广南县民族中学2018-2019学年上学期高二数学12月月考试题含解析
南昌县民族中学2018-2019学年上学期高二数学12月月考试题含解析
南昌县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 若,,则不等式成立的概率为()[]0,1b ∈221a b +≤A .B .C .D .16π12π8π4π2. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是()A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数3. 下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D .4. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( )A .(0,+∞)B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)5. =( )A .2B .4C .πD .2π6. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )A .(0,+∞)B .(1,+∞)C .(0,1)D .(1,2)7. 已知全集,,,则( ){}1,2,3,4,5,6,7U ={}2,4,6A ={}1,3,5,7B =()U A B = ðA . B .C .D .{}2,4,6{}1,3,5{}2,4,5{}2,58. 一个骰子由六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是()1~6A .6B .3C .1D .29. 设复数(是虚数单位),则复数( )1i z =-i 22z z +=A.B.C.D. 1i -1i +2i +2i-【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.10.已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为()A .B .C .D .11.如图在圆中,,是圆互相垂直的两条直径,现分别以,,,为直径作四个O AB CD O OA OB OC OD 圆,在圆内随机取一点,则此点取自阴影部分的概率是()O DABCO A .B .C .D .π1π21π121-π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.12.设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是A4B6C8D10二、填空题13.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .14.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .15.设抛物线的焦点为,两点在抛物线上,且,,三点共线,过的中点作24y x =F ,A B A B F AB M y轴的垂线与抛物线在第一象限内交于点,若,则点的横坐标为 .P 32PF =M 16.已知是数列的前项和,若不等式对一切恒成立,则的取值范围是n S 1{}2n n -n 1|12n n nS λ-+<+|n N *∈λ___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.17.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .18.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .三、解答题19.已知抛物线C :x 2=2y 的焦点为F .(Ⅰ)设抛物线上任一点P (m ,n ).求证:以P 为切点与抛物线相切的方程是mx=y+n ;(Ⅱ)若过动点M (x 0,0)(x 0≠0)的直线l 与抛物线C 相切,试判断直线MF 与直线l 的位置关系,并予以证明.20.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C 的方程和离心率;(Ⅱ) 设动直线与y 轴相交于点,点关于直线的对称点在椭圆上,求的最小值.21.已知函数f (x )=1+(﹣2<x ≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.22.(14分)已知函数,其中m ,a 均为实数.1()ln ,()ex x f x mx a x m g x -=--=(1)求的极值; 3分()g x (2)设,若对任意的,恒成立,求的最小值; 1,0m a =<12,[3,4]x x ∈12()x x ≠212111()()()()f x f xg x g x -<-a 5分(3)设,若对任意给定的,在区间上总存在,使得 成立,2a =0(0,e]x ∈(0,e]1212,()t t t t ≠120()()()f t f t g x ==求的取值范围. 6分m 23.19.已知函数f (x )=ln.24.(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF.(1)求证EF∥BC;(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.南昌县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】考点:几何概型.2.【答案】C【解析】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.3.【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B4.【答案】C【解析】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.5.【答案】A【解析】解:∵(﹣cosx﹣sinx)′=sinx﹣cosx,∴==2.故选A.6.【答案】A【解析】解:集合A={x|y=ln(x﹣1)}=(1,+∞),集合B={y|y=2x}=(0,+∞)则A∪B=(0,+∞)故选:A.【点评】本题考查了集合的化简与运算问题,是基础题目.7.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.8.【答案】A【解析】1,4,31,2,51,3,5试题分析:根据与相邻的数是,而与相邻的数有,所以是相邻的数,故“?”表示的数是,故选A.考点:几何体的结构特征.9.【答案】A【解析】10.【答案】 B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x 值为∴=,其中k ∈Z取k=1,得φ=因此,f (x)的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin (ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题. 11.【答案】C【解析】设圆的半径为,根据图形的对称性,可以选择在扇形中研究问题,过两个半圆的交点分别O 2OAC 向,作垂线,则此时构成一个以为边长的正方形,则这个正方形内的阴影部分面积为,扇形OA OC 112-π的面积为,所求概率为.OAC ππππ12112-=-=P 12.【答案】B【解析】本题考查了对数的计算、列举思想a =-时,不符;a =0时,y =log 2x 过点(,-1),(1,0),此时b =0,b =1符合;a =时,y =log 2(x +)过点(0,-1),(,0),此时b =0,b =1符合;a =1时,y =log 2(x +1)过点(-,-1),(0,0),(1,1),此时b =-1,b =1符合;共6个二、填空题13.【答案】 2i .【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为(+i )(cos60°+isin60°)=(+i )()=2i,故答案为 2i .【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i )(cos60°+isin60°),是解题的关键. 14.【答案】 (1,2) .【解析】解:由2ρcos 2θ=sin θ,得:2ρ2cos 2θ=ρsin θ,即y=2x 2.由ρcos θ=1,得x=1.联立,解得:.∴曲线C 1与C 2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题. 15.【答案】2【解析】由题意,得,,准线为,设、,直线的方程为2p =(1,0)F 1x =-11(,)A x y 22(,)B x y AB ,代入抛物线方程消去,得,所以,.又(1)y k x =-y 2222(24)0k x k x k -++=212224k x x k ++=121x x =设,则,所以,所以.00(,)P x y 01212112()[(1)(1)]22y y y k x k x k =+=-+-=021x k =212(,)P k k 因为,解得,所以点的横坐标为2.0213||112PF x k =+=+=22k =M 16.【答案】31λ-<<【解析】由,…2211111123(1)2222n n n S n n --=+⨯+⨯++-⋅+ A 211112222n S =⨯+⨯+,两式相减,得,所以,111(1)22n n n n -+-⋅+⋅2111111212222222n n n n n S n -+=++++-⋅=- 1242n n n S -+=-于是由不等式对一切恒成立,得,解得.12|142n λ-+<-|N n *∈|12λ+<|31λ-<<17.【答案】 2 .【解析】解:由a6=a5+2a4得,a4q2=a4q+2a4,即q2﹣q﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2,故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.18.【答案】 .【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:.故答案为:.三、解答题19.【答案】【解析】证明:(Ⅰ)由抛物线C:x2=2y得,y=x2,则y′=x,∴在点P(m,n)切线的斜率k=m,∴切线方程是y﹣n=m(x﹣m),即y﹣n=mx﹣m2,又点P(m,n)是抛物线上一点,∴m2=2n,∴切线方程是mx﹣2n=y﹣n,即mx=y+n …(Ⅱ)直线MF与直线l位置关系是垂直.由(Ⅰ)得,设切点为P(m,n),则切线l方程为mx=y+n,∴切线l的斜率k=m,点M(,0),又点F(0,),此时,k MF====…∴k•k MF=m×()=﹣1,∴直线MF⊥直线l …【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题. 20.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)因为椭圆C:,所以,,故,解得,所以椭圆的方程为.因为,所以离心率.(Ⅱ)由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,令,得,则,由,得,化简,得.所以.当且仅当,即时等号成立.所以的最小值为.21.【答案】 【解析】解:(1)函数f (x )=1+=,(2)函数的图象如图:.(3)函数值域为:[1,3).22.【答案】解:(1),令,得x = 1. e(1)()e x x g x -'=()0g x '=列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. 3分(2)当时,,.1,0m a =<()ln 1f x x a x =--(0,)x ∈+∞∵在恒成立,∴在上为增函数. 设,∵> 0()0x a f x x -'=>[3,4]()f x [3,4]1e ()()e x h x g x x==12e (1)()x x h x x --'=在恒成立,[3,4]∴在上为增函数.设,则等价()h x [3,4]21x x >212111()()()()f x f xg x g x -<-于,2121()()()()f x f x h x h x -<-即. 2211()()()()f x h x f x h x -<-设,则u (x )在为减函数.1e ()()()ln 1e x u x f x h x x a x x=-=---⋅[3,4]x(-∞,1)1(1,+∞)()g x '+0-g (x )↗极大值↘∴在(3,4)上恒成立. ∴恒成立. 21e (1)()10e x a x u x x x -'=--⋅≤11e e x x a x x---+≥设,∵=,x ∈[3,4],11e ()e x x v x x x --=-+112e (1)()1e x x x v x x ---'=-+121131e [(]24x x ---+∴,∴< 0,为减函数.1221133e [()e 1244x x --+>>()v x '()v x ∴在[3,4]上的最大值为v (3) = 3 -. ()v x 22e 3∴a ≥3 -,∴的最小值为3 -. 8分22e 3a 22e 3(3)由(1)知在上的值域为.()g x (0,e](0,1]∵,,()2ln f x mx x m =--(0,)x ∈+∞当时,在为减函数,不合题意.0m =()2ln f x x =-(0,e]当时,,由题意知在不单调,0m ≠2()()m x m f x x-'=()f x (0,e]所以,即.① 20e m <<2em >此时在上递减,在上递增,()f x 2(0,m 2(,e)m∴,即,解得.② (e)1f ≥(e)e 21f m m =--≥3e 1m -≥由①②,得. 3e 1m -≥ ∵,∴成立. 1(0,e]∈2((1)0f f m=≤下证存在,使得≥1.2(0,]t m∈()f t 取,先证,即证.③e m t -=e 2m m-<2e 0m m ->设,则在时恒成立.()2e x w x x =-()2e 10x w x '=->3[,)e 1+∞-∴在时为增函数.∴,∴③成立.()w x 3[,)e 1+∞-3e ))01((w x w ->≥再证≥1.()e m f -∵,∴时,命题成立. e e 3()1e 1m m f m m m --+=>>-≥3e 1m -≥综上所述,的取值范围为. 14分m 3[,)e 1+∞-23.【答案】 【解析】解:(1)∵f (x )是奇函数,∴设x >0,则﹣x <0,∴f (﹣x )=(﹣x )2﹣mx=﹣f (x )=﹣(﹣x 2+2x )从而m=2.(2)由f (x )的图象知,若函数f (x )在区间[﹣1,a ﹣2]上单调递增,则﹣1≤a ﹣2≤1∴1≤a ≤3【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键. 24.【答案】【解析】解:(1)证明:∵AE =AF ,∴∠AEF =∠AFE .又B ,C ,F ,E 四点共圆,∴∠ABC =∠AFE ,∴∠AEF =∠ACB ,又∠AEF =∠AFE ,∴EF ∥BC .(2)由(1)与∠B =60°知△ABC 为正三角形,又EB =EF =2,∴AF =FC =2,设DE =x ,DF =y ,则AD =2-y ,在△AED 中,由余弦定理得DE 2=AE 2+AD 2-2AD ·AE cos A .即x 2=(2-y )2+22-2(2-y )·2×,12∴x 2-y 2=4-2y ,①由切割线定理得DE 2=DF ·DC ,即x 2=y (y +2),∴x 2-y 2=2y ,②由①②联解得y =1,x =,∴ED =.33。
广南县外国语学校2018-2019学年上学期高二数学12月月考试题含解析
广南县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知全集U=R,集合M={x|﹣2≤x﹣1≤2}和N={x|x=2k﹣1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()A.3个B.2个C.1个D.无穷多个2.若函数f(x)=﹣a(x﹣x3)的递减区间为(,),则a的取值范围是()A.a>0 B.﹣1<a<0 C.a>1 D.0<a<13.下列关系式中,正确的是()A.∅∈{0} B.0⊆{0} C.0∈{0} D.∅={0}4.集合A={1,2,3},集合B={﹣1,1,3},集合S=A∩B,则集合S的子集有()A.2个B.3 个 C.4 个 D.8个5.若向量(1,0,x)与向量(2,1,2)的夹角的余弦值为,则x为()A.0 B.1 C.﹣1 D.26.棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为()A.B.18 C.D.7.若偶函数y=f(x),x∈R,满足f(x+2)=﹣f(x),且x∈[0,2]时,f(x)=1﹣x,则方程f(x)=log8|x|在[﹣10,10]内的根的个数为()A.12 B.10 C.9 D.88.已知向量=(1,2),=(x,﹣4),若∥,则x=()A . 4B . ﹣4C . 2D . ﹣29. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2xy -=10.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A .2B .C .D .311.命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1 C .2 D .3 12.在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( ) A . B .C .D .二、填空题13.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .14.已知f (x )=x (e x +a e -x )为偶函数,则a =________. 15.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件 (4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)16.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.17.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤恒成立,则实数的取值范围是 .18.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为2m +4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
城区民族中学2018-2019学年上学期高二数学12月月考试题含解析
