浅谈中学数学中的反证法

合集下载

浅谈数学中的反证法

浅谈数学中的反证法

浅谈数学中的反证法一、反证法的定义关于反证法,牛顿说:“反证法是数学家最精当的武器之一。

”这就充分肯定了反证法在数学应用中的积极作用和不可动摇的重要地位.古希腊数学家欧道克斯正是依据了反证法发现了无理数(√2的非有理性证性明就是一例).罗巴切夫斯基(Lobatchevsky)也是依据了反证法发现非欧几何学,从某种意义上说,也是总结了用反证法证明平行公理失败的教训,从而得到启示的结果.就是说把有理数域扩充到实数以及非欧几何的诞生都是逆向思维——特别是反证法的伟大功绩.鉴于此,近年来的教育工作中,对学生的逆向思维原则的培养得以增强,各大中小学教育中更加注重培养学生思维的多向性、创造性与灵活性.二、反证法的步骤在中学数学题目的求解证明过程中,当直接证明一个命题感到困难时,我们经常采用反证法的思想.由此,我们总结出用反证法证明命题的四个步骤: ①审题一定要将命题的前提,命题的结论弄清楚.②提出假设根据假设的条件以及原命题,对原命题提出否定.③逻辑证明从假设出发,根据数学中现有的公理、定义、公式、定理以及,命题等条件,在逻辑推理的正确引导下得出逻辑矛盾.④肯定结论对原命题的正确性进行肯定.三、反证法的逻辑应用反证法指的是从反面的角度,对问题进行思考的一种证明方法,也是间接证明中的一种类型.换言之,就是对题设肯定,却对结论否定,在这个过程中将矛盾到过来进行推理.四、中学数学中反证法的应用1)否定性命题的证明例题1:三个正整数a,b,c成等比数列,但不成等差数列,求证√a,√b,√c不成等差数列解:假设√a,√b,√c成等差数列,则√a+√c=2√b,两边同时平方得a+c+2√ac=4b.又a,b,c成等比数列,所以b2=ac,即b=√ac,所以a+c+2√ac=4√ac,所以a+c-2√ac=0,即((√a−√c)2=0,所以√a=√c,从而a=b=c,所以a,b,c可以成等差数列,这与已知中“a,b,c不成等差数列”矛盾.原假设错误,故√a,√b,√c不成等差数列.2)限定式命题的证明3)无穷性命题的证明例题3:求证:质数序列2,3,5,7,11,13,17,19......是无限的证:假设质数序列是有限的,序列的最后一个也就是最大质数为P,全部序列为2,3,5,7,11,13,17,19......P再构造一个整数N=2×3×5×7×11×…×P+1显然N不能被2整除,N不能被3整除,……N不能被P整除,即N不能被2,3,5,7,11,13,17,19......P中的任何一个整除,所以N是个质数,而且是个大于P的质数,与最大质数为P矛盾,即质数序列2,3,5,7,11,13,17,19......是无限的.4)逆命题的证明5)某些存在性命题的证明6)全称肯定性命题的证明7)一些不等量命题的证明8)基本命题的证明五、总结。

浅谈反证法在初中数学解题中的应用

浅谈反证法在初中数学解题中的应用

浅谈反证法在初中数学解题中的应用
反证法是一种常用的数学解题方法,在初中数学中也有广泛的应用。

它的基本思想是,在证明某一命题时,先假设该命题不成立,然后通过推导得出矛盾结论,最后证明假设不成立,从而得出原命题的正确性。

在初中数学中,反证法常用于证明“存在性”或“唯一性”等命题。

例如,要证明函数f(x)在区间[a,b]内至少存在一个零点,可以先假设函数f(x)在区间[a,b]内不存在任何零点,然后通过对函数进行推导,得出矛盾结论,最后证明假设不成立,得出函数f(x)在区间[a,b]内至少存在一个零点的结论。

反证法在初中数学中的应用还有:
1.证明几何图形的性质,如证明直线平分圆弧的结论,可以先假设直线不平分
圆弧,然后通过推导得出矛盾结论,最后得出直线平分圆弧的结论。

2.证明数学定理,如证明勾股定理,可以先假设勾股定理不成立,然后通过推
导得出矛盾结论,最后得出勾股定理的正确性。

反证法是一种非常有效的数学解题方法,在初中数学中有广泛的应用。

学会使用反证法,可以帮助学生更好地理解数学知识,提高解题能力。

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析反证法是数学解题中常用的一种证明方法,它通过对反命题进行证明,从而推出原命题的真实性。

