂买进甲、乙两种材料共56吨,用去9860元。
已知甲种材料每吨190元,乙种材料每吨160元,请问甲、乙两种材料各买多少吨?6.某人用元买进甲、乙两种股票。
在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元。
请问甲、乙两股票各是多少元?7.有甲、乙两种债券,年利率分别是10%和12%。
已知共有400元债券,一年后获利45元。
请问甲、乙两种债券各有多少?8.一种饮料有3种包装:大瓶、中瓶、小瓶。
已知1个中瓶比2个小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角。
已知大、中、小各买1瓶需要9元6角,请问3种包装的饮料每瓶各多少元?9.某班同学去北山郊游,距离为18千米,只有一辆汽车。
需要分成两组,甲组先乘车,乙组步行。
汽车行至A处,甲组下车步行,汽车返回接乙组。
最后两组同时到达北山站。
已知汽车速度是60千米/时,步行速度是4千米/时,请问A点距北山站的距离。
10.一级学生去饭堂开会。
如果每4人共坐一张长凳,则有28人没有位置坐。
如果6人共坐一张长凳,则所有人都有位置坐。
请问初一级学生人数及长凳数。
11.两列火车同时从相距910千米的两地相向出发。
10小时后相遇。
已知第一列火车比第二列火车早出发4小时20分。
在第二列火车出发8小时后相遇。
人教版七年级数学下册第七章列二元一次方程组解应用题专项训练
第7章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经36岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
二元一次方程组解应用题
一.解答题(共9小题)1.学校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;汽车以40km/h的速度下坡,又以50km/h的速度走平路,共用了6h,问平路和坡路各有多远?2.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?3.某工厂第一次购买甲种原料60盒和乙种原料120盒共用21 600元,第二次购买甲种原料20盒和乙种原料100盒共用16 800元.(1)求甲、乙两种原料每盒价钱各为多少元;(2)该工厂第三次购买时,要求甲种原料比乙种原料的2倍少200盒,且购买两种原料的总量不少于1 010盒,总金额不超过89 200元,请你通过计算写出本次购买甲、乙两种原料的所有方案.4.双流县新城湿地公园工程指挥部计划在休闲地带铺设地砖1600m2,由甲、乙两个工程队合作完成.如果甲工程队先单独做5天,余下工程由乙队单独完成需要2天;如果甲工程队先单独做2天,余下工程由乙队单独完成需要4天.那么甲、乙两个工程队哪一个工程队的工作效率高?高多少?5.高一某班在入学体检中,测得全班同学平均体重是48千克,其中男同学平均体重比女同学平均体重多20%,而女同学人数比男同学人数多20%.求男、女同学的平均体重?7.近年来,政府大力投资改善学校的办学条件,并切实加强对学生的安全管理和安全教育.某中学新建了一栋教学大楼,进出这栋教学大楼共有2道正门和2道侧门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生;当同时开启一道正门和两道侧门时,3分钟内可以通过840名学生.(1)求平均每分钟一道正门和一道侧门分别可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下,全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼的教室里最大有1500名学生,试问建造的这4道门是否符合安全规定?请说明理由.。
二元一次方程(组)解应用题(含答案)
第八章二元一次方程(组)解应用题(含答案)1缉私艇与走私艇相距 120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?1. 解:设走私艇的速度是 x海里/时,缉私艇的速度是 y海里/时,由题意得:[2(x+y)=120[12 (y- K)-120,解得卜,辽(y=35答:走私艇的速度是 25海里/时,缉私艇的速度是 35海里/时2. 甲、乙两人从 A , B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经 3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1小时乙到达A地.(1)问甲、乙行驶的速度分别是多少?(2)甲、乙行驶多少小时,两车相距30千米?2. 解:(1)设甲、乙行驶的速度分别是每小时 x 千米、y千米,根据题意,得’,ir v-i & 解得….