城区民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .42. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关3. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是( )A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)4. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .5. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S-=,则d 的值为( )A .120B .110C .10D .206. 函数f (x ﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .107. 直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ8. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .9. 设函数f (x )=的最小值为﹣1,则实数a 的取值范围是( )A .a ≥﹣2B .a >﹣2C .a ≥﹣D .a >﹣10.下列函数中,为奇函数的是( ) A .y=x+1 B .y=x 2 C .y=2x D .y=x|x|11.已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤- ⎥⎝⎦12.函数f (x )=xsinx 的图象大致是( )A .B .C .D .二、填空题13.已知f (x )=,则f (﹣)+f ()等于 .14.用“<”或“>”号填空:30.8 30.7.15.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .16.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.17.不等式的解集为 .18.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .三、解答题19.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60oABC ∠=,侧面PDC 为等边三角形,且与底面ABCD 垂直,M 为PB 的中点. (Ⅰ)求证:PA ⊥DM ;(Ⅱ)求直线PC 与平面DCM 所成角的正弦值.20. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.21.若函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大,求a 的值.22.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.23.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到如图所示的几何体σ.(1)求几何体σ的表面积;(2)点M时几何体σ的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形.24.斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长.城区民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,作函数y=|x2+3x﹣3|与y=a的图象如下,,结合图象可知,m的可能值有2,3,4;故选A.2.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.3.【答案】B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sinφ=,即sinφ=,由于|φ|<,解得:φ=,即有:f (x )=2sin (2x+).由2x+=k π,k ∈Z 可解得:x=,k ∈Z , 故f (x)的图象的对称中心是:(,0),k ∈Z当k=0时,f (x)的图象的对称中心是:(,0),故选:B .【点评】本题主要考查由函数y=Asin (ωx+φ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题.4. 【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 5. 【答案】B 【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 6. 【答案】C【解析】解:∵函数=,∴f (3)=32+2=11.故选C .7. 【答案】D【解析】考点:球的表面积和体积.8.【答案】D【解析】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D.【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.9.【答案】C【解析】解:当x≥时,f(x)=4x﹣3≥2﹣3=﹣1,当x=时,取得最小值﹣1;当x<时,f(x)=x2﹣2x+a=(x﹣1)2+a﹣1,即有f(x)在(﹣∞,)递减,则f(x)>f()=a﹣,由题意可得a﹣≥﹣1,解得a≥﹣.故选:C.【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.10.【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A ;由于y=x 2为偶函数,故排除B ;由于y=2x为非奇非偶函数,故排除C ;由于y=x|x|是奇函数,满足条件, 故选:D .【点评】本题主要考查函数的奇偶性的判断,属于基础题.11.【答案】C【解析】[]11,,0,1,0,22A B A B ⎛⎫⎡⎫=-∞== ⎪⎪⎢⎝⎭⎣⎭,(],1U =-∞,故选C .12.【答案】A【解析】解:函数f (x )=xsinx 满足f (﹣x )=﹣xsin (﹣x )=xsinx=f (x ),函数的偶函数,排除B 、C , 因为x ∈(π,2π)时,sinx <0,此时f (x )<0,所以排除D , 故选:A .【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.二、填空题13.【答案】 4 .【解析】解:由分段函数可知f ()=2×=.f (﹣)=f (﹣+1)=f (﹣)=f (﹣)=f ()=2×=,∴f ()+f (﹣)=+.故答案为:4.14.【答案】 >【解析】解:∵y=3x是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题.15.【答案】33.【解析】解:∵1=++++++++++++,∵2=1×2,6=2×3,30=5×6,42=6×7,56=7×8,72=8×9,90=9×10,110=10×11,132=11×12,∴1=++++++++++++=(1﹣)+++(﹣)+,+==﹣+﹣=,∴m=20,n=13,∴m+n=33,故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.16.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.17.【答案】(0,1].【解析】解:不等式,即,求得0<x≤1,故答案为:(0,1].【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题.18.【答案】存在x∈R,x3﹣x2+1>0.【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.故答案为:存在x∈R,x3﹣x2+1>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系.三、解答题19.【答案】【解析】由底面ABCD为菱形且60oABC∠=,∴ABC∆,ADC∆是等边三角形,取DC中点O,有,OA DC OP DC⊥⊥,∴POA∠为二面角P CD A--的平面角,∴90oPOA∠=.分别以,,OA OC OP所在直线为,,x y z轴,建立空间直角坐标系如图,则(0,1,0),(0,1,0)A P DB C-.……3分(Ⅰ)由M为PB中点,(22M∴3(2DM=(3,0,3),PA=-0),0,DC PA DM PA DC=∴==∴PA⊥DM……6分(Ⅱ)由(0,2,0)DC=,0PA DC⋅=,∴PA⊥DC,∴平面DCM的法向量可取(3,0,PA=……(0,1,PC=,设直线PC与平面DCM所成角为θ则sin |cos ,|||||||6PC PA PC PA PC PA θ⋅=<>===.即直线PC 与平面DCM .…… 12分 20.【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为⊥AB 平面ADF ,所以平面ADF 的一个法向量)0,0,1(1=n .由31=知P 为FD 的三等分点且此时)32,32,0(P .在平面APC 中,)32,32,0(=,)0,2,1(=.所以平面APC 的一个法向量)1,1,2(2--=n .……………………10分所以36|||||,cos |212121==><n n n n ,又因为二面角C AP D --的大小为锐角,所以该二面角的余弦值为36.……………………………………………………………………12分 21.【答案】【解析】解:由题意可得:∵当a >1时,函数f (x )在区间[1,2]上单调递增,∴f (2)﹣f (1)=a 2﹣a=a ,解得a=0(舍去),或a=.∵当 0<a <1时,函数f (x )在区间[1,2]上单调递减,∴f (1)﹣f (2)=a ﹣a 2=,解得a=0(舍去),或a=.故a 的值为或.【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.22.【答案】 【解析】(I )证明:在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥底面ABC ,所以,BB 1⊥BC .又因为AB ⊥BC 且AB ∩BB 1=B , 所以,BC ⊥平面A 1ABB 1.因为BC ⊂平面BCE ,所以,平面BCE ⊥平面A 1ABB 1. (II )证明:取BC 的中点D ,连接C 1D ,FD .因为E ,F 分别是A 1C 1,AB 的中点,所以,FD ∥AC 且.因为AC ∥A 1C 1且AC=A 1C 1, 所以,FD ∥EC 1且 FD=EC 1. 所以,四边形FDC 1E 是平行四边形.所以,EF ∥C 1D .又因为C 1D ⊂平面B 1BCC 1,EF ⊄平面B 1BCC 1, 所以,EF ∥平面B 1BCC 1.(III )解:因为,AB ⊥BC所以,.过点B作BG⊥AC于点G,则.因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1所以,平面A1ACC1⊥底面ABC.所以,BG⊥平面A1ACC1.所以,四棱锥B﹣A1ACC1的体积.【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.23.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)由已知S=××2×sin135°=1,△ABD因而要使四面体MABD的体积为,只要M点到平面ABCD的距离为1,因为在空间中有两个平面到平面ABCD的距离为1,它们与几何体σ的表面的交线构成2个曲边四边形,不是2个菱形.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.24.【答案】【解析】解:设直线l的倾斜解为α,则l与y轴的夹角θ=90°﹣α,cotθ=tanα=2,∴sinθ=,|AB|==40.线段AB的长为40.【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式|AB|=的灵活运用.。
应县民族中学2018-2019学年上学期高二数学12月月考试题含解析
应县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-2. 设集合,,则( )A BCD3. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94 B . C.92D .4 4. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l β,则β⊥l则几何体的体积为( )34意在考查学生空间想象能力和计算能c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状C.等腰直角三角形D.等腰三角形或直角三角形7.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()A. B.8 C. D.8.已知数列{a n}中,a1=1,a n+1=a n+n,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是()A.n≤8?B.n≤9?C.n≤10?D.n≤11?9.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP∥BD;②EP⊥AC;③EP⊥面SAC;④EP∥面SBD中恒成立的为()A.②④B.③④C.①②D.①③10.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是()A .B .y=x 2C .y=﹣x|x|D .y=x ﹣211.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .15B .C .15D .15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力. 12.已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( ) A .﹣i B .i C .1D .﹣1二、填空题13.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)14.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .15.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .16.(x ﹣)6的展开式的常数项是 (应用数字作答).17.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.18.运行如图所示的程序框图后,输出的结果是三、解答题19.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.20.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.21.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.22.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.23.定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),则(1)求f(0);(2)证明:f(x)为奇函数;(3)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.24.已知a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC.(I)求C的值;(Ⅱ)若c=2a,b=2,求△ABC的面积.应县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n-,选C .2. 【答案】C【解析】送分题,直接考察补集的概念,,故选C 。
广南县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
广南县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱 2. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( ) A .a+3 B .6 C .2D .3﹣a3. 下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A .(ln y x =B .2y x =C .tan y x =D .x y e = 4. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25 5. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.6. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)C .(4,﹣3,1)D .(﹣5,3,4)7. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④D .①③8. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π9. 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )A .11?B .12?C .13?D .14?10.三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a211.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A .4πB .12πC .16πD .48π12.设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .0二、填空题13.已知f (x )=x (e x +a e -x )为偶函数,则a =________.14.设函数f (x )=若f[f (a )],则a 的取值范围是 .15.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .16.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .17.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .18.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________三、解答题19.如图,三棱柱ABC ﹣A 1B 1C 1中,AB=AC=AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .(1)求证:BD ⊥平面AA 1C 1C ; (2)求二面角C 1﹣AB ﹣C 的余弦值.20.求同时满足下列两个条件的所有复数z:①z+是实数,且1<z+≤6;②z的实部和虚部都是整数.21.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则22.已知函数f(x)=4sinxcosx﹣5sin2x﹣cos2x+3.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cos(A+C),求f(B)的值.23.如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.