在初中数学中,反证法的应用十分广泛,尤其在数学证明和解题过程中起到了重要作用。

本文将通过分析初中数学中常见的反证法运用案例,探讨反证法在数学解题中的运用及其意义。

1.证明题中的应用在初中数学中,证明题是数学学习中的一个重要内容。

而反证法在证明题中常常发挥重要作用。

证明某个命题成立时,我们可以采用反证法,假设命题不成立,然后进行推导证明出现矛盾,从而得出原命题的成立。

2. 数学问题的解答中的应用在初中数学解题中,反证法也常常用于解决一些复杂的数学问题。

有一个常见的数列问题:已知数列的通项公式为an=n^2+n+41,要证明对于任意的整数n,an不可能是素数。

采用反证法,假设存在一个整数n,使得an是素数,然后进行推导得出矛盾,从而证明了原命题的成立。

这个案例展示了反证法在解决数学问题中的应用。

二、反证法在初中数学解题中的意义1. 提高解题的逻辑性反证法在初中数学解题中的应用,可以提高解题的逻辑性,让解题过程更加清晰和严密。

在解题过程中,采用反证法可以让学生对问题进行更全面的思考,不仅能够得出结论,还能够通过推导和反驳的过程加深对问题的理解。

2. 培养学生的思维能力反证法的应用可以培养学生的逻辑思维能力和推理能力。

通过运用反证法,学生需要进行思考、推导和分析,从而加深对问题的理解和抽象能力。

这对学生的思维发展和逻辑能力的培养有着重要的意义。

反证法的应用可以提高学生解题的灵活性。

在解题过程中,遇到一些较为复杂的问题,可以尝试采用反证法来解决。

这种方法能够拓宽解题思路,增加解题的方式和途径,提高解题的灵活性。

三、结语反证法在初中数学解题中的运用极为广泛,它在证明题、数学问题解答及几何问题的解答中发挥着重要作用。

采用反证法不仅可以提高解题的逻辑性和灵活性,还能够培养学生的思维能力。

在教学实践中,应该重视反证法的教学和运用,让学生在解题过程中更加注重推理、严密、逻辑,从而提高数学学习的效果。

浅谈中学数学中的反证法

浅谈中学数学中的反证法

浅谈中学数学中的反证法摘要:反证法在数学中是一种非常重要的间接证明方法,它被称为“数学家最精良的武器之一”,又称为归谬法、背理法。

反证法不仅是一种论证方法,还是一种思维方式,对培养和提高学生的逻辑思维能力和创造性思维能力也有极其重要的作用,还能拓展学生的解题思路,从而使学生形成良好的数学思维。

反证法在中学数学中有着广泛的应用,如今学生在运用反证法解题中,基础一般的学生会受到思维能力的限制,如果能恰当的使用反证法,在一些有难度的题目上也许能够得到解决。

所以本文首先会叙述反证法的产生,具体阐述反证法的定义,即反证法的概念、分类、科学性,介绍反证法在中学数学中的应用并举例分析以及说明应用反证法要注意的问题。

关键词:反证法;中学数学;应用;On the Proof by Contradiction in Middle SchoolMathematicsAbstract:Proof by contradiction is a very important indirect proof method in mathematics, it is called "one of the most sophisticated weapons of mathematicians", also known as reduction to absurdity, unreasonable method. Proof by contradiction is not only an argumentation method, but also a way of thinking. It plays an extremely important role in cultivating and improving students' logical thinking ability and creative thinking ability. It can also expand students' thinking of solving problems, so that students can form good mathematical thinking. Anyway, the method has been widely used in middle school mathematics. Nowadays, when students solve problems with the method of proof by contradiction, the students with general foundation are limited by their thinking ability. If the method of proof by contradiction can be used properly, they may be able to solve some difficult problems. Therefore, this paper will first describe the source of proof by contradiction, specifically elaborate the definition of proof by contradiction, that is, the concept, classification and logical basis of proof by contradiction, introduce the application of proof by contradiction in middle school mathematics and explain the problems to be noticed in the application of proof by contradiction.Keywords:proof by contradiction; Middle school mathematics; Application;目录目录浅谈中学数学中的反证法 (1)1 引言 (1)2 反证法的产生 (1)2.1古希腊的反证法 (1)2.2 中国古代数学中的反证法 (2)3 反证法的定义与步骤 (2)3.1 反证法的定义 (2)3.2反证法的解题步骤 (2)4 反证法的分类与科学性 (4)4.1反证法的分类 (4)4.1.1归谬法例题 (4)4.1.2穷举法例题 (4)4.2反证法的科学性 (5)4.2.1反证法的理论依据 (5)4.2.2反证法的可信性 (5)4.3为什么要使用反证法 (6)5 反证法在中学数学中的应用 (6)5.1基本命题,即学科中的起始性命题 (6)5.2命题采取否定形式 (7)5.3有关个数的命题 (9)5.4结论涉及无限集或数目不确定的命题 (10)5.5不等式类型 (11)5.6几何类型题 (12)6 使用反证法解题过程中要注意的问题 (13)6.1反设要正确 (13)6.2 要明确推理特点 (13)6.3能灵活运用 (13)6.4 反证法与举反例不等同 (14)6.5熟悉矛盾的种类 (14)7 总结 (14)参考文献 (14)致谢 (15)浅谈中学数学中的反证法1 引言反证法是间接论证的方法之一,早在古希腊,一些数学家就用反证法解决了许多数学问题。

反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨初中数学作为学生学习的一门重要学科,是培养学生逻辑思维能力和解决实际问题的能力的重要途径。