(y=45所以甲、乙行驶的速度分别是每小时15千米、45千米;(2)由第(1)小题,可得 A , B两地相距45X( 3+1) =180 (千米).设甲、乙行驶x小时,两车相距 30千米,根据题意,得两车行驶的总路程是(180- 30)千米或(180+30)千米,则:(45+15) x=180 - 30 或(45+15) x=180+30 .解得:戸|或疋所以甲、乙行驶"或—小时,两车相距 30千米2 23. 小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的平均速度为3千米/时,而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32 分钟.求小明上坡、下坡各用了多长时间?3. 解:32分钟小时,15设小明上坡用了 x小时,下坡用了(亠-x)小时,由题意,得15]3x+5 (一-x) =1.8,解得:x=90 y=304. A 、B 两地相距20千米.甲乙两人同时从 A 、B 两地相向而行,经过 2小时后两人相遇, 相遇时甲比乙多行 4千米•根据题意,列出两元一次方程组,求出甲乙两人的速度. 4•解:(1设甲的速度为 x 千米/时,乙的速度为 y 千米/小时,由题意得,(2s+2y=20(2K - 2y=4,解得:|{二.答:甲的速度为6千米/时,乙的速度为4千米/小时5.长春至吉林现有铁路长为 128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米•开通后,城际列车的平均速度将为现有列车平均速度的 2.25倍,运行时间将比现有列车运行时间缩短 芒小时.求城际3列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.xy=1282.药小(y- -|) =96,卜二內4解得 :.64X2.25=144 千米 /小时.城际列车的平均速度 144千米/小时6•甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行, 1小时20分后相遇•相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?[解得:x=「,则下坡所用时间为:答:小明上坡用了 鱼左』=丄15 30"10'小时1CI—小时,下坡用了306. 解:设汽车的速度是[■| (x+y) =160丄』 ,x 千米每小时,拖拉机速度 y 千米每小时,根据题意得:则汽车汽车行驶的路程是: (一+_) >90=165 (千米),3 2拖拉机行驶的路程是:(一+卫)>30=85 (千米).冈2答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.—列客车长200 m ,一列货车长280 m ,在平行的轨道上相向行驶,从两车头相遇到两 车尾相离经过16s,已知客车与货车的速度之比是 3: 2,问两车每秒各行驶多少米? 7.解:设客车的速度是每秒x 米,货车的速度是每秒 -x 米.由题意得(x+Zx ) >6=200+280 ,3解得x=18.答:两车的速度是客车 18m/s ,货车12m/s& A 、B 两地相距36千米•甲从A 地出发步行到B 地,乙从B 地出发步行到 A 地•两人 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的 2倍•求两人的速度.&解:设甲的速度是 x 千米/时,乙的速度是y 千米/时. 「4 (x+yj =36 (36-內0 二2 (36-6y)解得: 答:甲的速度是4千米/时,乙的速度是5千米/时9•从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走 3km ,平路每小时走4km ,下坡每小时走 5km ,那么从甲地到乙地用 54分钟,从乙地到甲地用 42分钟,甲地到 乙地的全程是多少?xkm ,平路为ykm ,/• x+y=3.1km ,答:甲地到乙地的全程是 3.1km 10•甲、乙分别自 A 、B 两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速 度都提高了 1千米/小时,当甲到达B 地后立刻按原路向 A 地返行,当乙到达A 地后也立刻由题意得:9•解:设从甲地到乙地的上坡路为解之得宙1・5 ]尸1花按原路向B 地返行,甲、乙二人在第一次相遇后 3小时36分又再次相遇,则 A 、B 两地的距离是多少?10•解:设甲的速度为 x 千米/时,乙的速度为y 千米/时, 可得:x+y=18 A 、B 两地的距离=2 (x+y) =2 XI8=36 答:A 、B 两地的距离是36千米11 •某班同学,从学校出发步行到某地搞军训活动,如果每小时走 6km ,则可提前10min到达目的地;如果每小时走 5km ,则比预定时间迟到 18min ,问:学校到某地有多远预定到达时间是多少?11 •解:设学校到某地 x 千米•预定到达时间是 y 小时.