(解析版)高考数学二轮复习 三角函数与解三角形教学案 文
高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-
![高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-](https://img.taocdn.com/s3/m/750fee2c3069a45177232f60ddccda38376be109.png)
专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。
2020高考数学二轮复习第2部分专题一三角函数与解三角形必考点文1
![2020高考数学二轮复习第2部分专题一三角函数与解三角形必考点文1](https://img.taocdn.com/s3/m/2c6eec07168884868762d6f3.png)
(6)若求出2x -的范围,再求函数的最值,同样得分.1.已知函数f(x)=4cos ωx·sin(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间上的单调性.解:(1)f(x)=4cos ωxsin ⎝ ⎛⎭⎪⎫ωx+π4=2sin ωxcos ωx+2cos2ωx=(sin 2ωx+cos 2ωx)+ 2=2sin +.因为f(x)的最小正周期为π,且ω>0,所以=π,故ω=1.(2)由(1)知,f(x)=2sin +.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在上单调递增,在上单调递减.类型二 学会审题[例2] 已知函数f(x)=sin(ωx+φ)的图象关于直线x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f =,求cos 的值.审题路线图(1)条件:f x 图象上相邻两个最高点距离为π(2)条件:f ⎝ ⎛⎭⎪⎫α2=343.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,向量m =(2b,1),n =(2a -c ,cos C),且m∥n.(1)若b2=ac ,试判断△ABC 的形状;(2)求y =1-的值域.解:(1)由已知,m∥n,则2bcos C =2a -c ,由正弦定理,得2sin Bcos C =2sin(B +C)-sin C ,即2sin Bcos C =2sin Bcos C +2cos Bsin C -sin C , 在△ABC 中,sin C≠0,因而2cos B =1,则B =.又b2=ac ,b2=a2+c2-2accos B ,因而ac =a2+c2-2accos ,即(a -c)2=0,所以a =c ,△ABC 为等边三角形.(2)y =1-2cos 2A 1+tan A=1-2cos2A -sin2A1+sin A cos A=1-2cos A(cos A -sin A)=sin 2A -cos 2A=sin ,由已知条件B =知A∈.所以,2A -∈.因而所求函数的值域为(-1,].4.已知函数f(x)=2sinsin ,x∈R.(1)求函数f(x)的最小正周期;(2)在△ABC 中,若A =,c =2,且锐角C 满足f =,求△ABC 的面积S.解:(1)由题意得,。
2020版高考数学大二轮复习3.3三角变换与解三角形学案(文)
![2020版高考数学大二轮复习3.3三角变换与解三角形学案(文)](https://img.taocdn.com/s3/m/1a55afb0f61fb7360b4c65dd.png)
第3讲 三角变换与解三角形考点1 三角恒等变换1.三角求值“三大类型”“给角求值”、“给值求值”、“给值求角”. 2.三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan45°等;(2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等;(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦.[例1] (1)[2019·全国卷Ⅱ]已知α∈⎝⎛⎭⎪⎫0,π2,2sin 2α=cos 2α+1,则sin α=( )A.15B.55 C.33 D.255(2)[2019·天津南开大学附属中学月考]已知sin α=55,sin β=1010,且α,β为锐角,则α+β为( )A.π4B.π4或3π4 C.3π4 D.π3【解析】 (1)本题主要考查同角三角函数的基本关系、二倍角公式,意在考查考生的逻辑思维能力、运算求解能力,考查的核心素养是逻辑推理、数学运算.由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin 2α+1,即2sin αcos α=1-sin 2α.因为α∈⎝⎛⎭⎪⎫0,π2,所以cos α=1-sin 2α,所以2sin α1-sin 2α=1-sin 2α,解得sin α=55,故选B. (2)∵sin α=55,sin β=1010,且α,β为锐角,∴cos α=255,cos β=31010,∴cos(α+β)=255×31010-55×1010=22,又0<α+β<π,∴α+β=π4.故选A.【答案】 (1)B (2)A化简三角函数式的规律规律 解读一角一看“角”,这是最重要的一环,通过角之间的差别与联系,把角进行合理地拆分,从而正确使用公式二名二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“弦切互化”三结构三看“结构特征”,分析结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇根式化被开方式为完全平方式”等温馨 提醒(1)常用技巧:弦切互化,异名化同名,异角化同角,降幂或升幂,“1”的代换等.(2)根式的化简常常需要升幂去根号,在化简过程中注意角的范围,以确定三角函数值的正负『对接训练』1.[2019·山东济南长清月考]若2cos 2θcos ⎝ ⎛⎭⎪⎫π4+θ=3sin 2θ,则sin2θ=( )A.13B.23 C .-23 D .-13解析:通解 ∵2cos 2θcos ⎝ ⎛⎭⎪⎫π4+θ=3sin 2θ,∴2sin ⎝⎛⎭⎪⎫π2+2θcos ⎝ ⎛⎭⎪⎫π4+θ=22sin ⎝ ⎛⎭⎪⎫π4+θ=3sin 2θ,∴22sin ⎝ ⎛⎭⎪⎫π4+θ=-3cos ⎝ ⎛⎭⎪⎫2θ+π2,∴23sin 2⎝ ⎛⎭⎪⎫θ+π4-22sin ⎝ ⎛⎭⎪⎫θ+π4-3=0,得sin ⎝⎛⎭⎪⎫θ+π4=-66,∴sin 2θ=-cos ⎝ ⎛⎭⎪⎫π2+2θ=2sin 2⎝ ⎛⎭⎪⎫π4+θ-1=-23.故选C.优解 ∵2cos 2θcos ⎝ ⎛⎭⎪⎫π4+θ=3sin 2θ,∴2(cos 2θ-sin 2θ)22(cos θ-sin θ)=3sin 2θ,∴2(cos θ+sin θ)=3sin 2θ,∴3sin 22θ-4sin 2θ-4=0,得sin 2θ=-23.故选C.答案:C2.[2019·全国高考信息卷]若α为第二象限角,且sin 2α=sin ⎝ ⎛⎭⎪⎫α+π2cos(π-α),则2cos ⎝⎛⎭⎪⎫2α-π4的值为( )A .-15 B.15C.43 D .-43解析:∵sin 2α=sin ⎝ ⎛⎭⎪⎫α+π2cos(π-α),∴2sin αcos α=-cos 2α,∵α是第二象限角,∴cos α≠0,2sin α=-cos α,∴4sin 2α=cos 2α=1-sin 2α,∴sin 2α=15,∴2cos ⎝ ⎛⎭⎪⎫2α-π4=cos 2α+sin 2α=cos 2α-sin 2α+2sin αcos α=-sin 2α=-15.故选A. 答案:A考点2 利用正、余弦定理解三角形1.正弦定理及其变形在△ABC 中,a sin A =b sin B =csin C =2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,sin A=a2R,a :b :c =sin A :sin B :sin C 等. 2.余弦定理及其变形在△ABC 中,a 2=b 2+c 2-2bc cos A ;变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc.3.三角形面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B .[例2] (1)[2019·全国卷Ⅱ]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________;(2)[2019·江西南昌段考]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a sin B cosC +c sin B cos A =12b ,且a >b ,则B 等于( )A.5π6B.π3C.2π3 D.π6【解析】 (1)本题主要考查余弦定理、三角形的面积公式,意在考查考生的逻辑思维能力、运算求解能力,考查方程思想,考查的核心素养是逻辑推理、数学运算.解法一 因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.解法二 因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.(2)因为a sin B cos C +c sin B cos A =12b ,所以由正弦定理得sin A sin B cos C +sin C sinB cos A =12sin B ,又sin B ≠0,所以sin A cosC +cos A sin C =12,即sin(A +C )=12,因为A +C =π-B ,所以sin(π-B )=12,即sin B =12.又a >b ,所以A >B ,所以B 为锐角,所以B=π6.故选D. 【答案】 (1)6 3 (2)D(1)正、余弦定理的适用条件①“已知两角和一边”或“已知两边和其中一边的对角”应采用正弦定理. ②“已知两边和这两边的夹角”或“已知三角形的三边”应采用余弦定理.(2)三角形面积公式的应用原则①对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含哪个角的公式.②与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.『对接训练』3.[2019·广西南宁摸底联考]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c =3,C =π3,sin B =2sin A ,则△ABC 的周长是( )A .3 3B .2+ 3C .3+ 3D .4+ 3解析:因为sin B =2sin A ,所以由正弦定理得b =2a ,由余弦定理得c 2=a 2+b 2-2ab cosC =a 2+4a 2-2a 2=3a 2,又c =3,所以a =1,b =2.故△ABC 的周长是3+ 3.故选C.答案:C4.[2019·福建泉州阶段检测]已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cosC =223,b cos A +a cos B =2,则△ABC 的外接圆面积为( ) A .4π B.8π C .9π D.36π解析:由余弦定理得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =2,即b 2+c 2-a 2+a 2+c 2-b 22c =2,得c =2,由cos C =223得sin C =13.设△ABC 外接圆的半径为R ,由正弦定理可得2R =csin C=6,得R =3,所以△ABC 的外接圆面积为πR 2=9π.故选C.答案:C考点3 正、余弦定理的综合应用[例3] [2019·全国卷Ⅲ]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【解析】 本题主要考查正弦定理、余弦定理、三角形的面积公式等知识,考查考生的化归与转化能力、运算求解能力,考查的核心素养是数学运算.(1)由题设与正弦定理得sin A sin A +C2=sin B sin A .因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C 2=cosB 2,故cos B 2=2sin B 2cos B2. 因为cos B 2≠0,故sin B 2=12.又B 是三角形内角,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是⎝ ⎛⎭⎪⎫38,32.1.注意利用第(1)问中的结果:在题设条件下,如果第(1)问中的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问中的结果甚至无法解决,如本题即是在第(1)问中的基础上求解.2.写全得分关键:在三角函数及解三角形类解答题中,应注意解题中的关键点,有则给分,无则不得分,所以在解答题时一定要写清得分关键点,如第(1)问中,没有将正弦定理表示出来的过程,则不得分;第(2)问中没有将面积表示出来则不得分.『对接训练』5.[2019·湖南长沙调研]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且c =2. (1)若A =π3,b =3,求sin C 的值;(2)若sin A cos 2B 2+sin B cos 2A 2=3sin C ,且△ABC 的面积S =252sin C ,求a 和b 的值.解析:(1)由余弦定理得a 2=b 2+c 2-2bc cos A =9+4-2×3×2×12=7,解得a =7.由正弦定理a sin A =c sin C ,得sin C =217.(2)由已知得sin A ×1+cos B 2+sin B ×1+cos A 2=3sin C ,sin A +sin A cos B +sin B +sin B cos A =6sin C , sin A +sin B +sin(A +B )=6sin C , sin A +sin B =5sin C ,所以由正弦定理得a +b =5c =10, ① 又S =12ab sin C =252sin C ,所以ab =25 ②由①②得a =b =5.考点4 与解三角形有关的交汇问题[交汇创新]解三角形问题一直是近几年高考的重点,主要考查以斜三角形为背景求三角形的基本量、面积或判断三角形的形状,解三角形与平面向量、不等式、三角函数性质、三角恒等变换交汇命题成为高考的热点.[例4] [2019·石家庄质量检测]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若c cos B +b cos C =2a cos A ,AM →=23AB →+13AC →,且AM =1,则b +2c 的最大值是________.【解析】 通解 ∵c cos B +b cos C =2a cos A ,∴sin C cos B +sin B cos C =2sin A cosA ,∴sin(C +B )=2sin A cos A ,∴sin A =2sin A cos A .∵0<A <π,∴sin A ≠0,∴cos A=12,∴A =π3.∵AM →=23AB →+13AC →,且AM =1,∴⎝ ⎛⎭⎪⎫23AB →+13AC →2=1,∴49c 2+29bc +19b 2=1,即4c 2+2bc +b 2=9.∵2bc ≤(b +2c )24,∴9=4c 2+2bc +b 2=(b +2c )2-2bc ≥34(b +2c )2,∴b +2c ≤23,当且仅当b =2c ,即⎩⎪⎨⎪⎧b =3c =32时等号成立,∴b +2c 的最大值为2 3.优解 ∵c cos B +b cos C =2a cos A ,∴a 2+c 2-b 22a +a 2+b 2-c 22a=2a cos A ,a =2a cos A ,∴cos A =12.∵0<A <π,∴A =π3.∵AM →=23AB →+13AC →,且AM =1,∴⎝ ⎛⎭⎪⎫23AB →+13AC →2=1,∴49c 2+29bc +19b 2=1,即4c 2+2bc +b 2=9.∵2bc ≤(b +2c )24,∴9=4c 2+2bc +b 2=(b +2c )2-2bc ≥34(b+2c )2,∴b +2c ≤23,当且仅当b =2c ,即⎩⎪⎨⎪⎧b =3c =32时等号成立,∴b +2c 的最大值为2 3.利用解三角形的知识解决平面向量问题是高考在知识的交汇处命制试题的一个热点.解决这类试题的基本方法是根据正、余弦定理求出平面向量的模和夹角,从而达到利用解三角形求解平面向量数量积的目的.『对接训练』6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a cos B +b cos A =c sin C ,数列{a n }满足a n =(n 2+2n )sin(2n -1)C ,则数列{a n }的前100项和S 100=________.解析:由a cos B +b cos A =c sin C 得 sin A cos B +sin B cos A =sin 2C ∴sin(A +B )=sin 2C ∴sin C =sin 2C ,又∵0<C <π,sin C ≠0,∴sin C =1,∴C =π2,∴a n =(n 2+2n )sin (2n -1)π2,即a n =[(n +1)2-1]sin (2n -1)π2,从而S 100=(22-1)-(32-1)+(42-1)-(52-1)+…+(1002-1)-(1012-1)=22-32+42-52+…+1002-1012=-(2+3+4+5+…+100+101)=-5 150.答案:-5 150课时作业8 三角变换与解三角形1.[2019·河南开封定位考试]已知cos ⎝ ⎛⎭⎪⎫π2+α=-13,则cos 2α的值为( ) A .-79 B.79C .-223 D.13解析:因为cos ⎝ ⎛⎭⎪⎫π2+α=-13,所以sin α=13,则cos 2α=1-2sin2α=1-2×⎝ ⎛⎭⎪⎫132=79.故选B. 答案:B2.[2019·河北省级示范性高中联合体联考]已知tan α=2,且sin ⎝⎛⎭⎪⎫α+π4sin ⎝ ⎛⎭⎪⎫α-π4=m tan 2α,则m =( )A .-49B .-94C.49D.94解析:依题意,得sin ⎝ ⎛⎭⎪⎫α+π4sin ⎝⎛⎭⎪⎫α-π4=22(sin α+cos α)22(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=3,tan 2α=2tan α1-tan 2α=-43,所以3=-43m ,解得m =-94.故选B. 答案:B3.[2019·山东青岛一中月考]在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解析:∵sin 2A +sin 2B <sin 2C ,∴a 2+b 2<c 2,∴cos C =a 2+b 2-c 22ab<0,又0°<C <180°,∴C 为钝角,∴△ABC 是钝角三角形,故选C.答案:C4.[2019·黑龙江牡丹江一中月考]满足条件a =4,b =32,A =45°的三角形的个数是( )A .1B .2C .无数个D .不存在 解析:由正弦定理得sin B =b sin A a =34,∵22<34<32,∴45°<B <60°或120°<B <135°,均满足A +B <180°,∴B 有两解,满足条件的三角形的个数是2,故选B.答案:B5.[2019·宁夏银川月考]已知锐角α,β满足cos α=255,sin(α-β)=-35,则sin β的值为( )A.255B.55 C.2525 D.525解析:∵α是锐角,β是锐角,cos α=255,sin(α-β)=-35,∴sin α=55,cos(α-β)=45,∴sin β=sin[α-(α-β)]=55×45-255×⎝ ⎛⎭⎪⎫-35=255.