在初中数学中,反证法是一种常见的证明方法,也是解决数学问题的有效手段之一。

本文将探讨反证法在初中数学解题中的应用及其重要性,帮助学生更好地理解和掌握这一证明方法。

一、反证法的基本概念我们先来了解一下反证法的基本概念。

反证法是一种证明方法,通过假设所要证明的结论不成立,推导出与已知事实矛盾的结论,从而证明原命题的方法。

简而言之,就是假设反面,然后推导出矛盾,从而推翻原假设,从而达到证明的目的。

要证明“根号2是无理数”,可以采用反证法。

假设根号2是有理数,即可以表示为一个分数a/b,其中a、b为整数,并且a、b没有公因数。

那么,根号2=a/b可得2=(a/b)²,进一步可得2b²=a²。

这时候可以得出,a²是2的倍数,那么a也是2的倍数,设a=2m,那么可以得出2b²=(2m)²,得b²=2m².可见b²也是2的倍数,那么b也是2的倍数。

而这与a、b没有公因数的前提相矛盾,所以得出根号2是无理数。

可以看出,通过反证法,我们成功地证明了根号2是无理数的结论。

二、反证法在初中数学中的应用在初中数学中,反证法常常在几何问题、不等式问题以及集合问题中得到应用。

下面我们将通过具体的数学问题来探讨反证法在初中数学中的应用。

1. 几何问题在初中数学的几何学习中,有些问题需要证明一些形状或者性质的关系,可以运用反证法。

证明平行线性质、三角形全等性质以及圆的性质等。

一般来说,通过假设反面,推导出矛盾来证明原命题的正确性。

举个例子,要证明“平行线上的等角是相等的”,可以采用反证法。

可以假设在平行线上存在两个等角,但是这两个角却不相等。

通过推导出这种假设的矛盾,可以证明原命题的正确性。

2. 不等式问题在初中数学的不等式学习中,有些问题需要证明不等式的大小关系,可以运用反证法。

中学数学中的反证法

中学数学中的反证法

归纳法:通过 归纳推理,从 特殊到一般, 得出一般结论
的方法
关系:反证法 和归纳法是两 种不同的证明 方法,但在某 些情况下可以 相互补充,共 同证明一个命

区别:反证法 主要适用于证 明一个命题为 真,而归纳法 则主要适用于 证明一个命题
为假
反证法是一种间接证明方法,通过否定结论来证明结论不成立 演绎法是一种直接证明方法,通过已知条件推导出结论 反证法适用于难以直接证明的问题,而演绎法适用于容易直接证明的问题
05
简洁明了:反证法可以简洁明了地证明一个命题 易于理解:反证法易于理解,易于掌握 广泛应用:反证法在数学中广泛应用,可以解决许多问题 逻辑严密:反证法逻辑严密,可以保证证明的准确性
反证法需要找到与结论相反 的命题,可能难以找到
反证法需要假设结论不成立, 可能导致结论错误
反证法需要证明假设不成立, 可能难以证明
04
解方程:通过反 证法证明方程无 解
解不等式:通过 反证法证明不等 式成立
解函数问题:通 过反证法证明函 数性质
解数列问题:通 过反证法证明数 列性质
证明两直线平行 证明三角形全等 证明四边形内角和为360度 证明圆周角等于360度
反证法在解三角函数问题时的应用 反证法在证明三角函数恒等式时的应用 反证法在解决三角函数不等式问题时的应用 反证法在解决三角函数最大值和最小值问题时的应用
反证法和演绎法都是数学证明的重要方法,各有优缺点,需要根据具体情况选择使用
汇报人:
证明一个命题的否定为真,但 无法直接证明原命题为假
03
假设结论不成立 假设结论成立的条件 假设结论成立的结果 假设结论成立的结论
推导出与已知条件相矛盾的 结论
假设结论成立