(1)求证:BC1∥平面A1CD;(2)若四边形BCCB1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.124.设f(x)=ax2﹣(a+1)x+1(1)解关于x的不等式f(x)>0;(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.广南县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案) 一、选择题1. 【答案】A 【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A. 考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 2. 【答案】A【解析】A . C . D .恰有11个零点,可得5π≤ω•<6π,求得10≤ω<12, 故选:A . 3. 【答案】A 【解析】试题分析:()()f x f x -=-所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与()f x 不相同,D 为非奇非偶函数,故选A.考点:函数的单调性与奇偶性. 4. 【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P =310.5. 【答案】A6. 【答案】C【解析】解:设C (x ,y ,z ),∵点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C ,∴,解得x=4,y=﹣3,z=1,∴C (4,﹣3,1). 故选:C .7. 【答案】B【解析】解:由m 、n 是两条不同的直线,α,β,γ是三个不同的平面: 在①中:若m ⊥α,n ∥α,则由直线与平面垂直得m ⊥n ,故①正确; 在②中:若α∥β,β∥γ,则α∥γ,∵m ⊥α,∴由直线垂直于平面的性质定理得m ⊥γ,故②正确;在③中:若m ⊥α,n ⊥α,则由直线与平面垂直的性质定理得m ∥n ,故③正确; 在④中:若α⊥β,m ⊥β,则m ∥α或m ⊂α,故④错误. 故选:B .8. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 9. 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k 值为12, 则退出循环时的k 值为13, 故退出循环的条件应为:k ≥13?, 故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.10.【答案】A【解析】解:∵a=0.52=0.25, b=log 20.5<log 21=0, c=20.5>20=1, ∴b <a <c . 故选:A .【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.11.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B .【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.12.【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b ,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 二、填空题13.【答案】【解析】解析:∵f (x )是偶函数,∴f (-x )=f (x )恒成立, 即(-x )(e -x +a e x )=x (e x +a e -x ), ∴a (e x +e -x )=-(e x +e -x ),∴a =-1. 答案:-114.【答案】或a=1 .【解析】解:当时,.∵,由,解得:,所以;当,f (a )=2(1﹣a ),∵0≤2(1﹣a )≤1,若,则,分析可得a=1.若,即,因为2[1﹣2(1﹣a )]=4a ﹣2,由,得:.综上得:或a=1.故答案为:或a=1.【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题.15.【答案】 33 .【解析】解:∵1=++++++++++++,∵2=1×2, 6=2×3, 30=5×6, 42=6×7, 56=7×8, 72=8×9, 90=9×10, 110=10×11, 132=11×12,∴1=++++++++++++=(1﹣)+++(﹣)+,+==﹣+﹣=, ∴m=20,n=13, ∴m+n=33, 故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.16.【答案】.【解析】解:∵O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,∴直线AB的方程为y=(x﹣),l的方程为x=﹣,联立,解得A(﹣,P),B(,﹣)∴直线OA的方程为:y=,联立,解得D(﹣,﹣)∴|BD|==,∵|OF|=,∴==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.17.【答案】3.【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.18.【答案】【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:三、解答题19.【答案】【解析】解:(1)∵四边形AA1C1C为平行四边形,∴AC=A1C1,∵AC=AA1,∴AA1=A1C1,∵∠AA1C1=60°,∴△AA1C1为等边三角形,同理△ABC1是等边三角形,∵D为AC1的中点,∴BD⊥AC1,∵平面ABC1⊥平面AA1C1C,平面ABC1∩平面AA1C1C=AC1,BD⊂平面ABC1,∴BD⊥平面AA1C1C.(2)以点D为坐标原点,DA、DC、DB分别为x轴、y轴、z轴,建立空间直角坐标系,平面ABC1的一个法向量为,设平面ABC的法向量为,由题意可得,,则,所以平面ABC的一个法向量为=(,1,1),∴cosθ=.即二面角C1﹣AB﹣C的余弦值等于.【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小.着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题.20.【答案】【解析】解:设z+=t,则z2﹣tz+10=0.∵1<t≤6,∴△=t2﹣40<0,解方程得z=±i.又∵z的实部和虚部都是整数,∴t=2或t=6,故满足条件的复数共4个:z=1±3i 或z=3±i.21.【答案】【解析】AB22.【答案】【解析】解:(Ⅰ)f(x)=4sinxcosx﹣5sin2x﹣cos2x+3=2sin2x﹣+3=2sin2x+2cos2x=4sin(2x+).∵x∈[0,],∴2x+∈[,],∴f(x)∈[﹣2,4].(Ⅱ)由条件得sin(2A+C)=2sinA+2sinAcos(A+C),∴sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),化简得sinC=2sinA,由正弦定理得:c=2a,又b=,由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA,解得:cosA=,故解得:A=,B=,C=,∴f(B)=f()=4sin=2.【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.23.【答案】【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,∵D为AB的中点,∴DO∥BC1,∵BC1⊄平面A1CD,DO⊂平面A1CD,∴BC1∥平面A1CD.解:∵底面△ABC是边长为2等边三角形,D为AB的中点,四边形BCCB1是正方形,且A1D=,1∴CD⊥AB,CD==,AD=1,∴AD2+AA12=A1D2,∴AA1⊥AB,∵,∴,∴CD⊥DA1,又DA1∩AB=D,∴CD⊥平面ABB1A1,∵BB1⊂平面ABB1A1,∴BB1⊥CD,∵矩形BCC1B1,∴BB1⊥BC,∵BC∩CD=C∴BB1⊥平面ABC,∵底面△ABC是等边三角形,∴三棱柱ABC﹣A1B1C1是正三棱柱.以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,B(2,0,0),A(1,0,),D(,0,),A1(1,2,),=(,﹣2,﹣),平面CBB1C1的法向量=(0,0,1),设直线A1D与平面CBB1C1所成角为θ,则sinθ===.∴直线A1D与平面CBB1C1所成角的正弦值为.24.【答案】【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,即有(ax﹣1)(x﹣1)>0,当a=0时,即有1﹣x>0,解得x<1;当a<0时,即有(x﹣1)(x﹣)<0,由1>可得<x<1;当a=1时,(x﹣1)2>0,即有x∈R,x≠1;当a>1时,1>,可得x>1或x<;当0<a<1时,1<,可得x<1或x>.综上可得,a=0时,解集为{x|x<1};a<0时,解集为{x|<x<1};a=1时,解集为{x|x∈R,x≠1};a>1时,解集为{x|x>1或x<};0<a<1时,解集为{x|x<1或x>}.(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,即为ax2﹣(a+1)x+1>0,即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].则g(﹣1)>0,且g(1)>0,即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,即(x﹣1)(x+2)<0,且x(x﹣1)>0,解得﹣2<x<1,且x>1或x<0.可得﹣2<x<0.故x的取值范围是(﹣2,0).。
广南县高中2018-2019学年高二上学期第一次月考试卷数学
广南县高中2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知直线a,b都与平面α相交,则a,b的位置关系是()A.平行 B.相交 C.异面 D.以上都有可能2.如图,在正六边形ABCDEF中,点O为其中心,则下列判断错误的是()A.=B.∥C.D.3.已知函数f(x)=xe x﹣mx+m,若f(x)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是()A.B. C.D.4.若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i5.过点P(﹣2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有()A.3条B.2条C.1条D.0条则几何体的体积为()4意在考查学生空间想象能力和计算能力.7.若f(x)=sin(2x+θ),则“f(x)的图象关于x=对称”是“θ=﹣”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.求值:=()A.tan 38°B.C.D.﹣9.设向量,满足:||=3,||=4,=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()A.3 B.4 C.5 D.610.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A.B.C.D.11.设函数f(x)=,f(﹣2)+f(log210)=()A.11 B.8 C.5 D.212.已知正△ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.B.C.D.二、填空题13.如图是正方体的平面展开图,则在这个正方体中①B M与E D平行;②C N与B E是异面直线;③C N与B M成60 角;④D M与B N是异面直线.以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).14.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0xx x f x xln x x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______. 15.设函数f (x )=,则f (f (﹣2))的值为 .16.若实数,,,a b c d 满足24ln 220b a acd +-+-+=,则()()22ac b d-+-的最小值为 ▲ .17.如果实数,x y 满足等式()2223x y -+=,那么y x的最大值是 .18.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .三、解答题19.已知函数f (x )=.(1)求f (f (﹣2));(2)画出函数f (x )的图象,根据图象写出函数的单调增区间并求出函数f (x )在区间(﹣4,0)上的值域.20.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.21.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.22.已知x 2﹣y 2+2xyi=2i ,求实数x 、y 的值.23.已知函数y=3﹣4cos (2x+),x ∈[﹣,],求该函数的最大值,最小值及相应的x 值.24.计算下列各式的值:(1)(2)(lg5)2+2lg2﹣(lg2)2.广南县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:如图,在正方体ABCD﹣A1B1C1D1中,AA1∩平面ABCD=A,BB1∩平面ABCD=B,AA1∥BB1;AA1∩平面ABCD=A,AB1∩平面ABCD=A,AA1与AB1相交;AA1∩平面ABCD=A,CD1∩平面ABCD=C,AA1与CD1异面.∴直线a,b都与平面α相交,则a,b的位置关系是相交、平行或异面.故选:D.2.【答案】D【解析】解:由图可知,,但不共线,故,故选D.【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.3.【答案】C【解析】解:设g(x)=xe x,y=mx﹣m,由题设原不等式有唯一整数解,即g(x)=xe x在直线y=mx﹣m下方,g′(x)=(x+1)e x,g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),结合函数图象得K PA≤m<K PB,即≤m<,,故选:C.【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.4.【答案】A【解析】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.5.【答案】C【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则.即2a﹣2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l的方程为:,即x﹣y+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.6.【答案】D【解析】7.【答案】B【解析】解:若f(x)的图象关于x=对称,则2×+θ=+kπ,解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,反之成立,即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.8.【答案】C【解析】解:=tan(49°+11°)=tan60°=,故选:C.【点评】本题主要考查两角和的正切公式的应用,属于基础题.9.【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.10.【答案】A【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.11.【答案】B【解析】解:∵f(x)=,∴f(﹣2)=1+log24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.12.【答案】D【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,∴△A′B′C′的高为=,∴△A′B′C′的面积S==.故选D.【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.二、填空题13.【答案】③④【解析】试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:①B M与E D是异面直线,所以是错误的;②D N 与B E 是平行直线,所以是错误的;③从图中连接,A N A C ,由于几何体是正方体,所以三角形A N C 为等边三角形,所以,A N A C 所成的角为60︒,所以是正确的;④D M 与B N 是异面直线,所以是正确的.考点:空间中直线与直线的位置关系. 14.【答案】e【解析】考查函数()()20{xx x f x a x ln x+≤=-,其余条件均不变,则:当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点, 即有ln x a x =有且只有一个实根。
广南县第三中学2019-2020学年上学期高二数学12月月考试题含解析