故选A.答案:A6.[2019·广西两校第一次联考]已知sin(α+β)=12,sin(α-β)=13,则log5⎝ ⎛⎭⎪⎫tan βtan α12=( )A .-1B .-2 C.12D .2 解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,则sin αcos β=512,cos αsin β=112,所以tan βtan α=15,于是log 5⎝ ⎛⎭⎪⎫tan βtan α12= ⎛⎭⎪⎫1512=log 55-1=-1.故选A. 答案:A7.[2019·云南曲靖月考]一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处.在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .102海里B .103海里C .203海里D .202海里解析:画出示意图如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°,解得BC =102(海里).故选A.答案:A8.[2019·河北省级示范性高中联合体联考]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若3sin A =2sin C ,b =5,cos C =-13,则a =( )A .3B .4C .6D .8解析:因为3sin A =2sin C ,由正弦定理得3a =2c ,设a =2k (k >0),则c =3k .由余弦定理得cos C =a 2+b 2-c 22ab =25-5k 220k =-13,解得k =3或k =-53(舍去),从而a =6.故选C.答案:C9.[2019·广东仲元中学期中]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32 B.22C.12 D .-12解析:∵cos C =a 2+b 2-c 22ab ,a 2+b 2=2c 2,∴cos C =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时取等号,∴cos C 的最小值为12,故选C.答案:C10.[2019·河北五校第二次联考]已知tan 2α=34,α∈⎝ ⎛⎭⎪⎫-π2,π2,函数f (x )=sin(x +α)-sin(x -α)-2sin α,且对任意的实数x ,不等式f (x )≥0恒成立,则sin ⎝ ⎛⎭⎪⎫α-π4的值为( )A .-255B .-55C .-235D .-35解析:由tan 2α=34,即2tan α1-tan 2α=34,求得tan α=13或tan α=-3.又对任意的实数x ,f (x )=sin(x +α)-sin(x -α)-2sin α=2sin α·(cos x -1)≥0恒成立,所以sinα≤0,则α∈⎝ ⎛⎦⎥⎤-π2,0,所以tanα=-3,sin α=-310,cos α=110.于是sin ⎝ ⎛⎭⎪⎫α-π4=sin αcos π4-cos α sin π4=-310×22-110×22=-255.故选A.答案:A11.[2019·安徽五校联盟第二次质检]若α是锐角,且cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝ ⎛⎭⎪⎫α+3π2=________.解析:因为0<α<π2,所以π6<α+π6<2π3,又cos ⎝ ⎛⎭⎪⎫α+π6=35,所以sin ⎝ ⎛⎭⎪⎫α+π6=45,则cos ⎝ ⎛⎭⎪⎫α+3π2=sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6=sin ⎝ ⎛⎭⎪⎫α+π6cos π6-cos ⎝ ⎛⎭⎪⎫α+π6sin π6=45×32-35×12=43-310. 答案:43-31012.[2019·陕西咸阳一中月考]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a =7,b =2,A =π3,则△ABC 的面积为________.解析:由正弦定理得sin B =b sin A a =2sinπ37=217,∵b <a ,∴B <A ,∴cos B =277,∴sin C =sin(A +B )=32114,∴△ABC 的面积为12ab sin C =332.答案:33213.[2019·陕西西安五中综合卷]已知tan(α+β)=13,tan β=12,则tan ⎝ ⎛⎭⎪⎫α+π4=________.解析:∵tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)tan β=-17,∴tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=34.答案:3414.[2019·湖南重点高中大联考]已知a ,b ,c 分别为锐角三角形ABC 内角A ,B ,C 的对边,ab sin C =c 2-(a -b )2,若锐角三角形ABC 的面积为4,则c 的最小值为________.解析:由已知条件及余弦定理,可得ab sin C =a 2+b 2-2ab cos C -(a 2-2ab +b 2)=2ab -2ab cos C ,即2cos C =2-sin C ,两边平方,得4(1-sin 2C )=4-4sin C +sin 2C ,因为0°<C <90°,所以可得sin C =45,则cos C =35.所以12ab ×45=4,得ab =10,所以c 2=a 2+b 2-2ab cos C =a 2+b 2-2ab ×35≥2ab -65ab =45ab =8,当且仅当a =b 时取等号,所以c ≥22,即c 的最小值为2 2.答案:2 215.[2019·江苏宜兴月考]已知sin ⎝ ⎛⎭⎪⎫α+π4=7210,α∈⎝ ⎛⎭⎪⎫π4,π2.(1)求cos α;(2)求f (x )=cos 2x +52sin αsin x 的最值.解析:(1)∵sin ⎝ ⎛⎭⎪⎫α+π4=7210,α∈⎝ ⎛⎭⎪⎫π4,π2. ∴cos ⎝⎛⎭⎪⎫α+π4=-210,∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-π4=-210×22+7210×22=35.(2)由(1)得cos α=35,∵α∈⎝ ⎛⎭⎪⎫π4,π2,∴sin α=45, ∴f (x )=cos 2x +2sin x =-2sin2x +2sin x +1=-2⎝ ⎛⎭⎪⎫sin x -122+32,∴当sin x =12时,f (x )取得最大值32,当sin x =-1时,f (x )取得最小值-3.16.[2019·辽宁六校协作体期中]设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且c ·cos C 是a ·cos B 与b ·cos A 的等差中项.(1)求角C 的大小;(2)若c =2,求△ABC 的周长的最大值.解析:(1)由题意得a cos B +b cos A =2c cos C ,由正弦定理得sin A cos B +sin B cos A =2sin C cos C ,即sin(A +B )=sin C =2sin C cos C ,解得cos C =12,C 是三角形内角,所以C =60°.(2)方法一 由余弦定理得c 2=4=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab ≥(a +b )2-3⎝ ⎛⎭⎪⎫a +b 22=(a +b )24,得a +b ≤4,当且仅当a =b 时等号成立,故△ABC 周长的最大值为6.方法二 由正弦定理得asin A=bsin B=csin C =433,故△ABC 的周长为a +b +c =433(sin A +sin B )+2=433[sin A +sin(A +60°)]+2=433⎝ ⎛⎭⎪⎫32sin A +32cos A +2=4sin(A +30°)+2.∵A ∈(0,120°),∴当A =60°时,△ABC 周长的最大值为6.17.[2019·湖北武汉部分重点中学第二次联考]已知函数f (x )=cos 2x +23sin ⎝ ⎛⎭⎪⎫π2+x cos ⎝⎛⎭⎪⎫3π2+x -sin 2x .(1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求f (x )的最大值和最小值;(2)若f (θ)=65,求tan 2⎝ ⎛⎭⎪⎫π6-θ的值.解析:(1)依题意,知f (x )=cos 2x +3sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以π6≤2x +π6≤7π6,所以-12≤sin ⎝ ⎛⎭⎪⎫2x +π6≤1,则-1≤2sin ⎝⎛⎭⎪⎫2x +π6≤2, 于是当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )min =-1,f (x )max =2. (2)因为f (θ)=65,所以sin ⎝⎛⎭⎪⎫2θ+π6=35,所以cos ⎝ ⎛⎭⎪⎫π3-2θ=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-2θ =sin ⎝⎛⎭⎪⎫2θ+π6=35,于是tan 2⎝ ⎛⎭⎪⎫π6-θ=sin 2⎝ ⎛⎭⎪⎫π6-θcos 2⎝ ⎛⎭⎪⎫π6-θ=1-cos ⎝ ⎛⎭⎪⎫π3-2θ1+cos ⎝ ⎛⎭⎪⎫π3-2θ=1-351+35=14.18.[2019·福州市质量检测]在Rt△ABC 中,∠C =90°,点D ,E 分别在边AB ,BC 上,CD =5,CE =3,且△EDC 的面积为3 6.(1)求边DE 的长;(2)若AD =3,求sin A 的值.解析:(1)如图所示,在△ECD 中,S △ECD =12CE ·CD sin∠DCE =12×3×5×sin∠DCE =36,所以sin∠DCE =265,因为0°<∠DCE <90°, 所以cos∠DCE =1-⎝⎛⎭⎪⎫2652=15, 所以DE 2=CE 2+CD 2-2·CE ·CD ·cos∠DCE =9+25-2×3×5×15=28,所以DE =27.(2)因为∠ACB =90°,所以sin∠ACD =sin(90°-∠DCE )=cos∠DCE =15,在△ADC 中,AD sin∠ACD =CDsin A ,即315=5sin A , 所以sin A =13.。
2022年高考数学二轮复习第一部分专题攻略 专题二 三角函数、解三角形 第1讲三角函数的图象与性质
![2022年高考数学二轮复习第一部分专题攻略 专题二 三角函数、解三角形 第1讲三角函数的图象与性质](https://img.taocdn.com/s3/m/723e4817c4da50e2524de518964bcf84b9d52d20.png)
第1讲三角函数的图象与性质——小题备考微专题1三角函数图象的平移伸缩『常考常用结论』1.“五点法”作图设z=ωx+φ,令z=0,π2,π,3π2,2π,求出x的值与相应的y的值,描点、连线可得.2.图象变换y=sin x向左(φ>0)或向右(φ<0),平移|φ|个单位y=sin (x+φ)横坐标变为原来的1ω(ω>0)倍,纵坐标不变y=sin (ωx+φ)纵坐标变为原来的A(A>0)倍,横坐标不变y=A sin (ωx+φ).『保分题组训练』1.将函数y=sin x的图象向左平移π4个单位,得到的图象的函数解析式是()A.y=sin(x−π4)B.y=sin x-π4C.y=sin(x+π4)D.y=sin x+π42.要得到函数y =cos (3x −π6)的图象,只需将y =cos 3x 的图象( ) A .向右平移π6B .向左平移π6C .向右平移π18D .向左平移π183.[2021·河北保定一模]已知函数f(x)=2sin x ,为了得到函数g(x)=2sin (2x −π3)的图象,只需( )A .先将函数f(x)图象上点的横坐标变为原来的2倍,再向右平移π6个单位 B .先将函数f(x)图象上点的横坐标变为原来的12,再向右平移π6个单位C .先将函数f(x)图象向右平移π6个单位,再将点的横坐标变为原来的12 D .先将函数f(x)图象向右平移π3个单位,再将点的横坐标变为原来的2倍4.(多选题)要得到函数y =sin (2x +π3)的图象,只要将函数y =sin x 的图象( )A .每一点的横坐标扩大到原来的2倍(纵坐标不变),再将所得图象向左平移π3个单位长度B .每一点的横坐标缩短到原来的12 (纵坐标不变),再将所得图象向左平移π6个单位长度 C .向左平移π3个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变)D .向左平移π6个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变)『提分题组训练』1.[2021·河北张家口三模]为了得到函数f (x )=sin 13x +cos 13x 的图象,可以将函数g (x )=√2cos 13x 的图象( )A .向右平移3π4个单位长度 B .向右平移π4个单位长度C .向左平移3π4个单位长度D .向左平移π4个单位长度2.[2021·山东潍坊学情调研]将函数f(x)=sin (2x +π3)的图象向右平移a(a>0)个单位得到函数g(x)=cos (2x +π4)的图象,则a 的值可以为( )A.5π12B.7π12C.19π24D.41π243.函数y=sin(ωx+φ)(ω>0)的图象向左平移2π3的单位,所得到的图象与原函数图象的对称轴重合,则ω的最小值是()A.34B.1 C.2 D.324.[2021·山东青岛期末检测](多选题)要得到y=cos2x的图象C1,只要将y=sin(2x+π3)的图象C2怎样变化得到()A.将y=sin(2x+π3)的图象C2沿x轴方向向左平移π12个单位B.将y=sin(2x+π3)的图象C2沿x轴方向向右平移11π12个单位C.先作C2关于x轴对称图象C3,再将图象C3沿x轴方向向右平移5π12个单位D.先作C2关于x轴对称图象C3,再将图象C3沿x轴方向向左平移π12个单位微专题2三角函数的性质『常考常用结论』1.三角函数的单调区间y=sin x的单调递增区间是[2kπ−π2,2kπ+π2](k∈Z),单调递减区间是[2kπ+π2,2kπ+3π2](k∈Z);y=cos x的单调递增区间是[2kπ-π,2kπ](k∈Z),单调递减区间是[2kπ,2kπ+π](k∈Z);y=tan x的递增区间是(kπ−π2,kπ+π2)(k∈Z).2.三角函数的奇偶性与对称性y=A sin (ωx+φ),当φ=kπ(k∈Z)时为奇函数;当φ=kπ+π2(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ+π2(k∈Z)求得.y=A cos (ωx+φ),当φ=kπ+π2(k∈Z)时为奇函数;当φ=kπ(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ(k∈Z)求得.y=A tan (ωx+φ),当φ=kπ(k∈Z)时为奇函数.3.三角函数的周期(1)y=A sin (ωx+φ)和y=A cos (ωx+φ)的最小正周期为2π|ω|,y=A tan (ωx+φ)的最小正周期为π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个最小正周期,相邻的对称中心与对称轴之间的距离是14个最小正周期;正切曲线相邻两对称中心之间的距离是12个最小正周期.『保分题组训练』1.下列函数中,周期为π,且在区间(π2,π)单调递增的是()A.y=|sin x|B.y=sin |x|C.y=cos 2x D.y=sin 2x2.已知函数f(x)=cos (2x+π3),则下列说法错误的是()A.f(x)的最小正周期是πB.f(x)的图象关于点(−5π12,0)对称C.f(x)在[−π6,π3]上为减函数D.f(x)的一条对称轴是x=π123.[2021·山东济宁质量检测](多选题)将函数f(x)=sin 2x的图象向右平移π4个单位后得到函数g(x)的图象,则函数g(x)具有性质()A.在(0,π4)上单调递增,为偶函数B.最大值为1,图象关于直线x=-3π2对称C.在(−3π8,π8)上单调递增,为奇函数D.周期为π,图象关于点(3π4,0)对称4.[2021·辽宁朝阳二模] (多选题)已知函数f (x )=|sin x ||cos x |,则下列说法正确的是( ) A. f (x )的图象关于直线x =π2对称 B. f (x )的周期为π2C .(π,0)是f (x )的一个对称中心 D. f (x )在区间[π4,π2]上单调递增『提分题组训练』1.[2021·淄博一模]已知f (x )=cos x (cos x +√3sin x )在区间[-π3,m ]上的最大值是32,则实数m 的最小值是( )A .π12 B .π3 C .-π12 D .π62.将函数y =sin 2x +√3cos 2x 的图象沿x 轴向左平移φ个单位后,得到一个偶函数的图象,则|φ|的最小值为( )A .π12 B .π6 C .5π12D .-5π123.[2021·湖南六校联考](多选题)已知函数f (x )=2cos (ωx +φ)(ω>0,|φ|<π2)的图象上,对称中心与对称轴x =π12的最小距离为π4,则下列结论正确的是( )A.函数f (x )的一个对称点为(5π12,0)B .当x ∈[π6,π2]时,函数f (x )的最小值为-√3C .若sin 4α-cos 4α=-45(α∈(0,π2)),则f (α+π4)的值为4−3√35D .要得到函数f (x )的图象,只需要将g (x )=2cos2x 的图象向右平移π6个单位 4.[2021·山东烟台一模](多选题)已知函数f (x )=2|sin x |+|cos x |-1,则( ) A .f (x )在[0,π2]上单调递增B .直线x =π2是f (x )图象的一条对称轴C.方程f(x)=1在[0,π]上有三个实根D.f(x)的最小值为-11.三角函数单调区间的求法:微专题3由图象求三角函数的解析式『保分题组训练』1.函数y=A sin (ωx+φ)的图象的一部分如图所示,则函数表达式可写成()A.y=2sin (2x+π3)B.y=sin (x+π12)C.y=√2sin (2x−5π6)D.y=2sin (2x+π6)2.函数f(x)=A sin (ωx+φ)(其中A>0,ω>0,|φ|<π2)的图象如图所示,为了得到f(x)的图象,只需将g (x )=A sin ωx 图象( )A .向左平移π4个单位长度 B .向右平移π4个单位长度 C .向左平移π12个单位长度 D .向右平移π12个单位长度3.设函数f (x )=sin (ωx −π4)(ω>0)的部分图象如图所示,且满足f (2)=0.则f (x )的最小正周期为( )A .169 B .16C .18D .984.[2021·全国乙卷]把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin (x −π4)的图象,则f (x )=( )A .sin (x2−7π12) B. sin (x 2+π12) C. sin (2x −7π12) D. sin (2x +π12)『提分题组训练』1.智能主动降噪耳机工作的原理如图1所示,是通过耳机两端的噪声采集器采集周围的噪音,然后通过听感主动降噪芯片生成相等的反向波抵消噪音.已知某噪音的声波曲线y =A sin (ωx +π6)(A >0,ω>0)在[−π2,π2]上大致如图2所示,则通过听感主动降噪芯片生成相等的反向波曲线可以为( )A .y =2sin (πx +π6) B .y =2√33sin (2π5x −π3) C .y =2√33sin (4π5x −2π3)D .y =2sin (πx −5π6)2.