2016届高三数学一轮复习优题精练:三角函数
(完整版)高三一轮复习三角函数专题及答案解析.doc
弘知教育内部资料中小学课外辅导专家三角函数典型习题1 .设锐角ABC 的内角 A, B, C 的对边分别为a,b, c , a 2bsin A .(Ⅰ)求B的大小 ;(Ⅱ )求cos A sin C的取值范围 .A B C在中 ,角A, B,C所对的边分别为,, 2 .ABC c , sin sin2 . 2 2(I)试判断△ABC的形状 ;(I I)若△ABC的周长为 16,求面积的最大值 .3 .已知在ABC 中, A且与tan B是方程 x2 5 x 6 0 的两个根.B , tan A(Ⅰ )求tan( A B) 的值;(Ⅱ )若 AB 5 ,求BC的长.4.在ABC 中,角A.B.C所对的边分别是a,b,c,且a2 c 2 b 2 1 ac.A C 2(1)求sin2 cos 2B 的值;2(2)若 b=2,求△ABC面积的最大值 .5.已知函数f ( x) 2sin 2 π3 cos2x , xπ π.x4,4 2(1)求f ( x)的最大值和最小值;(2)f ( x) m 2 在 x π π上恒成立,求实数m 的取值范围.,4 26.在锐角△ABC 中,角..的对边分别为a、b、已知(b2 c 2 a 2) tanA bcA B C c, 3 .(I)求角 A;(II)若 a=2,求△ ABC面积 S 的最大值 ?7.已知函数f ( x) (sin x cos x)2 +cos2 x .(Ⅰ )求函数f x 的最小正周期 ;(Ⅱ )当x 0,2时 ,求函数f x 的最大值 ,并写出 x 相应的取值 .8 .在ABC中,已知内角 A . B . C 所对的边分别为 a 、 b 、 c, 向量r2sin B, rcos2B, 2cos2 B1r rm 3 , n 2 ,且m / / n ?(I)求锐角 B 的大小 ;(II)如果b 2 ,求ABC 的面积S ABC的最大值?答案解析11【解析】 :(Ⅰ )由 a2b sin A ,根据正弦定理得 sin A2sin B sin A ,所以 sin B ,2π由ABC 为锐角三角形得B.6(Ⅱ ) cos A sin C cos A sinAcos A sin6Acos A13 sin Acos A223 sin A .32【解析】 :I. sinC sin C cos C sin C 2 sin( C)C2 22 2 2 4即 C ,所以此三角形为直角三角形 .2422II. 16 a b22ab2ab , ab64(22) 2a b 时取等ab2 当且仅当 号,此时面积的最大值为326 4 2 .3【解析】 :(Ⅰ )由所给条件 ,方程 x 2 5 x 6 0 的两根 tan A 3, tan B2 .∴ tan( A B)tan A tan B2 311 tan A tan B 12 3(Ⅱ)∵ A B C 180 ,∴ C180 (A B) .由(Ⅰ )知 , tanCtan( A B)1,∵ C 为三角形的内角 ,∴ sin C22∵ tan A3 , A 为三角形的内角 ,∴ sin A3 ,10由正弦定理得 :AB BC5 3 ∴ BC 3 5 .21028【解析】 :(1)r r2sinB(2cos 2 B m / / n-1)=- 3cos2B22sinBcosB=- 3cos2Btan2B=- 32ππ ∵ 0<2B< π,∴ 2B= 3 ,∴ 锐角 B=3(2)由 tan2B=- 3π 5πB= 或63π① 当B= 时 ,已知 b=2,由余弦定理 ,得 :34=a 2+c 2 -ac ≥ 2ac-ac=ac(当且仅当 a=c=2 时等号成立 )1 3∵△ ABC 的面积 S △ABC =2 acsinB= 4 ac ≤ 3∴△ ABC 的面积最大值为 35π ② 当 B= 6 时 ,已知 b=2,由余弦定理 ,得 :4=a 2+c 2 + 3ac ≥2ac+ 3ac=(2+ 3)ac(当且仅当 a=c= 6- 2时等号成立 )∴ac ≤ 4(2-3)1 1∵△ ABC 的面积 S △ABC =2 acsinB=4ac ≤2- 3 ∴△ ABC 的面积最大值为 2- 314【解析】 :(1) 由余弦定理 :cosB=4sin 2A C+cos2B=124(2)由 cos B1,得 sin B15. ∵ b=2,44a218 115 2+ c =2ac+4≥2ac,得 ac ≤ ,S △ABC =2acsinB ≤(a=c 时取等号 )33故 S △ABC 的最大值为 1535 【解析】∵f ( x) 1 π3 cos2 x 1 sin 2x 3cos2 x( Ⅰ )cos2x21 2sin 2xπ.3又∵ xπ ππ 2xπ 2π, , ∴≤≤,4 2633即2≤12sin 2xπ≤ 3,3∴ f ( x) max 3, f ( x) min 2 .(Ⅱ ) ∵ f ( x)m 2f (x) 2 mf (x) 2 , xπ π ,4,2∴ mf ( x)max 2 且 m f ( x) min 2 ,∴1 m 4 ,即 m 的取值范围是 (14), .6【解析】 :(I)由已知得b 2c 2a 2 sin A3 32bccos A sin A22又在锐角 △ABC 中,所以 A=60°,[不说明是锐角 △ABC 中,扣 1 分 ](II)因为 a=2,A=60 所°以 b2c2bc 4, S1bc sin A3bc24而b 2c 22bc4 2bcbc4bc又 S1bc sin A3bc3 4 3244所以 △ ABC 面积 S 的最大值等于37【解析】 :(Ⅰ )因为 f ( x) (sin xcos x)2 +cos2 xsin 2 x 2sin x cos x cos 2 x cos2 x1 sin2 x cos2x ( ) =1+ 2 sin(2 x)4所以 2,即函数 f (x) 的最小正周期为, T2(Ⅱ )因为 0 x,得4 2x45,所以有2 sin(2 x) 1242 4 12 sin(2 x) 2,即0 12 sin(2 x)1244所以 ,函数 f x的最大值为 1 2此时 ,因为2 x5,所以 , 2 x,即 x844442。
【2016年高考数学】2016年高考数学(理)一轮复习精品三角函数
2016年高考数学(理)一轮复习精品三角函数C 单元 三角函数C1 角的概念及任意角的三角函数 6.C1、C3[2014·新课标全国卷Ⅰ] 如图1-1,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]上的图像大致为( )图1-1A BC D6.C [解析] 根据三角函数的定义,点M (cos x ,0),△OPM 的面积为12|sin x cos x |,在直角三角形OPM 中,根据等积关系得点M 到直线OP 的距离,即f (x )=|sin x cos x |=12|sin 2x |,且当x =π2时上述关系也成立, 故函数f (x )的图像为选项C 中的图像.C2 同角三角函数的基本关系式与诱导公式16.C2、C4、C6[2014·福建卷] 已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.16.解:方法一:(1)因为0<α<π2,sin α=22,所以cos α=22.所以f (α)=22×⎝⎛⎭⎫22+22-12=12.(2)因为f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4, 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. (1)因为0<α<π2,sin α=22,所以α=π4,从而f (α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .17.C2,C3,C4[2014·重庆卷] 已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图像关于直线x =π3对称,且图像上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3,求cos ⎝⎛⎭⎫α+3π2的值.17.解:(1)因为f (x )的图像上相邻两个最高点的距离为π,所以ƒ(x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图像关于直线x =π3对称,所以2×π3+φ=k π+π2,k =0,±1,±2,….因为-π2≤φ<π2,所以φ=-π6.(2)由(1)得ƒ⎝⎛⎭⎫α2=3sin(2×α2-π6)=34, 所以sin ⎝⎛⎭⎫α-π6=14.由π6<α<2π3得0<α-π6<π2, 所以cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫142=154.因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤(α-π6)+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=14×32+154×12 =3+158.C3 三角函数的图象与性质9.C3[2014·辽宁卷] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增9.B [解析] 由题可知,将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度得到函数y=3sin ⎝⎛⎭⎫2x -23π的图像,令-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z 时,函数单调递增,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,可知当k =0时,函数在区间⎣⎡⎦⎤π12,7π12上单调递增.3.C3[2014·全国卷] 设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b3.C [解析] 因为b =cos 55°=sin 35°>sin 33°,所以b >a .因为cos 35°<1,所以1cos 35°>1,所以sin 35°cos 35°>sin 35°.又c =tan 35°=sin 35°cos 35°>sin 35°,所以c >b ,所以c >b >a .6.C1、C3[2014·新课标全国卷Ⅰ] 如图1-1,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]上的图像大致为( )图1-1A BC D6.C [解析] 根据三角函数的定义,点M (cos x ,0),△OPM 的面积为12|sin x cos x |,在直角三角形OPM 中,根据等积关系得点M 到直线OP 的距离,即f (x )=|sin x cos x |=12|sin 2x |,且当x =π2时上述关系也成立, 故函数f (x )的图像为选项C 中的图像.14.C3、C5[2014·新课标全国卷Ⅱ] 函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________.14.1 [解析] 函数f (x )=sin(x +2φ)-2sin φcos(x +φ)=sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ-cos(x +φ)sin φ=sin x ,故其最大值为1.17.C2,C3,C4[2014·重庆卷] 已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图像关于直线x =π3对称,且图像上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3,求cos ⎝⎛⎭⎫α+3π2的值.17.解:(1)因为f (x )的图像上相邻两个最高点的距离为π,所以ƒ(x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图像关于直线x =π3对称,所以2×π3+φ=k π+π2,k =0,±1,±2,….因为-π2≤φ<π2,所以φ=-π6.(2)由(1)得ƒ⎝⎛⎭⎫α2=3sin(2×α2-π6)=34, 所以sin ⎝⎛⎭⎫α-π6=14.由π6<α<2π3得0<α-π6<π2, 所以cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫142=154.因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤(α-π6)+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=14×32+154×12 =3+158.C4 函数sin()y A x ωϕ=+的图象与性质3.C4[2014·四川卷] 为了得到函数y =sin (2x +1)的图像,只需把函数y =sin 2x 的图像上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度3.A [解析] 因为y =sin(2x +1)=sin2⎝⎛⎭⎫x +12,所以为得到函数y =sin(2x +1)的图像,只需要将y =sin 2x 的图像向左平行移动12个单位长度.11.C4[2014·安徽卷] 若将函数f (x )=sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是________.11.3π8 [解析] 方法一:将f (x )=sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,得到y =sin ⎝⎛⎭⎫2x +π4-2φ的图像,由该函数的图像关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,所以当φ>0时,φmin =3π8.方法二:由f (x )=sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位后所得的图像关于y 轴对称可知,π4-2φ=π2+k π,k ∈Z ,又φ>0,所以φmin =3π8. 14.C4[2014·北京卷] 设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________.14.π [解析] 结合图像得T 4=π2+2π32-π2+π62,即T =π.16.C2、C4、C6[2014·福建卷] 已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.16.解:方法一:(1)因为0<α<π2,sin α=22,所以cos α=22.所以f (α)=22×⎝⎛⎭⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4, 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. (1)因为0<α<π2,sin α=22,所以α=π4,从而f (α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .7.C4、C5[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定7.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD - A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AB 是直线l 3,则DD 1是直线l 4,l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,CC 1是直线l 3,CD 是直线l 4,则l 1⊥l 4.故l 1与l 4的位置关系不确定.17.C4、C5、C7、C9[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?17.解:(1)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f (t )在[0,24)上取得的最大值是12,最小值是8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时,实验室需要降温.由(1)得f (t )=10-2sin ⎝⎛⎭⎫π12t +π3,故有10-2sin ⎝⎛⎭⎫π12t +π3>11,即sin ⎝⎛⎭⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温. 16.C4、C7[2014·江西卷] 已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,θ∈⎝⎛⎭⎫-π2,π2. (1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝⎛⎭⎫π2=0,f (π)=1,求a ,θ的值.16.解:(1)f (x )=sin ⎝⎛⎭⎫x +π4+2cos ⎝⎛⎭⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝⎛⎭⎫π4-x . 因为x ∈[0,π],所以π4-x ∈⎣⎡⎦⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝⎛⎭⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝⎛⎭⎫-π2,π2,知cos θ≠0,所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.12.E3、C4[2014·新课标全国卷Ⅱ] 设函数f (x )=3sinπxm,若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)12.C [解析] 函数f (x )的极值点满足πx m =π2+k π,即x =m ⎝⎛⎭⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k 0使之满足不等式m 2⎝⎛⎭⎫k 0+122+3<m 2.因为⎝⎛⎭⎫k +122的最小值为14,所以只要14m 2+3<m 2成立即可,即m 2>4,解得m >2或m <-2,故m 的取值范围是(-∞,-2)∪(2,+∞).16.F2,C4[2014·山东卷] 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.16.解:(1)由题意知,f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2,所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6.