$(厂”I 5吨)=/解得.*1° •故学校到某地14千米•预定到达时间是 2.5小时 12.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km ,那么甲用1小时就能追上乙;如果乙先走 1小时,那么甲只用15分钟就能追上乙,求甲、乙二人 的速度.12 •解:设甲的速度是 x 千米/时,乙的速度为y 千米/时, 答:甲的速度是25千米/时,乙的速度为5千米/时13.甲,乙两人相距15千米,如果两人同时相向而行,过 1小时30分相遇;如果乙向相反方向走,甲同时追赶,经过 7小时30分可以追上,求甲,乙二人的速度各是多少.13.解:设甲,乙二人的速度是 x 千米/小时和y 千米/小时.fl. 5K +1. 5y=157.由题意得,x=20+y0.25s= (141X25)y由题意可得:答:甲,乙二人的速度是 6千米/小时和4千米/小时14、在某条高速公路上依次排列着A B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米•分别在A C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A C两个加油站驶去,结果往 B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上. 问巡逻车和犯罪团伙的车的速度各是多少?14、解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则3 x y 120 x y 40 x 80,整理,得y ,解得,x y 120 x y 120 y 40答:巡逻车的速度是 80千米/时,犯罪团伙的车的速度是 40千米/时.15、悟空顺风探妖踪,千里只行四分钟.归时四分行六百,风速多少才称雄?15、解:设悟空飞行速度是每分钟x里,风速是每分钟 y里,依题意得 4(x+y)=10004(x-y)=600 x=200 y=5016. 某列火车通过450米的铁桥,从车头上桥到车尾下桥, 度穿过760米长的隧道时,整列火车都在隧道里的时间是分别是多少?16. 解:设火车长为x米,火车的速度为 y米/秒,33y=x + 45022y=760 — xX=276 「解方程组得:[y=22答:火车长276米,速度为22米/秒. 共33秒,同一列火车以同样的速22秒,问这列火车的长度和速度。
完整版初中数学专项练习《二元一次方程组》100道解答题包含答案
初中数学专项练习《二元一次方程组》100道解答题包含答案一、解答题(共100题)1、南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A、B两个园区,已知A园区为矩形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:C D投入(元/平方米)13 16收益(元/平方米)18 26求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)2、某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价/(元2.4 2)零售价/(元3.6 2.8)他当天卖完这些黄瓜和茄子可赚多少元钱?3、已知方程组的解满足x+y=-1,求k的值。
4、解方程组:5、甲、乙两人同求方程ax﹣by=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.6、已知方程组,王芳看错了方程(1)中的a,得到的方程组的解为,李明看错了方程(2)中的b,得到的方程组的解为,求原方程组的解.7、为了净化空气,美化环境,我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?8、敦煌莫高窟是世界上现存最完好的石窟艺术宝库,是重要的爱国主义教育基地,某校组织八年级540名学生去莫高窟研学参观,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知这两种车的限载人数分别为40人和60人,求这两种客车各租用多少辆?9、请阅读求绝对值不等式和的解集过程.对于绝对值不等式,从图1的数轴上看:大于-3而小于3的绝对值是是小于3的,所以的解集为;对于绝对值不等式,从图2的数轴上看:小于-3而大于3的绝对值是是大于3的,所以的解集为或.已知关于x、y的二元一次方程组的解满足,其中m是负整数,求m的值.10、已知2a-1的算术平方根是3,3a+b-1的立方根是2,求a-2b的平方根。
七年级二元一次方程组应用题常考题(打印)
