三角函数的图象和性质
三角函数的定义和性质
三角函数与复数的基本关系:复数可以表示为三角函数的形式,即z=r(cosθ+i sinθ)。
三角函数在复平面上的表示:复平面上,三角函数可以表示为点或向量,其模长和幅角分别对应于实部和虚部。
三角函数与复数在交流电中的应用:交流电的电压和电流可以用三角函数表示,而复数则可以更方便地描述正弦波的幅度和频率。
04
三角函数的扩展知识
反三角函数
添加标题
添加标题
添加标题
添加标题
性质:反三角函数具有连续性、单调性、奇偶性和周期性等性质。
定义:反三角函数是三角函数的反函数,表示为arcsin、arccos和arctan等。
图像:反三角函数的图像与三角函数图像关系密切,可以通过三角函数图像得出反三角函数图像。
应用:反三角函数在数学、物理和工程等领域有广泛应用,例如求解三角形、解决极值问题等。
三角恒等式和不等式
三角恒等式:表示三角函数之间关系的等式,如正弦、余弦、正切等函数之间的相互转化。
三角不等式:表示三角函数值大小关系的不等式,用于比较三角函数值的大小或证明不等关系。
三角恒等变换:通过三角函数的和差、倍角、半角等公式,进行恒等变换,简化表达式或证明等式。
三角不等式的证明方法:利用三角函数的性质和几何意义等方法,证明三角不等式的关系。
三角函数与复数在信号处理中的应用:信号处理中,信号常常被表示为复数形式的三角函数,这使得信号的合成、分析和滤波变得更加方便。
汇报人:XX
感谢观看
周期性:三角函数具有明显的周期性,图像呈现规律性的重复。
奇偶性:三角函数具有奇偶性,可以根据函数值的正负判断其奇偶性。
最大值和最小值:三角函数具有最大值和最小值,可以通过函数的极值点判断其最大值和最小值。
高一数学三角函数的图像和性质
高一数学三角函数的图像性质1、正弦函数和余弦函数的图象:正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππππ的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。
2、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。
(2)值域:都是[]1,1-;①对sin y x =,当()22x k k Z ππ=+∈时,y 取最大值1;当()322x k k Z ππ=+∈时,y 取最小值-1;②对cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。
3、周期性:①sin y x =,cos y x =的最小正周期都是2π;②()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=。
4、奇偶性、对称性与单调性: 奇偶性与单调性:①正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2x k k Z ππ=+∈;②余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ⎛⎫+∈ ⎪⎝⎭,对称轴是直线()x k k Z π=∈;(正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。
单调性: ①()sin 2,222y x k k k Z ππππ⎡⎤=-+∈⎢⎥⎣⎦在上单调递增,在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦单调递减; ②cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。
知识点:画出三角函数图像。
三角函数的图象与性质 (共44张PPT)
(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;
三角函数的图像和性质
(ω>0)的最小正周期为π,则函数 ( π B.关于直线x= 对称 8 π D.关于点8 ,0对称 )
π 2π 解析:∵f(x)=sin ωx+4 的最小正周期为π,∴ ω =π,ω=2, π π π 3π ∴f(x)=sin 2x+4 .当x= 时,2x+ = ,∴A、C错误;当x 4 4 4
[即时应用] 求函数 y=cos x+sin
2
π x|x|≤ 4的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
2.求三角函数单调区间的 2 种方法 (1)代换法: 就是将比较复杂的三角函数含自变量的代 数式整体当作一个角 u(或 t),利用基本三角函数的单调性 列不等式求解. (2)图象法:画出三角函数的正、余弦曲线,结合图象 求它的单调区间.