由题意知,g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g (x )的图像上符合题意的最高点为(x 0,2).由题意知,x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得,sin ⎝⎛⎭⎫2φ+π6=1.因为0<φ<π,所以φ=π6.因此,g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x .由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .2.C4[2014·陕西卷] 函数f (x )=cos ⎝⎛⎭⎫2x -π6的最小正周期是( )A.π2B .πC .2πD .4π2.B [解析] 已知函数y =A cos(ωx +φ)(A >0,ω>0)的周期为T =2πω,故函数f (x )的最小正周期T =2π2=π.16.C4,C5,C6,C7[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.16.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以,函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos α cos π4-sin αsin π4(cos 2 α-sin 2 α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角, 得α=3π4+2k π,k ∈Z ,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 15.C4、C5、C6[2014·天津卷] 已知函数f (x )=cos x ·sin ⎝⎛⎭⎫x +π3-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值.15.解:(1)由已知,有f (x )=cos x ·⎝⎛⎭⎫12sin x +32cos x -3cos 2x +34=12sin x ·cos x -32cos 2x +34=14sin 2x -34(1+cos 2x )+34 =14sin 2x -34cos 2x =12sin ⎝⎛⎭⎫2x -π3, 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π4,-π12上是减函数,在区间⎣⎡⎦⎤-π12,π4上是增函数,f ⎝⎛⎭⎫-π4=-14,f ⎝⎛⎭⎫-π12=-12,f ⎝⎛⎭⎫π4=14, 所以函数f (x )在区间⎣⎡⎦⎤-π4,π4上的最大值为14,最小值为-12.4.C4[2014·浙江卷] 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( )A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位4.C [解析] y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,所以将函数y =2cos3x 的图像向右平移π12个单位可以得到函数y =sin 3x +cos 3x 的图像,故选C.17.C2,C3,C4[2014·重庆卷] 已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图像关于直线x =π3对称,且图像上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3,求cos ⎝⎛⎭⎫α+3π2的值.17.解:(1)因为f (x )的图像上相邻两个最高点的距离为π,所以ƒ(x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图像关于直线x =π3对称,所以2×π3+φ=k π+π2,k =0,±1,±2,….因为-π2≤φ<π2,所以φ=-π6.(2)由(1)得ƒ⎝⎛⎭⎫α2=3sin(2×α2-π6)=34, 所以sin ⎝⎛⎭⎫α-π6=14.由π6<α<2π3得0<α-π6<π2,所以cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫142=154.因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤(α-π6)+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=14×32+154×12 =3+158.C5 两角和与差的正弦、余弦、正切 14.C3、C5[2014·新课标全国卷Ⅱ] 函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________.14.1 [解析] 函数f (x )=sin(x +2φ)-2sin φcos(x +φ)=sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ-cos(x +φ)sin φ=sin x ,故其最大值为1.16.C5、C8[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎫A +π4的值.16.解: (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B ,由余弦定理得cos B =a 2+c 2-b 22ac =sin A2sin B ,所以由正弦定理可得a =2b ·a 2+c 2-b 22ac. 因为b =3,c =1,所以a 2=12,即a =2 3. (2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13.因为0<A <π,所以sin A =1-cos 2A =1-19=2 23. 故sin ⎝⎛⎭⎫A +π4=sin A cos π4+cos A sin π4=2 23×22+⎝⎛⎭⎫-13×22=4-26.7.C4、C5[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定7.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD - A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AB 是直线l 3,则DD 1是直线l 4,l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,CC 1是直线l 3,CD 是直线l 4,则l 1⊥l 4.故l 1与l 4的位置关系不确定.16.C5、C7[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f (θ)+f (-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.17.C4、C5、C7、C9[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?17.解:(1)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得的最大值是12,最小值是8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时,实验室需要降温.由(1)得f (t )=10-2sin ⎝⎛⎭⎫π12t +π3,故有10-2sin ⎝⎛⎭⎫π12t +π3>11,即sin ⎝⎛⎭⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温. 17.C5、C8[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →·BC →=2得c ·a ·cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2. (2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23·2 23= 4 29.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4 292=79.所以cos(B -C )=cos B cos C +sin B sin C =13×79+2 23×4 29=2327.17.C8,C5 [2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .17.解:由题设和正弦定理得 3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C .因为tan A =13,所以cos C =2sin C ,所以tan C =12.所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°.8.C5[2014·新课标全国卷Ⅰ] 设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .3α+β=π2C .2α-β=π2D .2α+β=π28.C [解析] tan α=1+sin βcos β=⎝⎛⎭⎫cos β2+sin β2cos 2β2-sin 2β2=cos β2+sin β2cos β2-sin β2=1+tanβ21-tanβ2=tan ⎝⎛⎭⎫π4+β2,因为β∈⎝⎛⎭⎫0,π2,所以π4+β2∈⎝⎛⎭⎫π4,π2,又α∈⎝⎛⎭⎫0,π2且tan α=tan ⎝⎛⎭⎫π4+β2,所以α=π4+β2,即2α-β=π2.13.C5,C8[2014·四川卷] 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高度是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)图1-313.60 [解析] 过A 点向地面作垂线,记垂足为D ,则在Rt △ADB 中,∠ABD =67°,AD =46 m ,∴AB =AD sin 67°=460.92=50(m),在△ABC 中,∠ACB =30°,∠BAC =67°-30°=37°,AB =50 m , 由正弦定理得,BC =AB sin 37°sin 30°=60 (m),故河流的宽度BC 约为60 m.16.C4,C5,C6,C7[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.16.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以,函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos α cos π4-sin αsin π4(cos 2 α-sin 2 α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角, 得α=3π4+2k π,k ∈Z ,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52. 15.C4、C5、C6[2014·天津卷] 已知函数f (x )=cos x ·sin ⎝⎛⎭⎫x +π3-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值.15.解:(1)由已知,有f (x )=cos x ·⎝⎛⎭⎫12sin x +32cos x -3cos 2x +34=12sin x ·cos x -32cos 2x +34 =14sin 2x -34(1+cos 2x )+34 =14sin 2x -34cos 2x =12sin ⎝⎛⎭⎫2x -π3, 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π4,-π12上是减函数,在区间⎣⎡⎦⎤-π12,π4上是增函数,f ⎝⎛⎭⎫-π4=-14,f ⎝⎛⎭⎫-π12=-12,f ⎝⎛⎭⎫π4=14, 所以函数f (x )在区间⎣⎡⎦⎤-π4,π4上的最大值为14,最小值为-12.10.C8,C5[2014·重庆卷] 已知△ABC 的内角A ,B ,C 满足sin 2A +sin(A -B +C )=sin(C-A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( )A .bc (b +c )>8B .ab (a +b )>16 2C .6≤abc ≤12D .12≤abc ≤2410.A [解析] 因为A +B +C =π,所以A +C =π-B ,C =π-(A +B ),所以由已知等式可得sin 2A +sin(π-2B )=sin[π-2(A +B )]+12,即sin 2A +sin 2B =sin 2(A +B )+12,所以sin[(A +B )+(A -B )]+sin[(A +B )-(A -B )]=sin 2(A +B )+12,所以2 sin(A +B )cos(A -B )=2sin(A +B )cos(A +B )+12,所以2sin(A +B )[cos(A -B )-cos(A +B )]=12,所以sin A sin B sin C =18.由1≤S ≤2,得1≤12bc sin A ≤2.由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,所以1≤2R 2·sin A sin B sin C ≤2,所以1≤R 24≤2,即2≤R ≤2 2,所以bc (b +c )>abc =8R 3sin A sinB sinC =R 3≥8.C6 二倍角公式15.H4、C6[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.15.43 [解析] 如图所示,根据题意,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43, 即l 1与l 2的夹角的正切值等于43.16.B5、C6[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.16.(-∞,2] [解析] f (x )=cos 2x +a sin x =-2sin 2x +a sin x +1,令sin x =t ,则f (x )=-2t 2+at +1.因为x ∈⎝⎛⎭⎫π6,π2,所以t ∈⎝⎛⎭⎫12,1,所以f (x )=-2t 2+at +1,t ∈⎝⎛⎭⎫12,1.因为f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,所以f (x )=-2t 2+at +1在区间⎝⎛⎭⎫12,1上是减函数,又对称轴为x =a 4,∴a 4≤12,所以a ∈(-∞,2].16.C2、C4、C6[2014·福建卷] 已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.16.解:方法一:(1)因为0<α<π2,sin α=22,所以cos α=22.所以f (α)=22×⎝⎛⎭⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12=12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4, 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. (1)因为0<α<π2,sin α=22,所以α=π4,从而f (α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .16.C4,C5,C6,C7[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.16.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以,函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z .(2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos α cos π4-sin αsin π4(cos 2 α-sin 2 α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角, 得α=3π4+2k π,k ∈Z ,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 15.C4、C5、C6[2014·天津卷] 已知函数f (x )=cos x ·sin ⎝⎛⎭⎫x +π3-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值.15.解:(1)由已知,有f (x )=cos x ·⎝⎛⎭⎫12sin x +32cos x -3cos 2x +34=12sin x ·cos x -32cos 2x +34 =14sin 2x -34(1+cos 2x )+34 =14sin 2x -34cos 2x =12sin ⎝⎛⎭⎫2x -π3, 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π4,-π12上是减函数,在区间⎣⎡⎦⎤-π12,π4上是增函数,f ⎝⎛⎭⎫-π4=-14,f ⎝⎛⎭⎫-π12=-12,f ⎝⎛⎭⎫π4=14, 所以函数f (x )在区间⎣⎡⎦⎤-π4,π4上的最大值为14,最小值为-12.C7 三角函数的求值、化简与证明16.C5、C7[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f (θ)+f (-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.17.C4、C5、C7、C9[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?17.解:(1)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得的最大值是12,最小值是8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时,实验室需要降温.由(1)得f (t )=10-2sin ⎝⎛⎭⎫π12t +π3,故有10-2sin ⎝⎛⎭⎫π12t +π3>11,即sin ⎝⎛⎭⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温. 16.C4、C7[2014·江西卷] 已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,θ∈⎝⎛⎭⎫-π2,π2. (1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝⎛⎭⎫π2=0,f (π)=1,求a ,θ的值.16.