[2021·山东德州一模](多选题)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,将函数f (x )的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数g (x )的图象,则下列关于函数g (x )的说法正确的是( )A .g (x )的最小正周期为2π3 B .g (x )在区间[π9,π3]上单调递增 C .g (x )的图象关于直线x =4π9对称D .g (x )的图象关于点(π9,0)成中心对称3.[2021·石家庄一模](多选题)函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)的图象如图,把函数f (x )的图象上所有的点向右平移π6个单位长度,可得到函数y =g (x )的图象,下列结论正确的是( )A .φ=π3B .函数g (x )的最小正周期为πC .函数g (x )在区间[−π3,π12]上单调递增 D .函数g (x )关于点(−π3,0)中心对称确定y =A sin (ωx +φ)+b (A >0,ω>0)的解析式的方法详解答案 二轮专题复习战略·数学(新高考)专题二 三角函数、解三角形 第1讲 三角函数的图象与性质微专题1 三角函数图象的平移伸缩保分题组训练1.解析:函数y =sin x 的图象向左平移π4个单位,得到y =sin (x +π4)的图象. 故选C . 答案:C2.解析:将y =cos 3x 的图象向右平移π18个长度单位,可得函数y =cos [3(x −π18)]=cos (3x −π6)的图象.故选C . 答案:C3.解析:对于A :先将函数f(x)图象上点的横坐标变为原来的2倍,得到y =2sin 12x ,故A 错误;对于B :先将函数f(x)图象上点的横坐标变为原来的12,得到y =2sin 2x ,再右移π6个单位,得到y =2sin 2(x −π6),即为y =2sin (2x −π3),故B 正确;对于C: 先将函数f(x)图象向右平移π6个单位,得到y =2sin (x −π6),再将点的横坐标变为原来的12,得到y =2sin (2x −π6),故C 错误;对于D: 先将函数f(x)图象向右平移π3个单位,得到y =2sin (x −π3),再将点的横坐标变为原来的2倍,得到y =2sin (12x −π3),故D 错误.故选B . 答案:B4.解析:(1)先伸缩后平移时:每一点的横坐标缩短到原来的12 (纵坐标不变),再将所得图象向左平移π6个单位长度,所以A 选项错误,B 选项正确.(2)先平移后伸缩时:向左平移π3个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变),所以C 选项正确,D 选项错误.故选BC .答案:BC提分题组训练1.解析:f (x )=sin 13x +cos 13x =√2cos (13x −π4)=√2cos [13(x −3π4)].故选A . 答案:A2.解析:由题意知,g(x)=cos (2x +π4)=sin (2x +3π4),其图象向左平移a 个单位得到函数f(x)=sin (2x +2a +3π4),而函数f(x)=sin (2x +π3),所以有2a +3π4=π3+2k π,a =-524π+k π,取k =1得a =1924π. 故选C . 答案:C3.解析:∵函数y =sin (ωx +φ)(ω>0)的图象向左平移2π3个单位,所得到的图象与原函数图象的对称轴重合,∴2π3=k·T2=kπω,即ω=32k ,k ∈Z , 令k =1,可得ω的最小值为32,故选D. 答案:D4.解析:对于A ,将y =sin (2x +π3)的图象C 2沿x 轴方向向左平移π12个单位,可得y =sin [2(x +π12)+π3]=sin (2x +π2)=cos 2x 的图象C 1,故选项A 正确;对于B ,将y =sin (2x +π3)的图象C 2沿x 轴方向向右平移11π12个单位也可得到,y =sin [2(x −11π12)+π3]=sin (2x −3π2)=cos 2x 的图象C 1,故选项B 正确;对于C ,先作C 2关于x 轴对称,得到y =-sin (2x +π3)的图象C 3,再将图象C 3沿x轴方向向右平移5π12个单位,得到y =-sin [2(x −5π12)+π3]=-sin (2x −π2)=cos 2x 的图象C 1,故选项C 正确;对于D ,先作C 2关于x 轴对称,得到y =-sin (2x +π3)的图象C 3,再将图象C 3沿x轴方向向左平移π12个单位,得到的y =-sin [2(x +π12)+π3]=-sin (2x +π2)=-cos 2x 图象,故选项D 不正确.故选ABC.答案:ABC微专题2 三角函数的性质保分题组训练1.解析:对于A ,y =|sin x |的图象是将y =sin x 的图象中y 轴下方的图象翻折到上方得到的,故最小正周期为π;当x ∈(π2,π)时,y =sin x >0,∴y =|sin x |=sin x 在(π2,π)上单调递减,故A 不正确;对于B ,当x =-3π2时,y =sin |x |=-1,当x =-π2时,y =sin |x |=1≠-1,所以周期不是π,故B 不正确;对于C ,y =cos 2x 的最小正周期为2π2=π,当x ∈(π2,π)时,2x ∈(π,2π),y =cos 2x 单调递增,故C 正确;对于D ,y =sin 2x 的最小正周期为2π2=π,当x ∈(π2,π)时,2x ∈(π,2π),y =sin 2x 不是单调递增的,故D 不正确.故选C. 答案:C2.解析:对于函数f (x )=cos (2x +π3),它的最小正周期为2π2=π,故A 正确;令x =-5π12,可得f (x )=0,所以f (x )的图象关于点(−5π12,0)对称,故B 正确;当x ∈[−π6,π3]时,2x +π3∈[0,π],故f (x )在[−π6,π3]上为减函数,故C 正确;令x =π12,可得f (x )=0,故x =π12不是f (x )的一条对称轴,故D 错误.故选D. 答案:D3.解析:g (x )=sin 2(x −π4)=sin (2x −π2)=-cos 2x ,x ∈(0,π4),则2x ∈(0,π2),g (x )=-cos 2x 单调递增,为偶函数,A 正确,C 错误;最大值为1,当x =-3π2时2x =-3π,为对称轴,B 正确;T =2π2=π,取2x =π2+k π,∴x =π4+kπ2,k ∈Z ,当k =1时满足,图象关于点(3π4,0)对称,D 正确.故选ABD. 答案:ABD4.解析:因为函数f (x )=|sin x ||cos x |=|sin x cos x |=12|sin 2x |,画出函数图象,如图所示;由图可知,f (x )的对称轴是x =kπ4,k ∈Z ;所以x =π2是f (x )图象的一条对称轴, A 正确; f (x )的最小正周期是π2,所以B 正确;f (x )是偶函数,没有对称中心,C 错误;由图可知,f (x )=12|sin 2x |在区间[π4,π2]上是单调减函数,D 错误.故选AB. 答案:AB提分题组训练1.解析:f (x )=cos x (cos x +√3sin x )=√3sin x cos x +cos 2x =1+cos 2x2+√32sin 2x =sin (2x +π6)+12,由x ∈[-π3,m ]得2x +π6∈[-π2,2m +π6], 当2x +π6=2k π+π2,k ∈Z 时取得最大值, 故2m +π6≥π2,即m ≥π6.则实数m 的最小值是π6. 故选D. 答案:D2.解析:∵函数y =sin 2x +√3cos 2x =2sin (2x +π3),将函数y =sin 2x +√3cos 2x 的图象沿x 轴向左平移φ个单位后, 得到函数y =2sin (2x +2φ+π3),函数关于y 轴对称, ∴2φ+π3=k π+π2(k ∈Z ),∴φ=kπ2+π12(k ∈Z ),当k =0时,|φ|min =π12. 故选A. 答案:A3.解析:函数f (x )=2cos (ωx +φ)(ω>0,|φ|<π2)的图象上, 对称中心与对称轴x =π12的最小距离为14×2πω=π4,∴ω=2.再根据2×π12+φ=k π,k ∈Z ,可得φ=-π6,故 f (x )=2cos (2x −π6). 令x =5π12,可得f (x )=-1≠0,故A 错误;当x ∈[π6,π2]时,2x -π6∈[π6,5π6],故当2x -π6=5π6时,函数f (x )的最小值为-√3,故B正确;若sin 4α-cos 4α=sin 2α-cos 2α=-cos 2α=-45(α∈(0,π2)),∴cos 2α=45,sin 2α=√1−cos 22α=35,则f (α+π4)=2cos (2α+π2−π6)=-2sin (2α−π6)=-2sin 2αcos π6+2cos 2αsin π6=4−3√35,故C 正确;将g (x )=2cos 2x 的图象向右平移π6个单位,可得y =2cos (2x −π3)的图象,故D 错误.故选BC. 答案:BC4.解析:A 选项,当x ∈[0,π2],f (x )=2sin x +cos x -1,f (x )不单调,A 错误, B 选项,f (π-x )=2|sin (π-x )|+|cos (π-x )|-1=2|sin x |+|cos x |-1=f (x ), ∴x =π2是它的一条对称轴,B 正确.C 选项,f (x )=1,即2|sin x |+|cos x |=2,当x ∈[0,π2],即2sin x +cos x =2,sin x =1或sin x =35,有两个零点;当x ∈[π2,π],2sin x -cos x =2,sin x =35,有1个零点,共3个零点;D 选项,若f (x )min =-1,即2|sin x |+|cos x |=0,需要|sin x |=0,且|cos x |=0矛盾,D 错误.故选BC. 答案:BC微专题3 由图象求三角函数的解析式保分题组训练1.解析:由图可知A =2,因为图象过点(0,1),所以2sin φ=1,所以取φ=π6, 因为图象过点(11π12,0),所以2sin (11π12ω+π6)=0,所以11π12ω+π6=2k π,k ∈Z ,即ω=2411k -211,k ∈Z ,当k =1时,ω=2,所以y =2sin (2x +π6).故选D.答案:D2.解析:根据函数f (x )=A sin (ωx +φ)(其中A >0,ω>0,|φ|<π2)的图象,可得A =1,14T =5π12−π4=π6,即T =23π,∴ω=2π23π=3.将(π4,0)代入,可得f (π4)=sin (3×π4+φ)=0,则3×π4+φ=k π,k ∈Z ,∴φ=k π-3π4,k ∈Z ,又|φ|<π2,∴φ=π4,故f (x )=sin (3x +π4).故把g (x )=sin 3x 的图象向左平移π12个单位长度,即可得到f (x )=sin (3x +π4)的图象.故选C. 答案:C3.解析:因为f (2)=0,所以sin (2ω−π4)=0⇒2ω-π4=k π(k ∈Z )⇒ω=12k π+π8(k ∈Z ),设函数f (x )=sin (ωx −π4)(ω>0)的最小正周期为T ,由图可知{54T >2T <2,因为ω>0,所以有{54·2πω>22πω<2,⇒π<ω<5π4,因为ω=12k π+π8(k ∈Z ),所以74<k <94∵k ∈Z ∴k =2, 所以ω=98π,因此T =2π98π=169,故选A.答案:A4.解析:依题意,将y =sin (x −π4)的图象向左平移π3个单位长度,再将所得曲线上所有点的横坐标扩大到原来的2倍,得到f (x )的图象,所以y =sin (x −π4) 将其图象向左平移π3个单位长度 → y =sin (x +π12)的图象 所有点的横坐标扩大到原来的2倍→ f (x )=sin (x2+π12)的图象.答案:B提分题组训练1.解析:由题图2可知:y =f (x )=A sin (ωx +π6)过(0,1),(56,0)两点,所以有y =f (0)=A sin π6=1⇒12A =1⇒A =2,f (56)=2sin (56ω+π6)=0⇒56ω+π6=k π(k ∈Z )⇒ω=(65k -15)π(k ∈Z ),当k =1时,y =f (x )=2sin (πx +π6),显然A 不符合题意,此时函数的周期为2ππ=2,要想抵消噪音,只需函数y =f (x )=2sin (πx +π6)向左或向右平移一个单位长度即可,即得到y =f (x +1)=2sin (πx +π+π6)=-2sin (πx +π6), 或y =f (x -1)=2sin (πx −π+π6)=2sin (πx −5π6),故选项D 符合,显然选项B ,C 的振幅不是2,不符合题意, 故选D. 答案:D2.解析:根据函数的图象:周期12T =5π12−(−π12)=π2,解得T =π,故ω=2. 进一步求得A =2.当x =5π12时,f (5π12)=2sin (5π6+φ)=-1,由于|φ|<π, 所以φ=2π3.所以f (x )=2sin (2x +2π3),函数f (x )的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数g (x )=2sin (3x +π6)的图象,故对于A :函数的最小正周期为T =2π3,故A 正确;对于B :由于x ∈[π9,π3],所以3x +π6∈[π2,76π],故函数g (x )在区间[π9,π3]上单调递减,故B 错误;对于C :当x =4π9时,g (4π9)=2sin (4π3+π6)=-2,故函数g (x )的图象关于直线x =4π9对称,故C 正确;对于D :当x =π9时,g (π9)=2,故D 错误. 故选AC. 答案:AC3.解析:根据函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)的图象, 可得T =2πω>11π12,且34T <11π12,∴ω∈(1811,2411).把(0,√3)代入,可得2sin φ=√3,∴φ=π3,或 φ=2π3.再把根据图象经过最高点(11π12,2),可得ω·11π12+φ=2k π+π2,k ∈Z . 当φ=π3时,ω·11π12+π3=2k π+π2,k ∈Z ,求得ω=211+24k11,不满足条件ω∈(1811,2411), 故φ=2π3,故A 错误. 此时,由ω·11π12+2π3=2k π+π2,k ∈Z ,求得ω=-211+24k 11,令k =1,可得ω=2,满足条件ω∈(1811,2411),故f (x )=2sin (2x +2π3).把函数f (x )的图象上所有的点向右平移π6个单位长度,可得到函数y =g (x )=2sin (2x +π3)的图象,故g (x )的最小正周期为2π2=π,故B 正确.当x ∈[−π3,π12],2x +π3∈[−π3,π2],故g (x )单调递增,故C 正确.令x =-π3,求得g (x )=-√3≠0,故g (x )的图象不关于点(−π3,0)中心对称,故D 错误. 故选BC.答案:BC。
高三二轮复习教学案(三角函数)
![高三二轮复习教学案(三角函数)](https://img.taocdn.com/s3/m/42d84b24e2bd960590c67738.png)
高三数学二轮复习教学案(解三角形)班级_____________ 学号_____________ 姓名_____________1.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a=4bsinA ,则cosB=_________.2.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若bc b a 322=-,B C sin 32sin =,则A=______________.3.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a=c=26+, 且∠A=75°,则b=__________4.据新华社报道,强台风“康森”在海南三亚登陆,台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少椰子树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20 m ,则折断点与树干底部的距离是______m .5.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且acosB —bcosA=53c , 则tan(A -B)的最大值是__________________.6.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC 走到C 用了3min .若此人步行的速度为每分钟50 m ,则该扇形的半径为_____________m .7.在锐角三角形ABC 中,A 、B 、C 的对边分别为a 、b 、c ,若C b a a b cos 6=+, 求BC A C tan tan tan tan +的值.8.已知在斜三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且AA C A ac c a b cos sin )cos(222+=--(1)求角A(2)若2cos sin >C B,求角C 的取值范围.9.如图,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°、30°,在水面C 处测得B 点和D 点的仰角均为60°,AC=0.1 km ,试探究图中B 、D 间距离与另外哪两点间距离相等,并求出B 、D 的距离.高三数学二轮复习教学案(平面向量)班级_____________ 学号_____________ 姓名_____________1.在四边形ABCD 中,“DC AB 2=”是“四边形ABCD 为梯形’’的______________条件.2.设点M 是线段BC 的中点,点A 在直线BC 外,2BC =16,||||AC AB AC AB -=+ ,则|AM |=_____________3.已知平面向量),0(,βααβα≠≠满足1||=β,且α与αβ-的夹角为120°,则||α的取值范围是_________________4.设向量)cos 3,2(),3,sin 4(αα==b a ,且b a //,则锐角α为____________5.在△ABC 中,已知2π=C ,AC=1,BC=2,则|)1(2|)(CB CA f λλλ-+=的最小值是___________6.如图,在△ABC 中,已知AB=2,BC=3,∠ABC=60°,AH ⊥BC 于H ,M 为AH 的中点,若BC AB AM μλ+=,则μλ+=____________7.已知A )0,22(,B )22,0(,M )sin ,(cos αα,点N 满足)1(=++=μλμλON OB OA ,则||MN 的最小值是_______________8.已知)2sin ,2(cos ),23sin ,23(cos θθθθ-==b a ,且]3,0[πθ∈ (1||b a b a +(2)是否存在实数k ,使||3||b k a b a k -=+?若存在,求出实数k 的值,若不存在,请说明理由。
高考数学 二轮 专题六 三角函数与解三角形 第3讲 解三角形 理
![高考数学 二轮 专题六 三角函数与解三角形 第3讲 解三角形 理](https://img.taocdn.com/s3/m/78464eba0740be1e650e9afa.png)
专题六 三角函数与解三角形
3.辨明易错易混点 (1)利用正弦定理解三角形时,注意解的个数讨论,可能有一 解、两解或无解. (2)在判断三角形形状时,等式两边一般不要约去公因式,应 移项提取公因式,以免漏解.