浅谈“反证法”在高中数学的应用

浅谈“反证法”在高中数学的应用

浅谈“反证法”在高中数学的应用反证法,又称归谬法,是一种通过否定或质疑对方的论点,从而证明自己观点正确性的方法。

这种证明方法在高中数学中有着广泛的应用,下面我们就来谈谈反证法在高中数学中的应用。

反证法的原理是:如果一个命题的结论是错误的,那么这个命题的前提也必须是错误的。

这个原理基于逻辑推理的矛盾性,即如果一个命题的前提和结论之间存在矛盾,那么这个命题就是错误的。

根据这个假设,推导出与原命题的结论相矛盾的结论;说明这个矛盾的结论与原命题的结论是矛盾的,从而证明原命题的结论是正确的。

下面我们通过一个实例来说明反证法在高中数学中的应用:例题:求证:在任意三角形ABC中,至少有一个内角小于或等于60度。

证明:假设在三角形ABC中,所有内角都大于60度,即每个内角都大于60度。

根据三角形内角和定理,三角形内角和为180度,因此三角形ABC的内角和大于180度。

但是,这与三角形内角和定理相矛盾,因为三角形的内角和不可能大于180度。

因此,我们的假设是错误的,至少有一个内角小于或等于60度。

通过这个例子,我们可以看到反证法的应用范围很广,可以用来证明各种类型的命题,包括数量关系、不等式、函数性质等等。

虽然反证法在高中数学中有着广泛的应用,但是并不是所有的命题都可以使用反证法来证明。

一般来说,反证法适用于那些结论是“至多”、“至少”等形式的命题,因为这些命题的结论可以被否定。

如果命题的结论是“等于”、“不等于”等形式,那么就不适合使用反证法。

反证法是一种非常重要的数学证明方法,在高中数学中有着广泛的应用。

通过掌握反证法的原理和步骤,我们可以更好地理解和掌握数学中的各种知识点,提高自己的数学素养。

使用反证法也可以培养我们的逻辑思维能力,让我们更加严谨、准确地思考问题。

因此,我们应该认真学习反证法,并将其应用到实际生活中去。

在中学数学的学习过程中,我们经常会遇到一些看似简单但实际上需要巧妙思维才能解决的问题。

这时候,反证法就像是一把利剑,能帮助我们破解难题。

浅谈反证法在中学数学中的应用

浅谈反证法在中学数学中的应用

浅谈反证法在中学数学中的应用反证法是一种间接法,证明定理的一种方法,先提出和定理中的结论相反的假定,然后从这个假定中得出和已知条件相矛盾的结果来,这样就否定了原来的假定而肯定了定理,也叫归谬法. 反证法是一种间接证法,它不直接证明论题“若A则B”(即A→B)为真,而是从反面去证明它的否定命题“既A且B”为假,从而肯定“若A则B”为真的证明方法.1.2 反证法的来源1.2.1 古希腊的反证法反证法,无论是逻辑上的还是数学上的,它的概念都是一致的.即是反证法是证明的一种方法.西方数学在毕达哥拉斯学派的影响下,认为万物皆数.但随着这个表征数学史第一次危机“根号2”的问题的出现,使得希腊人重新审视了自己的数学,这最终导致希腊人放弃了以数为基础的几何.1.2.2 中国古代数学的反证法在我们中国的传统数学中,本身对于演绎的证明一般就不太重视,而且中国传统逻辑学的不完备,尽管我们中国的先辈们认识到了一些逻辑规律,并且在魏晋时期就已经大兴辩难之风,但是他们大多使用的都是类似于反驳,在他为《九章算术》作注释时也多次采用了归谬论证法,墨子也使用归谬法.但是应该指出,明确的反证法的用法却是凤毛麟角,在这一点上与西方存在着差别极大,而在中国数学中,即便是刘徽这位我国古代在理论与逻辑方面都很擅长的数学大师,也只是用到了反驳(如:举反例).1.2.3 反证法的其他来源① 墨子的“归谬法”例如:“学之益也,说在诽者.”通过证明“学习无益”是假,而得到“学习有益”的命题是真.这是一个非常有意思的反证法的特例.而将其归为归谬论证欠妥切,归谬是反驳的一种方法,显然在这里是证明一个命题为真.② 刘徽的“证伪法”在我们的数学中,我们都只将证明与反驳对应为直接证明、归谬法(如反例法)与间接证明(如反证法).从这意义来说,刘徽他并没有使用过反证法,他仅仅只是在使用归谬法,只是在推翻一些假命题,即在证伪.1.3 反证法的一般步骤学习反证法应把握它的一般步骤:反设:假定所要证的结论不成立,而设结论的反面(否定命题)成立;归谬:将“反设”作条件,由此出发经过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理及明显的事实矛盾或自相矛盾.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误.既然结论的反面不成立,从而肯定了结论成立.具体方法:命题r=在C下,若A则B反证:若A则¬B,证明¬B与A的矛盾例1求证 A(原论题)证明 (1)设非A真(非A为反论题)(2)如果非A,则B(B为由非A推出的论断)(3)非B(已知)(4)所以,并非非A(根据充分条件假言推理的否定后件式)(5)所以,A(非非A=A).例2如果a是大于1的整数,而所有不大于a的素数都不能整除a,则a是素数.证明假设a是合数,记a=bc (b、c∈Z,且b, c>1),由于a不能被大于1且不大于a的素数整除,所以b>a,c>a,从而bc>a,这与假设a=bc矛盾,故a是素数.2. 反证法的适用范围究竟什么样的命题可以用反证法来证呢?当然没有绝对的标准,但证题的实践告诉我们:下面几种命题一般用反证法来证比较方便.2.1否定性命题即结论以“没有……”“不是……”“不能……”等形式出现的命题,直接证法一般不易入手,而反证法有希望成功.例3 求证:在一个三角形中,不能有两个角是钝角.已知:∠A,∠B,∠C是三角形ABC的三个内角.求证:∠A,∠B,∠C中不能有两个钝角.证明假如∠A,∠B,∠C中有两个钝角,不妨设∠A>900,且∠B>900,则∠A+∠B+∠C>1800.这与“三角形内角和为1800”这一定理相矛盾. 故∠A,∠B均大于900不成立.所以一个三角形不可能有两个钝角.2.2限定式命题即结论中含有“至多”、“至少”、“不多于”或“最多”等词语的命题.例4 求证:素数有无穷多个.证明假设素数只有n个: P1、P2……Pn,取整数N=P1?P2……Pn+1,显然N不能被这几个数中的任何一个整除.因此,或者N本身就是素数(显然N不等于“P1、P2、……Pn中任何一个),或者N含有除这n个素数以外的素数r,这些都与素数只有n个的假定相矛盾,故素数个数不可能是有限的.2.3某些存在性命题例5 设x,y∈(0,1),求证:对于a, b∈R ,必存在满足条件的x,y,使|xy - ax - by|≥31成立.证明假设对于一切x,y∈〔0 , 1〕使|xy - ax- by| <31恒成立,令x = 0, y = 1 ,则|b|<31令x = 1 , y = 0,得| a| <31令x = y = 1,得| 1 - a - b| <31.但| 1 -a - b| ≥1 - | a| - | b| >1 -31-31=31产生矛盾,故欲证结论正确.2.4一些不等量命题的证明如:不等式,反证法是证明它的一种重要方法,但当结论反面有无穷多种情况时,一般不宜用反证法.2.5基本命题例6. 求证:两条相交直线只有一个交点.已知:如图,直线a、b相交于点P,求证:a、b只有一个交点.证明假定a,b相交不只有一个交点P,那么a, b至少有两个交点P、Q.于是直线a是由P、Q两点确定的直线,直线b也是由P、Q两点确定的直线,即由P、Q两点确定了两条直线a,b.与已知公理“两点只确定一条直线”相矛盾,则a,b不可能有两个交点,于是两条相交直线只有一个交点.2.6整除性问题例7. 设a、b都是整数,a2+b2 能被3整除,求证:a和b都能被3整除.证明假设a、b不都能被3整除.分三种情况讨论:(1)a、b都不能被3整除,因a不能被3整除,故a2不能被3整除,同理,b2不能被3整除,所以a2+b2也不能被3整除,矛盾.(2)a能被3整除,b不能被3整除,可得a2能被3整除,b2不能被3整除,故a2+b2也不被3整除,矛盾.(3)同理可证第三种情况.由(1)(2)(3)得,原命题成立.参考文献[1]赵雄辉.证明的方法[M].湖南:湖南人民出版社.2001:85-92.[2]龙朝阳.反证法的理论基础与适用范围[J].安顺师专学报.1999(2):40-46.[3]陈国祥.适合用反证法证明的几类问题[J].中学数学教学参考.1994(7):22-23.[4]颜长安.反证法初探[J].数学通讯. 2001(13):22-24.[5]高珑珑.反证法例说[J].中学数学月刊. 1997(4):33-35.[6]徐加生.例谈正难则反的解题策略[J]. 数学教学研究.1999(4):12-13.。