七年级二元一次方程组应用题常考题填 空 题 一1.鸡兔同笼,共有12个头,36条腿,则笼中有___________只鸡,___________只免.2.右图是由 9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是6, 则六边形的周长是___________.3.甲、乙两店共有练习本200本,某月甲店售出19本,乙店售出97本后,甲、乙两店所剩的练习本数相等,则甲店原有练习本___________本,乙店原有练习本___________本.4.某船顺流航行36km 用3h ,逆流航行24km 用3 h ,则水流速度为___________,船在静水中的速度为___________.5.小明购买5角和8角的邮票共11张,共有了6.40元,若设购买5角和8角的邮票张数分别为x 和y ,则x=_____y=_____6.在足球甲级A 组的前11轮(场)比赛中,万达队连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队胜与平的场次之比为___________.填 空 题 二1、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减20%以96元出售,很快就卖掉了。
则这次生意盈亏情况是( )A 、赚6元B 、不亏不赚C 、亏4元D 、亏24元2、班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔 ( )A 、20支B 、14支C 、13支D 、10支3、某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价。
设这种服装的成本价为x 元,则得到的方程是 ( ) A 、150-x x=25% B 、150-x =25% C 、x =150×25% D 、25%·x =150 4、学校食堂出售两种厚度一样但大小不同的面饼,小饼直径30cm ,售价30分,大饼直径40cm ,售价40分。
七年级二元一次方程组应用题10道
七年级二元一次方程组应用题10道1.小明和小红两人一起去超市买水果。
小明买了几个苹果和几个橙子,总共花了12元;小红买了几个苹果和几个橙子,总共花了10元。
已知每个苹果的价格是1元,每个橙子的价格是2元。
问小明和小红分别买了几个苹果和几个橙子?2.一对双胞胎姐妹一共有18颗糖。
姐姐比妹妹多得糖的个数是4颗,姐姐的一颗糖的价格是妹妹的2倍。
问姐姐和妹妹各自得了几颗糖以及价格分别是多少?3.有一群小学生在体育场比赛,共有男生和女生两种性别。
男生每人比女生多10人,男生人数是女生人数的2倍。
如果体育场共有120人参加比赛,问男生和女生各有多少人?4.学校要组织外出观光,计划包括学生和老师两类人。
学生每人多于老师10人,学生共有60人,老师共有4人。
问学生和老师各占多少人数?5.小明和小红两人一共骑自行车去郊外游玩。
小明每小时骑行速度为10公里,小红每小时骑行速度为15公里。
他们同时出发,小红比小明先到达目的地1个小时。
问目的地距离原点多少公里?6.学校举办校运动会,共有游泳比赛和跑步比赛。
报名参加游泳比赛的男生占总报名人数的1/3,报名参加跑步比赛的女生占总报名人数的1/4,已知男生和女生总共有60人参加比赛,问男生和女生各有多少人?7.有一批水果共有苹果和梨两种。
苹果的价格比梨的价格高出每斤2元,苹果共有5斤,梨共有3斤,总共支付了35元。
问苹果和梨各自的价格是多少元每斤?8.甲、乙两人一共走了30公里路程。
甲比乙每小时走得快5公里,所以他比乙提早1小时到达终点。
问甲和乙每小时的步行速度分别是多少?9.小明和小红两人一共有24本书。
小明比小红多8本书,小明和小红的书的总价值是168元,小明每本书比小红多4元。
问小明和小红的书各有多少本以及每本书的价值是多少元?10.甲、乙、丙三人共有240元。
甲比乙多30元,丙比甲少40元。
问甲、乙、丙各自有多少元?。
二元一次方程组经典应用题及答案
2.25%;第二种,三年期整存整取,这种存款银行年利率为 2.70%.三年后同时取出共得利息
303.75 元( 不计利息税 ) ,问小敏的爸爸两种存款各存入了多少元?
解: 设 x 为第一种存款的方式, Y 第二种方式存款,则
X + Y = 4000
X * 2.25 % * 3 + Y * 2.7 % * 3 = 303.75
① x+y=10
② 2000x+1500y=18000
解得: x=6 , y=4
答:李大叔去年甲、乙两种蔬菜各种植了
6 亩、 4 亩
某商场用 36 万元购进 A、 B 两种商品,销售完后共获利 6 万元,其进价和售价如下表:
A
B
进价(元 / 件)
1200
1000
售价(元 / 件)
1380
1200
(注:获利 = 售价 — 进价)求该商场购进 A、 B 两种商品各多少件; 解: 设购进 A 的数量为 x 件、购进 B 的数量为 y 件,依据题意列方程组
解得: X = 1500 , Y = 2500 。
答:略。
;.