广南县第三中学2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2 D.32.设数列{a n}的前n项和为S n,若S n=n2+2n(n∈N*),则++…+=()A.B.C.D.3.已知函数f(x)=Asin(ωx+φ)(a>0,ω>0,|φ|<)的部分图象如图所示,则f (x)的解析式是()A.f(x)=sin(3x+)B.f(x)=sin(2x+)C.f(x)=sin(x+)D.f(x)=sin(2x+)4.函数y=的图象大致为()A.B.C.D.5.已知命题且是单调增函数;命题,.则下列命题为真命题的是()A.B. C.D.6.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.一定相离 B.一定相切C.相交且一定不过圆心D.相交且可能过圆心7.如果(m∈R,i表示虚数单位),那么m=()A.1 B.﹣1 C.2 D.08.直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为()A.0 B.1 C.2 D.39.等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.B2=AC B.A+C=2B C.B(B﹣A)=A(C﹣A)D.B(B﹣A)=C(C﹣A)10.已知全集U=R,集合M={x|﹣2≤x﹣1≤2}和N={x|x=2k﹣1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()A.3个B.2个C.1个D.无穷多个11.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示.若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A. B. C. D.12.垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能二、填空题13.正六棱台的两底面边长分别为1cm,2cm,高是1cm,它的侧面积为.14.对于映射f:A→B,若A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:A→B为一一映射,若存在对应关系Φ,使A到B成为一一映射,则称A到B具有相同的势,给出下列命题:①A是奇数集,B是偶数集,则A和B具有相同的势;②A是平面直角坐标系内所有点形成的集合,B是复数集,则A和B不具有相同的势;③若区间A=(﹣1,1),B=R,则A和B具有相同的势.其中正确命题的序号是.15.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为.16.已知函数f(x)=x m过点(2,),则m=.17.命题:“∀x∈R,都有x3≥1”的否定形式为.18.的展开式中的系数为(用数字作答).三、解答题19.已知函数,且.(Ⅰ)求的解析式;(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.20.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.21.甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,判断题2道,甲、乙两人各抽一道(不重复).(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?22.已知函数f(x)=|x﹣a|.(Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若∃x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求实数m的取值范围.23.已知a>0,a≠1,命题p:“函数f(x)=a x在(0,+∞)上单调递减”,命题q:“关于x的不等式x2﹣2ax+≥0对一切的x∈R恒成立”,若p∧q为假命题,p∨q为真命题,求实数a的取值范围.24.已知定义在的一次函数为单调增函数,且值域为.(1)求的解析式;(2)求函数的解析式并确定其定义域.广南县第三中学2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.2.【答案】D【解析】解:∵S n=n2+2n(n∈N*),∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1)]=2n+1.∴==,∴++…+=++…+==﹣.故选:D.【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.3.【答案】D【解析】解:由图象知函数的最大值为1,即A=1,函数的周期T=4(﹣)=4×=,解得ω=2,即f(x)=2sin(2x+φ),由五点对应法知2×+φ=,解得φ=,故f(x)=sin(2x+),故选:D4.【答案】D【解析】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.5.【答案】D【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.6.【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C7.【答案】A【解析】解:因为,而(m∈R,i表示虚数单位),所以,m=1.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.8. 【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”,∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .9. 【答案】C 【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ; 若公比q ≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n)(1﹣q n )(1+q n )A (C ﹣A )=(﹣)=(1﹣q n)(1﹣q n )(1+q n ); 故B (B ﹣A )=A (C ﹣A );故选:C . 【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.10.【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M ∩N , 又由M={x|﹣2≤x ﹣1≤2}得﹣1≤x ≤3, 即M={x|﹣1≤x ≤3}, 在此范围内的奇数有1和3.所以集合M ∩N={1,3}共有2个元素, 故选B .11.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C12.【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.二、填空题13.【答案】cm2.【解析】解:如图所示,是正六棱台的一部分,侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.根据正六棱台的性质得OC=,OC1==,1∴CC1==.又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.∴正六棱台的侧面积:S=.==(cm2).故答案为:cm2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.14.【答案】①③.【解析】解:根据一一映射的定义,集合A={奇数}→B={偶数},不妨给出对应法则加1.则A→B是一一映射,故①正确;对②设Z点的坐标(a,b),则Z点对应复数a+bi,a、b∈R,复合一一映射的定义,故②不正确;对③,给出对应法则y=tan x,对于A,B两集合可形成f:A→B的一一映射,则A、B 具有相同的势;∴③正确.故选:①③【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力.15.【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好.16.【答案】﹣1.【解析】解:将(2,)代入函数f(x)得:=2m,解得:m=﹣1;故答案为:﹣1.【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.17.【答案】∃x0∈R,都有x03<1.【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x∈R,都有x3≥1”的否定形式为:命题:“∃x0∈R,都有x03<1”.故答案为:∃x0∈R,都有x03<1.【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.18.【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:三、解答题19.【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】(Ⅰ)对求导,得,所以,解得,所以.(Ⅱ)由,得,因为,所以对于任意,都有.设,则.令,解得.当x变化时,与的变化情况如下表:所以当时,.因为对于任意,都有成立,所以.所以的最小值为.(Ⅲ)证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证.由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.设,所以,令,解得.由,得,所以在上为增函数.所以,即.所以.故函数的图象在直线的下方.20.【答案】【解析】解:(I)证明:∵平面PAD⊥平面ABCD,AB⊥AD,∴AB⊥平面PAD,∵E、F为PA、PB的中点,∴EF∥AB,∴EF⊥平面PAD;(II)解:过P作AD的垂线,垂足为O,∵平面PAD⊥平面ABCD,则PO⊥平面ABCD.取AO中点M,连OG,EO,EM,∵EF∥AB∥OG,∴OG即为面EFG与面ABCD的交线又EM∥OP,则EM⊥平面ABCD.且OG⊥AO,故OG⊥EO∴∠EOM 即为所求在RT△EOM中,EM=OM=1∴tan∠EOM=,故∠EOM=60°∴平面EFG与平面ABCD所成锐二面角的大小是60°.【点评】本题主要考察直线与平面垂直的判定以及二面角的求法.解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角.21.【答案】【解析】(本小题满分12分)解:(1)甲、乙两人从5道题中不重复各抽一道,共有5×4=20种抽法记“甲抽到选择题,乙抽到判断题”为事件A,则事件A含有的基本事件数为3×2=6…(4分)∴,∴甲抽到选择题,乙抽到判断题的概率是…(6分)(2)记“甲、乙二人中至少有一人抽到选择题”为事件B,其对立事件为“甲、乙二人都抽到判断题”,记为事件C,则事件C含有的基本事件数为2×1=2…(8分)∴,∴,…(11分)∴甲、乙二人中至少有一人抽到选择题的概率是.…(12分)【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件、对立事件概率计算公式的合理运用.22.【答案】【解析】解:(Ⅰ)∵|x﹣a|≤2,∴a﹣2≤x≤a+2,∵f(x)≤2的解集为[0,4],∴,∴a=2.(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,∵∃x0∈R,使得,即成立,∴4m+m2>[f(x)+f(x+5)]min,即4m+m2>5,解得m<﹣5,或m>1,∴实数m的取值范围是(﹣∞,﹣5)∪(1,+∞).23.【答案】【解析】解:若p为真,则0<a<1;若q为真,则△=4a2﹣1≤0,得,又a>0,a≠1,∴.因为p∧q为假命题,p∨q为真命题,所以p,q中必有一个为真,且另一个为假.①当p为真,q为假时,由;②当p为假,q为真时,无解.综上,a的取值范围是.【点评】1.求解本题时,应注意大前提“a>0,a≠1”,a的取值范围是在此条件下进行的.24.【答案】(1),;(2),. 【解析】试题解析:(1)设,111]由题意有:解得∴,.(2),.考点:待定系数法.。
2018-2019学年上学期高二数学12月月考试题含解析(529)
正蓝旗第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )A .T 1=T 19B .T 3=T 17C .T 5=T 12D .T 8=T 112. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=3. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q 是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( ) A .①④B .②③C .③④D .②④4. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.5. f ()=,则f (2)=( )A .3B .1C .2D .6. 设i 是虚数单位,是复数z 的共轭复数,若z=2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i7. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .08. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18C .24D .369. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)10.直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .311.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞12.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种二、填空题13.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 .14.已知平面向量a ,b 的夹角为3π,6=-b a,向量c a -,c b -的夹角为23π,23c a -=,则a 与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.15.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 16.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.17.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .18.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.三、解答题19.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.20.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;(2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.23.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.24.如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积.正蓝旗第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:∵a n =29﹣n ,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确 T 5=230,T 12=230,故C 正确 T 8=236,T 11=233,故D 不正确 故选C2. 【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D .3. 【答案】D【解析】解:∵命题p ;对任意x ∈R ,2x 2﹣2x+1≤0是假命题, 命题q :存在x ∈R ,sinx+cosx=是真命题,∴①不正确,②正确,③不正确,④正确.故选D .4. 【答案】D【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526k ϕπ=-+π(k Z ∈),可得56ϕπ=-,所以5()2c o s (2)6f x x π=-,则5(0)2c o s (36f π=-=,故选D.5. 【答案】A【解析】解:∵f ()=,∴f(2)=f()==3.故选:A.6.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.7.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.8.【答案】D【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x4﹣2r,令4﹣2r=0,解得r=2,∴展开式的常数项为6=a5,∴a3a7=a52=36,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.9. 【答案】A【解析】解:令f (x )=x 3﹣,∵f ′(x )=3x 2﹣ln =3x 2+ln2>0,∴f (x )=x 3﹣在R 上单调递增;又f (1)=1﹣=>0, f (0)=0﹣1=﹣1<0,∴f (x )=x 3﹣的零点在(0,1),∵函数y=x 3与y=()x的图象的交点为(x 0,y 0),∴x 0所在的区间是(0,1). 故答案为:A .10.【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .11.【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8k x =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
广南县高中2018-2019学年上学期高二数学12月月考试题含解析