栏目 导引
专题六 三角函数与解三角形
考点一 正、余弦定理的基本应用
(经典考题)已知锐角△ABC的内角A,B,C的对边分
专题六 三角函数与解三角形
栏目 导引
专题六 三角函数与解三角形
(3)由余弦定理得 b2+c2-bc=4,
配方得(b+c)2-3bc=4,③
∵b+c≥2 bc,④
将③代入④得
(b+
c)2≥
( 4×
b+
c)
2-
4,
3
解得 b+c≤4,当且仅当 b=c 时取等号,
又∵b+c>a=2,则 2<b+c≤4,
∴△ABC 的周长的范围为(4,6].
栏目 导引
专题六 三角函数与解三角形
2.在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,已知 a =c.
3cos A sin C (1)求 A 的大小; (2)若 a=6,求 b+c 的取值范围. 解:(1)∵ a = c = a ,
3cos A sin C sin A
A. 3 2
C.1 2
B. 2 2
D.-1 2
解析:由余弦定理得
cos C=a2+b2-c2= c2 2ab 2ab
≥a2+c2 b2=2cc22=12.故选 C.
栏目 导引
专题六 三角函数与解三角形
栏目 导引
专题六 三角函数与解三角形
3.如图,在△ABC 中,D 是边 AC 上的点,且 AB=AD,2AB = 3BD,BC=2BD,则 sin C 的值为( D ) A. 3
2023年高考数学二轮复习第二篇经典专题突破专题一三角函数和解三角形第1讲三角函数的图象和性质
![2023年高考数学二轮复习第二篇经典专题突破专题一三角函数和解三角形第1讲三角函数的图象和性质](https://img.taocdn.com/s3/m/418cdd20ba68a98271fe910ef12d2af90242a8ca.png)
返回导航
专题一 三角函数和解三角形
高考二轮总复习 • 数学
所以 ω=-16+23k,k∈Z, 所以 ω=52,f(x)=sin 52x+π4+2, 所以 fπ2=sin 54π+π4+2=1. 故选 A.
返回导航
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
2.(2022·全国甲卷)设函数 f(x)=sin ωx+π3在区间(0,π)恰有三个极
返回导航
【解析】 f′(x)=-sin x+sin x+(x+1)cos x=(x+1)cos x,所以 f(x) 在区间0,π2和32π,2π上 f′(x)>0,即 f(x)单调递增;在区间π2,32π上 f′(x)<0, 即 f(x)单调递减,又 f(0)=f(2π)=2,fπ2=π2+2,f32π=-32π+1+1=- 32π,所以 f(x)在区间[0,2π]上的最小值为-32π,最大值为π2+2.故选 D.
值点、两个零点,则 ω 的取值范围是
( C)
A.53,163
B.53,169
C.163,83
D.163,169
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
【解析】 依题意可得 ω>0,因为 x∈(0,π),所以 ωx+π3∈π3,ωπ+π3,
要使函数在区间(0,π)恰有三个极值点、两个零点,
又 y=sin x,x∈π3,3π的图象如下所示:
则52π<ωπ+π3≤3π,解得163<ω≤83,即 ω∈163,83.故选 C.
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
3.(2022·全国甲卷)将函数 f(x)=sin ωx+π3(ω>0)的图象向左平移π2个 单位长度后得到曲线 C,若 C 关于 y 轴对称,则 ω 的最小值是 ( C )
高考数学二轮复习专题篇素养提升 专题1三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三角形文理
![高考数学二轮复习专题篇素养提升 专题1三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三角形文理](https://img.taocdn.com/s3/m/523eaa256d85ec3a87c24028915f804d2b168766.png)
②由 f(x)=12sin2x-π6= 63,
得 sin2x-π6= 33,
∵x∈0,π4,∴-π6≤2x-π6≤π3,
∴cos2x-π6=
6 3.
∴cos 2x=cos2x-π6+π6 =cos2x-π6× 23-sin2x-π6×21 = 36× 23- 33×12= 22- 63.
三角恒等变换的“四大策略” (1)常值代换:特别是“1”的代换, 1=sin2θ+cos2θ=tan 45°等. (2)项的拆分与角的配凑: 如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.
分值 10 12 10
年份 卷别 Ⅰ卷
2019 Ⅱ卷 Ⅲ卷 Ⅰ卷
2018 Ⅱ卷 Ⅲ卷
题号
考查角度
分值
17 正余弦定理
12
二倍角公式、基本关系式、余弦定理、
15
5
三角形面积公式
18
正余弦定理、三角形面积公式
12
17
正余弦定理、解三角形
12
二倍角、辅助角公式、基本关系式、
10、15 和的正弦公式、余弦定理
10°=
典例1
A.34
(1)(2020·全国Ⅱ卷模拟)cos2 40°+2sin 35°sin 55°sin
( A)
B.14
C.12+
3 2
D.3
3 4
(2)(2020·宜宾模拟)已知 α∈0,π2,且 3sin2α-5cos2α+sin 2α=0,则
sin 2α+cos 2α=
( A)
A.1
B.-2137
新教材2024高考数学二轮专题复习分册一专题二三角函数解三角形课件
![新教材2024高考数学二轮专题复习分册一专题二三角函数解三角形课件](https://img.taocdn.com/s3/m/6ee3925f54270722192e453610661ed9ac51557f.png)
的值
2
sin α
1
D.
2
C. 2
答案:D
α
解析:由tan
α
2
cos2 2
α
1+cos α 1+2 cos 2 −1
1
1
=2,则
=
α
α =
α
α=
α= .故选D.
2
sin α
2
2 sin cos
sin cos
tan
2
2
2
2
2
(2)[2023·安徽宣城二模]已知 3sin α-sin
=(
)
7
9
7
4
)
1
B.
2
D.-
3
2
答案:D
解析:由已知可得,sin
1−cos2α 3
= .
2
4
所以sin2α=
3π
(2α+ )=cos
2
(2α+π)=-cos
3
2
1
2α= ,所以cos
2
又角α在第四象限内,所以sin α=- sin2 α=- .故选D.
1
2α=- ,
2
2. (1)[2023·安徽安庆二模]已知第二象限角α满足sin
2
即sin2α+2sinαcos α+cos2α= ,所以2sinαcos
3
因为0<α<π,所以cos α<0<sin α,所以sin α-cos α>0.
1
4
2 3
.
3
因为(sin α-cos α)2=sin2α-2sinαcos α+cos2α=1+ = ,所以sinα-cos α=
解三角形中的范围(最值)问题教案-2022届高三数学二轮复习微专题复习
![解三角形中的范围(最值)问题教案-2022届高三数学二轮复习微专题复习](https://img.taocdn.com/s3/m/858f400f4531b90d6c85ec3a87c24028915f85e5.png)
微专题:解三角形中的范围(最值)问题教学设计一、教学内容分析在高中数学知识体系中,解三角形是一个基础知识点,也是高考的一个必考点。
在解三角形的题型中,考查正弦定理和余弦定理的应用,涉及最值和范围的问题相对较难,综合性也较强。
解三角形问题是高考高频考点,在解三角形中的求最值或范围问题是高三复习中的难点,这类问题常常在知识的交汇点处命题,其涵盖及关联三角函数、平面向量、平面几何、基本不等式、导数等多领域的知识。
近几年的高考突出以能力立意,加强对知识综合性的考查,故常常在知识的交汇处设计问题。
主要考查“三基”(基本知识、基本技能、基本思想和方法)以及综合能力,对正弦定理和余弦定理的考查较为灵活,题型多变,以选择题、填空题、解答题体现。
试题难度多为容易题和中档题,主要考查灵活变式求解计算能力,推理论证能力,数学应用意识,数形结合思想等。
而在解三角形中求解某个量(式子)最值或范围是命题的热点,又是一个重点,本节课通过近几年高考试题及模拟试题进行分析,对解三角形的范围(最值)进行优化归纳,并给出针对性巩固练习,以期求得热点难点的突破。
二、学情诊断分析授课对象为高三平行班学生。
本节课之前,学生已经学习了正余弦定理、基本不等式、三角函数、导数等有关内容,但是对于知识前后间联系、理解、应用综合性强的题有一定难度,学习起来比较吃力。
题目稍作变形就不会,独立分析、解决问题的能力有限。
但对一些简单数学规律和基本数学方法的学习,具有一定的基础。
本节课是针对他们在做此类型题目中能做但不能得全对的情形下做的一个探究归纳,使学生对此类问题有一个更高更深刻的认识掌握,解题能力有一个提升。
三、教学目标分析1.巩固正弦、余弦定理的应用,学会利用均值不等式、三角函数有界性和导数在处理范围问题中的应用;2.强化转化与化归的数学思想以及数形结合的数学思想,提高学生研究问题,分析问题与解决问题的能力。
四.教学重难点分析重点:正弦定理和余弦定理及三角形面积公式的运用,能运用正弦余弦和差角公式进行简单的三角函数的恒等变换,理解基本不等式、三角函数的图像与性质和导数简单应用。
2024届高考数学二轮复习专题1三角函数与解三角形课件
![2024届高考数学二轮复习专题1三角函数与解三角形课件](https://img.taocdn.com/s3/m/05d23530f342336c1eb91a37f111f18582d00c6c.png)
即 cos A=-12,
由 A 为三角形内角得 A=23π,
△ABC
面积
S=12bcsin
A=12×1×
23=
3 4.
专题一 三角函数与平面向量
类型四 平面向量及其应用
1.(2023·新课标Ⅰ卷)已知向量 a=(1,1),b=(1,-1).若(a+λb)⊥(a+μb),
则( )
A.λ+μ=1
B.λ+μ=-1
A.79 解析:因为
sin
B.19 (α-β)=sin
αcos
C.-19 β-sin βcos
α=13,
cos αsin β=16,
所以 sin αcos β=12,
所以 sin(α+β)=sin αcos β+sin βcos α=12+16=23,
则 cos(2α+2β)=1-2sin2(α+β)=1-2×49=19.
答案:-
3 2
专题一 三角函数与平面向量
3.(2023·全国甲卷)函数 y=f(x)的图象由函数 y=cos (2x+π6)的图象向左平移π6个
单位长度得到,则 y=f(x)的图象与直线 y=12x-12的交点个数为( )
A.1
B.2
C.3
D.4
解析:把函数 y=cos(2x+π6)向左平移π6个单位可得 函数 f(x)=cos(2x+π2)=-sin 2x 的图象, 而直线 y=12x-12=12(x-1)经过点(1,0),且斜率为12,
Bcos Bcos
AA-ssiinn
CB=1,所以ssiinn
((AA-+BB))-
sin sin
CB=sin
(A-sinBC)-sinB=1,
专题一 三角函数与平面向量
2021届高考数学二轮复习专题五三角函数与解三角形梳理纠错预测学案文
![2021届高考数学二轮复习专题五三角函数与解三角形梳理纠错预测学案文](https://img.taocdn.com/s3/m/3abfe0450a1c59eef8c75fbfc77da26925c596e9.png)
三角函数与解三角形1.三角函数(1)以正弦函数、余弦函数、正切函数为载体,考查函数的定义域、最值、单调性、对称性、周期性.(2)考查三角函数式的化简,三角函数的图象的性质以及平移和伸缩变换. 2.解三角形(1)利用正余弦定理进行三角形边和角的计算,三角形形状的判断、面积的计算,以及有关的参数的范围.(2)考查运用正余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、三角函数 1.公式(1)诱导公式:(2)同角三角函数关系式:22sin cos 1αα+=,sin tan cos ααα=(3)两角和与差的三角函数:sin()sin cos cos sin αβαβαβ+=+ sin()sin cos cos sin αβαβαβ-=- cos()cos cos sin sin αβαβαβ+=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+(4)二倍角公式:sin 22sin cos ααα=2222cos 2cos sin 12sin 2cos 1ααααα=-=-=- 22tan tan 21tan ααα=- (5)降幂公式:21cos2sin2αα-=,21cos2cos2αα+=2.三角函数性质3.函数y=A sin(ωx+φ)的图象及变换(1)φ对函数y=sin(x+φ)的图象的影响(2)ω(ω>0)对y=sin(ωx+φ)的图象的影响(3)A(A>0)对y=A sin(ωx+φ)的图象的影响4.函数y =A sin(ωx +φ)的性质(1)函数y =A sin(ωx +φ)(A >0,ω>0)中参数的物理意义(2)函数y =A sin(ωx +φ)(A >0,ω>0)的有关性质二、解三角形 1.正余弦定理(为外接圆半径); ;,,;,,;;;;2.利用正弦、余弦定理解三角形(1)已知两角一边,用正弦定理,只有一解.(2)已知两边及一边的对角,用正弦定理,有解的情况可分为几种情况.在ABC△中,已知,和角A时,解得情况如下:上表中A为锐角时,,无解.A为钝角或直角时,,均无解.(3)已知三边,用余弦定理,有解时,只有一解.(4)已知两边及夹角,用余弦定理,必有一解.3.三角形中常用的面积公式(1)(表示边上的高);(2);(3)(为三角形的内切圆半径).4.解三角形应用题的一般步骤一、选择题.1.若1sin 33πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭()A .79-B .23C .23-D .79【答案】A【解析】1sin cos cos 32363ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 2217cos 2cos 22cos 12136639πππααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选A .【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想, 属于基础题.2.函数()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭的最大值为()A.1BC. D .3【答案】B【解析】因为()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭,所以()2sin sin 22sin 2sin cos 44444f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,令4x πθ=+,则()2sin 2sin cos 2sin sin 2f θθθθθθ=+=+,则()()222cos 2cos 222cos 12cos 4cos 2cos 2f θθθθθθθ'=+=-+=+-,令f ′(θ)=0,得cos 1θ=-或1cos 2θ=,经典训练题(70分钟)当11cos 2θ-<<时,f ′(θ)<0;1cos 12θ<<时,f ′(θ)>0,所以当1cos 2θ=时,f (θ)取得最大值,此时sin 2θ=,所以()max2f x =,故选B .【点评】本题考查三角恒等变换及三角函数的性质的应用,解答的关键是利用导数研究函数的单调性从而求出函数的最值. 3.已知锐角ϕ满足cos 1ϕϕ-=.若要得到函数()()21sin 2f x x ϕ=-+的图象,则可以将函数1sin 22y x =的图象() A .向左平移7π12个单位长度B .向左平移π12个单位长度C .向右平移7π12个单位长度D .向右平移π12个单位长度【答案】A 【解析】由cos 1ϕϕ-=,知2sin()16πϕ-=,即1sin()62πϕ-=, ∴锐角3πϕ=,故()()221112sin sin cos(2)22323f x x x x ππϕ⎛⎫=-+=-+=+ ⎪⎝⎭,又12117cos(2)sin(2)sin(2)232626x x x πππ+=-+=+, ∴()17sin(2)26f x x π=+,故f(x)是将1sin 22y x =向左平移7π12个单位长度得到,故选A .【点评】由辅助角公式化简已知条件求锐角ϕ,根据f(x)的函数式,应用二倍角、诱导公式将f(x)化为正弦型函数,即可判断图象的平移方式.4.已知函数f (x )=2sin (ωx +φ),(0,)2πωϕ><的部分图象如图所示,f (x )的图象过,14A π⎛⎫ ⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将f (x )的图象向左平移712π个单位得到g (x )的图象,则函数g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A .−√2B .√2C .−√3D .−1【答案】A【解析】由图象知,5244T πππ=-=,∴T =2π,则1ω=, ∴f (x )=2sin (x +φ),将点,14A π⎛⎫ ⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=- ⎪⎝⎭, 将f (x )的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x xπππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为32cos 4π=,故选A .【点评】本题主要考查三角函数图象,需要利用三角函数的周期性以及对称性进行处理,再结合图象的平移,三角函数的单调性进行解题,本题属于中档题.5.已知函数f (x )=sin ωx −√3cos ωx (0ω>,x ∈R )的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数f (x )的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数g (x )的图象,则下列关于函数g (x )的命题中正确的是() A .函数g (x )是奇函数B .g (x )的图象关于直线6x π=对称C .g (x )在,33ππ⎡⎤-⎢⎥⎣⎦上是增函数D .当,66ππx ⎡⎤∈-⎢⎥⎣⎦时,函数g (x )的值域是[0,2] 【答案】B【解析】()πsin 2sin 3f x x x x ωωω⎛⎫==- ⎪⎝⎭,由题意知函数周期为π,则2T ππω==,2ω=,从而()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,把函数f (x )的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数()2sin π3g x x ⎛⎫=+ ⎪⎝⎭,g (x )不是奇函数,A 错;g (x )在,36ππ⎡⎤-⎢⎥⎣⎦是单调递增,C 错;,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数g (x )的值域是[1,2],D 错;g (x )的图象关于直线π6x =对称,B 对,只有选项B 正确,故选B .