..
五:列二元一次方程组解决 —— 生产中的配套问题
现有 190 张铁皮做盒子,每张铁皮做 8 个盒身或 22 个盒底,一个盒身与两个盒底配成一个完整盒 子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子? 解:设 x 张做盒身, y 张做盒底,则有盒身 8x 个,盒底 22y 个
;.
..
十一:列二元一次方程组解决 —— 年龄问题
今年,小李的年龄是他爷爷的五分之一 分之一 . 试求出今年小李的年龄 .
解: 设小李 X 岁,爷爷 Y 岁,则
七年级上数学二元一次方程应用题练习
实际问题与二元一次方程组题型归纳类型一:列二元一次方程组解决——行程问题1.甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?2.两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度?类型二:列二元一次方程组解决——工程问题3.小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题4.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?9.一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条。
现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌?类型六:列二元一次方程组解决——增长率问题10.某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。
类型七:列二元一次方程组解决——和差倍分问题11.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。
如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?类型八:列二元一次方程组解决——数字问题12.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?13.一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?14.某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数。
二元一次方程组及应用题练习
二元一次方程组及应用题练习二元一次方程组解法练题精选一、解答题(共16小题)1.求适合下列方程组的x,y的值:1)x - 3y = 5.2x + y = 52)y - 2x = 5.x + y = 13)3m - 2n = 5.4n + m = -14)2p - 3q = 13.p + 5 = 4q5)3x - 5y = 7.4x + 2y = 56)6x - 5y = 11.11x - 9y = 127)x - 2y = 12.4x + 2y = 30 8)3x + 4y = 3a。
3n - 4m = 6 9)5x + 2y = 5a。
4m - 2n = -5 10)x - y = 1.0.5x - 0.3y = 0.2 11)x - y = 1.0.4x + 0.3y = 0.7 12)2x + 2y = 7.x - y + 1 = 2 13)11x - 10y = 1.x - y = -1 14)x - y = 2.2x + 2y = 7 15)3x + 4y = 3.5x - 3y = 2 16)x - y = 1.2x + 3y = 5解:1)代入法:由第一个方程可得:x = 3y + 5将x = 3y + 5代入第二个方程中得:2(3y + 5) + y = 5 化简得:7y + 10 = 5解得:y = -5/7将y = -5/7代入x = 3y + 5中得:x = -10/7因此,方程组的解为:x = -10/7,y = -5/7.2)加减法:将两个方程相加得:-x + y = 6将第一个方程乘以2得:-4x + 2y = 10将第二个方程乘以3得:3x + 3y = 3将上面两个式子相加得:-x + y + 3x + 3y = 13化简得:2x + 4y = 13将-2x + 2y = 6乘以2得:-4x + 4y = 12将上面两个式子相加得:-2x + 6y = 25化简得:x = (25 - 6y)/2将x = (25 - 6y)/2代入-2x + 2y = 6中得:-25 + 6y + 2y = 12 化XXX:y = 9/4将y = 9/4代入x = (25 - 6y)/2中得:x = 7/4因此,方程组的解为:x = 7/4,y = 9/4.3)加减法:将第一个方程乘以2得:6m - 4n = 10将第二个方程乘以3得:9m - 6n = 15将上面两个式子相加得:15m - 10n = 25化简得:3m - 2n = 5将4n + m = -1代入3m - 2n = 5中得:3(-4n - 1) - 2n = 5 化XXX:n = -7/11将n = -7/11代入4n + m = -1中得:m = 25/11因此,方程组的解为:m = 25/11,n = -7/11.4)加减法:将第一个方程乘以3得:6p - 9q = 39将第二个方程乘以4得:8p - 12q = 52将上面两个式子相加得:14p - 21q = 91化简得:2p - 3q = 13将p + 5 = 4q代入2p - 3q = 13中得:2(p + 5) - 3q = 13 化简得:p = -3将p = -3代入p + 5 = 