浅谈中学数学中的反证法

浅谈中学数学中的反证法

浅谈中学数学中的反证法数学作为高考的重要学科,一直以来备受学生和老师的关注。

因此寻求数学中解题方法,提高数学解题能力和数学成绩,成为探讨的对象。

在解题过程中如果能够找到适当的解题方法,就可以使问题简单化,更容易获取答案,而反证法正是数学解题方法的一种,它在数学领域中起着重要的作用。

下面从反证法的来源,反证法的定义,解题思路,适用范围和注意事项做一些简单的论述。

一、反证法的来源对反证法的认知,我们可以先由一个小故事引出:在古希腊时期,有三个哲学家,他们经常在一起争论一些事情。

有一天他们又聚在一起,并且进行了激烈的争论,加上天气的炎热,感到非常疲劳,于是在花园里的一棵大树下躺下休息,过了一会这三个哲学家就睡着了。

这时一个爱开玩笑的人用炭涂黑了他们的前额,三人醒过来后,彼此相看而笑,每人都在取笑其他两个人,而没想到自己脸上也被抹黑。

隔了一会其中有一个人突然不笑了,因为他发觉自己的脸上也被涂黑了。

那他到底是怎样觉察到的呢?实际上,发现自己脸上被涂黑者,并非从正面直接看到,而是据他观察另外两人的表情之后,并进行分析、思考,从反面得出自己脸也被涂黑了。

小故事虽然简单,但却是数学上的重大发现,即反证的方法。

当从正面不容易解决问题时,就可以考虑运用反证法。

二、反证法的定义及理解一般的,由证明pq转向证明-qr…t,t与假设矛盾,或与某个真命题矛盾,从而判定-q为假,推出q为真的方法,叫做反证法。

也即是说反证法是一种从反面思考问题的证明方法,属于“间接证明”的一类,即肯定题设而否定结论,运用演绎推理,导出矛盾,从而肯定结论的正确性。

三、反证法的解题思路及步骤设要证的命题为“若A则B”,其中A是题设,B是结论,A、B本身也都是数学判断,那么用反证法证明命题一般分下面三个步骤:1.反设:作出与要证结论相反的假设;2.归谬:将反设作为条件,并由此通过一系列的正确推理,导出矛盾;3.结论:说明反设不成立,从而肯定原命题成立。

浅谈中学数学中的反证法

浅谈中学数学中的反证法

浅谈中学数学中的反证法1. 定义与基本原理反证法,又称归谬法,是数学证明中一种重要且独特的证明方法。

其基本思想是先假设命题的反面(即要证命题的否定)成立,然后通过合理的逻辑推理,推导出与已知事实、定理、公理或逻辑原则相矛盾的结果,从而由于矛盾的存在,证明原假设(即命题的反面)不成立,进而间接证明原命题成立。

2. 逻辑依据与分类逻辑依据反证法的逻辑依据在于反证法的逻辑结构——反设、归谬、存真。

即首先反设命题的反面为真,然后通过逻辑推理导出矛盾,最后根据矛盾律(在同一思维过程中,两个相互矛盾的思想不能同时为真,必有一假),断定反设不成立,从而肯定原命题为真。

分类根据反设后推导出的矛盾点不同,反证法可以分为直接反证法和间接反证法。

直接反证法是通过推导出与已知事实或定理直接相矛盾的结果来证明;间接反证法则是通过假设多个情况并分别推导矛盾,最后排除所有可能,从而证明原命题。

3. 应用步骤1. 反设:根据原命题,假设其反面成立。

2. 归谬:基于假设,通过逻辑推理,推导出与已知事实、定理、公理或逻辑原则相矛盾的结果。

3. 存真:由于矛盾的存在,根据矛盾律,断定原假设(即命题的反面)不成立,从而间接证明原命题成立。

4. 适用范围反证法在数学中广泛应用于证明存在性命题、唯一性命题以及某些难以直接证明的命题。

特别是在处理一些“至少”、“存在”等类型的命题时,反证法往往能化繁为简,提供简洁明了的证明思路。

5. 典型例题解析例:证明根号2是无理数。

反设:假设根号2是有理数,那么它可以表示为两个互质的正整数的比,即存在正整数m,n(m,n互质)使得根号2 = m/n。

归谬:两边平方得2 = m^2/n^2,即m^2 = 2n^2。

由于m,n互质,若n为奇数,则m^2为偶数,进而m也为偶数,设m = 2k(k为正整数),则4k^2 = 2n^2,即n^2 = 2k^2,同样推出n为偶数,这与m,n互质矛盾。

存真:因此,假设不成立,根号2是无理数。

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析反证法是数学解题中经常使用的一种推理方法,它可以帮助我们证明一个命题是错误的。