【点评】本题考查三角函数,图象的变换,以及图象的性质,属于中档题.6.在△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,若3A π=,b =4,△ABC的面积为3√3,则sin B =()A BC .13D 【答案】A【解析】1sin 2S bc A ===c =3,由余弦定理可得2222cos 13ab c bc A =+-=,得a =√13,又由正弦定理可得sin sin a b A B=,所以sin sin 13b A B a ==,故选A .【点评】本题主要考了三角形的面积公式以及余弦定理公式的运用,属于基础题型.7.已知a 、b 、c 分别是△ABC 的内角A 、B 、C 的对边,若sin cos sin CA B<,则ΔABC 的形状为() A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形 【答案】A【解析】因为在三角形中,sin cos sin CA B<变形为sin sin cos C B A <, 由内角和定理可得sin()cos sin A B A B +<,化简可得sin cos 0A B <,cos 0B ∴<,所以2B π>,所以三角形为钝角三角形,故选A .【点评】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.二、填空题.8.已知(0,π)α∈,且有1−2sin 2α=cos 2α,则cos α=_________.【答案】5【解析】2212sin 2cos 214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,π)α∈,所以sin 0α≠, 因此由2πsin 2sin cos sin 2cos tan 20,2ααααααα⎛⎫=⇒=⇒=⇒∈ ⎪⎝⎭,而()22sincos 11αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=2π0,α⎛⎫∈ ⎪⎝⎭,因此cos 5α=,故答案为5.【点评】本题考查了三角恒等变换与三角函数求值问题,是基础题.9.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边经过点P (3,4),则tan π2α⎛⎫+= ⎪⎝⎭___________.【答案】34-【解析】由三角函数的定义可得4sin 5α==,3cos 5α==,因此,3sin cos 325tan 42sin 4cos 52παπααπαα⎛⎫+ ⎪⎛⎫⎝⎭+====- ⎪-⎛⎫⎝⎭-+ ⎪⎝⎭, 故答案为34-.【点评】本题考查任意角的三角函数的应用,诱导公式的应用,是基本知识的考查.三、解答题.10.已知函数2()cos 222x x xf x =+.(1)求函数f(x)在区间[0,π]上的值域;(2)若方程f(ωx)=√3(ω>0)在区间[0,π]上至少有两个不同的解,求ω的取值范围. 【答案】(1)2⎡⎤⎣⎦;(2)5,12⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)()2πcos 2sin()2224x x x f x x x x =+-=+=+,令4U x π=+,[]0,x π∈,5,44U ππ⎡⎤∴∈⎢⎥⎣⎦,由y =sin U 的图象知,sin U ⎡⎤∈⎢⎥⎣⎦,即sin 4πx ⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,2sin 2π4x ⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数f(x)的值域为2⎡⎤⎣⎦.(2)()2sin()(0)4f x x πωωω=+>, ∵f(ωx)=√3,2sin()4x πω∴+=,即sin()42x πω+=,∵x ∈[0,π],,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,且()243x k k ππωπ+=+∈Z 或()2243x k k ππωπ+=+∈Z , 由于方程f(ωx)=√3(ω>0)在区间[0,π]上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥, 所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭. 【点评】考查三角函数的值域时,常用的方法:(1)将函数化简整理为f(x)=A sin (ωx +φ),再利用三角函数性质求值域;(2)利用导数研究三角函数的单调区间,从而求出函数的最值.11.已知函数()2sin 2cos 232f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭.(1)求函数f (x )在5,66ππ⎡⎤-⎢⎥⎣⎦上的单调区间;(2)若0,2πβ⎛⎫∈ ⎪⎝⎭,1123f πβ⎛⎫-= ⎪⎝⎭,求cos 26πβ⎛⎫+ ⎪⎝⎭的值.【答案】(1)递增区间为,612ππ⎡⎤-⎢⎥⎣⎦,75,126ππ⎡⎤⎢⎥⎣⎦,递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦;(2)3-.【解析】(1)由题意得()21sin 2cos 2cos 2sin 2sin 23222f x x x x x x ππ⎛⎫⎛⎫=++-=-+ ⎪ ⎪⎝⎭⎝⎭12sin 2sin 223x x x π⎛⎫=+=+ ⎪⎝⎭, 因为5,66x ππ⎡⎤∈-⎢⎥⎣⎦,所以[]20,23x ππ+∈, 令0232x ππ≤+≤,解得,612x ππ⎡⎤∈-⎢⎥⎣⎦; 令32232x πππ≤+≤,解得7,1212x ππ⎡⎤∈⎢⎥⎣⎦;令32223x πππ≤+≤,得75,126x ππ⎡⎤∈⎢⎥⎣⎦. 所以函数f (x )在5,66ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间为,612ππ⎡⎤-⎢⎥⎣⎦,75,126ππ⎡⎤⎢⎥⎣⎦, 单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦.(2)由(1)知1sin 21263f ππββ⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭.因为2π0,β⎛⎫∈ ⎪⎝⎭,所以7π2,66ππ6β⎛⎫+∈ ⎪⎝⎭, 又因为1π1sin 2632β⎛⎫+=< ⎪⎝⎭,所以2,π62ππβ⎛⎫+∈ ⎪⎝⎭,所以cos 2π6β⎛⎫+== ⎪⎝⎭.【点评】三角函数的化简求值的规律总结:1.给角求值:一般给出的角是非特殊角,要观察所给角与特殊角的关系,利用三角变换转化为求特殊角的三角函数值问题; 2.给值求值:即给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使相关角相同或具有某种关系; 3.给值求角:实质上可转化为“给值求值”即通过求角的某个三角函数值来求角(注意角的范围). 12.在四边形ABCD 中,AB //CD ,AD =CD =BD =1. (1)若32AB =,求BC ;(2)若AB =2BC ,求cos BDC ∠.【答案】(1)2BC =;(2)cos 1BDC ∠=.【解析】(1)在△ABD 中,由余弦定理可得2223cos 24AB BD AD ABD AB BD +-∠==⋅,∵CD //AB,∴∠BDC =∠ABD ,在△BCD 中,由余弦定理可得22212cos 2BC BD CD BD CD BDC =+-⋅∠=,2BC =.(2)设BC =x ,则AB =2x ,在△ABD 中,22224cos 24AB BD AD x ABD x AB BD x +-∠===⋅, 在△BCD 中,22222cos 22BD CD BC x BDC BD CD +--∠==⋅,由(1)可知,∠BDC =∠ABD ,所以,cos ∠BDC =cos ∠ABD ,即222x x -=,整理可得x2+2x −2=0,因为x >0,解得x =√3−1, 因此,cos cos 1BDC ABD x ∠=∠==.【点评】在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角"或“角化边",变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角"; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足(2b −c )cos A =acosC.(1)求角A ;(2)若a =√13,b +c =5,求△ABC 的面积. 【答案】(1)π3A =;(2)√3.【解析】(1)在三角形ABC 中,∵(2b −c )cos A =acos C , 由正弦定理得()2sin sin cos sin cos B C A A C -=,化为:()2sin cos sin cos sin cos sin sin B A C C A C A C B =+=+=, 三角形中sin 0B ≠,解得1cos 2A =,A ∈(0,π),∴π3A =.(2)由余弦定理得2222cos ab c bc A =+-,∵a =√13,b +c =5,∴13=(b +c )2−3cb =52−3bc,化为bc =4,所以三角形ABC 的面积11sin 4222S bc A ==⨯⨯=【点评】本题考查正余弦定理和三角形面积公式的综合运用,涉及三角函数恒等变换,属基础题.熟练掌握利用正弦定理边化角,并结合三角函数两角和差公式化简,注意余弦定理与三角形面积公式的综合运用.14.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin (A +B −C )=c sin (B +C ).(1)求角C 的大小;(2)若2a +b =8,且△ABC 的面积为2√3,求△ABC 的周长.【答案】(1)π3C =;(2)6+2√3.【解析】(1)∵a sin(A +B −C)=c sin(B +C),sin sin(π2)sin sin A C C A ∴-=,2sin sin cos sin sin A C C C A ∴=, sin sin 0A C ≠,1cos 2C ∴=,0πC <<,π3C ∴=. (2)由题意可得12=∴ab =8,∵2a +b =8联立可得,a =2,b =4,由余弦定理可得c2=12,c =2√3,此时周长为6+2√3.【点评】本题主要考查了三角形的内角及诱导公式在三角形化简中的应用,还考查了三角形的面积公式及余弦定理,属于基础题.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2c sin B =3a sin C ,1cos 3C =. (1)求证:△ABC 为等腰三角形;(2)若△ABC 面积为2√2,D 为AB 中点,求线段CD 的长. 【答案】(1)证明见解析;(2).【解析】(1)由2c sin B =3a sin C ,根据正弦定理可得2cb =3ac ,所以2b =3a ,则32b a =, 又1cos 3C =,根据余弦定理可得222222222913144cos 332322a a c a c abc C ab a a a +--+-====⋅,则222134aa c =-,所以32c a b ==, 因此△ABC 为等腰三角形.(2)因为角C是三角形内角,所以sin C>0,则sin C==因为△ABC面积为2√2,所以113sin222ab C a a==⋅a=2,所以b=c=3,又D为AB中点,所以cos cosADC BDC∠=-∠,则222222333222332222CD CDCD CD⎛⎫⎛⎫+-+-⎪ ⎪⎝⎭⎝⎭=-⨯⨯⨯⨯,整理得2174CD=,所以CD=.【点评】本题主要考查正余弦定理、三角形的面积公式的综合运用,利用正弦定理进行边角转换等,属于中档题型.16.△ABC的内角A,B,C的对边分别为a,b,c.已知sin cos2Aa C c=.(1)求A;(2)已知b=1,c=3,且边BC上有一点D满足3ABD ADCS S=△△,求AD.【答案】(1)π3A=;(2)4AD=.【解析】(1)因为sin cos2Aa C c=,由正弦定理得sin sin sin cos2AA C C=,因为sin C≠0,所以sin cos2AA=,所以2sin cos cos222A A A=,因为0π22A<<,所以cos02A≠,所以1sin22A=,即π26A=,所以π3A=.(2)设△ABD的AB边上的高为ℎ1,△ADC的AC边上的高为ℎ2,因为3ABD ADCS S=△△,c=3,b=1,所以1211322c h b h⋅=⨯⋅,所以ℎ1=ℎ2,AD 是△ABC 角A 的内角平分线,所以π6BAD ∠=,因为S△ABD=3S △ADC,可知34ABDABC SS =△△, 所以131sin sin 26423ππAB AD AB AC ⨯⨯=⨯⨯⨯,所以4AD =.【点评】关键点点睛:本题考查了正弦定理的边角互化、三角形的面积公式,解题的关键是确定AD 是△ABC 角A 的内角平分线,考查了运算能力.一、选择题.1.已知函数()2sin 2π6f x x ⎛⎫=+ ⎪⎝⎭,现将()y f x =的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,则g (x )的解析式为()A .221124x y +=B .πsin 3y x ⎛⎫=+ ⎪⎝⎭C .2sin 4π3y x ⎛⎫=+ ⎪⎝⎭D .π2sin 3y x ⎛⎫=+ ⎪⎝⎭【答案】C【解析】将()y f x =的图象向左平移π12个单位得2sin 22sin 21πππ263y x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到()2in 4πs 3y g x x ⎛⎫==+ ⎪⎝⎭,高频易错题故选C .【点评】在三角函数平移变换中,y =sin ωx 向左平移ϕ个单位得到的函数解析式为y =sin [ω(x +φ)]=sin (ωx +ωφ),而不是y =sin (ωx +ϕ),考查运算求解能力,是基础题.二、填空题.2.设锐角三角形ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,B =2A ,则b 的取值范围为___________. 【答案】(2√2,2√3)【解析】由sin2sin b aA A=,得b =4cos A ,由0290045A A ︒<<︒⇒︒<<︒, 01803903060A A ︒<︒-<︒⇒︒<<︒,故3045cos 2A A ︒<<︒⇒<<,cos A <<b =4cos A ∈(2√2,2√3).【点评】该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理,以及锐角三角形的条件,属于简单题目.一、选择题.1.如图,角α,β的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边与单位圆O 分别交于A ,B 两点,则OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =()A .cos(α−β)B .cos(α+β)C .sin(α−β)D .sin(α+β)精准预测题【答案】A【解析】由图可知()cos ,sin A αα,()cos ,sin B ββ, 所以cos cos sin sin cos()OA OB αβαβαβ⋅=+=-,故选A .【点评】本题考查运用向量进行余弦定理的证明,属于基础题型.2.已知()cos 2c 2πos παα⎛⎫+=- ⎪⎝⎭,则tan π4α⎛⎫-= ⎪⎝⎭()A .4-B .4C .13-D .13【答案】C【解析】因为()cos 2c 2πos παα⎛⎫+=- ⎪⎝⎭,利用诱导公式可得()sin 2cos αα-=⨯-,即tan 2α=,所以tantan 1214tan 41231tan 4πta πn πααα--⎛⎫-===- ⎪+⎝⎭+⋅,故选C .【点评】本题主要考查诱导公式,正切的两角和差公式的应用,属于基础题.二、解答题. 3.已知函数()22cos 12xf x x =-+. (1)若()π6f αα⎛⎫=+ ⎪⎝⎭,求tan α的值;(2)若函数f(x)图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数g(x)的图象,求函数g(x)在0,π2⎡⎤⎢⎥⎣⎦得的值域.【答案】(1);(2)[−1,2].【解析】(1)()22cos 1cos π2sin 26x f x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,因为()π6f αα⎛⎫=+ ⎪⎝⎭,所以πsin 6αα⎛⎫-= ⎪⎝⎭,即1cos 22ααα-=,所以−3√3sin α=cos α,所以tan 9α=-.(2)f(x)图象上所有点横坐标变为原来的12倍得到函数g(x)的图象,所以g(x)的解析式为()()π22sin 26g x f x x ⎛⎫==- ⎪⎝⎭,因为π02x ≤≤,所以ππ5π2666x -≤-≤,则1πsin 2126x ⎛⎫-≤-≤ ⎪⎝⎭,所以−1≤g(x)≤2,故g(x)在0,π2⎡⎤⎢⎥⎣⎦上的值域为[−1,2].【点评】本题主要考查三角恒等变换,同角三角函数的基本关系,函数y =A sin (ωx +φ)的图象变换规律,正弦函数的定义域和值域,属于中档题. 4.设函数()212coscos 5f x x x x =--.(1)求f(x)的最小正周期和值域;(2)在锐角△ABC 中,角A 、B 、C 的对边长分别为a 、b 、c .若f(A)=−5,a =√3,求△ABC 周长的取值范围.【答案】(1)π,[−4√3+1,4√3+1](2)(3+√3,3√3]. 【解析】(1)()2212coscos 512cos 25f x x x x x x =--=--6cos 221π216x x x ⎛⎫=-+=++ ⎪⎝⎭,πT ∴=,值域为[−4√3+1,4√3+1].(2)由f(A)=−5,可得212coscos A A A=,因为三角形为锐角△ABC ,sin A A=,即tan A =π3A =,由正弦定理sin sin sin a b c A B C ==,得2sin b B =,2π2sin 2sin()3c C B ==-,所以2π12sin sin()2(sin sin )322a b c B B B B B ⎡⎤++=+-=++⎢⎥⎣⎦32(sin cos ))22π6B B B =++=++.因为△ABC 为锐角三角形,所以π02B <<,π02C <<, 即022π3π02πB B ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得π6π2B <<, 所以ππ2π363B <+<sin()16πB <+≤,即3)6πB ++≤,所以周长的取值范围为区间(3+√3,3√3].【点评】在解三角形的周长范围时,将a +b +c 转化为含一个角的三角函数问题,利用三角函数的值域, 求周长的取值范围,是常用解法.。
高考数学二轮复习精品资料专题04 三角函数和解三角形教学案(学生版)