解:(1)f (x )=sin ⎝⎛⎭⎫x +π4+2cos ⎝⎛⎭⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝⎛⎭⎫π4-x . 因为x ∈[0,π],所以π4-x ∈⎣⎡⎦⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝⎛⎭⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1.又θ∈⎝⎛⎭⎫-π2,π2,知cos θ≠0,所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.16.C4,C5,C6,C7[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.16.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以,函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos α cos π4-sin αsin π4(cos 2 α-sin 2 α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角, 得α=3π4+2k π,k ∈Z ,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52.C8 解三角形12.C8[2014·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a ,2sin B =3sin C ,则cos A 的值为________.12.-14[解析] ∵2sin B =3sin C ,∴2b =3c .又∵b -c =a 4,∴a =2c ,b =32c ,∴cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c ×c=-14.16.C8、C9[2014·新课标全国卷Ⅱ] 设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.16.[-1,1] [解析] 在△OMN 中,OM =1+x 20≥1=ON ,所以设∠ONM =α,则45°≤α<135°.根据正弦定理得1+x 20sin α=1sin 45°,所以1+x 20=2sin α∈[1,2],所以0≤x 2≤1,即-1≤x 0≤1,故符合条件的x 0的取值范围为[-1,1].12.C8[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .已知b cos C +c cos B =2b ,则ab=________.12.2 [解析] 本题考查了正弦定理以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.利用正弦定理,将b cos C +c cos B =2b 化简得sin B cos C +sin C cos B =2sin B ,即sin(B +C )=2sin B .∵sin(B +C )=sin A ,∴sin A =2sin B ,利用正弦定理化简得a =2b ,故a b =2.16.C5、C8[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎫A +π4的值.16.解: (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B ,由余弦定理得cos B =a 2+c 2-b 22ac =sin A2sin B ,所以由正弦定理可得a =2b ·a 2+c 2-b 22ac. 因为b =3,c =1,所以a 2=12,即a =2 3. (2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13.因为0<A <π,所以sin A =1-cos 2A =1-19=2 23. 故sin ⎝⎛⎭⎫A +π4=sin A cos π4+cos A sin π4=2 23×22+⎝⎛⎭⎫-13×22=4-26.15.C8[2014·北京卷] 如图1-2,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.图1-215.解:(1) 在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =4 37.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B =4 37×12-17×32=3 314. (2)在△ABD 中,由正弦定理得 BD =AB ·sin ∠BADsin ∠ADB =8×33144 37=3.在△ABC 中,由余弦定理得 AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49,所以AC =7.12.C8[2014·福建卷] 在△ABC 中,A =60°,AC =4,BC =2 3,则△ABC 的面积等于________.12.2 3 [解析] 由BC sin A =ACsin B ,得sin B =4sin 60°23=1,∴B =90°,C =180°-(A +B )=30°,则S △ABC =12·AC ·BC sin C =12×4×23sin 30°=23,即△ABC 的面积等于2 3.18.C8、C9[2014·湖南卷] 如图1-5所示,在平面四边形ABCD 中,AD =1,CD =2,AC=7.图1-5(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.18.解:(1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD,故由题设知,cos ∠CAD =7+1-427=277.(2)设∠BAC =α,则α=∠BAD -∠CAD .因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD = 1-⎝⎛⎭⎫2772=217, sin ∠BAD =1-cos 2∠BAD =1-⎝⎛⎭⎫-7142=32114.于是sin α=sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD sin ∠CAD=32114×277-⎝⎛⎭⎫-714×217=32.在△ABC 中,由正弦定理,得BC sin α=ACsin ∠CBA .故BC =AC ·sin αsin ∠CBA =7×32216=3.4.C8[2014·江西卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.9 32 C.3 32D .3 34.C [解析] 由余弦定理得,cos C =a 2+b 2-c 22ab =2ab -62ab =12,所以ab =6,所以S △ABC=12ab sin C =3 32. 17.C5、C8[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →·BC →=2得c ·a ·cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2×2=13. 解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23·2 23= 4 29.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4 292=79.所以cos(B -C )=cos B cos C +sin B sin C =13×79+2 23×4 29=2327.17.C8,C5 [2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .17.解:由题设和正弦定理得 3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C .因为tan A =13,所以cos C =2sin C ,所以tan C =12.所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 16.C8[2014·新课标全国卷Ⅰ] 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )·(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.16.3 [解析] 根据正弦定理和a =2可得(a +b )(a -b )=(c -b )c ,故得b 2+c 2-a 2=bc ,根据余弦定理得cos A =b 2+c 2-a 22bc =12,所以A =π3.根据b 2+c 2-a 2=bc 及基本不等式得bc ≥2bc -a 2,即bc ≤4,所以△ABC 面积的最大值为12×4×32= 3.4.C8[2014·新课标全国卷Ⅱ] 钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .14.B [解析] 根据三角形面积公式,得12BA ·BC ·sin B =12,即12×1×2×sin B =12,得sin B =22,其中C <A .若B 为锐角,则B =π4,所以AC =1+2-2×1×2×22=1=AB ,易知A 为直角,此时△ABC 为直角三角形,所以B 为钝角,即B =3π4,所以AC =1+2-2×1×2×⎝⎛⎭⎫-22= 5. 12.F3,C8[2014·山东卷] 在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.12.16 [解析] 因为AB ·AC =|AB →|·|AC →|cos A =tan A ,且A =π6,所以|AB →|·|AC →|=23,所以△ABC 的面积S =12|AB →|·|AC →|sin A =12×23×sin π6=16.16.D2,D3,C8[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立, ∴cos B 的最小值为12.13.C5,C8[2014·四川卷] 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高度是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)图1-313.60 [解析] 过A 点向地面作垂线,记垂足为D ,则在Rt △ADB 中,∠ABD =67°,AD =46 m ,∴AB =AD sin 67°=460.92=50(m),在△ABC 中,∠ACB =30°,∠BAC =67°-30°=37°,AB =50 m , 由正弦定理得,BC =AB sin 37°sin 30°=60 (m),故河流的宽度BC 约为60 m. 18.C8 [2014·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B .(1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.18.解:(1)由题意得1+cos 2A 2-1+cos 2B 2=32sin 2A -32sin 2B ,即32sin 2A -12cos 2A=32sin 2B -12cos 2B ,sin ⎝⎛⎭⎫2A -π6=sin ⎝⎛⎭⎫2B -π6.。
【福建省】2016届高考数学(理科)-三角函数-专题练习
- 1 - / 4二、填空题:本大题共4小题,每小题6分.8.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,n A B A B 的值为的图象分别交于M ,N 两点,10.设函数ππ()sin()(0,)22f x x ωφωφ=+>-<<,给出以下四个论断:- 2 - / 4①它的图象关于直线π12x =对称; ②它的图象关于点π(,0)3对称; ③它的周期是π; ④它在区间π[,0]6-上是增函数. 以其中两个论断作为条件,余下论断作为结论,写出你认为正确的一个命题________.三、解答题:解答应写出文字说明,证明过程或演算步骤.11.(本小题满分10分)如图,在ABC △中,π3B =,2BC =,点D 在边AB 上,AD DC =,DE AC ⊥,E 为垂足.(Ⅰ)若BCD △的面积为,求CD 的长;212.(本小题满分15分)为进行科学实验,观测小球A ,B 在两条相交成60角的直线型轨道上运动的情况,如图(乙)所示,运动开始前,A 和B 分别距O 点3 m 和1 m ,后来它们同时以每分钟4 m 的速度各沿轨道l 1,l 2按箭头的方向运动.问:(Ⅰ)运动开始前,A ,B 的距离是多少米?(结果保留三位有效数字);(Ⅱ)几分钟后,两个小球的距离最小?13.(本小题满分15分)如图是函数π()sin()(0,0,0)2f x A x A ωϕωϕ=+>><<的部分图象,M ,N 是它与x 轴的两个交点,D ,C 分别为它的最高点和最低点,点(0,1)F 是线段MD 的中点,2π3CDM S ∆=. (Ⅰ)求函数()f x 的解析式; (Ⅱ)在CDM△中,记DMN α∠=,CMN β∠=.证明:sin 2cos sin C αβ=.- 3 - / 4/53sin 3BC BD B =BCD △中,由余弦定理得cos 2BC BD B =sin60,解得中,由正弦定理得sin sin AE A B =6sin cos cos 2AE A DE A ==.解:(Ⅰ)小球开始运动前的距离为:cos607=4t '=.2(34)(14)cos6048t t t -+=- 4 - / 4。
高考数学一轮复习《三角函数》复习练习题(含答案)1.docx
高考数学一轮复习《三角函数》复习练习题(含答案)一、单选题2TC1.已知cos。
= 一,0 < a < 勿,贝!jtan( -------- a)=( )3 4A.--B. -7C. -4A/5 - 9D. 4右-92.设函数f(x) = x3,若0<6><yHt, 恒成立,则实数扪的取值范围是A. (-8,1)B. [一°°,;]C.(YO,0)D. (0,1)3.如图,为了测量山坡上灯塔CD的高度,某人从高为人=40的楼/W的底部《处和楼顶B处分别测得仰角6=60。
,a=30。
,若山坡高为a=35,则灯塔的高度是( )A. 20B. 25C. 20^/2D. 30TT4.已知函数/(x) = A sin — x, g (x) = - 2), fc > 0. & 知A = 1 时,函数/z(x) = y(x)-g(x)的所有零点之和为6,贝。
当A = 2时,函数h(x) = f(x)-g(x)的所有零点之和为A. 6B. 8C. 10D. 125.下列说法中正确的是A.若数列{%}为常数列,贝州%}既是等差数列也是等比数列;B.若函数六了)为奇函数,贝0/(0) = 0;C.在AABC中,A>B是sinA>sinB的充要条件;D.若两个变量X,,的相关系数为「,贝越大,x与 > 之间的相关性越强.6.要得到函数y = 4sin]4x-f|的图像,只需要将函数y = 4sin4x的图像( )A.向左平移尚个单位B.向右平移%个单位C.向左平移:个单位D.向右平移:个单位7. 将函数f (x) = cos(2x-g)向左平移中(9>0)个单位长度,所得图像的对应函数为g(x),则“9 =;‘是“g(x)为奇函数"的( )取值范围是( )变横坐标压缩为原来的?,得到函数顼:的图象,则使球为增函数的一个区间是12.时钟的分针在1点到3点20分这段时间里转过的弧度为二、填空题13. A>4BC 的内角 4、B 、C 的对边分别为 a, b, c,已知 c+b (sinA - cosA) =0, c= ^2 , a =1,则人=.14. 在 AABC 中,若Z? = 2asinB,则 A 等于15. 甲船在岛A 处南偏西50。
2016届高考数学理新课标A版一轮总复习练习 第3章 三角函数、解三角形-1
自主园地 备考套餐加固训练 练透考点1.若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:由sin αtan α<0可知sin α,tan α异号,从而α为第二或第三象限角.由cos αtan α<0可知cos α,tan α异号,从而α为第三或第四象限角.综上可知,α为第三象限角.答案:C2.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:由cos α≤0,sin α>0可知,角α的终边在第二象限或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3.答案:A3.已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.5π3D.11π6解析:由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.答案:D4.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10); ④sin 7π10cosπtan 17π9,其中符号为负的是( )A .①B .②C .③D .④解析:sin(-1 000°)=sin 80°>0;cos(-2 200°)=cos(-40°)=cos40°>0;tan(-10)=tan(3π-10)<0;sin 7π10cosπtan 17π9=-sin 7π10tan 17π9,sin 7π10>0,tan 17π9<0, ∴原式>0. 答案:C5.已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎪⎫α+π2=__________.解析:由题意得cos α=x 5+x 2=24x ,解得x =0或x =3或x =-3.又α是第二象限角, ∴x =- 3.即cos α=-64,sin ⎝ ⎛⎭⎪⎫α+π2=cos α=-64.6答案:-4。
2016届高考数学理新课标A版一轮总复习练习 第3章 三角函数、解三角形-4
自主园地 备考套餐加固训练 练透考点1.将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后,得到一个偶函数的图像,则φ的一个可能取值为( )A.3π4 B.π4 C .0D .-π4解析:函数y =sin(2x +φ)的图像向左平移π8个单位后变为函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图像,又y =sin ⎝ ⎛⎭⎪⎫2x +π4+φ为偶函数, 故π4+φ=π2+k π,k ∈Z ,∴φ=π4+k π,k ∈Z . 若k =0,则φ=π4.故选B 项. 答案:B2.已知函数y =A sin(ωx +φ)+k (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图像的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝⎛⎭⎪⎫4x +π3+2D .y =2sin ⎝⎛⎭⎪⎫4x +π6+2解析:由函数y =A sin(ωx +φ)+k 的最大值为4,最小值为0,可知k =2,A =2.由函数的最小正周期为π2,可知2πω=π2,得ω=4.由直线x =π3是其图像的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-56π,k ∈Z ,故满足题意的是y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2,故选D. 答案:D3.函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图像如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6 C .4,-π6 D .4,π3解析:由图像可得,3T 4=5π12-⎝ ⎛⎭⎪⎫-π3=3π4,∴T =π,则ω=2ππ=2,再将点⎝ ⎛⎭⎪⎫5π12,2代入f (x )=2sin(2x +φ)中得,sin ⎝ ⎛⎭⎪⎫5π6+φ=1, 令5π6+φ=2k π+π2,k ∈Z ,解得,φ=2k π-π3,k ∈Z ,又∵φ∈⎝ ⎛⎭⎪⎫-π2,π2,则取k =0,∴φ=-π3.故选A 项. 答案:A4.已知函数f (x )=cos x sin2x ,下列结论中错误的是( ) A .y =f (x )的图像关于点(π,0)中心对称 B .y =f (x )的图像关于直线x =π2对称 C .f (x )的最大值为32D .f (x )既是奇函数,又是周期函数解析:由题意知f (x )=2cos 2x ·sin x =2(1-sin 2x )·sin x . 令t =sin x ,t ∈[-1,1], 则g (t )=2(1-t 2)t =2t -2t 3. 令g ′(t )=2-6t 2=0,得t =±33.当t =±1时,函数值为0; 当t =-33时,函数值为-439; 当t =33时,函数值为439. ∴g (t )max =439,即f (x )的最大值为439.故选C 项. 答案:C5.函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图像重合,则φ=__________.解析:y =cos(2x +φ)向右平移π2个单位得,y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+φ=cos(2x -π+φ)=sin ⎝ ⎛⎭⎪⎫2x -π+φ+π2=sin ⎝ ⎛⎭⎪⎫2x +φ-π2,而它与函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图像重合,令2x +φ-π2=2x +π3+2k π,k ∈Z ,得φ=5π6+2k π,k ∈Z ,又-π≤φ<π,∴φ=5π6. 答案:5π6。
北京市2016届高三数学理一轮复习专题突破训练:三角函数
北京市2016届高三数学理一轮复习专题突破训练三 角 函 数1、(15北京)在ABC ∆中,6,5,4===c b a 则=CAsin 2sin.2、(14北京)设函数)s i n ()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.3、(朝阳15届一模)在△ABC 中,若A 3π6=,cosB=3,BC = 6,则 AC = A .42 B . 4 C .23 D .4334、(东城15届二模)23sin()6π-= (A )32- (B )12-(C )12 (D )325、(丰台15届一模)将函数1cos()26y x π=-图象向左平移3π个长度单位,再把所得图象上各点的横坐标缩短到原来的一半(纵坐标不变),所得图象的函数解析式是 (A) cos(+)6y x π= (B) 1cos 4y x = (C) cos y x = (D) 1cos()43y x π=-6、(海淀15届二模)已知函数()cos(2)f x x ϕ=+(ϕ为常数)为奇函数,那么cos ϕ=( )(A )22- (B )0(C )22(D )17、(西城区2015届高三一模)在△ABC 中,角 A , B , C 所对的边分别为a , b , c ,若则a = .8、(朝阳区2015届高三上学期期中)如图,某地一天中6时至14时的温度变化曲线近似满足函数()b x A y ++=ϕωsin(其中 0ω>,2ϕπ<<π), 则估计中午12时的温度近似为( ) A. 30 ℃ B. 27 ℃ C.25 ℃ D.24 ℃9、(海淀15届期中)要得到函数πsin(2)3y x =+的图象, 只需将函数sin 2y x =的图象( ) (A )向左平移3π个单位 (B )向左平移6π个单位 (C )向右平移3π个单位 (D )向右平移6π个单位10、(朝阳15届期末)设函数()sin(2)3f x x π=-的图象为C ,下面结论中正确的是 A .函数()f x 的最小正周期是2πB .图象C 关于点(,0)6π对称C .图象C 可由函数()sin 2g x x =的图象向右平移3π个单位得到 D .函数()f x 在区间(,)2ππ-12上是增函数11、(大兴15届期末)在ABC ∆中,2a =,3b =,π3B =,则A 等于 (A ) π6 (B ) π4 (C ) 3π4 (D ) π4或3π412、(西城15届期末)在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,3sin 4B =,则( ) (A )3A π=(B )6A π= (C )3sin 3A =(D )2sin 3A =13、(东城15届期末)在△ABC 中,3a =,13b =,60B = ,则c = ;△ABC 的面积为_______14、(通州15高三4月模拟考试)将函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可能是A .3x π=B .6x π=-C .3x π=-D .23x π=-15、(延庆15届3月模拟)设sin393,cos55,tan50a b c =︒=︒=︒,则,,a b c 的大小关系为( )A. a b c << B .c b a << C .b a c << D .a c b <<二、解答题1、(15北京)已知函数22sin 22cos 2sin 2)(x x x x f -=.(Ⅰ) 求)(x f 的最小正周期;(Ⅱ) 求)(x f 在区间[]0,π-上的最小值.2、(14北京)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin(2)求AC BD ,的长3、(13北京)在△ABC 中,a =3,26b =,∠B =2∠A ,(1)求cos A 的值; (2)求c 的值.4、(朝阳15届一模)已知函数 f (x ) = cos 2 x +3sin x cos x ,x ∈R .(1)求 f (x )的最小正周期和单调递减区间;(2)设 x = m (m ∈R )是函数 y = f (x )图象的对称轴,求sin 4m 的值.5、(东城15届二模)已知函数2sin 22sin ()sin x xf x x-=.(Ⅰ)求()f x 的定义域及其最大值; (Ⅱ)求()f x 在(0,π)上的单调递增区间.6、(房山15届一模)已知函数2()sin(2)2cos 1()6f x x x x π=--∈+R .(Ⅰ)求()f x 的单调递增区间; (Ⅱ)在△ABC 中,已知()12f A =,且△ABC 外接圆的半径为3,求a 的值.7、(丰台15届一模)已知函数21()cos 3sincos2222xxx f x ωωω=+-(0)ω>的最小正周期为π.(Ⅰ)求ω的值及函数()f x 的最大值和最小值; (Ⅱ)求函数()f x 的单调递增区间.8、(海淀15届二模)在ABC ∆中,5c =,26b =,36cos 2a A =. (Ⅰ)求a 的值;(Ⅱ)求证:2B A ∠=∠.9、(石景山15届一模)在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点11(,)P x y ,将射线OP 绕坐标原点O 按逆时针方向旋转2π后与单位圆交于点22(,)Q x y . 记12()f y y α=+. (Ⅰ)求函数()f α的值域;(Ⅱ)设ABC ∆的角,,A B C 所对的边分别为,,a b c ,若()2f C =,且2a =,1c =,求b .10、(西城15届一模)设函数(Ⅰ)当, 时,求函数 f (x )的值域;(Ⅱ)已知函数 y = f (x )的图象与直线 y =1有交点,求相邻两个交点间的最短距离.11、(西城15届期末)已知函数()23sincos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值. xy PQOαAxB Oy12、(北京四中15届期中)已知函数()2(3cos sin )sin f x x x x =-,x ∈R .(Ⅰ)求函数()f x 的最小正周期与单调增区间;(Ⅱ)求函数()f x 在0,4π⎡⎤⎢⎥⎣⎦上的最大值与最小值.13、(朝阳15届期中)已知函数()3sin cos f x x a x =-(x ∈R )的图象经过点(,1)3π. (Ⅰ)求函数()f x 的解析式;(Ⅱ)求函数()f x 的最小正周期和单调递减区间.14、(东城示范校15届综合能力测试)在△ABC 中,角A ,B ,C 所对的边分别为c b a ,,,满足1=c ,且()()0cos sin sin cos =+-+B A B a C B 。
高三一轮复习 三角函数全章 练习(7套)+易错题+答案
第五章三角函数第1节任意角、弧度制、任意角的三角函数一、选择题1.给出下列四个命题:①-是第二象限角;②是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( C )(A)1个(B)2个(C)3个(D)4个解析:-是第三象限角,故①错误.=π+,从而是第三象限角,②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.选C.2.已知点P(tan α,cos α)在第三象限,则角α的终边所在象限是( B )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限解析:由题意知tan α<0,cos α<0,所以α是第二象限角.选B.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为( C )(A)(B)(C) (D)2解析:设圆半径为r,则其内接正三角形的边长为r,所以α==,选C.4.设集合M={x|x=²180°+45°,k∈Z},N={x|x=²180°+45°,k∈Z},那么( B )(A)M=N (B)M⊆N(C)N⊆M (D)M∩N=∅解析:由于M={x|x=²180°+45°,k∈Z}={…,-45°,45°,135°, 225°,…},N={x|x=²180°+45°,k∈Z}={…,-45°,0°,45°,90°,135°, 180°,225°,…},显然有M⊆N,故选B.5.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是( A )(A)1 (B)2 (C)3 (D)4解析:举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin =sin ,但与的终边不相同,故④错;当θ=π,cos θ=-1时既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.选A.6.设θ是第三象限角,且|cos |=-cos ,则是( B )(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角解析:由θ是第三象限角,知为第二或第四象限角,因为|cos |=-cos ,所以cos ≤0,综上知为第二象限角.选B.二、填空题7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为.解析:设扇形的半径为R,则αR2=2,所以R2=1,所以R=1,所以扇形的周长为2R+α²R=2+4=6.答案:68.若α角与角终边相同,则在[0,2π]内终边与角终边相同的角是.解析:由题意,得α=+2kπ(k∈Z),=+(k∈Z).又∈[0,2π],所以k=0,1,2,3,=,,,.答案:,,,9.已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},那么E∩F= .解析:由单位圆的正、余弦线,容易得E={θ|<θ<π},又由F可知θ应在第二、四象限,所以E∩F={θ|<θ<π}.答案:{θ|<θ<π}10.已知角α=2kπ-(k∈Z),若角θ与角α的终边相同,则y=++的值为.解析:由已知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y=-1+1-1=-1.答案:-111.满足cos α≤-的角α的集合为.解析:作直线x=-交单位圆于C,D两点,连接OC,OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为{α|2kπ+π≤α≤2kπ+π,k∈Z}.答案:{α|2kπ+π≤α≤2kπ+π,k∈Z}三、解答题12.已知角α的终边经过点P(-,y),且sin α=y(y≠0),判断角α所在的象限,并求cos α,tan α的值.解:因为r=|OP|==,所以sin α==y.因为y≠0,所以9+3y2=16,解得y=±,所以角α在第二或第三象限.当角α在第二象限时,y=,cos α==-,tan α=-;当角α在第三象限时,y=-,cos α=-,tan α=.13.一个扇形OAB的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长AB.解:设扇形的半径为r cm,弧长为l cm,则解得所以圆心角α==2(rad).如图,过O作OH⊥弦AB于H,则∠AOH=1 rad.所以AH=1²sin 1=sin 1(cm),所以AB=2sin 1(cm).所以圆心角的弧度数为2 rad,弦长AB为2sin 1 cm.14.求函数y=lg(2sin x-1)+的定义域.解:要使原函数有意义,必须有即如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为[2kπ+,2kπ+)(k∈Z).第2节同角三角函数的基本关系及诱导公式一、选择题1.已知A=+(k∈Z),则A的值构成的集合是( C )(A){1,-1,2,-2} (B){-1,1}(C){2,-2} (D){1,-1,0,2,-2}解析:当k为偶数时,A=+=2;k为奇数时,A=-=-2.故选C.2.已知sin α=,则sin4α-cos4α的值为( B )(A)- (B)- (C)(D)解析:sin4α-cos4α=sin2α-cos2α=2sin2α-1=-.3.等于( A )(A)sin 2-cos 2(B)sin 2+cos 2(C)±(sin 2-cos 2)(D)cos 2-sin 2解析:===|sin 2-cos2|=sin 2-cos 2.4.若函数f(x)=则f(-)的值为( A )(A)(B)- (C)(D)-解析:由已知得f(-)=f(-)+1=f()+2=-cos +2=.5.已知=1,则sin2θ+3sin θcos θ+2cos2θ的值是( C )(A)1 (B)2 (C)3 (D)6解析:由已知得=1,即tan θ=1,于是sin2θ+3sin θcos θ+2cos2θ===3.6.若sin θ,cos θ是方程4x2+2mx+m=0的两根,则m的值为( B )(A)1+ (B)1-(C)1± (D)-1-解析:由题意知sin θ+cos θ=-,sin θ²cos θ=.又(sin θ+cos θ)2=1+2sin θcos θ,所以=1+,解得m=1±.又Δ=4m2-16m≥0,所以m≤0或m≥4,所以m=1-.二、填空题7.若=2,则sin(θ-5π)sin(-θ)= .解析:由=2,得sin θ+cos θ=2(sin θ-cos θ),两边平方得1+2sin θcos θ=4(1-2sin θcos θ),故sin θcos θ=, 所以sin(θ-5π)sin(-θ)=sin θcos θ=.答案:8.已知cos(-α)=,则sin(α-)= .解析:sin(α-)=-sin[+(-α)]=-cos(-α)=-.答案:-9.已知cos 31°=a,则sin 239°²tan 149°= .解析:sin 239°²tan149°=sin(180°+59°)²tan(180°-31°)=-sin 59°²(-tan 31°)=cos 31°²=sin 31°==.答案:10.若x∈(0,),则2tan x+tan(-x)的最小值为 .解析:因为x∈(0,),所以tan x>0.所以2tan x+tan(-x)=2tan x+≥2,所以2tan x+tan(-x)的最小值为2.答案:211.已知θ是第四象限角,且sin(θ+)=,则tan(θ-)= .解析:由题意,得cos(θ+)=,所以tan(θ+)=.所以tan(θ-)=tan(θ+-)=-=-.答案:-12.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则 f (2 017)的值为.解析:因为f(4)=asin(4π+α)+bcos(4π+β)=asin α+bcos β=3,所以f(2 017)=asin(2 017π+α)+bcos(2 017π+β)=asin(π+α)+bcos(π+β)=-asin α-bcos β=-3.答案:-3三、解答题13.已知sin(3π+θ)=,求+的值.解:因为sin(3π+θ)=-sin θ=,所以sin θ=-.所以原式=+=+=+====18.14.已知0<α<,若cos α-sin α=-,试求的值. 解:因为cos α-sin α=-,所以1-2sin α²cos α=.所以2sin α²cos α=,所以(sin α+cos α)2=1+2sin αcos α=1+=.因为0<α<,所以sin α+cos α=.由cos α-sin α=-,sin α+cos α=得sin α=,cos α=,所以tan α=2,所以==-.15.是否存在α∈(-,),β∈(0,π),使等式sin(3π-α)=cos(-β),cos(-α)=-cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在α,β使得等式成立,即有由诱导公式可得③2+④2得sin2α+3cos2α=2,所以cos2α=.又因为α∈(-,),所以α=或α=-.将α=代入④得cos β=.又β∈(0,π),所以β=,代入③可知符合.将α=-代入④得cos β=.又β∈(0,π),所以β=,代入③可知不符合.综上可知,存在α=,β=满足条件.第3节两角和与差的正弦、余弦和正切公式一、选择题1.化简的结果是( C )(A)tan (B)tan 2x (C)-tan x (D)解析:原式===-tan x,故选C.2.在△ABC中,2cos Bsin A=sin C,则△ABC的形状一定是( D )(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形解析:由条件得2cos Bsin A=sin(A+B),即2cos Bsin A=sin Acos B+cos Asin B,得sin Acos B-cos Asin B=0,即sin(A-B)=0.因为角A,B是三角形的内角,所以A-B=0,△ABC是等腰三角形,故选D.3.函数f(x)=sin x-cos(x+)的值域为( B )(A)[-2,2] (B)[-,](C)[-1,1] (D)[-,]解析:因为f(x)=sin x-cos(x+)=sin x-(cos xcos -sin xsin)=sin x-cos x=sin(x-),所以值域为[-,],故选B.4.已知tan α,tan β是方程x2+3x+4=0的两根,若α,β∈(-,),则α+β等于( D )(A) (B)或-(C)-或 (D)-解析:由韦达定理得tan α+tan β=-3<0,tan α²tan β=4>0,故tan α<0,tan β<0,所以α,β∈(-,0),故α+β∈(-π,0).又tan(α+β)==,所以α+β=-.故选D.5.已知sin(α+)+cos α=-,则cos(-α)等于( C )(A)-(B)(C)- (D)解析:由sin(α+)+cos α=-,展开化简可得sin(α+)=-,所以cos(-α)=cos[-(+α)]=sin(+α)=-.6.在三角函数中,如果角α与角β可能相等,我们称这两个角是“亲情角”.已知tan(β-)=2,下列选项中,哪个角α与已知的角β互为亲情角( C )(A)tan α=3 (B)tan α=(C)tan2(α+)=(D)cos α=解析:由条件得=2,解得tan β=-3,由于A,B,D三个选项的tan α≠-3,所以均不符合.对于选项C,由tan2(α+)=()2=,解得tan α=-3或tan α=-,故选C.二、填空题7.计算cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α) = .解析:原式=cos [(α-35°)-(25°+α)]=cos 60°=.答案:8.已知tan(+θ)=3,则sin 2θ-2cos2θ= .解析:由tan(+θ)=3,求得tan θ=,而sin 2θ-2cos2θ===-.答案:-9.已知sin(x+)=,则sin(x-)+sin2(-x)的值是.解析:因为sin(x-)=-sin(x+)=-,sin2(-x)=cos2(+x)=1-sin2(+x)=,所以原式=-+=.答案:10.在△ABC中,若cos A=,sin B=,则cos C= .解析:因为cos A=,则sin A=,且45°<A<60°.又因为sin B=,sin B<,则0°<B<30°或150°<B<180°(舍去),所以cos B=,从而有cos C=-cos(A+B)=-cos Acos B+sin Asin B=-.答案:-11.已知cos(α-β)=,则(sin α+sin β)2+(cos α+cos β)2的值为.解析:(sin α+sin β)2+(cos α+cos β)2=2+2(cos αcos β+sin αsin β)=2+2cos(α-β)=.答案:12.设a,b,∈R,c∈[0,2π),若对任意实数x都有2sin(3x-)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.解析:因为2sin(3x-)=asin(bx+c),所以a=±2,b=±3.当a,b确定时,c唯一.若a=2,b=3,则c=;若a=2,b=-3,则c=;若a=-2,b=-3,则c=;若a=-2,b=3,则c=,故共有四组.答案:4三、解答题13.已知cos(α-β)=-,cos β=,α∈(,π),β∈(0,),求cos(α-2β)的值.解:由条件得α-β∈(0,π),sin(α-β)=,sin β=,所以cos(α-2β)=cos [(α-β)-β]=.14.设函数f(x)=sin(ωx-)+sin(ωx-),其中0<ω<3,已知f()=0,(1)求ω的值;(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[-,]上的最小值.解:(1)因为f(x)=sin(ωx-)+sin(ωx-)=sin ωxcos -cos ωxsin -cos ωx=sin ωx-cos ωx=sin(ωx-),由题设f()=0,得-=kπ,k∈Z,故ω=6k+2,考虑到0<ω<3,故有ω=2.(2)由上可知f(x)=sin(2x-),所以g(x)=sin(x+-)=sin(x-).因为x∈[-,],所以x-∈[-,],当x-=-,即x=-时,g(x)取最小值是-.15.已知函数f(x)=2sin(x-).(1)求f(x)的单调区间;(2)设α,β∈[0,],f((3α-)=-,f(3β+π)=,求cos(α+β)的值.解:(1)由-+2kπ≤x-≤+2kπ,k∈Z,解得-+6kπ≤x≤+6kπ,k∈Z,即得单调递增区间是[-+6kπ,+6kπ],k∈Z.同理可求单调递减区间是[+6kπ,+6kπ],k∈Z.(2)因为得即因为α,β∈[0,],解得从而有cos(α+β)=-.第4节二倍角公式一、选择题1.化简²的结果为( B )(A)tan α (B)tan 2α(C)1 (D)解析:原式=²==tan 2α,故选B.2.若设a=cos 6°-sin 6°,b=,c=,则有( C )(A)c<b<a (B)a<b<c(C)a<c<b (D)b<c<a解析:经计算得a=sin 24°,b=tan 26°,c=sin 25°,所以a<c<b,故选C.3.已知sin α+cos α=,则sin2(-α)等于( B )(A) (B) (C)(D)解析:由sin α+cos α=,两边平方得1+sin 2α=,解得sin 2α=-,所以sin2(-α)===,故选B.4.函数f(x)=cos 2x+6cos(-x)的最大值为( B )(A)4 (B)5 (C)6 (D)7解析:因为f(x)=1-2sin2x+6sin x=-2(sin x-)2+,当sin x=1时,f(x)取最大值为5,故选B.5.设α为锐角,且cos(α+)=,则sin(2α+)的值为( A )(A)(B)(C)(D)解析:因为α为锐角,且cos(α+)=,得sin(α+)=,所以sin[2(α+)]=,cos[2(α+)]=,从而有sin(2α+)=sin [2(α+)-]=³-³=,故选A.6.已知不等式f(x)=3sin cos +cos2-+m≤0对于任意的-≤x≤恒成立,则实数m的取值范围是( C )(A)[,+∞) (B)(-∞,)(C)(-∞,-] (D)[-,]解析:因为f(x)=sin +cos +m=(sin +cos )+m=sin(+)+m.因为-≤x≤,则-≤+≤,所以-≤sin(+)≤,即f(x)的最大值是²+m=+m≤0,解得m≤-,故选C.二、填空题7.已知角α终边过点P(3,4),则cos 2α= .解析:因为角α终边过点P(3,4),所以cos α=,sin α=,cos 2α=-.答案:-8.某会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是四个全等的直角三角形与一个小正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于.解析:设直角三角形的两直角边长分别为a,b,则4³(ab)+1=25,得ab=12.又因为a2+b2=25,联立方程组可解得或所以cos θ=,从而有cos 2θ=2cos2θ-1=.答案:9.若=2 018,则+tan 2α= .解析:+tan 2α=+=+====2 018.答案:2 01810.已知4cos Acos B=,4sin Asin B=,则(1-cos 4A)(1-cos 4B) = .解析:由条件得4cos Acos B²4sin Asin B=²,即sin 2Asin 2B=,所以原式=2sin22A²2sin22B=4(sin 2Asin 2B)2=4()2=3.答案:311.设△ABC的三个内角分别为A,B,C,则cos A+2cos 的最大值是.解析:因为cos A+2cos =cos A+2sin=-2sin2+2sin +1=-2+,所以当sin =,即A=时,cos A+2cos 的最大值是.答案:三、解答题12.已知f(x)=sin x+2sin(+)cos(+).(1)若f(α)=,α∈(-,0),求α的值;(2)若sin =,x0∈(,π),求f(x0)的值.解:(1)由条件可得f(x)=sin x+cos x=sin(x+).因为f(α)=,α∈(-,0),所以sin(α+)=.则α+=,解得α=-.(2)因为sin =,x0∈(,π),得sin x0=,cos x0=-,所以f(x0)=.13.已知函数f(x)=2cos x(sin x+cos x)-1.(1)求f()的值;(2)若f(x0)=,x0∈[0,],求sin 2x0的值.解:(1)因为f(x)=sin 2x+cos 2x=2sin(2x+),所以f()=2.(2)由上可知,f(x0)=2sin(2x0+)=,所以sin(2x0+)=.由x0∈[0,],得2x0+∈[,].由0<sin(2x0+)=<,知2x0+∈(,π),从而有cos(2x0+)=-, 所以sin 2x0=sin[(2x0+)-]=²-(-)²=.14.已知函数f(x)=sin 2xsin ϕ+cos2xcos ϕ-sin(+ϕ)(0<ϕ<π),其图象过点(,).(1)求ϕ的值;(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间[0,]上的最大值和最小值.解:(1)由条件得f(x)=sin 2xsin ϕ+cos ϕ-cos ϕ=sin 2xsin ϕ+cos 2xcos ϕ=cos(2x-ϕ).又函数图象过点(,),得=cos(2²-ϕ),-ϕ=2kπ,ϕ=-2kπ,k∈Z.又因为0<ϕ<π,解得ϕ=.(2)由上可知f(x)=cos(2x-),将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,即g(x)=f(2x)=cos(4x-).因为x∈[0,],所以4x-∈[-,],有cos(4x-)∈[-,1],所以函数g(x)在区间[0,]上的最大值和最小值分别为和-.第5节三角函数的化简与求值一、选择题1.计算等于( D )(A)-(B)- (C) (D)解析:原式====,故选D.2.式子tan 11°+tan 19°+tan 11°tan 19°的值是( D )(A) (B) (C)0 (D)1解析:因为tan(11°+19°)==,所以tan 11°+tan 19°=(1-tan 11°tan 19°),即tan 11°+tan 19°=1-tan 11°tan 19°,从而有tan 11°+tan 19°+tan 11°tan 19°=1,故选D.3.若sin(-α)=,则cos(+2α)等于( A )(A)- (B)- (C)(D)解析:观察发现+2α=2(+α),而(+α)+(-α)=,则有cos(+α)=sin(-α)=,所以cos(+2α)=2cos2(+α)-1=2³-1=-,故选A.4.设M=sin 100°-cos 100°,N=(cos 46°cos 78°+cos 44°²cos 12°),P=,Q=,则M,N,P,Q的大小关系是( C )(A)M>N>P>Q (B)P>M>N>Q(C)N>M>Q>P (D)Q>P>M>N解析:因为M=sin(100°-45°)=sin 55°,N=(cos 46°sin 12°+sin 46°cos 12°)=sin 58°,P==tan(45°-10°)=tan 35°,Q==tan 45°=1,所以N=sin 58°>sin 55°=M>sin 45°=1=Q.=tan 45°>tan 35°=P,即有N>M>Q>P,故选C.5.设△ABC的三内角为A,B,C,向量m=(sin A,sin B),n=(cos B, cos A),若m²n=1+cos(A+B),则角C等于( C )(A) (B) (C) (D)解析:因为m²n=1+cos(A+B),所以sin Acos B+cos Asin B=1+cos(A+B),即sin(A+B)=1+cos(A+B).又因为A+B+C=π,得sin(A+B)=sin C,cos(A+B)=-cos C,因此有sin C=1-cos C,即sin C+cos C=1,从而有sin(C+)=.考虑到0<C<π,得C+=,所以C=,故选C.6.若0≤A,B≤,且A+B=,则cos2A+cos2B的最小值和最大值分别为( C )(A), (B),(C), (D),解析:因为A+B=,所以cos2A+cos2B=+=1+(cos 2A+cos 2B)=1+[cos 2A+cos(-2A)]=1+(cos 2A+coscos 2A+sin sin 2A)=1+(cos 2A-sin 2A)=1+cos(2A+).又因为0≤A,B≤,且A+B=,得≤A≤,≤2A+≤,则-1≤cos(2A+)≤-,从而有≤cos2A+cos2B≤,故有最大值为,最小值为,故选C.二、填空题7.定义运算a⊕b=ab2+a2b,则sin 15°⊕cos 15°= .解析:依题意得sin 15°⊕cos 15°=sin15°cos215°+sin215°²cos 15°=sin 15°cos 15°(sin 15°+cos 15°)=sin30°²sin(15°+45°)=.答案:8.已知<β<α<,cos(α-β)=,sin(α+β)=-,则sin 2α的值是.解析:由已知<β<α<,可知π<α+β<,0<α-β<.又因为cos(α-β)=,sin(α+β)=-,得sin(α-β)=,cos(α+β)=-,所以sin 2α=sin [(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=-³+(-)³=-.答案:-9.已知sin(x+20°)=cos(x+10°)+cos(x-10°),则tan x的值是.解析:由条件可化为sin xcos 20°+cos xsin 20°=2cos xcos 10°,两边同除以cos x,得tan x=====.答案:10.已知α=,则+++的值是.解析:法一因为===tan 4α-tan 3α,同理可得=tan 3α-tan 2α,=tan 2α-tan α,所以原式=tan 4α=tan =.法二原式=sin α²+sinα²=+=sin 2α²=sin 2α²=tan 4α=tan =.答案:11.如果cos5θ-sin5θ<7(sin3θ-cos3θ),θ∈[0,2π),那么θ的取值范围是.解析:原不等式等价于sin3θ+sin5θ>cos3θ+cos5θ.又因为f(x)=x3+x5是(-∞,+∞)上的增函数,所以sin θ>cos θ.又因为θ∈[0,2π),所以θ的取值范围是(,).答案:(,)12.函数f(x)=4cos2cos(-x)-2sin x-|ln(x+1)|的零点个数为.解析:因为f(x)=2(1+cos x)sin x-2sin x-|ln(x+1)|=sin2x-|ln(x+1)|,所以函数f(x)的零点个数转化为函数y=sin 2x与y=|ln(x+1)|图象的交点的个数.由图象可得交点有2个,故f(x)的零点也有2个.答案:2三、解答题13.已知函数f(x)=sin xsin(x+).(1)求f(x)的最小正周期;(2)当x∈[0,]时,求f(x)的取值范围.解:(1)由题意得f(x)=sin2x+sin xcos x=²+sin 2x=sin 2x-cos 2x+=sin(2x-)+,所以最小正周期为T=π.(2)由0≤x≤,得-≤sin(2x-)≤1,所以f(x)的取值范围是[0,].14.已知tan(π+α)=-,tan(α+β)=.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)因为tan(π+α)=-,所以tan α=-,从而有tan(α+β)====.(2)tan β=tan [(α+β)-α]===.15.如图,A,B,C,D为平面四边形ABCD的四个内角.(1)证明:tan =;(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan的值.(1)证明:tan ===.(2)解:由A+C=180°,得C=180°-A,D=180°-B.由(1),有tan +tan +tan +tan=+++=+.连接BD(图略),在△ABD中,有BD2=AB2+AD2-2AB²ADcos A,在△BCD中,有BD2=BC2+CD2-2BC²CDcos C,所以AB2+AD2-2AB²ADcos A=BC2+CD2+2BC²CDcos A. 则cos A===.于是sin A===.连接AC,同理可得cos B===,于是sin B===.所以tan +tan +tan +tan=+=+=.第6节三角函数的图象与性质一、选择题1.函数y=tan(-x)的定义域为( A )(A){x|x≠kπ-,k∈Z} (B){x|x≠2kπ-,k∈Z}(C){x|x≠kπ+,k∈Z} (D){x|x≠2kπ+,k∈Z}解析:令-x≠kπ+,k∈Z,所以x≠--kπ,即x≠kπ-,k∈Z.2.(2016²山东卷)函数f(x)=(sin x+cos x)(cos x-sin x)的最小正周期是( B )(A)(B)π (C) (D)2π解析:f(x)=3sin xcos x-sin2x+cos2x-sin xcos x=sin 2x+cos 2x=2sin(2x+).最小正周期T==π,故选B.3.(2017²全国Ⅲ卷)设函数f(x)=cos(x+),则下列结论错误的是( D )(A)f(x)的一个周期为-2π(B)y=f(x)的图象关于直线x=对称(C)f(x+π)的一个零点为x=(D)f(x)在(,π)单调递减解析:f(x)=cos(x+)中,x∈(,π),x+∈(,),则f(x)=cos(x+)不是单调函数.故选D.4.如果函数y=3cos(2x+ϕ)的图象关于点(,0)对称,那么|ϕ|的最小值为( A )(A) (B) (C) (D)解析:由题意得3cos(2³+ϕ)=3cos(+ϕ+2π)=3cos(+ϕ)=0,所以+ϕ=kπ+,k∈Z,所以ϕ=kπ-,k∈Z,取k=0,得|ϕ|的最小值为.5.(2016²浙江卷)设函数f(x)=sin 2x+bsin x+c,则f(x)的最小正周期( B )(A)与b有关,且与c有关(B)与b有关,但与c无关(C)与b无关,且与c无关(D)与b无关,但与c有关解析:f(x)=sin2x+bsin x+c=+bsin x+c=-+bsin x+c+,其中当b=0时,f(x)=-+c+,此时周期是π;当b≠0时,周期为2π,而c不影响周期.故选B.6.(2016²全国Ⅰ卷)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( C )(A)[-1,1] (B)[-1,](C)[-,] (D)[-1,-]解析:f′(x)=1-cos 2x+acos x=1-²(2cos2x-1)+acos x=-cos2x+acos x+,f(x)在R上单调递增,则f′(x)≥0在R上恒成立.令cos x=t,t∈[-1,1],则-t2+at+≥0在[-1,1]上恒成立,即4t2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t2-3at-5,则解得-≤a≤,故选C.二、填空题7.已知a>0,函数f(x)=-2asin(2x+)+2a+b,当x∈[0,]时,-5≤f(x)≤1,则常数a= ;设g(x)=f(x+),则g(x)的单调增区间为 .解析:因为x∈[0,],所以2x+∈[,],所以sin(2x+)∈[-,1],所以-2asin(2x+)∈[-2a,a].所以f(x)∈[b,3a+b].又因为—5≤f(x)≤1,所以b=-5,3a+b=1,解得a=2,b=-5.所以f(x)=-4sin(2x+)-1,g(x)=f(x+)=-4sin(2x+)-1=4sin(2x+)-1,当-+2kπ≤2x+≤+2kπ,k∈Z时,g(x)单调递增,即-+kπ≤x≤+kπ,k∈Z.所以g(x)的单调增区间为[-+kπ,+kπ],k∈Z.答案:2 [-+kπ,+kπ](k∈Z)8.已知函数f(x)=sin ωx+cos ωx(ω>0),x∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为.解析:f(x)=sin ωx+cos ωx=sin(ωx+),因为f(x)在区间(-ω,ω)内单调递增,且函数图象关于直线x=ω对称,所以f(ω)必为一个周期上的最大值,所以有ω²ω+=2kπ+,k ∈Z,所以ω2=2kπ+,k∈Z.又2[ω-(-ω)]≤,即ω2≤,所以ω2=,所以ω=.答案:9.已知函数f(x)=3sin(ωx-)(ω>0)和g(x)=2cos(2x+ )+1的图象的对称轴完全相同,若x∈[0,],则f(x)的取值范围是. 解析:因为f(x)与g(x)的图象的对称轴完全相同,所以f(x)与g(x)的最小正周期相等,因为ω>0,所以ω=2,所以f(x)=3sin(2x-),因为0≤x≤,所以-≤2x-≤,所以-≤sin(2x-)≤1,所以-≤3sin(2x-)≤3,即f(x)的取值范围是[-,3].答案:[-,3]10.(2017²嘉兴模拟)已知函数f(x)=3sin(3x+ϕ),x∈[0,π],则y=f(x)的图象与直线y=2的交点个数最多有个.解析:令f(x)=3sin(3x+ϕ)=2,得sin(3x+ϕ)=∈[-1,1],又x∈[0,π],所以3x+ϕ∈[ϕ,3π+ϕ];根据正弦函数的图象与性质,可得该方程在正弦函数一个半周期上最多有4个解,即函数y=f(x)的图象与直线y=2的交点最多有4个.答案:411.下列四个函数:①y=sin |x|,②y=cos |x|,③y=|tan x|,④y=-ln|sin x|,以π为周期,在(0,)上单调递减且为偶函数的是___ .(只填序号)解析:①y=sin |x|在(0,)上单调递增,故①错误;②y=cos |x|=cos x 周期为T=2π,故②错误;③y=|tan x|在(0,)上单调递增,故③错误;④ln|sin(x+π)|=ln|sin x|,周期为π,当x∈(0,)时,y=-ln|sin x|=-ln(sin x)在(0,)上单调递减,y=-ln|sin x|为偶函数,故④正确.答案:④12.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则ω的取值范围是.解析:T=≥2(π-)=π,所以0<ω≤2,由<x<π得ω+<ωx+<πω+,由题意知(ω+,πω+)⊆[+2kπ,+2kπ],k∈Z,所以即所以≤ω≤.答案:[,]三、解答题13.(2017²北京卷)已知函数f(x)=cos(2x-)-2sin xcos x.(1)求f(x)的最小正周期;(2)求证:当x∈[-,]时,f(x)≥-.(1)解:f(x)=cos 2x+sin 2x-sin 2x=sin 2x+cos 2x=sin(2x+),所以f(x)的最小正周期T==π.(2)证明:因为-≤x≤,所以-≤2x+≤,所以sin(2x+)≥sin(-)=-,所以当x∈[-,]时,f(x)≥-.14.求函数y=cos2x+sin x(|x|≤)的最大值与最小值.解:令t=sin x,因为|x|≤,所以t∈[-,].所以y=-t2+t+1=-(t-)2+,所以当t=时,y max=,当t=-时,y min=.所以函数y=cos2x+sin x(|x|≤)的最大值为,最小值为. 15.(2017²浙江协作体)已知0≤ϕ<π,函数f(x)=cos(2x+ϕ)+sin2x.(1)若ϕ=,求f(x)的单调递增区间;(2)若f(x)的最大值是,求ϕ的值.解:(1)由题意f(x)=cos 2x-sin 2x+=cos(2x+)+,由2kπ-π≤2x+≤2kπ,得kπ-≤x≤kπ-.所以f(x)的单调递增区间为[kπ-,kπ-],k∈Z.(2)由题意f(x)=(cos ϕ-)cos 2x-sin ϕsin 2x+,由于函数f(x)的最大值为,即+=1,从而cos ϕ=0,又0≤ϕ<π,故ϕ=.第7节函数y=Asin(ωx+φ)+b的图象与性质一、选择题1.为了得到函数y=sin(x+1)的图象,只需把函数y=sin x的图象上所有的点( A )(A)向左平行移动1个单位长度(B)向右平行移动1个单位长度(C)向左平行移动π个单位长度(D)向右平行移动π个单位长度2.(2016²全国Ⅰ卷)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为( D )(A)y=2sin(2x+) (B)y=2sin(2x+)(C)y=2sin(2x-) (D)y=2sin(2x-)解析:因为T==π,=,所以y=2sin(2x+)y=2sin[2(x-)+],所以y=2sin(2x-).故选D.3.函数y=sin 2x的图象向右平移φ(φ>0)个单位,得到的图象恰好关于x=对称,则φ的最小值为( A )(A)π(B)π(C)π(D)以上都不对解析:y=sin 2x的图象向右平移φ个单位得到y=sin 2(x-φ)的图象,又关于x=对称,则2(-φ)=kπ+(k∈Z),2φ=-kπ-(k∈Z),即φ=--,取k=-1,得φ=π.4.设a∈R,b∈[0,2π],若对任意实数x都有sin(3x-)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( B )(A)1 (B)2 (C)3 (D)4解析:由已知,3x-=ax+b+2kπ或3x-+ax+b=π+2kπ,k∈Z,所以或k∈Z,所以或满足条件的有序实数对(a,b)的对数为2.5.将函数f(x)=sin 2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)-g(x2)|=2的x1,x2,有=.则φ等于( D )(A) (B)(C)(D)解析:由已知得g(x)=sin(2x-2φ),满足|f(x1)-g(x2)|=2,不妨设此时y=f(x)和y=g(x)分别取得最大值与最小值,又|x1-x2|min=,令2x1=,2x2-2φ=-,此时|x1-x2|=-φ=,又0<φ<,故φ=.故选D.6.已知函数f(x)=Asin(x-),g(x)=k(x-3).已知当A=1时,函数h(x)=f(x)-g(x)所有零点和为9.则当A=2时,函数h(x)=f(x)-g(x)所有零点和为( A )(A)15 (B)12(C)9 (D)与k的取值有关解析:如图,函数y=f(x)与y=g(x)图象均过的点(3,0),且均关于点(3,0)对称.所以h(x)零点关于x=3“对称”,因为当A=1时,h(x)所有零点和为9,所以此时,函数y=f(x)与y=g(x)图象有三个公共点,此时,f(6)<g(6),得k>.当A=2时,f(6)>g(6)且g(9)=6k>2=f max(x),所以h(x)有5个零点x1,x2,x3,x4,x5,且x1+x5=x2+x4=6,x3=3.所以x1+x2+x3+x4+x5=15.故选A.7.(2016²全国Ⅰ卷)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为( B )(A)11 (B)9 (C)7 (D)5解析:因为f(x)=sin(ωx+φ)的一个零点为x=-,x=为y=f(x)图象的对称轴,所以²k=(k为奇数).又T=,所以ω=k(k为奇数).又函数f(x)在(,)上单调,所以≤³,即ω≤12.若ω=11,又|φ|≤,则φ=-,此时,f(x)=sin(11-x-),f(x)在(,)上单调递增,在(,)上单调递减,不满足条件.若ω=9,又|φ|≤,则φ=,此时f(x)=sin(9x+),满足f(x)在(,)上单调的条件.故选B.二、填空题8.(2017²温州模拟)已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,将f(x)的图象向左平移个单位,得到g(x)的图象,则函数g(x)的解析式为 .解析:由题意得=-=,所以T=π,所以ω=2,又因为2³+φ=π,所以φ=,所以f(x)=sin(2x+).因为g(x)的图象是由f(x)的图象向左平移个单位得到,所以g(x)=sin [2(x+)+]=sin(2x+).答案:g(x)=sin(2x+)9.(2016²全国Ⅲ卷)函数y=sin x-cos x的图象可由函数y=sin x+cos x的图象至少向右平移个单位长度得到.解析:y=sin x-cos x=2sin(x-),y=sin x+cos x=2sin(x+),y=2sin(x+)的图象至少向右平移个单位长度得到y=2sin(x+-)=2sin(x-)的图象.答案:10.若将函数y=2sin 2x的图象向左平移个单位长度,则平移后图象的对称轴为.解析:将函数y=2sin 2x的图象向左平移个单位长度,得到函数y=2sin [2(x+)]=2sin(2x+)的图象.由2x+=kπ+(k∈Z),得x=+(k∈Z),即平移后图象的对称轴为x=+(k∈Z).答案:x=+(k∈Z)11.(2016²浙江卷)已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),则A= ,b= .解析:2cos2x+sin 2x=sin(2x+)+1,所以A=,b=1.答案: 112.(2016²江苏卷)定义在区间[0,3π]上的函数y=sin 2x的图象与y=cos x的图象的交点个数是.解析:联立两曲线方程,得两曲线交点个数即为方程组解的个数,也就是方程sin 2x=cos x解的个数.方程可化为2sin xcos x=cos x,即cos x(2sin x-1)=0,所以cos x=0或sin x=.①当cos x=0时,x=kπ+,k∈Z,因为x∈[0,3π],所以x=,π,π,共3个;②当sin x=时,因为x∈[0,3π],所以x=,π,π,π,共4个.综上,方程组在[0,3π]上有7个解,故两曲线在[0,3π]上有7个交点.答案:7三、解答题13.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC 的面积为π.(1)求函数f(x)的解析式;(2)若f(α-)=,求cos 2α的值.解:(1)因为S△MBC=³2³BC=BC=π,所以周期T=2π=,ω=1,由f(0)=2sin φ=,得sin φ=,因为0<φ<,所以φ=,所以f(x)=2sin(x+).(2)由f(α-)=2sin α=,得sin α=,所以cos 2α=1-2sin2α=.14.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π,且x=为f(x)图象的一条对称轴.(1)求ω和φ的值;(2)设函数g(x)=f(x)+f(x-),求g(x)的单调递减区间.解:(1)函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π, 所以T==π,ω=2,又x=为f(x)图象的一条对称轴,所以2³+φ=kπ+,k∈Z,解得φ=kπ+,k∈Z,又|φ|≤,所以φ=.(2)由(1)知,f(x)=sin(2x+),所以g(x)=f(x)+f(x-)=sin(2x+)+sin 2x=sin 2x+cos 2x+sin 2x =sin(2x+),令+2kπ≤2x+≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z,所以g(x)的单调递减区间是[+kπ,+kπ],k∈Z.15.函数f(x)=cos(πx+φ)(0<φ<)的部分图象如图所示.(1)求φ及图中x0的值;(2)设g(x)=f(x)+f(x+),求函数g(x)在区间[-,]上的最大值和最小值.解:(1)由题图得f(0)=,所以cos φ=,因为0<φ<,故φ=.法一由于f(x)的最小正周期T==2,由题图可知1<x0<2,故<πx0+<,由f(x0)=得cos(πx0+)=,所以πx0+=,x0=.法二求离原点最近的正的最小值点,令πx+=π+2kπ,得x=+2k,k∈Z,令k=0得x=,所以=,x0=.(2)因为f(x+)=cos [π(x+)+]=cos(πx+)=-sin πx,所以g(x)=f(x)+f(x+)=cos(πx+)-sin πx=cos πxcos -sin πxsin -sin πx=cos πx-sin πx=sin(-πx)=-sin(πx-).当x∈[-,]时,πx∈[-,],(πx-)∈[-,], 所以sin(πx-)∈[-1,],-sin (πx-)∈[-,],当πx-=-,即x=-时,g(x)取得最大值;当πx-=,即x=时,g(x)取得最小值-.易错点训练:忽视函数值造成范围扩大一、选择题1.的值是( A )(A)sin 40° (B)cos 40° (C)cos 130°(D)±cos 50°解析:因为==-cos 130°=sin 40°,故选A.2.已知sin α=2sin β,tan α=3tan β,则cos α的值是( D )(A) (B)-(C)± (D)±或±1解析:由条件tan α=3tan β,得=.又因为sin α=2sin β,所以=.当sin β=0时,sin α=0,显然成立,故有cos α=±1;当sin β≠0时,3cos α=2cos β,从而有(sin α)2+(3cos α)2=4,解得cos2α=,所以cos α=±,故选D.3.在△ABC中,若sin A=,cos B=,则cos C的值是( B )(A) (B)(C)或 (D)以上都不对解析:因为cos B=,所以sin B=.又因为sin A=<=sin B,若A 为钝角,则sin(π-A)<sin B,得π-A<B,π<A+B矛盾.因此A肯定是锐角,所以cos A=,从而有cos C=-cos(A+B)=sin Asin B-cos Acos B=,故选B.4.已知3sin2x+2sin2y=2sin x,则sin2x+sin2y的最值情况是( D )(A)最大值为,最小值为-(B)最大值为,最小值为0(C)最大值为,最小值为-(D)最大值为,最小值为0解析:由0≤sin2y=(2sin x-3sin2x)≤1,可解得0≤sin x≤,则sin2x+sin2y=sin2x+(2sin x-3sin2x)=-sin2x+sin x=-(sin x-1)2+,所以sin2x+sin2y的最大值为,最小值为0.5.已知方程x2+4ax+3a+1=0(a>1)的两根为tan α,tan β,且α,β∈(-,),则tan 的值是( A )(A)-2 (B)(C)-2或(D)2或-解析:由韦达定理可知tan α,tan β同为负值,可得α,β∈(-,0),所以∈(-,0).又因为所以tan(α+β)===.又因为tan(α+β)==,解得tan =-2或,取tan =-2.二、填空题6.已知sin θ+cos θ=,其中θ∈(0,π),则tan θ的值是.。
高三数学一轮复习 三角函数(Ⅱ)单元练习题
高三数学一轮复习三角函数(Ⅱ)单元练习题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知锐角α终边上一点A的坐标为(2sin3,-2cos3),则角α的弧度数为()A.3 B.π-3 C.3-2πD.2π-32.sin( )的值等于()A.12B.-12C D.3.若α是第三象限的角,则α-π是()A.第一象限角B.第二象限角 C.第三象限角D.第四象限角4.若|sinθ|=15,92π<θ<5π,则tanθ等于()A B.-. D.5.函数y=cos( ) ()A.是奇函数B.是偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数6.要得到函数y=sin(2x-4π)的图象,只要将函数y=sin2x的图象()A.向左平移4πB.向右平移4πC.向左平移8πD.向右平移8π7.函数y=tan(21x-3π)在一个周期内的图象是()8.函数y=x+sin|x|,x∈[-π,π]的大致图象是()π-π -π -π -πA. B. C. D. 9.函数y=sin(2x+ )的图象的一条对称轴的方程是()A.x=54πB.x=2π- C.x=8πD.x=4π10. 定义在R上的函数f(x)满足f(x)=f(x+2),x∈[3,5]时,f(x)=2-|x-4|,则()A.f(sinπ6)<f(cosπ6) B.f(sin1)>f(cos1) C.f(cos2π3)<f(sin2π3) D.f(cos2)>f(sin2)11.如图为一半径为3米的水轮,水轮圆心O距水面2米,已知15223xπ-A. C.B. D.52π水轮每分钟转4圈,水轮上的点P 到水面距离y (米)与时间x (秒) 满足关系式y =A sin(ωx +φ)+2,则有 ( ) A .ω=512π,A =3 B .ω=215π,A =3 C .ω=512π,A =5 D .ω=152π,A =5 12.函数y =1-x +sin x 是( )A .单调增函数B .单调减函数C .(0, π]是单调增函数,[π,2π) 单调减函数D .(0, π]是单调减函数,[π,2π) 单调增函数二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.若tan α= -2,且sin α<0,则cos α=____________.14.sin 1πcos 1πsin πcos πk k k k θθθθ++⋅+-⎡⎤⎡⎤⎣⎦⎣⎦-⋅+()()()()(k ∈Z )= . 15.使函数y =2tan x 与y =cos θ同时为单调递增的区间是 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题(本大题共6小题,17-21题每小题12分,22题14分,共74分,解答应写出文字说明、证明过程或演算步骤) 17. 试确定下列函数的定义域⑴y = ⑵tan()4lg(2cos 1)x y x π-=-18.若|log cos αsin α|>|log sin αcos α|(α为锐角),求α的取值范围.19.已知函数f (x )=⎩⎨⎧>≥.sin cos cos cos sin sin )(),(x x x x x x(1)画出f (x )的图象,并写出其单调区间、最大值、最小值;(2)判断f (x )是否为周期函数.如果是,求出最小正周期.20.设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.21.已知某海滨浴场的海浪高度y (米)是时间t (0≤t ≤24单位小时)的函数,记作:y =f (t ).经长期观测,y =f (t ).的曲线可近似地看成是函数y =Acos ωt +b(1).根据以上数据,求出函数y =Acos ωt +b 的最小正周期T ,振幅A 及函数表达式; (2).根据规定,当海狼高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行活动?22.讨论函数f (x )=|sin x +cos x |-|sin x -cos x |的性质,并在函数性质的基础上作出函数的草图.参考答案:一、CAACA;DACBD;BC 二、13; 14.-1; 15.[2,2),(2,22],33k k k k k Z ππππππππ++++∈; 16.1<k <3 三、17.(1) {x |2k π<x ≤2k π+π6, k ∈Z }∪{x |2k π+5π6≤x <2k π+π, k ∈Z } (2){x |2k π<x <2k π+π3, k ∈Z } 18.解:∵α为锐角,0<cos α<1,0<sin α<1,∴log cos αsin α>0,log sin αcos α>0.∴原式就是log cos αsin α>log sin αcos αααααcos log sinlog sin cos ⇒>1⇒(log cos αsin α)2>1⇒log cos αsin α>1⇒sin α<cos α⇒0<α<4π. 19.解:(1单调增区间为[Z ),单调减区间为[2k π,2k π+4π],[2k π+2π,2k π+4π5](k ∈Z ), f (x )max =1,f (x )min . (2)f (x )为周期函数,T =2π.20.解:由y =2(cos x -2a )2-2422a a -+及cos x ∈[-1,1]得:f (a )=21 (2)2 1 (22)214 (2)a aa a a a ≤-⎧⎪⎪----<<⎨⎪-≥⎪⎩∵f (a )=12,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时,y =2(cos x +21)2+21,当cos x =1时,即x =2kπ,k ∈Z ,y max =5.21. (1)由表中数据,知周期T =12,∴26T ππω==,由t =0,y =1.5,得A +b =1.5; 由t =3,y =1.0,得b =1.0, ∴A =0.5,b =1. ∴振幅为12.∴1cos 126y t π=+(2)由题知,当y >1时才对冲浪者开放,∴1cos 1126t π+>,∴cos 06t π>,∴22262k t k πππππ-<<+即12k -3<t <12k +3. ∵0≤t ≤24,故可令k 分别为0,1,2.得0≤t <3或9<t <15或21<t ≤24, ∴在规定时间上午8:00时至晚上20:00时之间有6个小时可供冲浪者进行活动:上午9:00至下午15:00. 22. 显然函数f (x )的定义域为R ,又∵f (-x )= |sin(-x )+cos(-x )|-|sin(-x )-cos(-x )|= |-sin x +cos x |-|-sin x -cos x |= - f (x )∴ f (x )为奇函数由于2π一定是f (x )的一个周期,以下在[0,2π]内作如下分析:∴ f (x )为最小正周期为π的奇函数,单调递增区间为[k π-π,k π+4π],单调递减区间为[k π+4π,k π+34π](k ∈Z )函数的草图如下:。
2016高考三角函数专题测试题及答案
高一数学必修4第一章三角函数单元测试 班级 姓名 座号 评分一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.(48分)1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A CD .A=B=C2、将分针拨慢5分钟,则分钟转过的弧度数是( ) A .3π B .-3π C .6π D .-6π 3、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为 ( ) A .-2 B .2 C .2316 D .-23164、已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( )A .在x 轴上B .在直线y x =上C .在y 轴上D .在直线y x =或y x =-上5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( ) A .32- B .32 C .12 D . 12-6、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位 7、如图,曲线对应的函数是 ( )A .y=|sin x |B .y=sin|x |C .y=-sin|x |D .y=-|sin x | 8、化简1160-︒2sin 的结果是 ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒9、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)32sin(2π+=x y 的图象( ) A .关于原点对称 B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称11、函数sin(),2y x x R π=+∈是 ( ) A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]ππ-上是减函数12、函数y =的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦ D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:共4小题,把答案填在题中横线上.(20分)13、已知απβαππβαπ2,3,34则-<-<-<+<的取值范围是 . 14、)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 .15、函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 16、已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤.17、(8分)求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、(8分)已知3tan 2απαπ=<<,求sin cos αα-的值.19、(8分)绳子绕在半径为50cm 的轮圈上,绳子的下端B 处悬挂着物体W ,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W 的位置向上提升100cm?20、(10分)已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+21、(10分)求函数21()tan 2tan 5f t x a x =++在[,]42x ππ∈时的值域(其中a 为常数)22、(8分)给出下列6种图像变换方法: ①图像上所有点的纵坐标不变,横坐标缩短到原来的21;②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍; ③图像向右平移3π个单位; ④图像向左平移3π个单位; ⑤图像向右平移32π个单位; ⑥图像向左平移32π个单位。
2016高中数学 精讲优练课型 第一章 三角函数 1.1.1 任意角
B.y轴的非负半轴上
C.x轴的非正半轴上
D.y轴的非正半轴上
【解题指南】由角α,β的终边相同可得,α= k·360°+
β(k∈Z),由此可求α-β并得到其终边位置.
【解析】选A.因为角α,β的终边相同, 所以α=k·360°+β(k∈Z), 所以α-β=k·360°(k∈Z), 所以α-β的终边在x轴的非负半轴上.
【拓展延伸】终边落在坐标轴上的角的集合表示
角的终边的位置 终边落在x轴的非负半轴上 终边落在x轴的非正半轴上 终边落在y轴的非负半轴上 终边落在y轴的非正半轴上 终边落在y轴上 终边落在x轴上 终边落在坐标轴上
集合表示 {α |α =k·360°,k∈Z} {α |α =180°+k·360°,k∈Z} {α |α =90°+k·360°,k∈Z} {α |α =270°+k·360°,k∈Z} {α |α =90°+k·180°,k∈Z} {α |α =k·180°,k∈Z} {α |α =k·90°,k∈Z}
【解析】如图:
∠AOD=∠AOB+∠BOC+∠COD =(-80°)+250°+(-270°)=-100°. 答案:-100°
类型二 终边相同的角的表示和应用 【典例】1.(2015·成都高一检测)若角α 与β 的终边垂直,则α 与β 的关系是( ) A.β =α +90° B.β =α ±90° C.β =k·360°+α +90°,k∈Z D.β =k·360°+α ±90°,k∈Z
C.k·360°+257°(k∈Z)
D.k·360°-257°(k∈Z)
【解析】选C.因为-463°=257°-2×360°,所以与-463°终边相同
2016年浙江省数学高考模拟精彩题选—三角函数含答案
2016浙江精彩题选——三角函数1.(2016宁波十校16).(本题满分14分)在ABC △中,角,,A B C 的对边分别是,,a b c ,且向量(54,4)m a c b =- 与向量(cos ,cos )n C B = 共线.(Ⅰ)求cos B ;(Ⅱ)若10,5b c a c ==<,,且2AD DC = ,求BD 的长度.解:(Ⅰ)(45,5)m a c b =- 与(cos ,cos )n C B = 共线,54cos 5sin 4sin 4cos 4sin a c C A C b B B --∴==4sin cos 4cos sin 5sin cos B C B C A B∴+=4sin()4sin 5sin cos B C A A B∴+== 在三角形ABC △中,sin 0A ≠4cos 5B ∴=……………………………………………………7分(Ⅱ)10,5b c a c ==<,且4cos B =2222cos a c ac B b ∴+-=即242525105a a ∴+-⋅⋅=解得35a a ==或(舍)……………………………………………9分2AD DC = 1233BD BA BC ∴=+ 22222141214122c 2cos 99339933BD BA BC BA BC a a c B ∴=++⋅⋅∙=++⋅⋅⋅⋅ 将3a =和5c =代入得:21099BD = 109=3BD ∴……………………………………………14分2.(2016嘉兴二模16)(本题满分14分)在△ABC 中,设边c b a ,,所对的角为C B A ,,,且C B A ,,都不是直角,22cos cos )8(b a B ac A bc -=+-.(Ⅰ)若5=+c b ,求c b ,的值;(Ⅱ)若5=a ,求△ABC 面积的最大值.解:(Ⅰ)2222222222)8(b a acb c a ac bc a c b bc -=-+⋅+-+⋅-222222222222282b a b c a bc a c b a c b -=-++-+⋅--+08222222=-+⋅--+a c b a c b ,∵△ABC 不是直角三角形,∴04=-bc 故4=bc ,又∵5=+c b ,解得⎩⎨⎧==41c b 或⎩⎨⎧==14c b (Ⅱ)∵5=a ,由余弦定理可得A A bc bc A bc c b cos 88cos 22cos 2522-=-≥-+=,所以83cos ≥A ,所以855sin ≤A ,所以455sin 21≤=∆A bc S ABC .所以△ABC 面积的最大值是455,当83cos =A 时取到.3.(2016衢州二模16)(本题满分14分)已知2()cos cos f x x x x =⋅+.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)在锐角△ABC 的三个角,,A B C 所对的边分别为,,a b c ,且()1f C =,求222a b c ab++的取值范围.解:(I)2()cos cos f x x x x=⋅+∴()2sin(2)6f x x π=+Q 222262k x k πππππ-≤+≤+∴36k x k ππππ-≤≤+∴函数()f x 的单调递增区间,,36Z k k k ππππ⎡⎤-+∈⎢⎥⎣⎦(II)Q ()1f C =∴()2sin(216f C C π=+=∴2266C k πππ+=+或52266C k πππ+=+k ∈Z ∴3C π=由余弦定理得:222c a b ab=+-∴222222()12()1a b c a b b a ab ab a b +++=-=+-Q △ABC 为锐角三角形∴022032{A A πππ<<<<∴62,A ππ<<由正弦定理得:2sin()sin 113,2sin sin 2tan 22A b B a A A A π-⎛⎫===+∈ ⎪⎝⎭∴[)2223,4a b c ab++∈点评:注意题中的锐角这个条件4.(2016五校联考二16)(本小题满分15分)如图,四边形ABCD ,60DAB ∠= ,,CD AD CB AB ⊥⊥。
高三数学一轮复习精练 三角函数
高三数学一轮复习精练:三角函数一、选择题1已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=,则B .4+C .4—D 2如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么的最小值为(C ) (A )6π (B )4π (C )3π D 2π3将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是A cos 2y x =B 22cos y x = C )42sin(1π++=x y D 22sin y x =4已知函数()cos (0)f x x x ωωω+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于,则的单调递增区间是(A )5[,],1212k k k Z ππππ-+∈ (B )511[,],1212k k k Z ππππ++∈(C )[,],36k k k Z ππππ-+∈ (D )2[,],63k k k Z ππππ++∈5若函数()(1)cos f x x x =,02x π≤<,则的最大值为A .1B .C 1D 2 6已知函数)0,)(4sin()(>∈+=w R x wx x f π的最小正周期为,将)(x f y =的图像向左平移个单位长度,所得图像关于轴对称,则的一个值是( )A2π B 83π C 4π D 8π7函数cos(2)26y x π=+-的图象按向量平移到,的函数解析式为(),y f x =当()y f x =为奇函数时,向量可以等于.(,2)6A π-- .(,2)6B π-.(,2)6C π- .(,2)6D π8若将函数()tan 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图像重合,则的最小值为A .16B14C 13D129 “2()6k k Z παπ=+∈”是“1cos 22α=”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 10已知函数=Aco x ωϕ+的图象如图所示,2()23f π=-,则= (A )23-B 23C - 12D 1211有四个关于三角函数的命题: :R,2x 2x =12: 、R, in-=in-in : []0,π1cos 22x- : in=co=2π 其中假命题的是(A ), (B ), (3), (4), 12已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象A 向左平移8π个单位长度B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度二、填空题13在锐角ABC ∆中,1,2,BC B A ==则cos ACA的值等于 ,的取值范围为 14已知函数()2sin()f x x ωφ=+的图像如图所示, 则712f π⎛⎫=⎪⎝⎭。
山东省2016届高三数学文一轮复习专题突破训练:三角函数含解析
山东省2016届高三数学文一轮复习专题突破训练三有函数一、选择、填空题1、(2015年高考)要得到函数y=sin (4x-3π)的图象,只需要将函数y=sin4x 的图象( )(A ).向左平移12π个单位 (B )向右平移12π个单位(C )。
向左平移3π个单位 (D)向右平移3π个单位2、(2014年高考)函数22cos 2y x x =+的最小正周期为 。
3、(2013年高考)△ABC 的内角A ,B ,C 所对的边分别为a ,b,c 。
若B =2A ,a =1,b =错误!,则c =( )A .23 B .2 C.错误! D .14、(滨州市2015届高三一模)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知,sin 3sin ,3A B C a π===ABC ∆的面积为()A B C D5、(德州市2015届高三一模)将函数)(0)πωω>f(x)=2sin(x+3的图象向右平移3πω个单位,得到函数()y g x =的图象,若()y g x =在[0,]4π上为增函数,则ω的最大值为____6、(菏泽市2015届高三一模)在ABC ∆中,若sin sin cos cos sin A A C A C -=,则ABC ∆的形状是()A .等腰三角形B .正三角形C .直角三角形D .等腰直角三角形7、(济宁市2015届高三一模)已知简谐运动()2sin 32f x x ππϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭的图象经过()0,1,则该简谐运动的最小正周期T 和初相ϕ分别为 A 。
6,6T πϕ==B 。
6,3T πϕ==C 。
6,6T ππϕ==D 。
6,3T ππϕ==8、(莱州市2015届高三一模)已知角α的终边与单位圆221xy +=交于点01,cos 22P yα⎛⎫⎪⎝⎭,则等于A 。
12-B. 12C 。
32- D 。
19、(青岛市2015届高三二模)已知函数f(x)=2sin(2x+φ)(|φ|<的图象过点,则f (x )的图象的一个对称中心是( ) A .B .C .D .10、(日照市2015届高三一模)函数()()sin 002f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭其中,,的图象如图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象 A 。
2016届高考数学一轮复习名校尖子生培优专题训练三角函数之三角函数与其它知识的综合问题新人教A版
五、三角函数与其它知识的综合问题:典型例题:例1.设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为【 】 (A )-3 (B )-1 (C )1 (D )3 【答案】A 。
【考点】两角和与差的三角公式,一元二次方程根与系数的关系。
【分析】∵tan ,tan αβ是方程2320x x -+=的两个根,∴根据一元二次方程根与系数的关系,得tan tan 3,tan tan 2αβαβ+==。
∴tan tan tan()31tan tan αβαβαβ++==--。
故选A 。
例2.在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为【 】C. 12D. 12- 【答案】C 。
【考点】余弦定理,基本不等式的应用。
【解析】通过余弦定理求出cosC 的表达式,利用基本不等式求出cosC 的最小值:∵2222a b c +=,∴2222a b c +=。
∴由余弦定理得,222221cos 242a b c a b C ab ab +-+==≥当且仅当a b =时取“=”。
∴cos C 的最小值为12。
故选C 。
例3.函数sin 2()1cos x f x x=-的最小正周期是 ▲【答案】π。
【考点】行列式的基本运算,三角函数的值域,二倍角公式。
【解析】∵sin 21()sin cos 2sin 221cos 2x f x x x x x ==+=+-,∴函数sin 2()1cos x f x x =-的最小正周期是22ππ=。
例4.设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是 ▲ ①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>【答案】①②③。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2016年高考优题精练三角函数一、填空题1、(2015年江苏高考)已知t a n 2α=-,1tan()7αβ+=,则t a nβ的值为_________________。
2、(2014年江苏高考)已知函数x y cos =与)0)(2sin(πϕϕ≤≤+=x y ,它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲ . 3、(2013年江苏高考)函数)42sin(3π+=x y 的最小正周期为 。
4、(2015届南京、盐城市高三二模)已知βα,均为锐角,且βαβαsin sin )cos(=+,则αtan 的最大值是5、(南通、扬州、连云港2015届高三第二次调研(淮安三模))若函数()π()2sin 3f x x ω=+(0)ω>的图象与x 轴相邻两个交点间的距离为2,则实数ω的值为 ▲6、(苏锡常镇四市2015届高三教学情况调研(二))函数3sin(2)4y x π=+的图象向左平移(0)2πϕϕ<<个单位后,所得函数图象关于原点成中心对称,则ϕ= ▲7、(泰州市2015届高三第二次模拟考试)设函数π()π)3f x x =+和π()sin(π)6g x x =-的图象在y 轴左、右两侧靠近y 轴的交点分别为M 、N ,已知O为原点,则OM ON ⋅=▲8、(盐城市2015届高三第三次模拟考试)若角+4πα的顶点为坐标原点,始边与x 轴的非负半轴重合,终边在直线12y x =上,则tan α的值为 ▲ . 9、(苏州市2015届高三上期末)已知函数()sin()5f x kx π=+的最小正周期是3π,则正数k 的值为10、(泰州市2015届高三上期末)函数()sin(3)6f x x π=+的最小正周期为 ▲11、(无锡市2015届高三上期末)已知角a 的终边经过点(),6P x -,且3tan 5a =-, 则x 的值为12、(扬州市2015届高三上期末)已知4(0,),cos 5απα∈=-,则tan()4πα+=____ 13、(泰州市2015届高三上期末)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若B C ∠=∠且2227a b c ++=ABC ∆面积的最大值为 ▲14、(2015届江苏南京高三9月调研)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .已知a +2c =2b ,sin B =2sin C ,则cos A = ▲ .15、(2015届江苏苏州高三9月调研)已知函数()sin 0,0,2y A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的图象上有一个最高点的坐标为(,由这个最高点到其右侧相邻最低点间的图像与x 轴交于点()6,0,则此解析式为 ▲二、解答题1、(2015年江苏高考)在ABC V 中,已知2AB =,3AC =,60A =︒。
(1)求BC 的长; (2)求sin 2C 的值。
2、(2014年江苏高考)已知sin 2παπα⎛⎫∈=⎪⎝⎭,, (1)求sin()4πα+的值;(2)求5cos(2)6πα-的值。
3、(2013年江苏高考)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C 。
现有甲.乙两位游客从A 处下山,甲沿AC 匀速步行,速度为min /50m 。
在甲出发min 2后,乙从A 乘缆车到B ,在B 处停留min 1后,再从匀速步行到C 。
假设缆车匀速直线运动的速度为min /130m ,山路AC 长为m 1260,经测量,1312cos =A ,53cos =C 。
(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?4、(苏锡常镇四市2015届高三教学情况调研(二))已知函数()sin()cos 6f x x x π=++(1)求函数()f x 的最大值,并写出当()f x 取得最大值时x 的取值集合;(2)若(0,),()26f ππαα∈+=()2f α的值C BA5、(苏锡常镇四市2015届高三教学情况调研(一))如图,有一段河流,河的一侧是以O为圆心,半径为OCD ,河的另一侧是一段笔直的河岸l ,岸边有一烟囱AB (不计B 离河岸的距离),且OB 的连线恰好与河岸l 垂直,设OB 与圆弧 CD的交点为E .经测量,扇形区域和河岸处于同一水平面,在点C ,点O 和点E 处测得烟囱AB 的仰角分别为45︒,30︒和60︒. (1)求烟囱AB 的高度;(2)如果要在CE 间修一条直路,求CE 的长.6、(2015届江苏南京高三9月调研)已知函数f (x )=2sin(2x +φ)(0<φ<2π)的图象过点(π2,-2).(1)求φ的值;(2)若f (α2)=65,-π2<α<0,求sin(2α-π6)的值.(第17题)l7、(2015届江苏南通市直中学高三9月调研)已知在△ABC 中,sin()2sin()A B A B +=-. (1)若π6B =,求A ; (2)若tan 2A =,求tan B 的值.8、(扬州市2015届高三上期末)已知函数()sin()(0,0,0)2f x A x A πωϕωϕ=+>><<部分图象如图所示。
(1)求函数f (x )的解析式;(2)当15[,]22x ∈时,求函数(1)()y f x f x =-+的值域。
9、(南通市2015届高三)在长为20m ,宽为16m 的长方形展厅正中央有一圆盘形展台(圆心为点)C ,展厅入口位于长方形的长边的中间,在展厅一角B 点处安装监控摄像头,使点B 与圆C 在同一水平面上,且展台与入口都在摄像头水平监控范围内(如图阴影所示).()1若圆盘半径为,求监控摄像头最小水平视角的正切值;()2过监控摄像头最大水平视角为60 ,求圆盘半径的最大值.(注:水平摄像视角指镜头中心点水平观察物体边缘的实现的夹角.)10、(扬州市2015届高三上期末)如图,某商业中心O 有通往正东方向和北偏东30º方向的两条街道,某公园P 位于商业中心北偏东θ角(0tan 2πθθ=<<,心O 现要经过公园P 修一条直路分别与两条街道交汇于A ,B 两处。
(1)当AB 沿正北方向时,试求商业中心到A ,B 两处的距离和;(2)若要使商业中心O 到A ,B 两处的距离和最短,请确定A ,B 的最佳位置。
参考答案一、填空题1、 12t a n ()t a n 7t a n 311t a n ()t a n 1(2)7αβαβαββ++-===+++⨯- 2、6π3、π4、24 5、π2 6、38π 7、89- 8、13- 9、6 10、23π 11、10 12、17 1314、2415、84y x ππ⎛⎫=+ ⎪⎝⎭二、解答题1、解:(1)2,3,60AB c AC b A =====︒,所以a BC ==== (2)根据正弦定理,2sin sin c AC a===,又因为c a <,所以C A <,故C为锐角,所以cos C =。
所以:sin 22sin cos 2C C C ===2.(1)∵α∈(错误!未找到引用源。
,π),错误!未找到引用源。
=错误!未找到引用源。
∴错误!未找到引用源。
=错误!未找到引用源。
∴错误!未找到引用源。
=错误!未找到引用源。
+错误!未找到引用源。
=错误!未找到引用源。
(2)错误!未找到引用源。
=1错误!未找到引用源。
2错误!未找到引用源。
=错误!未找到引用源。
,错误!未找到引用源。
=2错误!未找到引用源。
=错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
+错误!未找到引用源。
=错误!未找到引用源。
+错误!未找到引用源。
(错误!未找到引用源。
)=错误!未找到引用源。
3、解:(1)∵1312cos =A ,53cos =C ∴),(、20π∈C A ∴135sin =A ,54sin =C∴[]6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(π 根据sinB sinC AC AB =得m C ACAB 1040sin sinB== (2)设乙出发t分钟后,甲.乙距离为d,则1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d ∴)507037(20022+-=t t d∵13010400≤≤t 即80≤≤t ∴3735=t 时,即乙出发3735分钟后,乙在缆车上与甲的距离最短。
(3)由正弦定理sinB sinA ACBC =得50013565631260sin sinB===A AC BC (m ) 乙从B 出发时,甲已经走了50(2+8+1)=550(m ),还需走710 m 才能到达C 设乙的步行速度为V min /m ,则350710500≤-v ∴3507105003≤-≤-v ∴14625431250≤≤v ∴为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎥⎦⎤⎢⎣⎡14625,431250范围内法二:解:(1)如图作BD ⊥CA 于点D ,设BD =20k ,则DC =25k ,AD =48k ,AB =52k ,由AC =63k =1260m , 知:AB =52k =1040m .(2)设乙出发x 分钟后到达点M ,此时甲到达N 点,如图所示. 则:AM =130x ,AN =50(x +2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·AN cos A =7400 x 2-14000 x +10000,其中0≤x ≤8,当x =3537(min)时,MN 最小,此时乙在缆车上与甲的距离最短. (3)由(1)知:BC =500m ,甲到C 用时:126050 =1265(min). 若甲等乙3分钟,则乙到C 用时:1265 +3=1415 (min),在BC 上用时:865 (min) .此时乙的速度最小,且为:500÷865 =125043m/min .若乙等甲3分钟,则乙到C 用时:1265 -3=1115 (min),在BC 上用时:565 (min) .此时乙的速度最大,且为:500÷565 =62514 m/min .故乙步行的速度应控制在[125043 ,62514]范围内.4、C BADMN5、解:(1)设AB 的高度为h ,在△CAB 中,因为45ACB ∠=︒,所以CB h =, ………………………………1分 在△OAB 中,因为30AOB ∠=︒,60AEB ∠=︒, ………………………………2分所以OB =,EB =, ………………………………………………………4分-=15h =. ………………………………………6分 答:烟囱的高度为15米. ……………………………………………………………7分(2)在△OBC 中,222cos 2OC OB BC COB OC OB+-∠=⋅56==, …………………10分所以在△OCE 中,2222cos CE OC OE OC OE COE =+-⋅∠ 53003006001006=+-⨯=. …………………13分答:CE 的长为10米. ……………………………………………………………14分6、解:(1)因为函数f (x )=2sin(2x +φ)(0<φ<2π)的图象过点(π2,-2),所以f (π2)=2sin(π+φ)=-2,即sin φ=1. …………………………………………… 4分 因为0<φ<2π,所以φ=π2. …………………………………………… 6分(2)由(1)得,f (x )=2cos2x . ………………………………………… 8分因为f (α2)=65,所以cos α=35.又因为-π2<α<0,所以sin α=-45. …………………………………… 10分所以sin2α=2sin αcos α=-2425,cos2α=2cos 2α-1=-725.…………………… 12分从而sin(2α-π6)=sin2αcos π6-cos2αsin π6=7-24350. …………………… 14分7.解:(1)由条件,得 ππsin()2sin()66A A +=-.11cos cos )22A A A A +=-. …………………………………………3分化简,得 s i nc o s A A =.tan A ∴……………………………………………………………………………6分又(0,π)A ∈, π3A ∴=. ………………………………………………………………7分(2)sin()2sin()A B A B +=- , s i nc o s c o s s i n 2(s i n c o s c o A B A B A B A B ∴+=-.化简,得 3c o s s i n s i nc o AB A B =. (11)分又 c o s c o s 0A B ≠,tan 3tan A B ∴=.又tan 2A =,2tan 3B ∴=.……………………………………………………………………………14分8、⑴由图,212,()1433T A ==--=,得4T =,2πω=,则()2sin()26f x x ππ=+, (3)分由22()2sin()2323f πϕ=⋅+=,得sin()13πϕ+=,所以2()32k k Z ππϕπ+=+∈,又02πϕ<<,得6πϕ=,所以()2sin()26f x x ππ=+; ……7分⑵(1)()2sin()2cos()sin()2626212y f x f x x x x ππππππ=-+=+-+=-, (10)分因为15[,]22x ∈,故762126x ππππ≤-≤,则1s i n ()12212x ππ-≤-≤,即()2f x ≤≤所以函数(1)()y f x f x =-+的值域为[. ……14分 9.P m n,10、⑴以O为原点,OA所在直线为x轴建立坐标系.设(,)∵02πθ<<,tan θ=cos θ=,sin θ=, 则9sin 2m OP θ=⋅=,cos n OP θ=⋅= ……4分 依题意,AB ⊥OA ,则OA =92,OB =2OA =9,商业中心到A 、B 两处的距离和为13.5km . ⑵方法1:当AB 与x 轴不垂直时,设AB:9()2y k x =-,①令0y =,得92A x =+;由题意,直线OB的方程为y =,②解①②联立的方程组,得B x =2B OB x ===∴92y OA OB =+=++,由0A x >,0B x >,得k >,或0k <. ……11分'y =+=,令'0y =,得k =,当k <时,'0y <,y是减函数;当0k <<时,'0y >,y 是增函数,∴当k =y 有极小值为9km;当k >'0y <,y 是减函数,结合⑴知13.5y >km .综上所述,商业中心到A 、B 两处的距离和最短为9km ,此时OA =6km ,OB =3km ,方法2:如图,过P 作PM //OA 交OB 于M ,PN //OB 交OA 于N ,设∠BAO =α,△OPN 中sin(90)sin(30)sin120PN ON OPθθ︒==-- ,得PN =1,ON =4=PM , △PNA中∠NPA =120°-α∴sin sin(120)PN NAαα︒=-得sin(120)sin NA αα︒-=同理在△PMB 中,sin sin(120)BM PM αα︒=-,得4sin sin(120)MB αα︒=-,s i n (120)4s i n1459s i n s i n (120)y O A O B αααα︒︒-=+=+++≥=-, ……13分A当且仅当sin(120)4sin sin sin(120)αααα︒︒-=-即sin(120)2sin αα︒-=即tan α=时取等号.方法3:若设点()B m ,则AB9292y x m -=-,得4(4,0)21A m +-, ∴4424211492121OA OB m m m m +=++=-+++≥--, ……13分当且仅当42121m m -=-即32m =时取等号.方法4:设(,0)A n ,AB92x n n -=-,得2142B x n =+-, 442441(4)5944B OA OB n x n n n n +=+=-+++=-++≥--,……13分当且仅当444n n -=-即6n =时取等号. 答:A 选地址离商业中心6km ,B 离商业中心3km为最佳位置. ……15分。