在初中数学中,我们经常会在解题过程中运用反证法来断定一个命题的正确性,或者找到一个反例来否定一个命题。

一、反证法的基本思想反证法是一种证明方法,通过反证法可以推断出某些事物的非真实性或者不存在性。

其基本思想是反设所证命题的否定命题,然后通过证明所得到的结果与已知事实矛盾,从而得出所证的命题是成立的结论。

二、反证法在初中数学解题中的典型案例1. 一元二次方程无解性证明在初中数学中,我们学习了一元二次方程的求解方法,通常的形式是ax^2 + bx + c = 0。

如果我们想证明一个一元二次方程无实数解,就可以运用反证法。

我们可以按照以下的步骤进行证明:反设方程ax^2 + bx + c = 0有实数解,即方程存在实数根。

那么我们可以求出方程的判别式Δ=b^2-4ac,如果Δ<0,则方程无实数解。

2. 整数平方根不是整数的证明在初中数学中,我们学习了整数的性质,其中有一条是“如果一个整数不是平方数,那么它的平方根不是整数”。

我们可以通过反证法来证明这个命题:反设一个整数的平方根是整数,即√n是整数。

那么我们可以得到n=√n^2是一个平方数。

但是根据正整数的性质,如果n不是平方数,那么n的平方根不是整数。

从而得出矛盾,证明了原命题是正确的。

1. 提高逻辑思维能力通过运用反证法解题,可以帮助学生培养逻辑思维能力。

学生需要反设一个命题的否定命题,并通过逻辑推理来得出结论,这种训练能够提高学生的逻辑推理能力和思维能力。

2. 帮助理解抽象概念在初中数学中,有许多抽象概念需要学生进行理解和运用,如实数的性质、多项式的因式分解、几何图形的性质等。

通过反证法来解题,可以帮助学生更好地理解和应用这些抽象概念,提高他们的数学水平。

3. 培养问题解决能力反证法在数学解题中的运用,需要学生灵活运用所学知识来解决问题。

反证法在中学数学中的应用及教学研究

反证法在中学数学中的应用及教学研究

反证法在中学数学中的应用及教学研究
反证法是求证数学问题中常见的一种间接证明方法,广泛应用于中学数学各知识分支中。

以下是反证法在中学数学中的应用及教学研究:
应用:
1. 反证法在中学数学中主要用于证明某些命题或不等式。

例如,在证明三角形中的一些性质时,常常采用反证法。

2. 在几何学中,反证法也被广泛应用于证明一些关于图形的基本性质。

例如,在证明勾股定理时,常常采用反证法。

3. 在代数中,反证法也被用于证明一些不等式或等式。

例如,在证明一些代数恒等式时,常常采用反证法。

教学研究:
1. 反证法的应用:在中学数学教学中,教师需要引导学生理解反证法的原理和应用。

教师可以通过实例和练习题来帮助学生理解反证法的应用。

2. 反证法的思维方式:反证法是一种间接的证明方法,需要先假设相反的结论,然后推导出矛盾,从而否定假设并证明原命题。

这种思维方式需要教师在教学过程中引导学生逐步掌握。

3. 反证法的技巧:在应用反证法时,需要一些技巧,例如如何假设相反的结论、如何推导出矛盾等。

教师需要在教学过程中引导学生掌握这些技巧。

4. 反证法的意义:反证法是一种重要的数学证明方法,它能够帮助学生训练逻辑思维和创造性思维,提高分析和解决问题的能力。

因此,教师在教学过程中需要强调反证法的意义和作用。

总之,反证法在中学数学中具有广泛的应用和教学研究价值。

通过掌握反证法的原理、技巧和思维方式,学生可以更好地理解和应用数学知识,提高数学素养和能力。

反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨反证法是一种常见的证明方法,它的核心思想是通过假设反面来得出正面结论。

在初中数学中,反证法也是常用的解题方法。

在本文中,我们将探讨反证法在初中数学解题中的应用。

一、什么是反证法反证法是一种常见的证明方法。

它的核心思想是:在证明某个命题时,我们先假设它的反面成立,再通过逻辑推理得到矛盾结论,从而说明这个假设是错误的,因此原命题成立。

例如,在证明“对于任意整数n,如果n²是偶数,则n是偶数”时,可以采用反证法。

我们假设n是奇数,即n=2m+1,其中m是整数。

那么,n²就是(2m+1)²=4m²+4m+1,显然是奇数,而不是偶数。

这与原假设矛盾,所以我们得到结论:对于任意整数n,如果n²是偶数,则n是偶数。

在初中数学中,反证法广泛应用于各个领域,例如代数、几何、概率等。

下面我们将以一些例子来说明。

在代数中,反证法通常用于证明一个方程没有实数根。

例如,我们考虑如何证明方程x² + 1 = 0 没有实数解。

我们可以采用反证法,假设有一个实数x满足x²+1=0,那么x²=-1,这个方程没有实数解,因此假设成立的前提是错误的,所以原方程没有实数根。

2. 反证法在几何中的应用在几何中,反证法通常用于证明某个结论是错的或者某条性质是不成立的。

例如,在平面几何中,我们想要证明“一个正方形的对角线互相垂直”。

我们可以采用反证法,假设正方形的对角线不互相垂直。

在图中,我们可以找到一个三角形ABC,因此∠ABD +∠AED + ∠BDE + ∠DEC = 360°。

然而,由于正方形的每个内角是90°, 因此∠ABD + ∠BDE = 90°, ∠AED + ∠DEC = 90°。

将它们代回原方程中,我们得到90°+90°+90°+90° = 360°, 说明原假设错了,证明了对角线互相垂直的结论。

谈谈中学数学的反正法

谈谈中学数学的反正法

谈谈中学数学的反正法
中学数学的反证法是一种证明方法,通常用于证明数学命题或定理的正确性。

它的核心思想是通过假设命题的反命题或者假设定理的否定,从而推导出矛盾,证明原命题或定理的正确性。

本文将对中学数学的反证法进行探讨,并且说明该方法的优点和不足之处。

首先,中学数学的反证法的应用非常广泛,尤其是在几何学和数学分析中。

在几何学中,我们经常需要证明的几何定理都是基于某些条件成立的,而反证法能够帮助我们确定这些条件是否是必要的。

在数学分析中,反证法也被广泛应用于证明各种极限和连续性定理。

其次,中学数学的反证法的优点是它通常能够证明一些比较难证明的定理,因为该方法允许我们假设定理的否定,然后通过推导出矛盾来证明原定理的正确性。

这样,我们就能够在不直接证明原定理的情况下,间接地证明它的正确性。

此外,反证法还能够帮助我们更好地理解数学概念和定理,因为在证明过程中我们需要深入思考数学定义和性质。

然而,中学数学的反证法也存在一些不足之处。

首先,该方法有时会导致证明过程非常冗长和复杂,因为我们需要考虑多种可能性,同时还需要保证推导过程的严谨性。

此外,反证法只能证明定理的正确性,而不能提供更多的信息,因此在某些情况下,直接证明定理可能更加简单和清晰。

综上所述,中学数学的反证法是一种强大的证明方法,它能够帮
助我们证明一些比较难证明的数学定理和命题。

尽管它存在一些不足之处,但是在适当的情况下,它仍然是一种非常有用的工具,可以帮助我们更好地理解数学概念和定理,以及提高我们的证明能力。

初中数学解题方法:反证法

初中数学解题方法:反证法

初中数学解题方法:反证法初中数学解题方法:反证法反证法,亦称“逆证”,是间接论证的方法之一,是通过断定与论题相矛盾的判断的虚假来确立论题的真实性的论证方法。

以下是小编为大家整理的初中数学解题方法:反证法相关资料,供大家参考。

反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。

用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。

推理必须严谨。

导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

本章节的初中数学学习方法汇编之反证法,相信同学们都认真记忆了吧。

接下来还有更多更全的初中数学学习方法等着大家来掌握哦。

初中数学解题方法之常用的公式下面是对数学常用的公式的讲解,同学们认真学习哦。

对于常用的公式如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。

总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。

你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。

初中数学解题方法之学会画图数学的解题中对于学会画图是有必要的,希望同学们很好的学会画图。

纵向梳理反证法在初中、高中数学教学中的运用,打造教案

纵向梳理反证法在初中、高中数学教学中的运用,打造教案

本文主要探讨反证法在初中、高中数学教学中的应用和如何通过梳理知识点建立精品教案,从而提高教学效果。

一、反证法在数学教学中的应用反证法是数学中常见的一种证明方法,它运用到了“归谬法”的思想,即通过假设与目标结论相反的前提,再通过一系列合理的推理来得出前提不成立的结论,从而证明目标结论。