4q中得:q = 2因此,方程组的解为:p = -3,q = 2.5)加减法:将第一个方程乘以4得:12x - 20y = 28将第二个方程乘以2得:8x + 4y = 10将上面两个式子相加得:20x - 16y = 38化简得:5x - 4y = 19/5将3x - 5y = 7代入5x - 4y = 19/5中得:5(3x - 5y) - 4y = 19/5化简得:x = 12/5将x = 12/5代入3x - 5y = 7中得:y = 1/5因此,方程组的解为:x = 12/5,y = 1/5.6)加减法:将第一个方程乘以2得:12x - 10y = 22将第二个方程乘以3得:33x - 27y = 36将上面两个式子相加得:45x - 37y = 58化简得:x = (58 + 37y)/45将11x - 9y = 12代入x = (58 + 37y)/45中得:11((58 + 37y)/45) - 9y = 12化XXX:y = -41/34将y = -41/34代入x = (58 + 37y)/45中得:x = 43/34因此,方程组的解为:x = 43/34,y = -41/34.7)代入法:由第一个方程可得:x = 2y + 12将x = 2y + 12代入第二个方程中得:4(2y + 12) + 2y = 30化简得:10y = 2解得:y = 1/5将y = 1/5代入x = 2y + 12中得:x = 22/5因此,方程组的解为:x = 22/5,y = 1/5.8)代入法:由第一个方程可得:m = (3a - 4y)/9将m = (3a - 4y)/9代入第二个方程中得:8(3a - 4y)/9 - 2n = 6化简得:24a - 32y - 18n = 54将第三个方程乘以4得:12m - 8n = 20将第四个方程乘以3得:9x - 15y = 21将上面两个式子相加得:12m - 8n + 9x - 15y = 41将24a - 32y - 18n = 54代入12m - 8n + 9x - 15y = 41中得:12(3a - 2y)/9 - 8n + 9x - 15y = 41化简得:27a - 18y - 16n + 15x = 123将上面两个式子相加得:11x - 14n + 27a - 20y = 164将x = (3a - 4y)/9代入11x - 14n + 27a - 20y = 164中得:11(3a - 4y)/9 - 14n + 27a - 20y = 164化简得:29a - 36y - 28n = 468解得:a = (468 + 36y + 28n)/29将a = (468 + 36y + 28n)/29代入m = (3a - 4y)/9中得:m = (156 + 12y + 28n)/29将m = (156 + 12y + 28n)/29代入第二个方程中得:8(3a -4y)/9 - 2n = 6化简得:24a - 32y - 18n = 54将a = (468 + 36y + 28n)/29代入24a - 32y - 18n = 54中得:(3744 + 288y + 224n)/29 - 32y - 18n = 54化简得:288y + 206n = 1170因此,方程组的解为:a = (468 + 36y + 28n)/29,m = (156 + 12y + 28n)/29,n为任意实数,且满足288y + 206n = 1170.9)代入法:由第一个方程可得:x = (5a - 2y)/5将x = (5a - 2y)/5代入第二个方程中得:4(4m - 2n + 5) - 2(5a - 2y)/5 = -5化简得:16m - 8n + 20 - 2a + 4y/5 = -5将第三个方程乘以2得:6m - 4n = 10将第四个方程乘以3得:9x - 15y = 3将上面两个式子相加得:6m - 4n + 9x - 15y = 13将x = (5a - 2y)/5代入6m - 4n + 9x - 15y = 13中得:6m - 4n + 9(5a - 2y)/5 - 15y = 13化简得:54a - 52y - 20n = 118将上面两个式子相加得:54a - 52y - 20n + 16m - 8n + 20 - 2a + 4y/5 = 6化简得:52a - 260/5y - 32n + 16m = -94/5化简得:13a - 13y - 2n + 4m = -47/5将第五个方程乘以5得:3x - 5y = 7将第六个方程乘以11得:11x - 9y = 12将上面两个式子相加得:14x - 14y = 19将x = (5a - 2y)/5代6.已知甲、乙两种商品的原价和为200元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
8、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子?9、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。
10、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度。
11、为了保护生态环境,我省某山区县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地各为多少平方千米?12、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?13、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?14、在一次足球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分。
比赛结束时,某球队所胜场数是所负的场数的2倍,共得20分,问这支球队胜、负各几场?15、某个体户向银行申请了甲、乙两种贷款,共计136万元,每一年需付利息16.84万元,甲种贷款的年利率是12%,乙种贷款的年利率是13%,问这两种贷款的数额各是多少?16、李明以两种形式分别储蓄了2000元各1000元,一年后全部取出,扣除利息所得税可得利息43.92,已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应交利息所得税=利息金额×20%)。
17、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?18、“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原售价之和为500元,问这两种商品的原销售价分别为多少元?19、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?20、某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等。
求该电器每台的进价、定价各是多少元?21、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?22、某工厂去年的利润(总产值——总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,问去年的总产值、总支出各是多少万元?小红家去年结余5000元,估计今年可结余9500元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入和支出各是多少?23、某校2004年秋季初一年级和高一年级招生总数为500人,计划2005年秋季期初一年级招生数增加20%;高一年级招生数增加15%,这样2005年秋季初一、高一年级招生总数比2004年将增加18%,求2005年秋季初一年级、高一年级的计划招生数是多少?24、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车量情况下如下:甲同学说:“二环路车流量为每小时1000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”。
请您根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?25、初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.26、根据下图给出的信息,求每件T恤衫和每瓶矿泉水的价格。
27、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?28、“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.29、 列一段文字,然后解答问题.修建润扬大桥,途经镇江某地,需搬迁一批农户,为了节约土地资源和保护环境,政府决定统一规划建房小区,并且投资一部分资金用于小区建设和补偿到政府规划小区建房的搬迁农户.建房小区除建房占地外,其余部分政府每平方米投资100元进行小区建设;搬迁农户在建房小区建房,每户占地100 平方米,政府每户补偿4万元,此项政策,吸引了搬迁农户到政府规划小区建房,这时建房占地面积占政府规划小区总面积的20%.政府又鼓励非搬迁户到规划小区建房,每户建房占地120平方米,但每户需向政府交纳土地使用费2.8万元,这样又有20户非搬迁户申请加入.此项政策,政府不但可以收取土地使用费,同时还可以增加小区建房占地面积,从而减少小区建设的投资费用.若这20户非搬迁户到政府规划小区建房后,此时建房占地面积占政府规划规划小区总面积的40%.(1)设到政府规划小区建房的搬迁农户为x 户,政府规划小区总面积为y 平方米. 可得方程组 解得(2)在20户非搬迁户加入建房前,请测算政府共需投资 __________万元;在20户非搬迁户加入建房后,请测算政府将收取的土地使用费投入后,还需投资__________万元.,, x =y =(3)设非搬迁户申请加入建房并被政府批准的有z户,政府将收取的土地使用费投入后,还需投资p万元.①用含z的代数式表示p;②当p不高于140万元,而又使建房占地面积不超过规划小区总面积的35%时,那么政府可以批准多少户非搬迁户加入建房?29、某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,请将初三学生年级学生可捐助的贫困中、小学生人数直接填入表中.(不需写出计算过程)30、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车。
虑逐月调整为:k月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k倍(k=2,3,4,……,12),假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为?参考答案:12.解:()元王大伯一共获纯利答分元共获纯利分解得分得根据题意亩西红柿亩茄子设王大伯种了630001063000152600102400815105440001800170025::,,, =⨯+⨯⎩⎨⎧==⎩⎨⎧=+=+y x ②y x ①y x y x21. 解:设甲服装的成本是x 元,乙服装的成本是y 元,依题意得。