![高考数学二轮复习精品资料专题04 三角函数和解三角形教学案(学生版)](https://img.taocdn.com/s3/m/cc9b9ac8551810a6f52486bd.png)
2013高考数学二轮复习精品资料专题04 三角函数和解三角形教学案(学生版)【2013考纲解读】1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义.2.能利用单位圆中的三角函数线推导出2πα±,πα±的正弦、余弦、正切的诱导公式;理解同角的三角函数的基本关系式:sin 2x+cos 2x=1,sin tan cos x x x=. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(-2π,2π)内的单调性. 4.了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图象,了解,,A ωϕ对函数图象变化的影响.5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系.6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换 【知识网络构建】【重点知识整合】一、三角恒等变换与三角函数1.三角函数中常用的转化思想及方法技巧:(1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二; (2)“1”的替换: 22sin cos 1αα+=; (3)切弦互化:弦的齐次式可化为切;(4)角的替换:2()()ααβαβ=++-,()22αβαβααββ+-=+-=+;(5)公式变形:21cos 2cos 2αα+=, 21cos 2sin 2αα-=, tan tan tan()(1tan tan )αβαβαβ+=+-;(6)构造辅助角(以特殊角为主):sin cos )(tan )ba b aαααϕϕ+=+=.二、解三角形1.正弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a sin A =b sin B =csin C =2R (R 为三角形外接圆的半径).2.余弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a 2=b 2+c 2-2bc cos A ,cos A=b 2+c 2-a 22bc,另外两个同样.3.面积公式已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则(1)三角形的面积等于底乘以高的12;(2)S =12ab sin C =12bc sin A =12ac sin B =abc4R (其中R 为该三角形外接圆的半径);(3)若三角形内切圆的半径是r ,则三角形的面积S =12(a +b +c )r ;(4)若p =a +b +c2,则三角形的面积S =p p -a p -b p -c .【高频考点突破】【变式探究】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35D.45【方法技巧】1.用三角函数定义求三角函数值有时反而更简单;2.同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式的应用条件.考点二 三角函数的性质 三角函数的单调区间:y =sin x 的递增区间是[2k π-π2,2k π+π2](k ∈Z),递减区间是[2k π+π2,2k π+3π2](k ∈Z); y =cos x 的递增区间是[2k π-π,2k π](k ∈Z),递减区间是[2k π,2k π+π](k ∈Z);y =tan x 的递增区间是(k π-π2,k π+π2)(k ∈Z).例2、已知a =(sin x ,-cos x ),b =(cos x ,3cos x ),函数f (x )=a ·b +32. (1)求f (x )的最小正周期,并求其图像对称中心的坐标; (2)当0≤x ≤π2时,求函数f (x )的值域.【变式探究】已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z) B.[k π,k π+π2](k ∈Z)C .[k π+π6,k π+2π3](k ∈Z) D.[k π-π2,k π](k ∈Z)考点三 函数y =A sin(ωx +φ)的图像及变换函数y =A sin(ωx +φ)的图像: (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图像变换:y =sin x―――――――――→向左φ或向右φ平移|φ|个单位y =sin(x +φ)y =sin(ωx +φ)――――――――――→纵坐标变为原来的A A倍横坐标不变y =A sin(ωx +φ).例3、已知函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图像经过点(0,1),如图所示.(1)求f 1(x )的表达式;(2)将函数f 1(x )的图像向右平移π4个单位长度得到函数f 2(x )的图像,求y =f 1(x )+f 2(x )的最大值,并求出此时自变量x 的集合.【变式探究】已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图像如图,则f (π24)=( )A .2+ 3 B. 3 C.33D .2- 3考点四 三角变换及求值 三角函数求值有以下类型:(1)“给角求值”,即在不查表的前提下,通过三角恒等变 换求三角函数式的值;(2)“给值求值”,即给出一些三角函数值,求与之有关的 其他三角函数式的值;(3)“给值求角”,即给出三角函数值,求符合条件的角. 例1、已知函数f (x )=2sin(13x -π6),x ∈R.(1)求f (0)的值;(2)设α,β∈[0,π2],f (3α+π2)=1013,f (3β+2π)=65.求sin(α+β)的值.【变式探究】已知:cos(2α-β)=-1114,sin(α-2β)=437,0<β<π4<α<π2,则α+β的值为________.考点五 正、余弦定理的应用【变式探究】△ABC 中,B =120°,AC =7,AB =5, 则△ABC 的面积为________.考点 六 解三角形与实际应用问题在实际生活中,测量底部不可到达的建筑物的高度、不可到达的两点的距离及航行中的方位角等问题,都可通过解三角形解决.例6、如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?【难点探究】难点一 简单的三角恒等变换例1 、(1)若0<α<π2,-π2<β<0,cos (π4+α)=13,cos (π4-β2)=33,则cos(α+β2)=( )A.33 B .-33 C.539 D .-69(2)已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos2αsin ⎝ ⎛⎭⎪⎫α-π4的值为________.【点评】 在进行三角恒等变换时,一个重要的技巧是进行角的变换,把求解的角用已知角表示出来,把求解的角的三角函数使用已知的三角函数表示出来,常见的角的变换有,把π2+2α变换成2⎝ ⎛⎭⎪⎫π4+α,α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),2α=(β+α)-(β-α),α+β=2·α+β2,α+β2=⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β等;在进行三角函数化简或者求值时,如果求解目标较为复杂,则首先要变换这个求解目标,使之简化,以便看出如何使用已知条件.难点二 三角函数的图象例2 (1)已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π24=________.(2)要得到函数y =cos (2x +π3)的图象,只需将函数y =12sin2x +32cos2x 的图象( )A .向左平移π8个单位B .向右平移π2个单位C .向右平移π3个单位D .向左平移π4个单位难点三 三角函数的性质例3已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z)C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z)【规律方法】1.根据三角函数的图象求解函数的解析式时,要注意从图象提供的信息确定三角函数的性质,如最小正周期、最值,首先确定函数解析式中的部分系数,再根据函数图象上的特殊点的坐标适合函数的解析式确定解析式中剩余的字母的值,同时要注意解析式中各个字母的范围.2.进行三角函数的图象变换时,要注意无论进行的什么样的变换都是变换的变量本身,特别在平移变换中,如果这个变量的系数不是1,在进行变换时变量的系数也参与其中,如把函数y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象向左平移π12个单位时,得到的是函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π4=sin2x +5π12的图象.3.解答三角函数的图象与性质类的试题,变换是其中的核心,把三角函数的解析式通过变换,化为正弦型、余弦型、正切型函数,然后再根据正弦函数、余弦函数和正切函数的性质进行研究.难点四 正余弦定理的应用例4 、(1)在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.(2)在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A ⎝ ⎛⎦⎥⎤0,π6 B.⎣⎢⎡⎭⎪⎫π6,π C.⎝ ⎛⎦⎥⎤0,π3 D.⎣⎢⎡⎭⎪⎫π3,π难点五 函数的图象的分析判断例5 、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -a b .(1)求sin Csin A的值;(2)若cos B =14,b =2,求△ABC 的面积S .【点评】 本题的难点是变换cos A -2cos C cos B =2c -ab时,变换方向的选取,即是把角的函数转化为边的关系,还是把边转化为角的三角函数,从已知式的结构上看,把其中三个内角的余弦转化为边的关系是较为复杂的,而根据正弦定理把其中边的关系转化为角的正弦,则是较为简单的,在含有三角形内角的三角函数和边的混合关系式中要注意变换方向的选择.正弦定理、余弦定理、三角形面积公式本身就是一个方程,在解三角形的试题中方程思想是主要的数学思想方法,要注意从方程的角度出发分析问题.探究点六解三角形的实际应用例6、如图6-1,渔政船甲、乙同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70 km的C处,渔政船乙在渔政船甲的南偏西20°方向的B处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C处沿直线AC 航行前去救援,渔政船乙仍留在B处执行任务,渔政船甲航行30 km到达D处时,收到新的指令另有重要任务必须执行,于是立即通知在B处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC航行前去救援渔船丙),此时B、D两处相距42 km,问渔政船乙要航行多少千米才能到达渔船丙所在的位置C处实施营救?A处发现在北偏东45°距A处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船?并指出巡逻艇航行方向.图6-2【规律技巧】1.使用正弦定理能够解的三角形有两类,一类是已知两边及其中一边的对角,一类已知一边和两个内角(实际就是已知三个内角),其中第一个类型也可以根据余弦定理列出方程求出第三边,再求内角.在使用正弦定理求三角形内角时,要注意解的可能情况,判断解的情况的基本依据是三角形中大边对大角.2.当已知三角形的两边和其中一个边的对角求解第三边时,可以使用正弦定理、也可以使用余弦定理,使用余弦定理就是根据余弦定理本身是一个方程,这个方程联系着三角形的三个边和其中的一个内角.3.正弦定理揭示了三角形三边和其对角正弦的比例关系,余弦定理揭示了三角形的三边和其中一个内角的余弦之间的关系. 【历届高考真题】 【2012年高考试题】 一、选择题1.【2012高考真题重庆理5】设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )33.【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]4.【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、10B 、10C 、10D 、157.【2012高考真题辽宁理7】已知sin cos αα-α∈(0,π),则tan α=(A) -1 (B) 2- (C) 2(D) 18.【2012高考真题江西理4】若tan θ+1tan θ=4,则sin2θ=A .15 B. 14 C. 13 D. 129.【2012高考真题湖南理6】函数f (x )=sinx-cos(x+6π)的值域为A .10.【2012高考真题上海理16】在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定13.【2012高考真题全国卷理7】已知α为第二象限角,33cos sin =+αα,则cos2α=(A) -3 (B )-99 (D)3二、填空题14.【2012高考真题湖南理15】函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.(1)若6πϕ=,点P 的坐标为(0,2),则ω= ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为 .17.【2012高考真题安徽理15】设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是_____①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>18.【2012高考真题福建理13】已知△ABC 大角的余弦值为_________.19.【2012高考真题重庆理13】设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且53cos =A ,135cos =B ,3=b 则c =20.【2012高考真题上海理4】若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。
文科高考数学重难点02 三角函数与解三角形(解析版)
![文科高考数学重难点02 三角函数与解三角形(解析版)](https://img.taocdn.com/s3/m/65d0fdc5f71fb7360b4c2e3f5727a5e9856a2719.png)
重难点02 三角函数与解三角形【高考考试趋势】新高考环境下,三角函数与解三角形依然会作为一个重点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考,而且文理有别,或"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题.三角函数的图象与性质是高考考查的重点及热点内.备考时要熟练掌握三角函数的图象与性质、三角恒等变换公式及正、余弦定理,在此基础上掌握一些三角恒变换的技巧,如角的变换,函数名称的变换等,此外,还要注意题目中隐含的各种限制条件,选择合理的解决方法,灵活实现问题的转化鉴于新课标核心素养的要求,三角函数与解三角形在实际背景下的应用也将是一个考试试点.考点主要集中在三角函数图像及其性质的应用,三角函数恒等变换,以及正弦余弦定理的应用.本专题在以往高考常见的题型上,根据新课标的要求,精选了部分预测题型,并对相应的题型的解法做了相应的题目分析以及解题指导,希望你在学习完本专题以后能够对三角函数以及解三角形的题型以及解答技巧有一定的提升.【知识点分析以及满分技巧】三角函数与解三角形:从返几年高考情况来看,高考对本部分内容的考查主要有,1.三解恒等变换与三角函数的图象、性质相结合;2.三角恒等变换与解三角形相结合;3.平面向量、不等式、数列与三角函数和解三角形相结合,难度一般不大,属中档题型.三角函数图形的性质以及应用:对于选择题类型特别是对称中心,对称轴等问题选项中特殊点的带入简单方便,正确率比较高.总额和性的问题一般采用换元法转化成最基本的函数问题去解答.对于三角函数有关恒等变换的题目应注重公式的变形.解三角形类型的大题中,重点是角边转化,但是要注意两边必须同时转化,对于对应的面积的最大值问题以及周长的最值问题一般转化成基本不等式去求,但是在用基本不等式的时候应注意不等式等号成立的条件.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2020·贵溪市实验中学高三月考(文))在中,角,,所对的边分别ABC :A B C 为,,,且,则的最大值是( )a b c BC c bb c +A .8B .6C .D .4【答案】D【分析】由已知可得:,11sin 22bc A a =所以,2sin a A =因为,所以222cos 2b c a A bc +-=2222cos sin 2cos b c a bc AA bc A +=+=+所以,222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭所以的最大值是4c bb c +故选:D2.(2020·南昌市新建一中(文))在中,内角,,所对应的边分别为ABC :A B C a ,,,且,若,则边的最小值为()b c sin 2sin 0a B b A +=2a c +=b AB .C .2D【答案】D【分析】根据由正弦定理可得,sin2sin 0a B b A +=sin sin2sin sin 0A B B A +=即,,2sin sin cos sin sin 0A B B B A +=sin 0,sin 0A B ≠≠ ,,∴1cos 2B =-23B π∴=由余弦定理可得.()2222222cos 4b a c ac B a c ac a c ac ac=+-=++=+-=- .2a c +=≥ 1ac ∴≤ 即.,243bac ∴=-≥,b ≥故边.b 故选:D .3.(2020·吉林高三其他模拟(文))在中,内角,,所对的边分别为,ABC :A B C a ,,且,,在边上,且,则b c 3a =b =c =M AB BM CM =AMAB=( )A .B .C .D .14133423【答案】C【分析】因为,BM CM =所以为等腰三角形,MBC △因为,,.3a =b =c =由条件可得,222cos2a c b B ac +-==所以,解得3·cos 22BC BM B ==BM =所以AM AB BM =-=可得.34AM AB =故选:.C 4.(2020·河南郑州市·高三月考(文))已知的三个内角,,对应的边分ABC :A B C 别为,,,且,,成等差数列,则a b c sin 2a C π⎛⎫- ⎪⎝⎭()cos 4b B π-()cos 3c A π-的形状是( )ABC :A .直角三角形B .锐角三角形C .钝角三角形D .