在初中、高中数学中,反证法广泛应用于数学证明中,可以运用到以下几个方面:1.一元二次方程无解时,也就是判别式小于零时,反证法可以通过假设方程有解来推导出矛盾结论。

2.所有有限数可转化为分数的证明中,反证法可以通过假设某一个有限数不能转化为分数,然后推导出矛盾结论。

3.证明无理数存在的问题中,反证法可以通过假设只存在有理数,然后推导出矛盾结论。

4.证明平方根不是有理数的问题中,也可以通过反证法来解决。

反证法在数学证明中的应用非常广泛,可以帮助学生提高逻辑思维和证明能力。

二、梳理知识点建立精品教案针对初中、高中数学教学中反证法的应用,我们可以通过梳理知识点来建立精品教案,提高教学质量和效果。

具体的步骤如下:1.梳理知识点我们需要对反证法在数学证明中的应用进行全面的梳理,明确适用于哪些知识点,如何运用反证法来证明这些知识点。

2.挖掘问题在梳理知识点的基础上,我们需要挖掘出学生易错的问题,针对这些问题,设计一些练习,帮助学生理解反证法的应用和推导过程。

3.提高教学效果为了提高教学效果,我们可以结合反证法的应用来进行课堂教学,例如在探究无理数存在性质时,可以通过反证法来展开思考,并对学生进行实践性的训练。

4.梳理教案我们需要根据梳理知识点、挖掘问题和教学效果,来梳理一份高质量的教案,包括知识点解析、典型例题分析、练习题以及考点集锦等。

通过梳理知识点建立精品教案,不仅可以帮助学生掌握反证法的应用和推导技巧,也可以提高教学质量和教学效果,从而取得更好的教学成果。

反证法在初中、高中数学教学中的应用是必不可少的,我们应充分发挥其在思维训练和证明技巧上的优势,通过梳理知识点打造精品教案,提高教学质量和效果,助力学生成长和发展。

浅谈中学数学中的反证法

浅谈中学数学中的反证法

本科生毕业论文浅谈中学数学中的反证法院系:数学与计算机科学学院专业:数学与应用数学班级: 2008级数学与应用数学(2)班学号: 200807110211 姓名:黎康乐指导教师:陈志恩完成时间: 2012年5月26日浅谈中学数学中的反证法摘要: 数学命题的证明分直接证法和间接证法两种.在间接证法中,最常见的是反证法.虽然平时我们接触了相关方面的知识,但比较零散,对其概念、应用步骤、使用范围等没有系统的认识,并且由于数学命题的多样性、复杂性,哪些命题适宜用反证法很难给出确切的回答.本课题通过查阅资料和自己在学习数学过程中的发现就中学数学中反证法的概念、反证法的逻辑依据、种类及步骤,解题过程中怎样由假设出发寻找矛盾、以及哪些类型的问题适宜从反证法出发进行证明的问题进行了归纳.并总结出在学习反证法的过程中应注意的三个方面,通过对以上提出的所有问题进行系统归纳,这有利于帮助学生系统的学习反证法,提高学生利用反证法进行解题的技巧从而达到预期效果.关键词:反证法假设矛盾结论Abstract:The mathematical proof points directly proofs proposition and indirect proof two。

In indirect proof,the most common is required. Although peacetime we contact with the related knowledge,but is scattered,of the concept, application procedures,the scope of use of not understanding of the system,and the mathematical proposition the diversity and complexity, which is suitable for proposition is very difficult to give the exact with reduction to answer. This subject will be required in the middle school mathematics concept, apagoge is logical basis, types and steps, problem solving process of how a hypothesis of contradictions, and looking for what types of questions appropriate counter-evidence method from the proof of the set out on the induction. And summed up in the process of learning be should be paid attention in the three aspects,through all the questions put to the above system induce,this will help the students to learn the required system,improve the students use to problem solving skills required to achieve the expected effect。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈中学数学中的反证法
山东省潍坊市峡山生态经济发展区峡山中学栾秀玲崔希明
数学作为高考的重要学科,一直以来备受学生和老师的关注。

因此寻求数学中解题方法,提高数学解题能力和数学成绩,成为探讨的对象。

在解题过程中如果能够找到适当的解题方法,就可以使问题简单化,更容易获取答案,而反证法正是数学解题方法的一种,它在数学领域中起着重要的作用。

下面从反证法的来源,反证法的定义,解题思路,适用范围和注意事项做一些简单的论述。

一反证法的来源
对反证法的认知,我们可以先由一个小故事引出:在古希腊时期,有三个哲学家,他们经常在一起争论一些事情。

有一天他们又聚在一起,并且进行了激烈的争论,加上天气的炎热,感到非常疲劳,于是在花园里的一棵大树下躺下休息,过了一会这三个哲学家就睡着了。

这时一个爱开玩笑的人用炭涂黑了他们的前额,三人醒过来后,彼此相看而笑,每人都在取笑其他两个人,而没想到自己脸上也被抹黑。

隔了一会其中有一个人突然不笑了,因为他发觉自己的脸上也被涂黑了。

那他到底是怎样觉察到的呢?
实际上,发现自己脸上被涂黑者,并非从正面直接看到,而是据他观察另外两人的表情之后,并进行分析、思考,从反面得出自己脸也被涂黑了。

小故事虽然简单,但却是数学
上的重大发现,即反证的方法。

当从正面不容易解决问题时,就可以考虑运用反证法。

二反证法的定义及理解
一般的,由证明q
p⇒转向证明t

⌝ ,t与假设
q⇒
r

矛盾,或与某个真命题矛盾,从而判定q⌝为假,推出q为真的方法,叫做反证法。

也即是说反证法是一种从反面思考问题的证明方法,属于“间接证明”的一类,即肯定题设而否定结论,运用演绎推理,导出矛盾,从而肯定结论的正确性。

三反证法的解题思路及步骤
设要证的命题为“若A则B”,其中A是题设,B是结论,A、B本身也都是数学判断,那么用反证法证明命题一般分下面三个步骤:
(1)反设:作出与要证结论相反的假设;
(2)归谬:将反设作为条件,并由此通过一系列的正确推理,导出矛盾;
(3)结论:说明反设不成立,从而肯定原命题成立。

四反证法的适用范围
反证法”是一种非常重要的数学方法,在三角、代数、立体几何、解析几何中应用非常广泛。

下面就学过的例子及实践,介绍几种适用反证法的题型。

(一)基本命题的应用
下面所举的例子,经过分析,用直接法证明两条直线是
异面直线比较困难,所以考虑采用反证法。

例1 已知A、B、C、D是空间的四个点,AB、CD是异面直线。

求证:AC和BD是异面直线。

证明:假设AC和BD不是异面直线,那么AC和BD在同一平面内。

因此,A、C、B、D四点在同一平面内,这样,AB、CD 就分别有两个点在这个平面内,则AB、CD在这个平面内,即AB和CD不是异面直线。

这与已知条件产生矛盾。

所以,AC和BD是异面直线
(二)限定式命题的应用
限定式命题,在要证的结论中含有“至少”、“最多”等词语的命题。

例2 已知函数f(x)是单调函数,则方程f(x)=0 最多只有一个实数根。

证:假设方程至少有两个根x
1,x
2
且x
1
≠x2,
则有 f(x
1)=f(x
2
) (x
1
≠x2)
这与函数单调的定义产生矛盾,所以原命题成立。

(三)唯一性问题的应用
“唯一性”问题:在给出的问题中,所要证明的结论,只有一个符合条件时,这种情况下也可考虑采用反证法。

例3 过平面α上的点A的直线α

a,求证:a是唯一的。

证明:假设a 不是唯一的,则过A 至少还有一条直线b ,α⊥b
∵a 、b 是相交直线,
∴a 、b 可以确定一个平面β。

设α和β相交于过点A 的直线c 。

∵α⊥a ,α⊥b ,
∴c a ⊥,c b ⊥。

这样在平面β内,过点A 就有两条直线垂直于c ,这与定理产生矛盾。

所以,a 是唯一的。

(四) 无穷性命题的应用
无穷性命题:所涉及各种含有“无限”结论的命题。

例4 求证:2是无理数。

分析:这个命题可使用的条件实在太少,从正面解决非常困难。

而无理数又是无限不循环的,“无限”与“不循环”都很难表示出来。

当反设2是有理数时,就增加了一个具体
而有效的“条件”,使得能方便地将
2表示为一个分数,所以采用反证法。

证明:假设
2是有理数,则存在b a N b a ,.,且∈互质,使2222b a b
a =⇒=,从而,a 为偶数,记为c a 2=,∴224c a =,∴222
b
c =,则b 也是偶数。

由a ,b 均为偶数与a 、b 互质矛盾,故2是无理数。

(五) 不可能性命题的应用
不可能性命题:即所给结论中含有“不是”、“不可能”、“不存在”等词语的命题。

这类命题的反面比较具体,特别适合应用反证法。

例5 CD
AB、为圆两条相交弦,且不全为直径,
求证:CD
AB、不能互相平分。

证明:假设弦CD
AB、被P点平分,
由于P点一定不是圆心,连接OP,
则有CD
OP⊥
⊥,,
AB
OP
即过一点P有两条直线与OP垂直,这与垂线性质矛盾,所以弦CD
AB、不能被P平分。

以上只是选取几类适用反证法的题型,其中还有某些存在性命题,逆命题,全称存在性命题等也同样适用非常广泛。

五反证法应用时应注意的问题
(1)正确否定结论
运用反证法证明命题的第一步是:反设,即假设命题的结论不成立,假设结论的反面成立。

在这一步骤中,必须注意正确的“否定结论”,这是正确运用反证法的前提,否则,如果错误地“否定结论”,即使推理、论证再好也都会前功尽弃。

例如:命题“一个三角形中,最多有一个内角是直角”。

“最多有一个”是指:“只有一个”或“一个没有”,其反面是“有两个直角”或“三个内角都是直角”,即“至少有两
个是直角”。

(2)明确推理特点
运用反证法证明命题的第二步是:归谬,即从假设出发,经过推理论证,得出矛盾。

但何时出现矛盾,出现什么样的矛盾是不能预测的,有的甚至是捉摸不定的.这就要求在整个推理过程中,必须认真分析、仔细推敲,在提出“假设”后,再回过头来看看“假设”的对立面是否恰是命题的结论。

这样导致的矛盾才是有效的。

尽管反证法是一种重要的证明命题的方法,但也不是所有的命题都用反证法。

一般情况下,对于“若p则q”型的数学命题,都能用反证法证明,但证明难度会有所不同。

所以在证明时,首先采用直接法,其次再使用反证法。

英国近代著名数学家哈代曾经这样说:“反证法是数学家最有利的一件武器,比起象棋开局时牺牲一子以取得优势的让棋法,它还要高明。

”实践表明,证明反证法是数学中最有效和常用的证明方法之一, 在数学学习中有着不可替代的作用. 并以其独特的证明方法和思维方式,对培养学生逻辑思维能力和创造性思维有着重大的意义。

同时,反证法不仅可以单独使用,也可以与其他方法结合使用,并且在一道题中可以多次使用,只要能够熟练掌握并学会运用,就能提高对证明题的解题能力. 当然,反证法在其它领域应用也非常广泛,这就需要作进一步的研究。

相关文档
最新文档