广南县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 执行如图所示的程序框图,如果输入的t =10,则输出的i =()A .4B .5C .6D .72. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( )A .20B .24C .30D .363. cos80cos130sin100sin130︒︒-︒︒等于( )A B .12 C .12-D .4. 设集合是三角形的三边长,则所表示的平面区域是()(){,|,,1A x y x y x y =--}AA .B .C .D .5. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或6. 二项式的展开式中项的系数为10,则( )(1)(N )n x n *+Î3x n =A .5B .6C .8D .10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.7. P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c8. 如图是一个多面体的三视图,则其全面积为()A .B .C .D .9. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .10.某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为()A .4320B .2400C .2160D .132011.用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( )A .1B .7C .﹣7D .﹣512.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( )A .16B .6C .4D .8二、填空题13.【徐州市第三中学2017~2018学年度高三第一学期月考】函数的单调增区间是__________.()3f x x x =-+14.设i 是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z •= .15.在中,角的对边分别为,若,的面积,ABC ∆A B C 、、a b c 、、1cos 2c B a b ⋅=+ABC ∆S =则边的最小值为_______.c 【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.16.设,在区间上任取一个实数,曲线在点处的切线斜率为,则随机()xxf x e =[0,3]0x ()f x ()00,()x f x k 事件“”的概率为_________.0k <17.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .18.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .三、解答题19.已知函数f (x )=|x ﹣10|+|x ﹣20|,且满足f (x )<10a+10(a ∈R )的解集不是空集.(Ⅰ)求实数a 的取值集合A(Ⅱ)若b ∈A ,a ≠b ,求证a a b b >a b b a .20.一艘客轮在航海中遇险,发出求救信号.在遇险地点南偏西方向10海里的处有一艘海A 45B 难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东,正以每小时9海里的速度向75一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;(2)若最短时间内两船在处相遇,如图,在中,求角的正弦值.C ABC ∆B21.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.(1)用定义证明f(x)在(0,+∞)上是减函数;(2)求函数f(x)的解析式.22.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明)(注:,其中为数据的平均数)23.(本小题满分10分)选修4-1:几何证明选讲1111]如图,点为圆上一点,为圆的切线,为圆的直径,.C O CP CE 3CP =(1)若交圆于点,,求的长;PE O F 165EF =CE (2)若连接并延长交圆于两点,于,求的长.OP O ,A B CD OP ⊥D CD24.已知复数z=m (m ﹣1)+(m 2+2m ﹣3)i (m ∈R )(1)若z 是实数,求m 的值;(2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围.广南县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】【解析】解析:选B.程序运行次序为第一次t=5,i=2;第二次t=16,i=3;第三次t=8,i=4;第四次t=4,i=5,故输出的i=5.2.【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x3项的系数之和为20,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.3.【答案】D【解析】=︒︒-︒︒=︒+︒=︒=︒+︒=-︒cos80cos130sin80sin130cos80130cos210cos30180cos30试题分析:原式()()=.考点:余弦的两角和公式.4.【答案】A【解析】考点:二元一次不等式所表示的平面区域.5.【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x 轴时,a 2=m ,b 2=2m ,c 2=3m ,离心率e=.焦点坐标在y 轴时,a 2=﹣2m ,b 2=﹣m ,c 2=﹣3m ,离心率e==.故选:C .【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点. 6. 【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A .(1)(N )n x n *+Î3x 3C n 3C 10n =5n =7. 【答案】A【解析】解:如图设切点分别为M ,N ,Q ,则△PF 1F 2的内切圆的圆心的横坐标与Q 横坐标相同.由双曲线的定义,PF 1﹣PF 2=2a .由圆的切线性质PF 1﹣PF 2=F I M ﹣F 2N=F 1Q ﹣F 2Q=2a ,∵F 1Q+F 2Q=F 1F 2=2c ,∴F 2Q=c ﹣a ,OQ=a ,Q 横坐标为a .故选A .【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义. 8. 【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C.【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.9.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.10.【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种,故选D.【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.11.【答案】C【解析】解:∵f(x)=x6﹣5x5+6x4+x2+0.3x+2=(((((x﹣5)x+6)x+0)x+2)x+0.3)x+2,∴v0=a6=1,v1=v0x+a5=1×(﹣2)﹣5=﹣7,故选C.12.【答案】D【解析】解:∵a=5,b=4,cosC=,可得:sinC==,∴S △ABC=absinC==8.故选:D . 二、填空题13.【答案】(【解析】 ,所以增区间是()2310f x x x ⎛=-+>⇒∈ ⎝'⎛ ⎝14.【答案】 10 .【解析】解:由z=3﹣i ,得z •=.故答案为:10.【点评】本题考查公式,考查了复数模的求法,是基础题.15.【答案】116.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.,由得,,∴随机事件“”的概率为.0001()x x k f x e -'==0()0f x '<01x >0k <2317.【答案】 2016 .【解析】解:∵f (x )=f (2﹣x ),∴f (x )的图象关于直线x=1对称,即f (1﹣x )=f (1+x ).∵f (x+1)=f (x ﹣1),∴f (x+2)=f (x ),即函数f(x)是周期为2的周期函数,∵方程f(x)=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.18.【答案】 [﹣1,﹣) .【解析】解:作出y=|x﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.三、解答题19.【答案】【解析】解(1)要使不等式|x﹣10|+|x﹣20|<10a+10的解集不是空集,则(|x﹣10|+|x﹣20|)min<10a+10,根据绝对值三角不等式得:|x﹣10|+|x﹣20|≥|(x﹣10)﹣(x﹣20)|=10,即(|x﹣10|+|x﹣20|)min=10,所以,10<10a+10,解得a>0,所以,实数a的取值集合为A=(0,+∞);(2)∵a ,b ∈(0,+∞)且a ≠b ,∴不妨设a >b >0,则a ﹣b >0且>1,则>1恒成立,即>1,所以,a a ﹣b >b a ﹣b ,将该不等式两边同时乘以a b b b 得,a a b b >a b b a ,即证.【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题. 20.【答案】(1)小时;(223【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在处相遇.C 在中,,,,.ABC ∆4575120BAC ∠=+=10AB =9AC t =21BC t =由余弦定理得:,2222cos BC AB AC AB AC BAC =+-∠A A所以,2221(21)10(9)2109()2t t t =+-⨯⨯⨯-化简得,解得或(舍去).2369100t t --=23t =512t =-所以,海难搜救艇追上客轮所需时间为小时.23(2)由,.2963AC =⨯=221143BC =⨯=在中,由正弦定理得.ABC ∆sin 6sin120sin 14AC BAC B BC∠====A A 所以角B 考点:三角形的实际应用.【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,再根据正弦定理和余弦定理,即,AC BC 可求解此类问题,其中正确画出图形是解答的关键.21.【答案】【解析】(1)证明:设x 2>x 1>0,∵f (x 1)﹣f (x 2)=(﹣1)﹣(﹣1)=,由题设可得x 2﹣x 1>0,且x 2•x 1>0,∴f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2),故f (x )在(0,+∞)上是减函数.(2)当x <0时,﹣x >0,f (﹣x )=﹣1=﹣f (x ),∴f (x )=+1.又f (0)=0,故函数f (x )的解析式为f (x )=.22.【答案】【解析】【知识点】样本的数据特征古典概型【试题解析】(Ⅰ)由折线图,知样本中体育成绩大于或等于70分的学生有人,所以该校高一年级学生中,“体育良好”的学生人数大约有人.(Ⅱ)设 “至少有1人体育成绩在”为事件,记体育成绩在的数据为,,体育成绩在的数据为,,,则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,,,,,,,,,.而事件的结果有7种,它们是:,,,,,,,因此事件的概率.(Ⅲ)a ,b ,c 的值分别是为,,.23.【答案】(1);(2).4CE =CD =【解析】试题分析:(1)由切线的性质可知∽,由相似三角形性质知,可得;ECP ∆EFC ∆::EF CE CE EP =4CE =(2)由切割线定理可得,求出,再由,求出的值. 12(4)CP BP BP =+,BP OP CD OP OC CP ⋅=⋅CD 试题解析:(1)因为是圆的切线,是圆的直径,所以,,所以∽,CP O CE O CP CE ⊥090CFE ∠=ECP ∆EFC ∆设,,又因为∽,所以,CE x =EP =ECP ∆EFC ∆::EF CE CE EP =所以,解得.2x =4x =考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.24.【答案】【解析】解:(1)z 为实数⇔m 2+2m ﹣3=0,解得:m=﹣3或m=1;(2)z 为纯虚数⇔,解得:m=0;(3)z 所对应的点在第四象限⇔,解得:﹣3<m <0.。
南县民族中学2018-2019学年上学期高二数学12月月考试题含解析
南县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=12. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲乙相等D .无法确定3. 已知f (x )=,则f (2016)等于( )A .﹣1B .0C .1D .24. “x 2﹣4x <0”的一个充分不必要条件为( ) A .0<x <4 B .0<x <2 C .x >0 D .x <45. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,56. 已知点M 的球坐标为(1,,),则它的直角坐标为( )A .(1,,)B .(,,)C .(,,)D .(,,)7. 已知a 为常数,则使得成立的一个充分而不必要条件是( )A .a >0B .a <0C .a >eD .a <e8. 若复数z 满足=i ,其中i 为虚数单位,则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i9. 如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y= C .y=(x 2﹣2x )e xD .y=10.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④ 11.定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( )3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥A.(2,+∞)B.(0,2) C.(0,4) D.(4,+∞)x ,则输出的所有x的值的和为()12.执行如图所示的程序,若输入的3A.243B.363C.729D.1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.二、填空题13.给出下列四个命题:①函数f(x)=1﹣2sin2的最小正周期为2π;②“x2﹣4x﹣5=0”的一个必要不充分条件是“x=5”;③命题p:∃x∈R,tanx=1;命题q:∀x∈R,x2﹣x+1>0,则命题“p∧(¬q)”是假命题;④函数f(x)=x3﹣3x2+1在点(1,f(1))处的切线方程为3x+y﹣2=0.其中正确命题的序号是 .14.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.15.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .16.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 . 17.不等式的解为 .18.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12n n n S λ-+<+|对一切n N *∈恒成立,则λ的取值范围是___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.三、解答题19.等差数列{a n }的前n 项和为S n .a 3=2,S 8=22. (1)求{a n }的通项公式;(2)设b n =,求数列{b n }的前n 项和T n .20.已知函数f (x )=在(,f ())处的切线方程为8x ﹣9y+t=0(m ∈N ,t ∈R )(1)求m和t的值;(2)若关于x的不等式f(x)≤ax+在[,+∞)恒成立,求实数a的取值范围.21.已知点F(0,1),直线l1:y=﹣1,直线l1⊥l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H.设点H的轨迹为曲线r.(Ⅰ)求曲线r的方程;(Ⅱ)过点P作曲线r的两条切线,切点分别为C,D,(ⅰ)求证:直线CD过定点;(ⅱ)若P(1,﹣1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由.阿啊阿22.甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5次预赛,成绩如下:甲:78 76 74 90 82乙:90 70 75 85 80(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?说明理由.23.已知抛物线C:x2=2py(p>0),抛物线上一点Q(m,)到焦点的距离为1.(Ⅰ)求抛物线C的方程(Ⅱ)设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(n∈N*)(ⅰ)记△AOB的面积为f(n),求f(n)的表达式(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.24.已知S n为等差数列{a n}的前n项和,且a4=7,S4=16.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.南县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:如图,++().故选C.2.【答案】A【解析】解:根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分别比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,∴甲地的方差较小.故选:A.【点评】本题考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定方差的大小,比较基础.3.【答案】D【解析】解:∵f(x)=,∴f(2016)=f(2011)=f(2006)=…=f(1)=f(﹣4)=log24=2,故选:D.【点评】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.4.【答案】B【解析】解:不等式x2﹣4x<0整理,得x(x﹣4)<0∴不等式的解集为A={x|0<x<4},因此,不等式x2﹣4x<0成立的一个充分不必要条件,对应的x范围应该是集合A的真子集.写出一个使不等式x2﹣4x<0成立的充分不必要条件可以是:0<x<2,故选:B .5. 【答案】D 【解析】试题分析:分析题意可知:对应法则为31y x =+,则应有42331331a a a k ⎧=⨯+⎪⎨+=⋅+⎪⎩(1)或42313331a k a a ⎧=⋅+⎪⎨+=⨯+⎪⎩(2),由于*a N ∈,所以(1)式无解,解(2)式得:25a k =⎧⎨=⎩。
广南县一中2018-2019学年上学期高二数学12月月考试题含解析
广南县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围( )A .[1,+∞)B .[0.2}C .[1,2]D .(﹣∞,2]2. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15B .30C .31D .643. 已知偶函数f (x )=log a |x ﹣b|在(﹣∞,0)上单调递增,则f (a+1)与f (b+2)的大小关系是( ) A .f (a+1)≥f (b+2) B .f (a+1)>f (b+2) C .f (a+1)≤f (b+2) D .f (a+1)<f (b+2)4. 已知等比数列{a n }的前n 项和为S n ,若=4,则=( )A .3B .4C .D .135. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥n D .m ∥α,α∩β=n ,则m ∥n6. 若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )A .B .C .D .27. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)8. 设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )A .1B .C .D .﹣19. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .①B .②C .③D .④10.若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度. 11.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( )A .0B .1C .2D .312.函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)二、填空题13.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
南部县民族中学2018-2019学年上学期高二数学12月月考试题含解析
南部县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________ 一、选择题1.数列{a n}满足a n+2=2a n+1﹣a n,且a2014,a2016是函数f(x)=+6x﹣1的极值点,则log2(a2000+a2012+a2018+a2030)的值是()A.2 B.3 C.4 D.52.直线x+y﹣1=0与2x+2y+3=0的距离是()A. B.C. D.3.函数是()A.最小正周期为2π的奇函数B.最小正周期为π的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数4.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A. B.4 C. D.25.已知一三棱锥的三视图如图所示,那么它的体积为()A.13B.23C.1D.26.如果点P在平面区域220,210,20x yx yx y-+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q在曲线22(2)1x y++=上,那么||PQ的最小值为()A1B1-C. 1D17.阅读如下所示的程序框图,若运行相应的程序,则输出的S的值是()A.39 B.21 C.81 D.1028. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力. 9. 设集合,,则( )A BCD10.α是第四象限角,,则sin α=( )A .B .C .D .11.与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A12.若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .4二、填空题13.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.14.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.15.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.16.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .17.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. ①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 .18.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .三、解答题19.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值; (Ⅲ)若,使得不等式成立,求实数的取值范围.20.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.21.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.22.(本小题满分12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 均为正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ; (2)求二面角D FG E --的大小的余弦值.23.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.24.平面直角坐标系xOy中,圆C1的参数方程为(φ为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=4sinθ.(1)写出圆C1的普通方程及圆C2的直角坐标方程;(2)圆C1与圆C2是否相交,若相交,请求出公共弦的长;若不相交请说明理由.南部县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:函数f(x)=+6x﹣1,可得f′(x)=x2﹣8x+6,∵a2014,a2016是函数f(x)=+6x﹣1的极值点,∴a2014,a2016是方程x2﹣8x+6=0的两实数根,则a2014+a2016=8.数列{a n}中,满足a n+2=2a n+1﹣a n,可知{a n}为等差数列,∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,从而log2(a2000+a2012+a2018+a2030)=log216=4.故选:C.【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.2.【答案】A【解析】解:直线x+y﹣1=0与2x+2y+3=0的距离,就是直线2x+2y﹣2=0与2x+2y+3=0的距离是:=.故选:A.3.【答案】B【解析】解:因为==cos(2x+)=﹣sin2x.所以函数的周期为:=π.因为f(﹣x)=﹣sin(﹣2x)=sin2x=﹣f(x),所以函数是奇函数.故选B.【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.4.【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C5. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 6. 【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值. 7. 【答案】] 【解析】试题分析:第一次循环:2,3==n S ;第二次循环:3,21==n S ;第三次循环:4,102==n S .结束循环,输出102=S .故选D. 1 考点:算法初步.8. 【答案】D【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 9. 【答案】C【解析】送分题,直接考察补集的概念,,故选C 。
广南县实验中学2018-2019学年上学期高二数学12月月考试题含解析
广南县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设a>0,b>0,若是5a与5b的等比中项,则+的最小值为()A.8 B.4 C.1 D.2.若双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,则此双曲线的离心率等于()A.B.C.D.23.已知f(x)是定义在R上周期为2的奇函数,当x∈(0,1)时,f(x)=3x﹣1,则f(log35)=()A.B.﹣C.4 D.4.已知等比数列{a n}的前n项和为S n,若=4,则=()A.3 B.4 C.D.135.若方程C:x2+=1(a是常数)则下列结论正确的是()A.∀a∈R+,方程C表示椭圆B.∀a∈R﹣,方程C表示双曲线C.∃a∈R﹣,方程C表示椭圆D.∃a∈R,方程C表示抛物线6.平面α与平面β平行的条件可以是()A.α内有无穷多条直线与β平行B.直线a∥α,a∥βC.直线a⊂α,直线b⊂β,且a∥β,b∥αD.α内的任何直线都与β平行7.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A.i≤5?B.i≤4?C.i≥4?D.i≥5?8. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位9. 已知命题p :2≤2,命题q :∃x 0∈R ,使得x 02+2x 0+2=0,则下列命题是真命题的是( ) A .¬p B .¬p ∨q C .p ∧q D .p ∨q10.运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )A .y=x+2B .y=C .y=3xD .y=3x 311.已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤- ⎥⎝⎦12.三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56 C .0.56<60.5<log 0.56 D .0.56<log 0.56<60.5二、填空题13.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ . 14.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .15.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填B 方格的数字,则不同的填法共有 种(用数字作答).16.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .17.已知x 是400和1600的等差中项,则x= . 18. 设函数()x f x e =,()ln g x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.三、解答题19.已知定义在区间(0,+∞)上的函数f (x )满足f ()=f (x 1)﹣f (x 2).(1)求f (1)的值;(2)若当x >1时,有f (x )<0.求证:f (x )为单调递减函数;(3)在(2)的条件下,若f (5)=﹣1,求f (x )在[3,25]上的最小值.20.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.21.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。
广南县二中2018-2019学年上学期高二数学12月月考试题含解析
广南县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1 C .a ≤﹣3或a ≥﹣1 D .a <﹣3或a >﹣1 2. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣33. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 4. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( ) A .等腰三角形B .正三角形C .直角三角形D .钝角三角形6. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A.B.C.D.7. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )A .a 、b 都能被5整除B .a 、b 都不能被5整除C .a 、b 不都能被5整除D .a 不能被5整除8. 已知集合2{320,}A x x x x R =-+=∈,{05,}B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的个数为A 、B 、2C 、3D 、4 9. 已知命题p :存在x 0>0,使2<1,则¬p 是( )A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1 D .存在x 0≤0,使2<110.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )A .B .C .2D .311.已知复数z 满足z •i=2﹣i ,i 为虚数单位,则z=( ) A .﹣1﹣2i B .﹣1+2iC .1﹣2iD .1+2i12.与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条二、填空题13.若等比数列{a n }的前n 项和为S n ,且,则= .14.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .15.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= .16.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________. 17.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .18.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .三、解答题19.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.20.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4。
2018-2019学年上学期高二数学12月月考试题含解析(1754)
维西傈僳族自治县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个2. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )43π ( B ) 83π (C ) 4π (D ) 8π 3. 下列式子表示正确的是( )A 、{}00,2,3⊆B 、{}{}22,3∈C 、{}1,2φ∈D 、{}0φ⊆ 4. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点)0,43(π,则ω的最小值是( ) A .31 B . C .35D .5. 设变量x ,y满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .26. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .B .4C .D .27. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则c o s C =( )A .725B .725- C. 725±D .24258. 已知一三棱锥的三视图如图所示,那么它的体积为( ) A .13 B .23C .1D .29. 若a >0,b >0,a+b=1,则y=+的最小值是( )A .2B .3C .4D .5 10.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .611.,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( )(A ) 13 ( B ) 49 (C ) 23 (D )8912.“m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件二、填空题13.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.14.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为.15.向量=(1,2,﹣2),=(﹣3,x,y),且∥,则x﹣y=.16.二面角α﹣l﹣β内一点P到平面α,β和棱l的距离之比为1::2,则这个二面角的平面角是度.17.已知f(x)=,则f(﹣)+f()等于.18.直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于_________ 。
正蓝旗民族中学2018-2019学年上学期高二数学12月月考试题含解析
正蓝旗民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 2. 下列命题的说法错误的是( )A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0” 3. 已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y=2B .y=log 3(x+1)C .y=4﹣D .y=4. 若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x 5. 已知数列{a n }中,a 1=1,a n+1=a n +n ,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( )A .n ≤8?B .n ≤9?C .n ≤10?D .n ≤11?6. 设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .7. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .8. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B = ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,49. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件 10.设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6C8 D1011.如果(m ∈R ,i 表示虚数单位),那么m=( )A .1B .﹣1C .2D .012.若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假二、填空题13.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .14.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .15.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.16.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .17.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .18.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)三、解答题19.已知集合P={x|2x 2﹣3x+1≤0},Q={x|(x ﹣a )(x ﹣a ﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.20.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.21.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.22.由四个不同的数字1,2,4,x 组成无重复数字的三位数. (1)若x=5,其中能被5整除的共有多少个? (2)若x=9,其中能被3整除的共有多少个? (3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x .23.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.24.圆锥底面半径为1cm ,其中有一个内接正方体,求这个内接正方体的棱长.正蓝旗民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C2. 【答案】A【解析】解:A .复合命题p ∧q 为假命题,则p ,q 至少有一个命题为假命题,因此不正确; B .由x 2﹣3x+2=0,解得x=1,2,因此“x=1”是“x 2﹣3x+2=0”的充分不必要条件,正确; C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0,正确;D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”,正确. 故选:A .3. 【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log 3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线, 故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.4. 【答案】A 【解析】试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性.5. 【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2 n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n ≤9, 故选B .【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.6. 【答案】 D【解析】解:设|PF 1|=t , ∵|PF 1|=|PQ|,∠F 1PQ=60°, ∴|PQ|=t ,|F 1Q|=t ,由△F 1PQ 为等边三角形,得|F 1P|=|F 1Q|, 由对称性可知,PQ 垂直于x 轴,F 2为PQ 的中点,|PF 2|=,∴|F 1F 2|=,即2c=,由椭圆定义:|PF 1|+|PF 2|=2a ,即2a=t=t ,∴椭圆的离心率为:e===.故选D .7. 【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.8.【答案】A【解析】考点:1、集合的表示方法;2、集合的补集及交集.9.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A10.【答案】B【解析】本题考查了对数的计算、列举思想a=-时,不符;a=0时,y=log2x过点(,-1),(1,0),此时b=0,b=1符合;a=时,y=log2(x+)过点(0,-1),(,0),此时b=0,b=1符合;a=1时,y=log2(x+1)过点(-,-1),(0,0),(1,1),此时b=-1,b=1符合;共6个11.【答案】A【解析】解:因为,而(m∈R,i表示虚数单位),所以,m=1.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.12.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.二、填空题13.【答案】4【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三三角形的三角和是角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出现.14.【答案】4.【解析】解:画出满足条件的平面区域,如图示:,由,解得:A(3,4),显然直线z=ax+by过A(3,4)时z取到最大值12,此时:3a+4b=12,即+=1,∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b时“=”成立,故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.15.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
广南县高级中学2018-2019学年高二上学期第一次月考测试数学
广南县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( )A .2日和5日B .5日和6日C .6日和11日D .2日和11日2. 已知||=||=1,与夹角是90°,=2+3, =k ﹣4,与垂直,k 的值为( )A .﹣6B .6C .3D .﹣33. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能4. 已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .1<e <B .e >C .e >D .1<e <5. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .π B .2πC .4πD .π6. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a的值为( )A .2B .C .D .37. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要8. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.9. 复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i10.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-1 11.从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( )A.110B.15C.310D.25 12.若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( ) A .5 B .4C .3D .2二、填空题13.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)14.如果实数,x y 满足等式()2223x y -+=,那么yx的最大值是 .15.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .16.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .17.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .18.当0,1x ∈()时,函数()e 1xf x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.三、解答题19.已知曲线y=Asin (ωx+φ)(A >0,ω>0)上的一个最高点的坐标为(,),由此点到相邻最低点间的曲线与x 轴交于点(π,0),φ∈(﹣,).(1)求这条曲线的函数解析式;(2)写出函数的单调区间.20.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,(Ⅰ)求C1、C2的方程;(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.21.已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}(1)若A∩B=[0,3],求实数m的值;(2)若p是¬q的充分条件,求实数m的取值范围.22.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.(1)求S n的最小值及相应n的值;(2)求T n.23.如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos∠ADC=﹣.(Ⅰ)求sin∠BAD的值;(Ⅱ)求AC边的长.24.在中,、、是角、、所对的边,是该三角形的面积,且(1)求的大小;(2)若,,求的值。
广南县高中2018-2019学年高二上学期第二次月考试卷数学
广南县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A .1+B .4-C .5-D .3+ 2. A={x|x <1},B={x|x <﹣2或x >0},则A ∩B=( )A .(0,1)B .(﹣∞,﹣2)C .(﹣2,0)D .(﹣∞,﹣2)∪(0,1)3. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .2)B .2C .1:D (1+ 4. 数列1,3,6,10,…的一个通项公式是( )A .21n a n n =-+ B .(1)2n n n a -=C .(1)2n n n a += D .21n a n =+ 5. 集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩B=( )A .{x|x <1}B .{x|﹣1≤x ≤2}C .{x|﹣1≤x ≤1}D .{x|﹣1≤x <1}6. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .07. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )A .B .C .D . =0.08x+1.238. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)(9. 已知点M 的球坐标为(1,,),则它的直角坐标为( )A .(1,,)B .(,,)C .(,,)D .(,,)10.已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则s i n :s i n C A =( ) A .2︰3 B .4︰3 C .3︰1 D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.11.江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米12.下列函数中,既是奇函数又是减函数的为( ) A .y=x+1B .y=﹣x 2C .D .y=﹣x|x|二、填空题13.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)14.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .15.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.16.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .17.若不等式组表示的平面区域是一个锐角三角形,则k的取值范围是.18.多面体的三视图如图所示,则该多面体体积为(单位cm).三、解答题19.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.20.已知函数f(x)=xlnx+ax(a∈R).(Ⅰ)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)21.(本小题满分12分)已知过抛物线2:2(0)C y px p =>的焦点,斜率为的直线交抛物线于11A x y (,) 和22B x y (,)(12x x <)两点,且92AB =. (I )求该抛物线C 的方程;(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.22.已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3﹣x )=f (x ),且有最小值是. (1)求f (x )的解析式;(2)求函数h (x )=f (x )﹣(2t ﹣3)x 在区间[0,1]上的最小值,其中t ∈R ;(3)在区间[﹣1,3]上,y=f (x )的图象恒在函数y=2x+m 的图象上方,试确定实数m 的范围.23.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.24.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.(1)用定义证明f(x)在(0,+∞)上是减函数;(2)求函数f(x)的解析式.广南县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m -+-=,解得4a =,所以212AF m ⎛⎫=- ⎪ ⎪⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方]2. 【答案】D【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),∴A ∩B=(﹣∞,﹣2)∪(0,1),故选:D .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3. 【答案】D 【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 4. 【答案】C 【解析】试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)2n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式.5. 【答案】D【解析】解:A ∩B={x|﹣1≤x ≤2}∩{x|x <1}={x|﹣1≤x ≤2,且x <1}={x|﹣1≤x <1}. 故选D .【点评】本题考查了交集,关键是理解交集的定义及会使用数轴求其公共部分.6. 【答案】D【解析】解:∵A 1B ∥D 1C ,∴CP 与A 1B 成角可化为CP 与D 1C 成角.∵△AD 1C 是正三角形可知当P 与A 重合时成角为,∵P 不能与D 1重合因为此时D 1C 与A 1B 平行而不是异面直线,∴0<θ≤.故选:D .7. 【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D 由线性回归直线方程样本点的中心为(4,5), 将x=4分别代入A 、B 、C ,其值依次为8.92、9.92、5,排除A 、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C 满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.8. 【答案】A 【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.9. 【答案】B【解析】解:设点M 的直角坐标为(x ,y ,z ),∵点M 的球坐标为(1,,),∴x=sincos=,y=sinsin=,z=cos=∴M 的直角坐标为(,,).故选:B .【点评】假设P (x ,y ,z )为空间内一点,则点P 也可用这样三个有次序的数r ,φ,θ来确定,其中r 为原点O 与点P 间的距离,θ为有向线段OP 与z 轴正向的夹角,φ为从正z 轴来看自x 轴按逆时针方向转到OM 所转过的角,这里M 为点P 在xOy 面上的投影.这样的三个数r ,φ,θ叫做点P 的球面坐标,显然,这里r ,φ,θ的变化范围为r ∈[0,+∞),φ∈[0,2π],θ∈[0,π],10.【答案】C【解析】由已知等式,得3cos 3cos c b C c B =+,由正弦定理,得sin 3(sin cos sin cos )C B C C B =+,则sin 3sin()3sin C B C A =+=,所以sin :sin 3:1C A =,故选C .11.【答案】C【解析】解:如图,过炮台顶部A 作水平面的垂线,垂足为B ,设A 处观测小船C 的俯角为45°,设A 处观测小船D 的俯角为30°,连接BC 、BD Rt △ABC 中,∠ACB=45°,可得BC=AB=30米Rt △ABD 中,∠ADB=30°,可得BD=AB=30米在△BCD 中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD 2=BC 2+BD 2﹣2BCBDcos30°=900 ∴CD=30米(负值舍去) 故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.12.【答案】D【解析】解:y=x+1不是奇函数;y=﹣x2不是奇函数;是奇函数,但不是减函数;y=﹣x|x|既是奇函数又是减函数,故选:D.【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.二、填空题13.【答案】 3.3【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.设BC=x,则根据题意=,AB=x,在AE=AB﹣BE=x﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.14.【答案】.【解析】解:∵△AOB是直角三角形(O是坐标原点),∴圆心到直线ax+by=1的距离d=,即d==,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d==≥,∴点P(a,b)与点(1,0)之间距离的最小值为.故答案为:.【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.15.1【解析】16.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为.∴点到直线l的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.17.【答案】(﹣1,0).【解析】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(0,5),B(2,7),C(2,2k+5)△ABC的形状随着直线AC:y=kx+5斜率的变化而变化,将直线AC绕A点旋转,可得当C点与C1(2,5)重合或与C2(2,3)重合时,△ABC是直角三角形,当点C位于B、C1之间,或在C1C2的延长线上时,△ABC是钝角三角形,当点C位于C1、C2之间时,△ABC是锐角三角形,而点C在其它的位置不能构成三角形综上所述,可得3<2k+5<5,解之得﹣1<k<0即k的取值范围是(﹣1,0)故答案为:(﹣1,0)【点评】本题给出二元一次不等式组,在表示的图形为锐角三角形的情况下,求参数k的取值范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.18.【答案】cm3.【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.三、解答题19.【答案】【解析】解:(1)∵A={x|3≤x<10},B={x|2<x≤7},∴A∩B=[3,7];A∪B=(2,10);(C U A)∩(C U B)=(﹣∞,3)∪[10,+∞);(2)∵集合C={x|x>a},∴若A⊆C,则a<3,即a的取值范围是{a|a<3}.20.【答案】【解析】解:(I)a=﹣2时,f(x)=xlnx﹣2x,则f′(x)=lnx﹣1.令f′(x)=0得x=e,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,∴f(x)的单调递减区间是(0,e),单调递增区间为(e,+∞).(II)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,则xlnx+ax>k(x﹣1)+ax﹣x恒成立,即k(x﹣1)<xlnx+ax﹣ax+x恒成立,又x﹣1>0,则k<对任意x∈(1,+∞)恒成立,设h(x)=,则h′(x)=.