正三角形【答案】C【分析】,,sin cos 2a C a Cπ⎛⎫-=- ⎪⎝⎭()cos 4cos b B b B π-=,()cos 3cos c A c Aπ-=-依题意得,2cos cos cos b B a C c A =--根据正弦定理可得,()2sin cos sin cos cos sin B B A C A C =-+即,()2sin cos sin sin B B A C B=-+=-又,则,sin 0B ≠1cos 2B =-又,所以,()0,B π∈23B π=故的形状是钝角三角形.ABC :故选:C .5.(2020·安徽六安市·六安一中高三月考(文))已知的三个内角,,所ABC :A B C 对的边分别为,,,满足,且a b c 222cos cos cos 1sin sin A B C A C -+=+,则的形状为( )sin sin 1A C +=ABC :A .等边三角形B .等腰直角三角形C .顶角为的非等腰三角形D .顶角为的等腰三角形120120【答案】D【分析】因为,222cos cos cos 1sin sin A B C A C -+=+所以,2221sin (1sin )1sin 1sin sin A B C A C ---+-=+所以,222sin sin sin sin sin A C B A C +-=-根据正弦定理可得,即,222a cb ac +-=-222122a c b ac +-=-所以,因为,所以,所以,1cos 2B =-0B π<<120B = 60A C += 由得,sin sin 1A C +=sin sin(60)1A A +-=得,sin sin 60cos cos 60sin 1AA A +-=得,1sin sin 12A A A +-=得,1sin 12A A +=得,因为为三角形的内角,所以,,sin(60)1A +=A 30A = 30C =所以为顶角为的等腰三角形.ABC :120故选:D6.(2020·贵州黔东南苗族侗族自治州·高三月考(文))将函数的图象向右平2sin 2y x =移个单位得到函数的图象.若,则的值为(02πϕϕ⎛⎫<<⎪⎝⎭()f x 50412f f ππ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭ϕ)A .B .C .D .12π8π6π3π【答案】A依题意,函数,由得()()2sin 22)i (2s n 2f x x x ϕϕ-=-=50412f f ππ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即,故5124f f ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭52sin 222sin 22124ππϕϕ⎛⎫⎛⎫⨯-=--⨯- ⎪ ⎪⎝⎭⎝⎭,即,5sin 262sin 2ππϕϕ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭1cos 22cos 22ϕϕϕ+=2cos 2ϕϕ=故,又,则,故,即.tan 2ϕ=02πϕ<<02ϕπ<<26πϕ=12πϕ=故选:A.7.(2020·梅河口市第五中学高三月考(文))已知角的顶点为坐标原点,始边与αβ,轴的非负半轴重合,若角的终边过点,,且,则x α()21,()4cos 5αβ+=0,2πβ⎛⎫∈ ⎪⎝⎭( )sin β=ABCD【答案】C【分析】因为角的终边过点,所以是第一象限角,α()21,α所以sin α==cos α==因为,,所以为第一象限角,,0,2πβ⎛⎫∈⎪⎝⎭()4cos 5αβ+=αβ+所以,()sin 35αβ+==所以()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦3455==故选:C.8.(2020·罗山县楠杆高级中学高三月考(文))函数的()()cosln 2xx f x x e e π-⎛⎫=-+ ⎪⎝⎭图象大致为()A .B .C .D .【答案】C【分析】因为,()()()πcos ln sin ln 2x x x x f x x e e x e e --⎛⎫=-+=+ ⎪⎝⎭所以,()()()()()sin ln sin ln x x x x f x x x e e x e e f x ---=-+=-+=-即函数为奇函数,其图象关于原点对称,故排除D ,()f x又因为,当且仅当时取等号,2xxy e e-=+≥=0x =所以,()ln ln 2ln10x x e e -+≥>=当时,,当时,,[)0,πx ∈sin 0x ≥[)π,2πx ∈sin 0x ≤所以,当时,,当时,,故排除A 、B ,[)0,πx ∈()0f x >[)π,2πx ∈()0f x ≤故选:C .二、填空题9.(2020·新疆实验高三月考(文))在中,ABC :BC =,则外接圆的面积为______.222cos cos sin sin C A B B C --=ABC :【答案】π【分析】,222cos cos sin sin C A B B C --=,()()2221sin 1sin sin sin C A B B C∴----=即.222sin sin sin sin A C B B C --=由正弦定理得,222222a cb ac b --=⇒-=+由余弦定理得,所以,2222cos a c b bc A =+-cos A =,则,0A π<< 4A π=设的外接圆半径为,则,则,ABC :R 2sin BCRA =1R =则外接圆的面积为:,ABC :2R ππ=故答案为:.π10.(2020·山西高三期中(文))中,角A ,B ,C 所对的边分别为a ,b ,c ,若ABC :函数有极值点,则的取值范围是()()3222113f x x bx a c ac x =+++-+cos 23B π⎛⎫- ⎪⎝⎭______.【答案】11,2⎡⎫-⎪⎢⎣⎭【分析】由题意,函数,()()3222113f x x bx a c ac x =+++-+可得,()2222()f x x bx a c ac '=+++-因为函数有极值点,所以有两个不同的实数根,()f x 2222()0x bx a c ac +++-=可得,整理得,222(2)4()0b a c ac ∆=-+->222ac a c b >+-又由,2221cos 222a c b ac B ac ac +-=<=因为,所以,可得,(0,)B π∈3B ππ<<52333B πππ<-<当时,即时,取得最小值,最小值为;23B ππ-=23B π=cos 23B π⎛⎫- ⎪⎝⎭cos 1π=-当时,即时,此时,233B ππ-=3B π=1cos 2cos 332B ππ⎛⎫-<= ⎪⎝⎭所以的取值范围是.cos 23B π⎛⎫- ⎪⎝⎭11,2⎡⎫-⎪⎢⎣⎭三、解答题11.(2020·山东济南市·高三开学考试)在四边形中,,是上的ABCD A C ∠=∠E AD 点且满足与相似,,,.BED ∆ABD ∆34AEB π∠=6DBE π∠=6DE =(1)求的长度;BD (2)求三角形面积的最大值.BCD【答案】(1)2)36+【分析】(1),4BED AEB ππ∠=-∠=在三角形中,,BDE sin sin DE BD DBE BED =∠∠即,6sinsin 64BD ππ=所以612=BD =(2)因为,所以,BED ABD ∆∆:C A ∠=∠=6DBE π∠=在三角形中,,BDC 2222cos 6BD DC BC DC BCπ=+-::所以,2272DCBC BC =+:所以,722DCBC BC ≥::所以,(72DCBC ≤:所以,((11sin 7218264BCD S DC BC π∆=≤⨯=::所以三角形面积的最大值为BCD 36+12.(2020·北京海淀区·人大附中高三月考)已知,(2sin ,sin cos )mx x x =-,记函数.,sin cos )n x x x =+ ()f x m n =⋅ (1)求函数取最大值时的取值集合;()f x x (2)设函数在区间是减函数,求实数的最大值.()f x ,2m π⎡⎤⎢⎥⎣⎦m【答案】(1) ;(2).,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭56π【分析】(1)由题意,得,()2cos 22sin(26f x m n x x x π=⋅=-=- 当取最大值时,即,此时()f x sin(2)16x π-=22()62x k k Z πππ-=+∈所以的取值集合为.x ,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭(2)由得3222262k x k πππππ+≤-≤+,41022266k x k ππππ+≤≤+536k x k ππππ+≤≤+所以的减区间,()f x 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦当,得是一个减区间,且1k =5,36ππ⎡⎤⎢⎥⎣⎦52,36πππ∈⎡⎤⎢⎥⎣⎦所以,5,,236m πππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦所以, 5(,]26m ππ∈所以的最大值为.m 56π13.(2020·宁夏固原市·固原一中高三月考(文))已知函数.()2cos sin 3f x x x x π⎛⎫=⋅+ ⎪⎝⎭x ∈R(1)求的最小正周期;()f x (2)求在闭区间上的值域.()f x ,44ππ⎡⎤-⎢⎥⎣⎦【答案】(1);(2).π11,24⎡⎤-⎢⎥⎣⎦【分析】(1)由已知,有21()cos sin 2f x x x x x ⎛⎫=⋅+ ⎪ ⎪⎝⎭21sin cos 2x x x =⋅-1sin 2cos 2)4x x =-+,11sin 22sin 2423x x x π⎛⎫=-=- ⎪⎝⎭的最小正周期;∴()f x 22T ππ==(2)∵,,,44x ππ⎡⎤∈-⎢⎥⎣⎦52,366x πππ⎡⎤∴-∈-⎢⎥⎣⎦当,即时,取得最大值为,236x ππ-=4x π=()f x 14当,即时,取得最小值为,232x ππ-=-12x π=-()f x 12-的值域为.()f x ∴11,24⎡⎤-⎢⎥⎣⎦14.(2020·梅河口市第五中学高三月考(文))在的中,角,,的对边分ABC :A B C别为,且a b c ,,sin (sin sin )sin 0a A b A B c C ++-=(1)求角;C (2)若,求的取值范围.2c =+a b 【答案】(1);(2).23C π=2⎛ ⎝【分析】:(1)由,及正弦定理得sin (sin sinB)sin 0a A b A c C ++-=,2220a ab b c ++-=由余弦定理得,又,所以;2221cos 222a b c ab C ab ab +--===-0C π<<23C π=(2)由及,得,即,2220a ab b c ++-=2c =224a ab b ++=2()4a b ab +-=所以,所以,当且仅当221()4()4ab a b a b =+-≤+a b +≤a b ==成立,又,所以,2a b c +>=2a b <+≤所以的取值范围为.+a b 2⎛ ⎝15.(2020·黑龙江高三月考(文))在中,角,,所对的边分别为,ABC :A B C a b,,,.c sin 3sin b A B =222b c a bc +-=(1)求外接圆的面积;ABC :(2)若的周长.BC ABC :【答案】(1);(2)9.3π【分析】解:(1)因为,又,即,所以,sin 3sin b A B =sin sin a b A B =sin sin b A a B =3a =由,得,设外接圆的半径为2221cos 22b c a A bc --==3A π=ABC :R 则,所以外接圆的面积为.12sin a R A=⋅==ABC :3π(2)设的中点为,则.因为,BC D AD =()12AD AB AC =+ 所以,()()222221127||2444AD AB AC AB AC c b bc =++⋅=++= 即,又,,则 ,2227c b bc ++=222b c a bc +-=3a =22918bc b c =⎧⎨+=⎩整理得,解得或(舍去),则.所以的周长为9.()2290b -=3b =3-3c =ABC :。
东范大学附属高考数学二轮专题复习 三角变换与解三角形教案 理
![东范大学附属高考数学二轮专题复习 三角变换与解三角形教案 理](https://img.taocdn.com/s3/m/424eba155e0e7cd184254b35eefdc8d376ee1433.png)
芯衣州星海市涌泉学校第2讲三角变换与解三角形【高考考情解读】1.从近几年的考情来看,对于三角恒等变换,高考命题以公式的根本运用、计算为主,其中与角所在范围、三角函数的性质、三角形等知识结合为命题的热点;解三角形与其他知识以及生活中的实际问题联络严密,有利于考察考生的各种才能,因此成了高考命题的一大热点.2.分析近年考情可知,命题一般为1~2题,其中,填空题多为低档题,解答题那么一般为与其他知识(尤其是三角函数、向量)交汇的综合题或者者实际应用题,难度中等.1.两角和与差的正弦、余弦、正切公式(1)si n(α±β)=sinαcosβ±cosαsinβ.(2)cos(α±β)=cosαcosβ∓sinαsinβ.(3)tan(α±β)=.2.二倍角的正弦、余弦、正切公式(1)sin2α=2sinαcosα.(2)cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)tan2α=.3.三角恒等式的证明方法(1)从等式的一边推导变形到另一边,一般是化繁为简.(2)等式的两边同时变形为同一个式子.(3)将式子变形后再证明.4.正弦定理===2R(2R为△ABC外接圆的直径).变形:a=2RsinA,b=2RsinB,c=2RsinC.sinA=,sinB=,sinC=.a∶b∶c=sinA∶sinB∶sinC.5.余弦定理a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+b2-2abcosC.推论:cosA=,cosB=,cosC=.变形:b2+c2-a2=2bccosA,a2+c2-b2=2accosB,a2+b2-c2=2abcosC.6.面积公式S△ABC=bcsinA=acsinB=absinC.7.解三角形(1)两角及一边,利用正弦定理求解.(2)两边及一边的对角,利用正弦定理或者者余弦定理求解,解的情况可能不唯一.(3)两边及其夹角,利用余弦定理求解.(4)三边,利用余弦定理求解.考点一三角变换例1(2021·)函数f(x)=cos,x∈R.(1)求f的值;(2)假设cosθ=,θ∈,求f.解(1)f=cos=cos=cos=1.(2)f=cos=cos=cos2θ-sin2θ,又cosθ=,θ∈,∴sinθ=-,∴sin2θ=2sinθcosθ=-,cos2θ=2cos2θ-1=-,∴f=cos2θ-sin2θ=-+=.当条件中的角与所求角不同时,需要通过“拆〞、“配〞等方法实现角的转化,一般是寻求它们的和、差、倍、半关系,再通过三角变换得出所要求的结果.化简常用技巧:①常值代换:特别是“1”的代换,1=sin2θ+cos2θ=tan45°等;②项的分拆与角的配凑:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等;③降次与升次:正用二倍角公式升次,逆用二倍角公式降次;④弦、切互化:一般是切化弦.(1)(2021·)设sin2α=-sinα,α∈,那么tan2α的值是________.(2)(2021·)设α为锐角,假设cos=,那么sin的值是________.答案(1)(2)解析(1)∵sin2α=-sinα,∴sinα(2cosα+1)=0,又α∈,∴sinα≠0,2cosα+1=0即cosα=-,sinα=,tanα=-,∴tan2α===.(2)∵α为锐角且cos=,∴sin=.∴sin=sin=sin2cos-cos2sin=sincos-=××-=-=.考点二正、余弦定理例2(2021·课标全国Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,a=bcosC+csinB.(1)求B;(2)假设b=2,求△ABC面积的最大值.解(1)由及正弦定理得sinA=sinBcosC+sinCsinB,①又A=π-(B+C),故sinA=sin(B+C)=sinBcosC+cosBsinC.②由①②和C∈(0,π)得sinB=cosB.又B∈(0,π),所以B=.(2)△ABC的面积S=acsinB=ac.由及余弦定理得4=a2+c2-2accos.又a2+c2≥2ac,故ac≤,当且仅当a=c时,等号成立.因此△ABC面积的最大值为+1.三角形问题的求解一般是从两个角度,即从“角〞或者者从“边〞进展转化打破,实现“边〞或者者“角〞的统一,问题便可打破.几种常见变形:(1)a∶b∶c=sinA∶sinB∶s inC;(2)a=2RsinA,b=2RsinB,c=2RsinC,其中R为△ABC外接圆的半径;(3)sin(A+B)=sinC,cos(A+B)=-cosC.设△ABC的内角A,B,C所对的边长分别为a,b,c,且(2b-c)cosA=acosC.(1)求角A的大小;(2)假设角B=,BC边上的中线AM的长为,求△ABC的面积.解(1)∵(2b-c)cosA=acosC,∴(2sinB-sinC)cosA=sinAcosC.即2sinBcosA=sinAcosC+sinCcosA.∴2sinBcosA=sinB.∵sinB≠0,∴cosA=,∵0<A<π,∴A=.(2)由(1)知A=B=,所以AC=BC,C=,设AC=x,那么MC=x.又AM=,在△AMC中,由余弦定理得AC2+MC2-2AC·MCcosC=AM2,即x2+2-2x··cos120°=()2,解得x=2,故S△ABC=x2sin=.考点三正、余弦定理的实际应用例3(2021·)如图,游客从某旅游景区的景点A处下山至C处有两种途径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1260 m,经测量cosA=,cosC=.(1)求索道AB的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的间隔最短?(3)为使两位游客在C处互相等待的时间是是不超过3分钟,乙步行的速度应控制在什么范围内?解(1)在△ABC中,因为cosA=,cosC=,所以sinA=,sinC=.从而sinB=sin[π-(A+C)]=sin(A+C)=sinAcosC+cosAsinC=×+×=.由正弦定理=,得AB=×sinC=×=1040(m).所以索道AB的长为1040 m.(2)假设乙出发t分钟后,甲、乙两游客间隔为d,此时,甲行走了(100+50t)m,乙间隔A处130tm,所以由余弦定理得d2=(100+50t)2+(130t)2-2×130t×(100+50t)×=200(37t2-70t+50),由于0≤t≤,即0≤t≤8,故当t=min时,甲、乙两游客间隔最短.(3)由正弦定理=,得BC=×sinA=×=500(m).乙从B出发时,甲已走了50×(2+8+1)=550(m),还需走710 m才能到达C.设乙步行的速度为vm/min,由题意得-3≤-≤3,解得≤v≤,所以为使两位游客在C处互相等待的时间是是不超过3min,乙步行的速度应控制在(单位:m/min)范围内.应用解三角形知识解决实际问题一般分为以下四步:(1)分析题意,准确理解题意,分清与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将条件在图形中标出;(3)将所求的问题归结到一个或者者几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进展取舍,得出正确答案.