[演练冲关] π 1.最小正周期为π且图象关于直线x= 对称的函数是( 3
π π B,因为sin2×3-6 =sin
π =1,所以选B. 2
答案:B
2.函数
π y=cos4-2x的单调减区间为____________. π π y=cos4-2x=cos2x-4 得
解析:由
π 2kπ≤2x- ≤2kπ+π(k∈Z), 4 π 5π 解得 kπ+ ≤x≤kπ+ (k∈Z). 8 8
π π π π 3 在 3,2 上单调递减知, = ,∴ω= . 2ω 3 2
三角函数的图象与性质
-
;
-1
y=cosx
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
y
si-n6x的对称-5轴:x
k -4
2-,3对 称点-:2(k
,0);
-
y cosx的对称轴:x k , 对称点:(k ,0);
1.4.1正弦、余弦函数的图象
复习
回顾 三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
复习回顾
一.正弦余弦函数的作图: 几何描点法(利用三角函数线) 五点法作简图
二.周期性:
函数y Asin(x )和y Acos(x ),x R的周期T 2 | |
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cosx为偶函数图像关于y轴对称。
-6 -5
-4 -3
复习回顾 y y=sinx
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)
三角函数的图像及其性质
三角函数的图像及其性质1、三角函数的图像及性质sin y xsin y A x k图像值域周期对称轴2x k2x k对称中心(零点)令x k 代入求y令x k 代入,求出x 和y 单调增区间2,222x k k2,222x k k单调减区间32,222x k k32,222x k kcos y xcos y A x k图像值域周期对称轴x kx k 对称中心(零点)2x k代入,求y 2x k求出x 和y 单调增区间 2,2x k k 2,2x k k 单调减区间2,2x k k2,2x k k tan y x图像定义域值域周期单调性与对称性性质【考点分类】考点一:图像变换:1.把函数y =sin x 的图象向右平移个单位得到y =g (x )的图象,再把y =g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.2.将函数f (x )=sin x 图象上所有点的横坐标变为原来的(ω>0),纵坐标不变,得到函数g (x )的图象,若g (x )的最小正周期为6π,则ω=()A.B.6C.D.33.将函数y =2sin2x 图象上的所有点向右平移个单位,然后把图象上所有点的横坐标缩短为原来的倍,(纵坐标不变)得到y =f (x )的图象,则f (x )等于()A.2sin(x ﹣)B.2sin(x ﹣)C.2sin(4x ﹣)D.2sin(4x ﹣)4.已知曲线C 1:y =cos x ,C 2:y =sin(2x +),则下面结论正确的是()A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向左平移个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向左平移个单位长度,得到曲线C 25.把函数y =cos(3x +4)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是()A 向右平移4 B 向左平移4 C 向右平移12 D 向左平移126..函数32sin( x y 的图象是由2sin xy 的图象沿x 轴()得到的。
三角函数的性质知识点总结
三角函数的性质知识点总结三角函数是数学中重要的一部分,主要涉及到正弦函数、余弦函数和正切函数。
它们在数学、物理、工程等学科中都有广泛的应用。
本文将对三角函数的性质进行总结,包括周期性、对称性、函数值范围等方面的内容。
一、正弦函数的性质1. 周期性:正弦函数的周期是2π,即sin(x+2π) = sin(x),其中x表示角度。
2. 对称性:正弦函数关于原点对称,即sin(-x) = -sin(x)。
3. 函数值范围:正弦函数的函数值范围在[-1, 1]之间。
二、余弦函数的性质1. 周期性:余弦函数的周期也是2π,即cos(x+2π) = cos(x)。
2. 对称性:余弦函数关于y轴对称,即cos(-x) = cos(x)。
3. 函数值范围:余弦函数的函数值范围同样在[-1, 1]之间。
三、正切函数的性质1. 周期性:正切函数的周期是π,即tan(x+π) = tan(x),其中x表示角度。
2. 对称性:正切函数关于原点对称,即tan(-x) = -tan(x)。
3. 函数值范围:正切函数的函数值范围是整个实数集。
1. 正弦函数和余弦函数的特殊角度值如下: sin(0) = 0, cos(0) = 1;sin(π/6) = 1/2, cos(π/6) = √3/2;sin(π/4) = √2/2, cos(π/4) = √2/2;sin(π/3) = √3/2, cos(π/3) = 1/2;sin(π/2) = 1, cos(π/2) = 0;2. 正切函数的特殊角度值如下:tan(0) = 0;tan(π/4) = 1;tan(π/3) = √3;tan(π/2) 没有定义。
五、三角函数的基本关系1. 正切函数与正弦函数和余弦函数的关系: tan(x) = sin(x) / cos(x)。
2. 正弦函数和余弦函数的关系:sin^2(x) + cos^2(x) = 1。
1. 正弦函数和余弦函数的图像是波形振动,具有周期性和对称性。
三角函数的图像和性质讲解(定义域,值域,周期,单调性等)
三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。
(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。
正弦函数sin y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。
4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。
理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。
5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。
三角函数的图像和性质
当0<A<1时,图像在y轴方向压缩。
02
周期变换
ω表示周期变换的系数,周期T=2π/|ω|。当ω>1时,周期减小,图像
在x轴方向压缩;当0<ω<1时,周期增大,图像在x轴方向拉伸。
03
相位变换
φ表示相位变换的角度,当φ>0时,图像左移;当φ<0时,图像右移。
正弦型曲线应用举例
振动问题
在物理学中,正弦函数常用来描述简谐振动,如弹簧振子 、单摆等。通过正弦函数的振幅、周期和相位等参数,可 以描述振动的幅度、频率和初始状态。
三角函数的图像和性 质
汇报人:XX 2024-01-28
contents
目录
• 三角函数基本概念 • 正弦函数图像与性质 • 余弦函数图像与性质 • 正切函数图像与性质 • 三角函数复合与变换 • 三角函数在解决实际问题中的应用
01
三角函数基本概念
角度与弧度制
角度制
01
将圆周分为360等份,每份称为1度,用度(°)作为单位来度量
角的大小。
弧度制
02
以弧长等于半径所对应的圆心角为1弧度,用符号rad表示,是
国际通用的角度度量单位。
角度与弧度的换算
03
1° = (π/180)rad,1rad = (180/π)°。
三角函数定义及关系
正弦函数
sinθ = y/r,表示单位圆上任意 一点P(x,y)与x轴正方向形成的 角θ的正弦值。
光学
在光的反射、折射等现象中,三角函数可以 帮助计算入射角、折射角等角度问题。
在工程问题中的应用
1 2
建筑设计
在建筑设计中,三角函数可以帮助计算建筑物的 角度、高度、距离等参数,确保设计的准确性和 安全性。
三角函数的图像和性质
三角函数的图像和性质三角函数是数学中的重要概念,它们在几何、物理、工程等领域都有广泛的应用。
本文将重点讨论三角函数的图像和性质,并通过具体的例子来说明。
一、正弦函数的图像和性质正弦函数是最基本的三角函数之一,它的图像可以用来描述周期性变化的现象。
正弦函数的图像是一条连续的曲线,它在[-π/2, π/2]区间内单调递增,在[π/2, 3π/2]区间内单调递减。
在整个定义域[-∞, ∞]上,正弦函数的值域为[-1, 1],且具有奇对称性。
例如,我们考虑正弦函数y = sin(x)在[0, 2π]上的图像。
根据正弦函数的性质,当x=0时,y=0;当x=π/2时,y=1;当x=π时,y=0;当x=3π/2时,y=-1;当x=2π时,y=0。
连接这些点,我们可以得到正弦函数在[0, 2π]上的图像,即一条上下波动的连续曲线。
二、余弦函数的图像和性质余弦函数是另一个基本的三角函数,它也可以用来描述周期性变化的现象。
与正弦函数相比,余弦函数的图像在水平方向上发生了平移,它在[0, 2π]区间内单调递减,在[-π/2, π/2]和[3π/2, 5π/2]区间内单调递增。
在整个定义域[-∞, ∞]上,余弦函数的值域为[-1, 1],且具有偶对称性。
以余弦函数y = cos(x)在[0, 2π]上的图像为例,当x=0时,y=1;当x=π/2时,y=0;当x=π时,y=-1;当x=3π/2时,y=0;当x=2π时,y=1。
连接这些点,我们可以得到余弦函数在[0, 2π]上的图像,即一条波动的连续曲线。
三、正切函数的图像和性质正切函数是三角函数中的另一个重要概念,它描述了斜率的变化。
正切函数的图像具有周期性,其周期为π。
正切函数在定义域的每个周期内,都有无穷多个渐近线,即x=π/2+kπ,其中k为整数。
正切函数的值域为(-∞, ∞)。
以正切函数y = tan(x)在[-π/2, π/2]上的图像为例,当x=-π/4时,y=-1;当x=0时,y=0;当x=π/4时,y=1。
三角函数图像与性质知识点总结
函数图像与性质知识点总结一、三角函数图象的性质1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0) ⎝ ⎛⎭⎪⎪⎫π2,1 (π,0)⎝ ⎛⎭⎪⎪⎫32π,-1 (2π,0)(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),⎝ ⎛⎭⎪⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎪⎫3π2,0,(2π,1)2.三角函数的图象和性质函数 性质y =sin x y =cos x y =tan x定义域 R R{x |x ≠k π+π2,k ∈Z}图象值域[-1,1][-1,1]R一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)4.求三角函数值域(最值)的方法:(1)利用sin x、cos x的有界性;关于正、余弦函数的有界性由于正余弦函数的值域都是[-1,1],因此对于∀x∈R,恒有-1≤sin x≤1,-1≤cos x ≤1,所以1叫做y =sin x ,y =cos x 的上确界,-1叫做y =sin x ,y =cos x 的下确界.(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响.(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.利用换元法求三角函数最值时注意三角函数有界性,如:y =sin 2x -4sin x +5,令t =sin x (|t |≤1),则y =(t -2)2+1≥1,解法错误.5.求三角函数的单调区间时,应先把函数式化成形如y =A sin(ωx +φ) (ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,应在函数的定义域内考虑.注意区分下列两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x 系数的正负号) (1)y =sin ⎝ ⎛⎭⎪⎪⎫2x -π4;(2)y =sin ⎝ ⎛⎭⎪⎪⎫π4-2x .6、y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点2;③ω的确定:结合图象,先求出周期,然后由T =2πω(ω>0)来确定ω;④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据φ的范围确定φ即可,例如由函数y =A sin(ωx +φ)+K 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φω)确定φ.二、三角函数的伸缩变化 先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−→ 得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. .。
§4.3 三角函数的图象与性质
于点( x0 ,0) 中心对称.
( ) 设 f( x) =
4cos
ωx-
π 6
sin ωx - cos ( 2ωx + π) , 其 中 ω
>0.
(1)求函数 y = f(x)的值域;
[ ] (2)若 f(x)在区间
- 32π,
π 2
上为增函数,求 ω 的最大值.
( ) 解析 (1)f(x)= 4
.
(2) (2019 成都七中 1 月月考,14) 如图为一弹簧振子作简 谐运动的图象,横轴表示振动的时间,纵轴表示振动的位移,则 这个振子振动的一个函数解析式是 .
解析
( 1) 由
T 4
=
11 12
π-
2 3
π=
π 4
,得
T
=
π,
∵
T=
2π ,∴
ω
ω = 2,∴
f( x) =
对称性
对称轴:x = kπ+
π 2
( k∈Z) ;
对称中心:( kπ,0) ( k∈Z)
周期
2π
单调性
单调增区间:
[ ] 2kπ-
π 2
,2kπ+
π 2
( k∈Z) ;
单调减区间:
[ ] 2kπ+
π 2
,2kπ+
3π 2
( k∈Z)
奇偶性
奇函数
[ -1,1]
对称轴:x = kπ( k∈Z) ;
( ) 对称中心:
换,设
z
=
ωx+φ,由
z
取
0,
π 2
3π ,π, ,2π
2
来求出相
应的
x,通过列
表、计算得出五点坐标,描点连线后得出图象.
高中数学三角函数图像和性质
三角函数的图象和性质
知识点
一.正弦函数:
1.正弦函数的图象:
2.
定义域为
;值域为•
(1)
当且仅当
时,取得最大值1;
⑵
当且仅当
时,取得最小值1
3.单调性:
在闭区间上都是增函数,其值从1增大到1;
在闭区间上都是减函数,其值从1减小到1.
4.奇偶性:.
5.周期性:最小正周期是,周期是
6.对称性:对称轴是,对称中心是.
r
rK,
(1)将正切函数y tanx在区间(亍'上的图象向左、右扩展,就可以得到正切函y tanx,(x R, x-k , k Z)的图象,我们把它叫做正切曲线.正切曲线是由被互相平行的直线x
(k Z)所隔开的无数多支曲线组成的.这些平行直线x=(k Z)叫做正切曲线各支的
⑵结合正切曲线的特征,类比正弦、余弦函数的“五点法”作图,也可用三点两线作图法作出正切函数
6.对称性:对称轴是,对称中心是.
题型一 正弦,余弦函数的图象和性质
【例1】求函数y=g+sinx的定义域
函数y=2sin(4x+^)的对称轴方程为
3
【过关练习】
1•求函数y 3sin x2的值域以及取得最值时x的值
2.判断函数y=xsin( x)的奇偶性
3.求函数y1sinx的单调区间
二.余弦函数:
1.余弦函数的Βιβλιοθήκη 象:2.定义域为值域为
(1)当且仅当
时,取得最大值1;
(2)当且仅当
时,取得最小值1.
3.单调性:
在闭区间
上都是增函数,其值从
1增加到1;
在闭区间
上都是减函数,其值从
三角函数的图像与性质
三角函数的图像与性质三角函数是数学中常见的一类函数,包括正弦函数、余弦函数、正切函数等等。
它们在数学和物理学等领域中具有重要的应用和性质。
本文将讨论三角函数的图像与性质,并通过图像展示它们的特点。
一、正弦函数(sine function)正弦函数是最基本的三角函数之一,由于其周期性的特点,在图像上呈现出波浪形状。
在单位圆上,正弦函数的图像可以用来表示角度和弧度的关系。
正弦函数的图像可以通过以下步骤绘制出来:1. 将横轴分成一定的单位,例如每个单位代表30°或π/6。
2. 在每个单位上确定正弦函数的值,即纵坐标的位置。
3. 将所有的点依次连接起来,得到正弦函数的图像。
正弦函数的图像具有以下性质:1. 周期性:正弦函数的一个周期是360°或2π。
在一个周期中,正弦函数的值从最小值到最大值再返回最小值。
2. 对称性:正弦函数是奇函数,其图像关于原点对称。
即f(x) = -f(-x)。
3. 幅值:正弦函数的幅值为1,即图像的振幅为1。
4. 位置:正弦函数的图像在(x, f(x))的点上经过零点。
二、余弦函数(cosine function)余弦函数是另一个重要的三角函数,其图像也呈现出波浪形状,但与正弦函数有一定的相位差。
余弦函数在数学中的应用广泛,例如表示交流电信号的变化。
余弦函数的图像可以通过类似于正弦函数的步骤绘制出来。
余弦函数的图像具有以下性质:1. 周期性:余弦函数的一个周期也是360°或2π。
在一个周期中,余弦函数的值从最大值到最小值再返回最大值。
2. 对称性:余弦函数是偶函数,其图像关于y轴对称。
即f(x) = f(-x)。
3. 幅值:余弦函数的幅值也为1,即图像的振幅为1。
4. 位置:余弦函数的图像在(x, f(x))的点上经过最大值。
三、正切函数(tangent function)正切函数是三角函数中最特殊的一个,其图像呈现出一系列的尖峰和波谷。
正切函数在解决直角三角形问题时经常使用,也在物理学中广泛应用。
最全三角函数的图像与性质知识点总结
三角函数的图像与性质一、 正弦函数、余弦函数的图像与性质函数 y =sin x y =cos x图 象定义域 R R 值域[-1,1][-1,1]单调性递增区间:2,2()22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦递减区间:32,2()22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦递增区间:[2k π-π,2k π] (k ∈Z ) 递减区间:[2k π,2k π+π] (k ∈Z )最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max =1;x =2k π+π(k ∈Z ) 时,y min =-1奇偶性奇函数偶函数对称性对称中心:(k π,0)(k ∈Z )(含原点)对称轴:x =k π+π2,k ∈Z对称中心:(k π+π2,0)(k ∈Z )对称轴:x =k π,k ∈Z (含y 轴)最小正周期2π2π二、正切函数的图象与性质 定义域 {|,}2x x k k Z ππ≠+∈值域 R单调性 递增区间(,)()22k k k Z ππππ-+∈奇偶性奇函数对称性 对称中心:(,0)()2k k Z π∈(含原点)最小正周期 π三、三角函数图像的平移变换和伸缩变换1. 由x y sin =的图象得到)sin(ϕω+=x A y (0,0A ω>>)的图象x y sin =方法一:先平移后伸缩 方法二:先伸缩后平移 操作 向左平移φ个单位横坐标变为原来的1ω倍结果 )sin(ϕ+=x yx y ωsin =操作 横坐标变为原来的1ω倍向左平移ϕω个单位结果 )sin(ϕω+=x y操作 纵坐标变为原来的A 倍结果)sin(ϕω+=x A y注意:x 要注意平移与伸缩的先后顺序,否则会出现错误。
2. )sin(ϕω+=x A y (0,0A ω>>)的性质(1)定义域、值域、单调性、最值、对称性:将ϕω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当ϕ取特殊值时,这些复合函数才具备奇偶性:)sin(ϕω+=x A y ,当πϕk =时为奇函数,当2ππϕ±=k 时为偶函数; (3)最小正周期:ωπ2=T3. y =A sin(ωx +φ), x ∈[0,+∞) (0,0A ω>>)中各量的物理意义(1) A 称为振幅;(2)2T πω=称为周期;(3)1f T=称为频率;(4)x ωϕ+称为相位; (5)ϕ称为初相(6)ω称为圆频率.如有侵权请联系告知删除,感谢你们的配合!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
———————————————————————————————— 作者:
———————————————————————————————— 日期:
三角函数的图象和性质
一、知识梳理:
1.正弦函数、余弦函数、正切函数的图像
2.三角函数的性质:(结合图象理解,表中 ))
y=sinx
y=cosx
途径一:先平移变换再周期变换(伸缩变换)
先将y=sinx的图象向左( >0)或向右( <0=平移| |个单位,再将图象上各点的横坐标变为原来的 倍(ω>0),便得y=sin(ωx+ )的图象
途径二:先周期变换(伸缩变换)再平移变换。
先将y=sinx的图象上各点的横坐标变为原来的 倍(ω>0),再沿x轴向左( >0)或向右( <0=平移 个单位,便得y=sin(ωx+ )的图象。
(2)y=-|sin(x+ )|的图象的增区间为[kπ+ ,kπ+ ],减区间为[kπ- ,kπ+ ]。
例2、设 的周期 ,最大值 ,
(1)求 、 、 的值;
(2) 。
解析:(1) , , ,
又 的最大值。 , ①,且 ②,由①、②解出a=2 ,b=3.
(2) , ,
,
,或 ,
即 ( 共线,故舍去),或 ,
其中一个假命题的序号是_____.因为当 =_____时,该命题的结论不成立
答案:①,kπ(k∈Z);或者①, +kπ(k∈Z);或者④, +kπ(k∈Z)
解析:当 =2kπ,k∈Z时,f(x)=sinx是奇函数。当 =2(k+1)π,k∈Z时f(x)=-sinx仍是奇函数。当 =2kπ+ ,k∈Z时,f(x)=cosx,或当 =2kπ- ,k∈Z时,f(x)=-cosx,f(x)都是偶函数.所以②和③都是正确的。无论 为何值都不能使f(x)恒等于零。所以f(x)不能既是奇函数又是偶函数。①和④都是假命题。
1.已知函数 =Acos( )的图象如图所示, ,则 =(C)
A. B. C.- D.
2.已知 是实数,则函数 的图象不可能是(D)
解析对于振幅大于1时,三角函数的周
3.将函数 的图象向左平移 个单位,再向上平移1个单位,所得图象的函数解析式是(B).
5.由y=Asin(ωx+ )的图象求其函数式:
给出图象确定解析式y=Asin(ωx+ )的题型,有时从寻找“五点”中的第一零点(- ,0)作为突破口,要从图象的升降情况找准第一个零点的位置。
6.三角函数求最值的方法:化Asin(ωx+φ), 换元法,配方法,数形结合,不等式法,单调性法等.
二、基础检测:
y=tanx
定义域
R
R
值域
[-1,1]
[-1,1]
R
周期
2π
2π
π
奇偶性
奇函数
偶函数
奇函数
增区间
减区间
无
对称轴
x=kπ
无
对称
中心
3.函数
最大值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是该图象与直线 的交点都是该图象的对称中心
单调递增区间:由2kπ- ≤ωx+φ≤2kπ+ (k∈Z)可解得.
(1)y= sin( - );(2)y=-|sin(x+ )|。
解:(1)y= sin( - )=- sin( - )。故由2kπ- ≤ - ≤2kπ+ 。 3kπ- ≤x≤3kπ+ (k∈Z),为单调减区间;由2kπ+ ≤ - ≤2kπ+ 。 3kπ+ ≤x≤3kπ+ (k∈Z),为单调增区间。∴递减区间为[3kπ- ,3kπ+ ],递增区间为[3kπ+ ,3kπ+ ](k∈Z)。
6.若函数 , ,则 的最大值为(B)
A.1B. C. D.
7.函数y=cos(x+ )的图象向左平移φ个单位,所得的函数为偶函数,则 的最小值是( B )
A. B. ﻩﻩC. ﻩﻩD.
8..函数 的部分图象如图所示,则函数表达式为(A)
(A) (B)
(C) (D)
三、典例导悟:
例1、求下列函数的单调区间:
A. B. C. D.
4.函数y=2sinx的单调增区间是(A)
A.[2kπ- ,2kπ+ ](k∈Z)B.[2kπ+ ,2kπ+ ](k∈Z)
C.[2kπ-π,2kπ](k∈Z)D.[2kπ,2kπ+π](k∈Z)
5.关于x的函数f(x)=sin(x+ )有以下命题:
①对任意的 ,f(x)都是非奇非偶函数;②不存在 ,使f(x)既是奇函数,又是偶函数;③存在 ,使f(x)是奇函数;④对任意的 ,f(x)都不是偶函数。
单调递减区间.由2kπ+ ≤ωx+φ≤2kπ+ ](k∈Z)可解得.
特别提醒:若A或ω是负数,单调区间应在相反的单调区间内求。
y=Acos(ωx+φ)也类似。
4.由y=sinx的图象变换出y=sin(ωx+ )的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现 无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
。
例3、设函数 (其中 ),且 的图象在 轴右侧的第一个最高点的横坐标为 。
(Ⅰ)求 的值;
(Ⅱ)如果 在区间 上的最小值为 ,求 的值。