设m(x)=x﹣lnx﹣2,则m′(x)=1﹣,∵x∈(1,+∞),∴m′(x)>0,则m(x)在(1,+∞)上是增函数.∵m(1)=﹣1<0,m(2)=﹣ln2<0,m(3)=1﹣ln3<0,m(4)=2﹣ln4>0,∴存在x0∈(3,4),使得m(x0)=0,当x∈(1,x0)时,m(x)<0,即h′(x)<0,当x∈(x0,+∞)时,m(x)>0,h′(x)>0,∴h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,∴h(x)的最小值h min(x)=h(x0)=.∵m(x0)=x0﹣lnx0﹣2=0,∴lnx0=x0﹣2.∴h(x0)==x0.∴k<h min(x)=x0.∵3<x0<4,∴k≤3.∴k的值为1,2,3.【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题.21.【答案】【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.因为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+⎪⎝⎭,所以221222256323264y y y =++≥=, 当且仅当2222256y y =即22y =16,24y =?时等号成立. 圆的直径OS=因为21y ≥64,所以当21y =64即1y =±8时,min OS =S 的坐标为168±(,). 22.【答案】【解析】解:(1)二次函数f (x )图象经过点(0,4),任意x 满足f (3﹣x )=f (x ) 则对称轴x=, f (x)存在最小值, 则二次项系数a >0设f (x )=a (x﹣)2+.将点(0,4)代入得: f (0)=,解得:a=1∴f (x )=(x﹣)2+=x 2﹣3x+4.(2)h (x )=f (x )﹣(2t ﹣3)x =x 2﹣2tx+4=(x ﹣t )2+4﹣t 2,x ∈[0,1].当对称轴x=t ≤0时,h (x )在x=0处取得最小值h (0)=4;当对称轴0<x=t <1时,h (x )在x=t 处取得最小值h (t )=4﹣t 2;当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5.综上所述:当t≤0时,最小值4;当0<t<1时,最小值4﹣t2;当t≥1时,最小值﹣2t+5.∴.(3)由已知:f(x)>2x+m对于x∈[﹣1,3]恒成立,∴m<x2﹣5x+4对x∈[﹣1,3]恒成立,∵g(x)=x2﹣5x+4在x∈[﹣1,3]上的最小值为,∴m<.23.【答案】【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B,∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,∴,,∴甲队以4:2,4:3获胜的概率分别为和.(Ⅱ)随机变量X的可能取值为5,6,7,∴,P(X=6)=,P(X=7)=,∴随机变量X的分布列为【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.24.【答案】【解析】(1)证明:设x2>x1>0,∵f(x1)﹣f(x2)=(﹣1)﹣(﹣1)=,由题设可得x2﹣x1>0,且x2•x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是减函数.(2)当x<0时,﹣x>0,f(﹣x)=﹣1=﹣f(x),∴f(x)=+1.又f(0)=0,故函数f(x)的解析式为f(x)=.。
广南县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析
广南县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知点P(1,﹣),则它的极坐标是()A.B.C.D.2.若数列{a n}的通项公式a n=5()2n﹣2﹣4()n﹣1(n∈N*),{a n}的最大项为第p项,最小项为第q项,则q﹣p等于()A.1 B.2 C.3 D.43.在△ABC中,a2=b2+c2+bc,则A等于()A.120°B.60°C.45°D.30°4.已知函数f(x)=1+x﹣+﹣+…+,则下列结论正确的是()A.f(x)在(0,1)上恰有一个零点B.f(x)在(﹣1,0)上恰有一个零点C.f(x)在(0,1)上恰有两个零点D.f(x)在(﹣1,0)上恰有两个零点5.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是()A.①②B.①C.③④D.①②③④6.若复数z=2﹣i (i为虚数单位),则=()A.4+2i B.20+10i C.4﹣2i D.7.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱C.钱D.钱8.设x,y∈R,且满足,则x+y=()A.1 B.2 C.3 D.49.数列{a n}的首项a1=1,a n+1=a n+2n,则a5=()A.B.20 C.21 D.3110.设D 为△ABC 所在平面内一点,,则( )A .B .C .D .11.设a=60.5,b=0.56,c=log 0.56,则( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a12.如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A .B . C. D .二、填空题13.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广南县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f()﹣f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)2. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2 D.3. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④4. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) 3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 5. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )43π ( B ) 83π (C ) 4π (D ) 8π 6. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2] B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)7. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A .64B .32C .643D .3238. 集合{}1,2,3的真子集共有( )A .个B .个C .个D .个 9. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .10.若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣11.棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )A .=B .0S =C .0122S S S =+D .20122S S S =12.下列4个命题:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2; 其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题13.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .14.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .15.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .16.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.17.在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC不是直角三角形,则下列命题正确的是(写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC的最小值为3③tanA,tanB,tanC中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.18.在各项为正数的等比数列{a n}中,若a6=a5+2a4,则公比q=.三、解答题19.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.20.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?21.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.(Ⅰ)求底面积并用含x的表达式表示池壁面积;(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?22.已知关x的一元二次函数f(x)=ax2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P 和Q中随机取一个数a和b得到数对(a,b).(1)列举出所有的数对(a,b)并求函数y=f(x)有零点的概率;(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.23.已知函数f(x)=.(1)求f(x)的定义域;(2)判断并证明f(x)的奇偶性;(3)求证:f()=﹣f(x).24.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.广南县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:令F(x)=,(x>0),则F′(x)=,∵f(x)>xf′(x),∴F′(x)<0,∴F(x)为定义域上的减函数,由不等式x2f()﹣f(x)>0,得:>,∴<x,∴x>1,故选:C.2.【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,即|AM|min=.故选:D.【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.3.【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.由于9.967 6.635>,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D . 4. 【答案】B 【解析】5. 【答案】B【解析】将函数()()sin 20y x ϕϕ=+>的图象沿x 轴向左平移8π个单位后,得到一个偶函数sin 2sin 284[()]()y x x ππϕϕ=++=++的图象,可得42ππϕ+=,求得ϕ的最小值为 4π,故选B .6. 【答案】C【解析】解:由f (x )=x 2﹣6x+7=(x ﹣3)2﹣2,x ∈(2,5]. ∴当x=3时,f (x )min =﹣2.当x=5时,.∴函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是[﹣2,2]. 故选:C .7. 【答案】B 【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:1444322⨯⨯⨯=,故选B. 考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8.【答案】C【解析】考点:真子集的概念.9.【答案】B【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE与AC所成角为θ,则cosθ===.故选:B.10.【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(﹣2,1),则由图象知A,B两点在直线两侧和在直线上即可,即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0, 即(3t+4)(2t+4)≤0, 解得﹣2≤t ≤﹣,即实数t 的取值范围为是[﹣2,﹣], 故选:C .【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.11.【答案】A 【解析】试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:220()2()a S a hS a S a hS '⎧=⎪+⎪⎨'⎪=+⎪⎩,解得=A . 考点:棱台的结构特征.12.【答案】C【解析】解:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”,①正确; ②若“¬p 或q ”是假命题,则¬p 、q 均为假命题,∴p 、¬q 均为真命题,“p 且¬q ”是真命题,②正确; ③由p :x (x ﹣2)≤0,得0≤x ≤2,由q :log 2x ≤1,得0<x ≤2,则p 是q 的必要不充分条件,③错误;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2,④正确. ∴正确的命题有3个. 故选:C .二、填空题13.【答案】.【解析】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.14.【答案】.【解析】解:过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有V=×2×h××2,当球的直径通过AB与CD的中点时,h最大为2,则四面体ABCD的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.15.【答案】[﹣1,﹣).【解析】解:作出y=|x﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.16.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.17.【答案】①④⑤【解析】解:由题意知:A≠,B≠,C≠,且A+B+C=π∴tan(A+B)=tan(π﹣C)=﹣tanC,又∵tan(A+B)=,∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)=﹣tanC+tanAtanBtanC,即tanA+tanB+tanC=tanAtanBtanC,故①正确;当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;由①,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45°,故④正确;当tanB﹣1=时,tanA•tanB=tanA+tanB+tanC,即tanC=,C=60°,此时sin2C=,sinA•sinB=sinA•sin(120°﹣A)=sinA•(cosA+sinA)=sinAcosA+sin2A=sin2A+﹣cos2A=sin(2A﹣30°)≤,则sin2C≥sinA•sinB.故⑤正确;故答案为:①④⑤【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.18.【答案】2.【解析】解:由a6=a5+2a4得,a4q2=a4q+2a4,即q2﹣q﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2,故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.三、解答题19.【答案】【解析】(本题满分为12分)解:(Ⅰ)f(x)=2cosx(sinx+cosx)﹣1=2sinxcosx+2cos2x﹣1=sin2x+2×﹣1 =sin2x+cos2x=sin (2x+),∵x ∈[0,],∴2x+∈[,],∴当2x+=,即x=时,f (x )min =…6分(Ⅱ)由(Ⅰ)可知f (B )=sin (+)=1,∴sin (+)=,∴+=,∴B=,由正弦定理可得:b==∈[1,2)…12分【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.20.【答案】【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C 103=120,奖金的可能取值是0,30,60,240,∴一等奖的概率P (ξ=240)=,P (ξ=60)=P (ξ=30)=,P (ξ=0)=1﹣ ∴变量的分布列是ξ∴E ξ==20(2)由(1)可得乙一次抽奖中奖的概率是1﹣四次抽奖是相互独立的∴中奖次数η~B(4,)∴Dη=4×【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.21.【答案】【解析】解:(Ⅰ)设水池的底面积为S1,池壁面积为S2,则有(平方米),可知,池底长方形宽为米,则(Ⅱ)设总造价为y,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元.答:x=40时,总造价最低为297600元.22.【答案】【解析】解:(1)(a,b)共有(1,﹣1),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3﹣1),(3,1),(3,2),(3,3),(3,4),15种情况函数y=f(x)有零点,△=b2﹣4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件所以函数y=f(x)有零点的概率为(2)函数y=f(x)的对称轴为,在区间[1,+∞)上是增函数则有,(1,﹣1),(1,1),(1,2),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件所以函数y=f(x)在区间[1,+∞)上是增函数的概率为【点评】本题主要考查概率的列举法和二次函数的单调性问题.对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视.23.【答案】【解析】解:(1)∵1+x2≥1恒成立,∴f(x)的定义域为(﹣∞,+∞);(2)∵f(﹣x)===f(x),∴f(x)为偶函数;(3)∵f(x)=.∴f()===﹣=﹣f(x).即f()=﹣f(x)成立.【点评】本题主要考查函数定义域以及函数奇偶性的判断,比较基础.24.【答案】【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分.平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5,即估计选择理科的学生的平均分为79.5分.。