在南沙某海岛上一观察哨A上午11时测得一轮船在海岛北偏东60°的C处,12时20分测得船在海岛北偏西60°的B处,12时40分轮船到达位于海岛正西方且距海岛5 km的E港口,如果轮船始终匀速直线前进,问船速为多少?解由题意,得轮船从C到B用时80分钟,从B到E用时20分钟.又船始终匀速前进,所以BC=4EB.设EB=x,那么BC=4x.由,得∠BAE=30°,∠EAC=150°.在△AEC中,由正弦定理,得=,所以sinC===.在△ABC中,由正弦定理,得=,∴AB===.在△ABE中,由余弦定理,得BE2=AB2+AE2-2AB·AE·cos30°=+25-2××5×=,故BE=.所以船速v===(km/h).所以该船的速度为km/h.【规律总结】1.求解恒等变换的根本思路一角二名三构造,即用化归转化思想“去异求同〞的过程,详细分析如下:(1)首先观察角与角之间的关系,注意角的一些常用变换形式,角的变换是三角函数变换的核心.(2)其次看函数名称之间的关系,通常“切化弦〞.(3)再次观察代数式的构造特点.2.解三角形的两个关键点(1)正、余弦定理是实现三角形中边角互化的根据,注意定理的灵敏变形,如a=2RsinA,sinA=(其中2R 为三角形外接圆的直径),a2+b2-c2=2abcosC等,灵敏根据条件求解三角形中的边与角.(2)三角形的有关性质在解三角形问题中起着重要的作用,如利用“三角形的内角和等于π〞和诱导公式可得到sin(A+B)=sinC,sin=cos等,利用“大边对大角〞可以解决解三角形中的增解问题等.【押题精练】1.在△ABC中,tan=sinC,给出以下四个结论:①=1;②1<sinA+sinB≤;③sin2A+cos2B=1;④cos2A+cos2B=sin2C.其中正确的序号为________.答案②④解析依题意,tan=====sinC.∵sinC≠0,∴1+cos(A+B)=1,cos(A+B)=0.∵0<A+B<π,∴A+B=,即△ABC是以角C为直角的直角三角形.对于①,由=1,得tanA=tanB,即A=B,不一定成立,故①不正确;对于②,∵A+B=,∴sinA+sinB=sinA+cosA=sin(A+),∴1<sinA+sinB≤,故②正确;对于③,∵A+B=,∴sin2A+cos2B=sin2A+sin2A=2sin2A,其值不确定,故③不正确;对于④,∵A+B=,∴cos2A+cos2B=cos2A+sin2A=1=sin2C,故④正确.2.函数f(x)=sincos+cos2.(1)假设f(x)=1,求cos的值;(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足acosC+c=b,求f(B)的取值范围.解(1)f(x)=sincos+cos2=sin+cos+=sin+.由f(x)=1,可得sin=.cos=cos[π-(+x)]=-cos(+x)=2sin2(+)-1=-.(2)由acosC+c=b,得a·+c=b,即b2+c2-a2=bc,所以cosA==.因为A∈(0,π),所以A=,B+C=,所以0<B<,所以<+<,所以f(B)=sin+∈.(推荐时间是是:60分钟)一、填空题1.设α、β都是锐角,且c osα=,sin(α+β)=,那么cosβ等于________.答案解析根据α、β都是锐角,且cosα=,sin2α+cos2α=1,得sinα=⇒<α<,又∵sin(α+β)=,∴cos(α+β)=-.又cosβ=cos[(α+β)-α]=co s(α+β)cosα+sin(α+β)sinα=.2.cos+sinα=,那么sin的值是________.答案-解析∵cos+sinα=,∴cosα+sinα=,=,sin=,∴sin=,sin=-sin=-.3.(2021·)在△ABC中,内角A,B,C的对边分别为a,b,c.假设asinBcosC+csinBcosA=b,且a>b,那么∠B等于________.答案解析由条件得sinBcosC+sinBcosA=,依正弦定理,得sinAcosC+sinCcosA=,∴sin(A+C)=,从而sinB=,又a>b,且B∈(0,π),因此B=.4.锐角三角形ABC中,假设C=2B,那么的范围是________.答案(,)解析设△ABC三内角A、B、C所对的边长分别为a、b、c,那么有====2cosB.又∵C=2B<,∴B<.又A=π-(B+C)=π-3B<,∴B>,即<B<,∴<cosB<,<2cosB<.5.△ABC中,角A、B、C的对边分别是a、b、c,且tanB=,·=,那么tanB等于________.答案2-解析由题意得,·=||·||cosB=accosB=,即cosB=,由余弦定理,得cosB==⇒a2+c2-b2=1,所以tanB==2-.6.(2021·改编)计算:4cos50°-tan40°=________.答案解析4cos50°-tan40°======.7.(2021·)如图,在△ABC中,点D在BC边上,AD⊥AC,sin∠BAC=,AB=3,AD=3,那么BD的长为______.答案解析sin∠BAC=sin(+∠BAD)=cos∠BAD,∴cos∠BAD=.BD2=AB2+AD2-2AB·ADcos∠BAD=(3)2+32-2×3×3×,即BD2=3,BD=.8.tan=,且-<α<0,那么=________.答案-解析由tan==,得tanα=-.又-<α<0,可得sinα=-.故==2sinα=-.9.在△ABC中,C=60°,AB=,AB边上的高为,那么AC+BC=________.答案解析依题意,利用三角形面积相等有:AB×h=AC·BCsin60°,∴××=ACBC·sin60°,∴AC·BC=.利用余弦定理可知cos60°=,∴cos60°=,解得:AC2+BC2=.又因(AC+BC)2=AC2+BC2+2AC·BC=+=11,∴AC+BC=.二、解答题10.函数f(x)=sin(2x-)+2cos2x-1(x∈R).(1)求f(x)的单调递增区间;(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,f(A)=,2a=b+c,bc=18,求a的值.解(1)f(x)=sin(2x-)+2cos2x-1=sin2x-cos2x+cos2x=sin2x+cos2x=sin.令2kπ-≤2x+≤2kπ+(k∈Z),得kπ-≤x≤kπ+(k∈Z),即f(x)的单调递增区间为[kπ-,kπ+](k∈Z).(2)由f(A)=,得sin(2A+)=.∵<2A+<2π+,∴2A+=.∴A=.由余弦定理得a2=b2+c2-2bccosA=(b+c)2-3bc.又2a=b+c,bc=18,∴a2=4a2-3×18,即a2=18,a=3.11.(2021·)在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cosB-sin(A-B)sinB+cos(A+C)=-.(1)求cosA的值;(2)假设a=4,b=5,求向量在方向上的投影.解(1)由2cos2cosB-sin(A-B)sinB+cos(A+C)=-,得[cos(A-B)+1]cosB-sin(A-B)sinB-cosB=-,即cos(A-B)cosB-sin(A-B)sinB=-.那么cos(A-B+B)=-,即cosA=-.(2)由cosA=-,0<A<π,得sinA=,由正弦定理,有=,所以,sinB==.由题意知a>b,那么A>B,故B=,根据余弦定理,有(4)2=52+c2-2×5c×,解得c=1或者者c=-7(舍去).故向量在方向上的投影为||cosB=.12.(2021·)如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上,(1)假设OM=,求PM的长;(2)假设点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.解(1)在△OMP中,∠OPM=45°,OM=,OP=2,由余弦定理得,OM2=OP2+MP2-2×OP×MP×cos45°,得MP2-4MP+3=0,解得MP=1或者者MP=3.(2)设∠POM=α,0°≤α≤60°,在△OMP中,由正弦定理,得=,所以OM=,同理ON=.故S△OMN=×OM×ON×sin∠MON=×======.因为0°≤α≤60°,30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)取最大值1,此时△OMN的面积取到最小值,即∠POM=30°时,△OMN的面积的最小值为8-4.。
2019年高考数学二轮复习(11)解三角形教案
![2019年高考数学二轮复习(11)解三角形教案](https://img.taocdn.com/s3/m/3b03e8320975f46526d3e170.png)
2019年高考数学二轮复习(11)解三角形教案【专题要点】正、余弦定理公式及其变形公式,三角形面积公式,三角形形状的判断(化边为角或化角为边),正、余弦定理的应用举例(如:测量距离问题,测量高度问题,测量角度问题,计算面积问题、航海问题、物理问题等)【考纲要求】1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【知识纵横】2222222222sin sin sin (1)::sin :sin :sin (2)2sin ,2sin ,2sin (3)sin ,sin ,sin 2222cos ,2cos ,2cos a b c R A B C a b c A B C a R A b R B c R C a b c A B C R R R b c bc A a c ac B a b ab ⎧===⎪⎪⎧⎪⎪⎪=⎨⎪⎪===⎨⎪⎪⎪⎪===⎪⎩⎩=+-=+-=+-(1)公式:正弦定理(2)变形公式:解三角形(1)公式:a b c 余弦定理222222222cos ,cos ,cos 222:(1):(2)C b c a c a b A B C bc ac ab A B A B ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎨+++===⎪⎩⎧⎧⎫⎨⎪⎪⎪⎩⎪---→⎨⎬⎧⎪⎪⎨⎪⎪⎭⎩⎩-a -b -c (2)变形公式:已知两角及任一边,求其它边角正弦定理解决两类问题::已知两边及一边的对角,求其它边角正、余弦定理在解三角形中的应用实际应用已知两角及夹角问题余弦定理解决两类问题::已知三边问题⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 【教法指引】本节是高考必考内容,重点为正余弦定理及三角形面积公式,考题灵活多样,因此,在实际教学中应注意:1.根据教学实际,启发学生不断提出问题,研究问题。
在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的过程则体现了“通性通法”的常规考查. 【举一反三】 【2013 年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科】△ABC 在内角
A, B, C 的对边分别为 a, b, c ,已知 a b cos C c sin B .
(Ⅰ)求 B; (Ⅱ)若 b 2 ,求△ABC 面积的最大值.
- 10 -
(Ⅱ) 求 f ( x ) 在 0, 上的最大值和最小值. 2
【规律方法】本小题主要考查两角和与差的正弦公式、二倍角的正弦与余弦公式,三角函数 的最小正周期、单调性等基础知识,考查基本运算能力.解决三角函数性质有关的问题时,一 是要熟记相关的结论和公式,二是要注意数形结合。
-8-
三.错混辨析 1.忽视函数的定义域出错 【例 1】 【2013 年普通高等学校招生全国统一考试(天津卷)文科】
已知函数 f ( x) 2 sin 2 x 6sin x cos x 2 cos 2 x 1, x R . 4
(Ⅰ) 求 f ( x ) 的最小正周期;
C.钝角三角形
-2-
6.【2013年普通高等学校招生全国统一考试(新课标I)文科】设当x=θ 时,函数f(x)=sinx- 2cosx取得最大值,则cosθ =______.
7.【2013 年普通高等学校招生全国统一考试(江西卷)文科】函数 y sin 2 x 2 3sin 2 x 的最 小正周期 T 为_______.
2 2 2 2 2 2
a2+b2-c2=2abcos C.
二.高频考点突破 考点 1 三角变换与求值 【例 1】 【2013 年普通高等学校招生全国统一考试(浙江卷)文科】
-6-
已知 R, sin 2 cos A.
10 ,则 tan 2 ( 2
C.
) D.
4 3
π 12
B.
π 6
C.
π 3
D.
5π 6
B. 5. 【 2012 年 普 通 高 等 学 校 招 生 全 国 统 一 考 试 ( 上 海 卷 ) 文 科 】 在 ABC 中 , 若
2 2 2 sin Asin B sin C ,则 ABC 的形状是(
) D.不能确定
A.锐角三角形
B.直角三角形
【举一反三】 【广东省佛山市南海区 2014 届普通高中高三 8 月质量检测文】 已知函数 f ( x) 2sin x(sin x cos x) . (Ⅰ)求 f ( x ) 的最小正周期; (Ⅱ)当 x [0,
2
] 时,求 f ( x) 的最大值.
考点 3 三角形中边角关系 【例 3】 【2013 年普通高等学校招生全国统一考试(山东卷)文科】 设 ABC 的内角 A, B, C 所 对的边分别为 a , b, c ,且 a c 6, b 2 , cos B (Ⅰ)求 a, c 的值; (Ⅱ)求 sin A B 的值.
(Ⅱ) 求 f ( x ) 在区间 0, 上的最大值和最小值. 2
- 11 -
2.忽视边长的固有范围 【例 2】 【2013 年普通高等学校招生全国统一考试(江西卷)文科】在△ABC 中,角 A,B,C 所 对的边分别为 a , b, c ,已知 cos C (cos A 3sin A)cos B 0. (1)求角 B 的大小; (2)若 a c 1 ,求 b 的取值范围.
【错原】 (1)
- 12 -
已知函数 f ( x) cos x sin 2 x ,下列结论中错误的是( A. y f ( x) 的图像关于点 ( , 0) 中心对称 称 C. f ( x ) 的最大值为
)
B. y f ( x) 的图像关于直线 x
2
对
3 2
D. f ( x ) 既是奇函数,又是周期函数
7 . 9
-9-
所以 sin A B sin A cos B cos A sin B
2 2 7 1 4 2 10 2 . 3 9 3 9 27
【规律方法】本题考查了正弦定理和余弦定理的应用,考查了方程思想和运算能力 . 由
cos B
a 2 c 2 b2 7 求 a c 3 的过程中体现了整体代换的运算技巧,而求 sin A B 2ac 9
2014 年高考数学(文)二轮复习精品教学案:专题 03 三角函数与解 三角形
一.考场传真 1. 【 2013 年 普 通 高 等 学 校 招 生 全 国 统 一 考 试 ( 四 川 卷 ) 文 科 】 函 数
f ( x ) 2 s i xn( ) (
2
π 3 y
2
0 ,
y=sin x
对称中心: (kπ , 0)(k
y=cos x
对称中心:
y=tan x
对称性
π ∈Z);对称轴:x= 2 +kπ (k∈Z)
π +kπ ,0(k∈ 2
Z); 对称轴: x=kπ (k ∈Z)
对称中心:
kπ ,0 2
(k∈Z)
3.识破三角函数的两种常见变换 1 横坐标变为原来的 倍 向左φ >0或向右φ <0 ω y= (1)y = sin x ― ― ― ― ― ― ― → y = sin(x + φ ) ― ― ― ― ― ― ― ― → 平移 | φ― | 个单位 纵坐标不变 sin(ω x+φ ) 纵坐标变为原来的A倍 ― ― ― ― ― ― ― → y=Asin(ω x+φ )(A>0,ω >0). 横坐标不变
【题后反思】本题三角函数与导数的结合很巧妙,用导数分析函数的最值,体现在知识的交
- 13 -
汇处命题的原则。
- 14 -
12
B.
6
C.
4
3
3.【2012 年普通高等学校招生全国统一考试(山东卷)文科】若 , , sin 2 = , 8 4 2
-1-
3 7
则 sin =( ) A.
3 5
B.
4 5
C.
7 4
D.
3 4
4. 【2013 年普通高等学校招生全国统一考试(湖北卷)文科】将函数 y 3cos x sin x ( x R) 的 图象向左平移 m (m 0) 个单位长度后,所得到的图象关于 y 轴对称,则 m 的最小值是( A. )
4 8.【2012 年普通高等学校招生全国统一考试(江苏卷)文科】设 为锐角,若 cos , 6 5
则 sin( 2
12
) 的值为
.
9.【2013 年普通高等学校招生全国统一考试(新课标 I 卷)理科】如图,在△ABC 中,∠ABC=
-3-
90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC=90°. 1 (1)若 PB= ,求 PA; 2 (2)若∠APB=150°,求 tan PBA .
-5-
1 横坐标变为原来的 倍 向左φ >0或向右 φ <0 φ― (2)y = sin x ― ― ― ― ― ― ― → ω y = sin ω x ― ― ― ― ― ― ― → y= 平移 | | 个单位 ω 纵坐标不变 sin(ω x+φ ) 纵坐标变为原来的A倍 ― ― ― ― ― ― ― ― ― → y=Asin(ω x+φ )(A>0,ω >0). 横坐标不变 4. “死记”两组三角公式 (1)两角和与差的正弦、余弦、正切公式 ①sin(α ±β )=sin α cos β ±cos α sin β . ②cos(α ±β )=cos α cos β ∓sin α sin β . tan α ±tan β ③tan(α ±β )= . 1∓tan α tan β (2)二倍角的正弦、余弦、正切公式 ①sin 2α =2sin α cos α . ②cos 2α =cos α -sin α =2cos α -1=1-2sin α . 2tan α ③tan 2α = . 2 1-tan α 5. “熟记”两个定理
B.
3 4
3 4
4 3
【规律方法】此题考查同角三角函数商数关系和平方关系的灵活应用,考查二倍角正切公式 的应用,考查学生的运算求解能力. 【举一反三】 【2012 年普通高等学校招生全国统一考试(辽宁卷)文科】 已知 sin cos 2 , (0,π ),则 tan = A. 1 B. ( )
π +2kπ (k∈Z) 2 单调性 上单调递增;在 在[-π +2kπ , 2kπ ](k∈Z)上单调 递增;在[2kπ ,π + 2kπ ](k∈Z)上单调 递减
π 在- +kπ , 2
π +kπ (k∈Z) 2 上单调递增
π +2kπ ,3π + 2 2
2kπ (k∈Z)上单调递 减 函数
二.高考研究 1. 考纲要求:①了解任意角、弧度制的概念,理解任意角三角函数的定义;②理解同角三角 函数的基本关系式,能用诱导公式进行化简求值证明;③掌握三角函数的图像与性质,了 解函数 y A sin x 的图像,了解参数 A, , 对函数图像变化的影响;④掌握和差 角、二倍角公式,能运用公式进行简单的恒等变换;⑤掌握正弦定理、余弦定理和面积公 式,并能解决一些简单的三角形度量问题. 2. 命题规律:本部分常以三角函数的定义、同角三角函数的基本关系式及诱导公式、和差角 二倍角公式为基础考查三角函数的值域、最值、单调性、周期性等问题,而解三角形则以
-4-
正弦定理、余弦定理为依托考查三角形度量问题
一.基础知识整合 1.巧记六组诱导公式 对于“
kπ
2
±α ,k∈Z 的三角函数值”与“α 角的三角函数值”的关系可按下面口诀记忆: