抛物线综合练习题
高考数学专题《抛物线》习题含答案解析
专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( ) A .x 2=4y B .y 2=4x C .x 2=8y D .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( ) A.216y x =- B.28y x =-C.216y x =D.24y x =【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-, 则42p=,即8p =. 故抛物线的方程为216y x =. 故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4. 【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______. 【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥= 故答案为:32. 8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8 【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案 【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=, 所以12126,1x x x x +==, 所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x , 所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=, 故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________. 【答案】答案见解析 答案见解析 【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值. 【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能, 当抛物线开口向下时,设抛物线方程为22x py =-(0p >), 此时准线方程为2py =,由抛物线定义知(3)52p --=,解得4p =.所以抛物线方程为28x y ,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax (0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =; 92m =-,22y x =-;12m =,218y x =; 12m =-,218y x =-;m =±28xy .故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y .10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-= 【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =, 整理得()1212420x x x x ++-=,解得32k =-, 所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=,则FM 等于( ) A .2 B C .D .4【答案】D 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a =,可得1cos ,2FM a <>=,求出20y 的值,利用抛物线的定义可求练提升得FM 的值. 【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则211cos ,2y FM a FM a FM a-⋅<>===⋅⎛,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x=+=. 故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F 的直线交C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MNl ⊥,则点M 到直线NF 的距离为()A. B. D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠=,所以||4,||2QF QM m ==, 所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=, 所以03x=,0y =,所以sin sin 42NP MNF NFP NF ∠=∠===,所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--, 即20x y +-=, 故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x . 故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x = C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误. 【详解】双曲线2C 的离心率为2e ==,故A 正确;双曲线2C 的渐近线为y =,故B 错误; 由12,C C 有相同焦点,即24m=,即8m =,故C 正确; 抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确. 故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为( )A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -= C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m +=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D . 【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错; 对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =, 易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果. 【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+, 易知当A ,B ,M 三点共线时,||MB MA +取得最小值, 所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭. 故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,由余弦定理以及基本不等式可得)AB a b ≥+,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)AB a b ≥+,∴()1a b MN AB +≤=MN AB9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析. 【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为 ()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--, 所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C .D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) A B C .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.5.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p .。
椭圆、双曲线抛物线综合练习题及答案.
一、选择题(每小题只有一个正确答案,每题6分共36分)1. 椭圆221259x y +=的焦距为。
( ) A . 5 B. 3 C. 4 D 82.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C. 221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .67 B. 37 C. 185 D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。
( )A .22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )A .52B. 102C. 152 D 57.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4B .y 2=±8xC .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.37169.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8二.填空题。
初中数学 抛物线 练习题(含答案)
第十讲 抛物线一般地说来,我们称函数c bx ax y ++=2 (a 、b 、c 为常数,0≠a )为x 的二次函数,其图象为一条抛物线,与抛物线相关的知识有:1.a 、b 、c 的符号决定抛物线的大致位置;2.抛物线关于ab x 2-=对称,抛物线开口方向、开口大小仅与a 相关,抛物线在顶点(ab 2-,a b ac 442-)处取得最值; 3.抛物线的解析式有下列三种形式:①一般式:c bx ax y ++=2;②顶点式:k h x a y +-=2)(;③交点式:))((21x x x x a y --=,这里1x 、2x 是方程02=++c bx ax 的两个实根.确定抛物线的解析式一般要两个或三个独立条件,灵活地选用不同方法求出抛物线的解析式是解与抛物线相关问题的关键.注:对称是一种数学美,它展示出整体的和谐与平衡之美,抛物线是轴对称图形,解题中应积极捕捉、创造对称关系,以便从整体上把握问题,由抛物线捕捉对称信息的方式有:(1)从抛物线上两点的纵坐标相等获得对称信息;(2)从抛物线的对称轴方程与抛物线被x 轴所截得的弦长获得对称信息.【例题求解】【例1】 二次函数c bx x y ++=2的图象如图所示,则函数值0<y 时,对应x 的取值范围是 .思路点拨 由图象知抛物线顶点坐标为(一1,一4),可求出b ,c 值,先求出0=y 时,对应x 的值.【例2】 已知抛物线c bx x y ++=2(a <0)经过点(一1,0),且满足024>++c b a .以下结论:①0>+b a ;②0>+c a ;③0>++-c b a ;④2252a ac b >-.其中正确的个数有( )A .1个B .2个C .3个D .4个思路点拨 由条件大致确定抛物线的位置,进而判定a 、b 、c 的符号;由特殊点的坐标得等式或不等式;运用根的判别式、根与系数的关系.【例3】 如图,有一块铁皮,拱形边缘呈抛物线状,MN =4分米,抛物线顶点处到边MN 的距离是4分米,要在铁皮上截下一矩形ABCD ,使矩形顶点B 、C 落在边MN 上,A 、D 落在抛物线上,问这样截下的矩形铁皮的周长能否等于8分米?思路点拨 恰当建立直角坐标系,易得出M 、N 及抛物线顶点坐标,从而求出抛物线的解析式,设A(x ,y ),建立含x 的方程,矩形铁皮的周长能否等于8分米,取决于求出x 的值是否在已求得的抛物线解析式中自变量的取值范围内.注: 把一个生产、生活中的实际问题转化,成数学问题,需要观察分析、建模,建立直角坐标系下的函数模型是解决实际问题的常用方法,同一问题有不同的建模方式,通过分析比较可获得简解.【例4】 二次函数223212-++-=m x x y 的图象与x 轴交于A 、两点(点A 在点B 左边),与y 轴交于C 点,且∠ACB =90°.(1)求这个二次函数的解析式;(2)设计两种方案:作一条与y 轴不重合,与△A BC 两边相交的直线,使截得的三角形与△ABC 相似,并且面积为△BOC 面积的41,写出所截得的三角形三个顶点的坐标(注:设计的方案不必证明).思路点拨 (1)A 、B 、C 三点坐标可用m 的代数式表示,利用相似三角形性质建立含m 的方程;(2)通过特殊点,构造相似三角形基本图形,确定设计方案.注: 解函数与几何结合的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互助,把证明与计算相结合是解题的关键.【例5】 已知函数1)1(2)2(22+--+=x a x a y ,其中自变量x 为正整数,a 也是正整数,求x 何值时,函数值最小.思路点拨 将函数解析式通过变形得配方式,其对称轴为23)2(212++-=+-=a a a a x ,因1230≤+<a ,12122-≤+-<-a a a a ,故函数的最小值只可能在x 取2-a ,2-a ,212+-a a 时达到.所以,解决本例的关键在于分类讨论.学历训练 1.如图,若抛物线2ax y =与四条直线1=x 、2=x 、1=y 、2=y 所围成的正方形有公共点,则a 的取值范围是 .2.抛物线c bx ax y ++=2与x 轴的正半轴交于A ,B 两点,与y 轴交于C 点,且线段AB 的长为1,△ABC 的面积为1,则b 的值为 .3.如图,抛物线的对称轴是直线1=x ,它与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、C 的坐标分别为(-l ,0)、(0,23),则(1)抛物线对应的函数解析式为 ;(2)若点P 为此抛物线上位于x 轴上方的一个动点,则△ABP 面积的最大值为 .4.已知二次函数c bx ax y ++=2的图象如图所示,且OA =OC ,则由抛物线的特征写出如下含有a 、b 、c 三个字母的式子①1442-=-ab ac ,②01=++b ac ,③0>abc ,④0>+-c b a ,>0,其中正确结论的序号是 (把你认为正确的都填上).5.已知1-<a ,点(1-a ,1y ),(a ,2y ),(1+a ,3y )都在函数2x y =的图象上,则( )A .321y y y <<B .231y y y <<C .123y y y <<D .312y y y <<6.把抛物线c bx x y ++=2的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为532+-=x x y ,则有( )A .3=b ,7=cB .9-=b ,15-=cC .3=b ,c =3D .9-=b ,21=c7.二次函数c bx ax y ++=2的图象如图所示,则点(b a +,ac )所在的直角坐标系是( )A .第一象限B .第二象限C .第三象限D .第四象限8.周长是4m 的矩形,它的面积S(m 2)与一边长x (m)的函数图象大致是( )9.阅读下面的文字后,回答问题:“已知:二次函数c bx ax y ++=2的图象经过点A(0,a ),B(1,-2) ,求证:这个二次函数图象的对称轴是直线2=x .题目中的横线部分是一段被墨水污染了无法辨认的文字.(1)根据现有的信息,你能否求出题目中二次函数的解析式?若能,写出求解过程;若不能,说明理由.(2)请你根据已有信息,在原题中的横线上,填加一个适当的条件,把原题补充完整.10.如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1. 8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?11.如图,抛物线和直线k kx y 4-= (0<k )与x 轴、y 轴都相交于A 、B 两点,已知抛物线的对称轴1-=x 与x 轴相交于C 点,且∠ABC =90°,求抛物线的解析式.12.抛物线c bx ax y ++=2与x 轴交于A 、B 两点,与y 轴交于点C ,若△ABC 是直角三角形,则=ac .13.如图,已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于 .14.已知二次函数c bx ax y ++=2,一次函数4)1(2k x k y --=.若它们的图象对于任意的实数是都只有一个公共点,则二次函数的解析式为 .15.如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A ,B ,E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系式中不能总成立的是( )A .b=0B .S △ADC =c 2 C .ac =一1D .a+c =016.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数c bx x y ++=2的图象过点(1,0)…求证:这个二次函数的图象关于直线2=x 对称.根据现有信息,题中的二次函数不具有的性质是( )A .过点(3,0)B .顶点是(2,一2)C .在x 轴上截得的线段长为2D .与y 轴的交点是(0,3)17.已知A(x 1,2002),B(x 2,2002)是二次函数52++=bx ax y (0≠a )的图象上两21x x x += 时,二次函数的值是( )A .522+a bB .542+-ab C . 2002 D .518.某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1所示);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2所示).若生产出的产品都能在当年销售完,问年产量是多少吨时,所获毛利润最大?(毛利润=销售额一费用).19.如图,已知二次函数222-=x y 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,直线:x =m(m>1)与x 轴交于点D .(1)求A 、B 、C 三点的坐标;(2)在直线x =m (m>1)上有一点P (点P 在第一象限),使得以P 、D 、B 为顶点的三角形与以B 、C 、O 为顶点的三角形相似,求P 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,试问:抛物线222-=x y 上是否存在一点Q ,使得四边形ABPQ 为平行四边形?如果存在这样的点Q ,请求出m 的值;如果不存在,请简要说明理由.20.已知二次函数22--=x x y 及实数2->a ,求(1)函数在一2<x ≤a 的最小值;(2)函数在a ≤x ≤a+2的最小值.21.如图,在直角坐标:x O y 中,二次函数图象的顶点坐标为C(4,3-),且在x 轴上截得的线段AB 的长为6.(1)求二次函数的解析式;(2)在y 轴上求作一点P (不写作法)使PA+PC 最小,并求P 点坐标;(3)在x 轴的上方的抛物线上,是否存在点Q ,使得以Q 、A 、B 三点为顶点的三角形与△ABC 相似?如果存在,求出Q 点的坐标;如果不存在,请说明理由.22.某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要结论.一是发现抛物线y=ax 2+2x+3(a≠0),当实数a 变化时,它的顶点都在某条直线上;二是发现当实数a 变化时,若把抛物线y=ax 2+2x+3的顶点的横坐标减少a 1,纵坐标增加,得到A 点的坐标;若把顶点的横坐标增加a 1,纵坐标增加a1,得到B 点的坐标,则A 、B 两点一定仍在抛物线y=ax 2+2x+3上.(1)请你协助探求出当实数a 变化时,抛物线y=ax 2+2x+3的顶点..所在直线的解析式; (2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;(3)在他们第二个发现的启发下,运用“一般——特殊—一般”的思想,你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立请说明理由.参考答案。
100高中数学高考总复习抛物线习题及详解100
高中数学高考总复习抛物线习题(附参考答案)一、选择题1.(2010·湖北黄冈)若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4[答案] D[解析] 椭圆中,a 2=6,b 2=2,∴c =a 2-b 2=2,∴右焦点(2,0),由题意知p2=2,∴p =4.2.已知点M 是抛物线y 2=2px (p >0)上的一点,F 为抛物线的焦点,若以|MF |为直径作圆,则这个圆与y 轴的关系是( )A .相交B .相切C .相离D .以上三种情形都有可能 [答案] B[解析] 如图,由MF 的中点A 作准线l 的垂线AE ,交直线l 于点E ,交y 轴于点B ;由点M 作准线l 的垂线MD ,垂足为D ,交y 轴于点C ,则MD =MF ,ON =OF , ∴AB =OF +CM 2=ON +CM 2=DM 2=MF 2, ∴这个圆与y 轴相切.3.(2010·山东文)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则线段AB 的中点(x 1+x 22,y 1+y 22),∴y 1+y 22=2,∵A 、B 在抛物线y 2=2px 上,∴⎩⎪⎨⎪⎧y 12=2px 1 ①y 22=2px 2 ②①-②得y 12-y 22=2p (x 1-x 2), ∴k AB =y 1-y 2x 1-x 2=2p y 1+y 2=p2,∵k AB =1,∴,p =2 ∴抛物线方程为y 2=4x ,∴准线方程为:x =-1,故选B.4.双曲线x 29-y 24=1的渐近线上一点A 到双曲线的右焦点F 的距离等于2,抛物线y 2=2px (p >0)过点A ,则该抛物线的方程为( )A .y 2=9xB .y 2=4xC .y 2=41313xD .y 2=21313x[答案] C[解析] ∵双曲线x 29-y 24=1的渐近线方程为y =±23x ,F 点坐标为(13,0),设A 点坐标为(x ,y ),则y =±23x ,由|AF |=2⇒(x -13)2+⎝⎛⎭⎫23x 2=2⇒x =913,y =±613,代入y 2=2px 得p =21313,所以抛物线方程为y 2=41313x ,所以选C.5.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3 C. 5D.92[答案] A[解析] 记抛物线y 2=2x 的焦点为F ⎝⎛⎭⎫12,0,准线是l ,由抛物线的定义知点P 到焦点F 的距离等于它到准线l 的距离,因此要求点P 到点(0,2)的距离与点P 到抛物线的准线的距离之和的最小值,可以转化为求点P 到点(0,2)的距离与点P 到焦点F 的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F 与点(0,2)的距离,因此所求的最小值等于⎝⎛⎭⎫122+22=172,选A. 6.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为,则点A 的坐标为( )A .(2,22)B .(2,-22)C .(2,±2)D .(2,±22)[答案] D[解析] 如图,由题意可得,|OF |=1,由抛物线定义得,|AF |=|AM |,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,∴S △AMF S △AOF =12×|AF |×|AM |×sin ∠MAF 12×|OF |×|AF |×sin (π-∠MAF )=3, ∴|AM |=3,设A ⎝⎛⎭⎫y 024,y 0,∴y024+1=3, 解得y 0=±22,∴y 024=2,∴点A 的坐标是(2,±22),故选D.7.(2010·河北许昌调研)过点P (-3,1)且方向向量为a =(2,-5)的光线经直线y =-2反射后通过抛物线y 2=mx ,(m ≠0)的焦点,则抛物线的方程为( )A .y 2=-2xB .y 2=-32xC .y 2=4xD .y 2=-4x[答案] D[解析] 设过P (-3,1),方向向量为a =(2,-5)的直线上任一点Q (x ,y ),则PQ →∥a ,∴x +32=y -1-5,∴5x +2y +13=0,此直线关于直线y =-2对称的直线方程为5x +2(-4-y )+13=0,即5x -2y +5=0,此直线过抛物线y 2=mx 的焦点F ⎝⎛⎭⎫m 4,0,∴m =-4,故选D.8.已知mn ≠0,则方程是mx 2+ny 2=1与mx +ny 2=0在同一坐标系内的图形可能是( )[答案] A[解析] 若mn >0,则mx 2+ny 2=1应为椭圆,y 2=-mn x 应开口向左,故排除C 、D ;∴mn <0,此时抛物线y 2=-mnx 应开口向右,排除B ,选A.9.(2010·山东聊城模考)已知A 、B 为抛物线C :y 2=4x 上的不同两点,F 为抛物线C 的焦点,若F A →=-4FB →,则直线AB 的斜率为( )A .±23B .±32C .±34D .±43[答案] D[解析] ∵F A →=-4FB →,∴|F A →|=4|FB →|,设|BF |=t ,则|AF |=4t ,∴|BM |=|AA 1|-|BB 1|=|AF |-|BF |=3t ,又|AB |=|AF |+|BF |=5t ,∴|AM |=4t ,∴tan ∠ABM =43,由对称性可知,这样的直线AB 有两条,其斜率为±43.10.已知抛物线C 的方程为x 2=12y ,过点A (0,-4)和点B (t,0)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(-∞,-1)∪(1,+∞)B.⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞ C .(-∞,-22)∪(22,+∞) D .(-∞,-22)∪(2,+∞) [答案] B[解析] 由题意知方程组⎩⎪⎨⎪⎧x 2=12y ①x t +y-4=1 ②无实数解由②得y =4xt -4,代入①整理得,2x 2-4x t +4=0,∴Δ=16t 2-32<0,∴t >22或t <-22,故选B. [点评] 可用数形结合法求解,设过点A (0,-4)与抛物线x 2=12y 相切的直线与抛物线切点为M (x 0,y 0),则切线方程为y -y 0=4x 0(x -x 0), ∵过A 点,∴-4-2x 02=4x 0(0-x 0), ∴x 0=±2,∴y 0=4,∴切线方程为y -4=±42x -8, 令y =0得x =±22,即t =±22,由图形易知直线与抛物线无公共点时,t <-22或t >22. 二、填空题11.已知点A (2,0)、B (4,0),动点P 在抛物线y 2=-4x 上运动,则AP →·BP →取得最小值时的点P 的坐标是______.[答案] (0,0)[解析] 设P ⎝ ⎛⎭⎪⎫-y 24,y ,则AP →=⎝⎛⎭⎫-y 24-2,y ,BP →=⎝⎛⎭⎫-y 24-4,y ,AP →·BP →=⎝⎛⎭⎫-y 24-2⎝⎛⎭⎫-y 24-4+y 2=y 416+52y 2+8≥8,当且仅当y =0时取等号,此时点P 的坐标为(0,0).12.(文)(2010·泰安市模拟)如图,过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,交抛物线于A 、B 两点,且|F A |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 设抛物线准线为l ,作AA 1⊥l ,BB 1⊥l ,FQ ⊥l ,垂足分别为A 1、B 1、Q ,作BM ⊥AA 1垂足为M ,BM 交FQ 于N ,则由条件易知∠ABM =30°,设|BF |=t ,则|NF |=t 2,|MA |=t +32,∵|AM |=|QN |,∴3-t +32=p -t 2,∴p =32,∴抛物线方程为y 2=3x .(理)(2010·泰安质检)如图,过抛物线y 2=2px (p >0)的焦点的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 解法1:过A 、B 作准线垂线,垂足分别为A 1,B 1,则|AA 1|=3,|BB 1|=|BF |,∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴|AC |=2|AA 1|=2|AF |=6,∴|CF |=3,∴p =12|CF |=32,∴抛物线方程为y 2=3x .解法2:由抛物线定义,|BF |等于B 到准线的距离,由|BC |=2|BF |得∠BCB 1=30°,又|AF |=3,从而A ⎝⎛⎭⎫p 2+32,332在抛物线上,代入抛物线方程y 2=2px ,解得p =32.点评:还可以由|BC |=2|BF |得出∠BCB 1=30°,从而求得A 点的横坐标为|OF |+12|AF |=p2+32或3-p 2,∴p 2+32=3-p 2,∴p =32.13.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.[答案] 3+2 2[解析] 分别由A 和B 向准线作垂线,垂足分别为A 1,B 1,则由条件知,⎩⎪⎨⎪⎧|AA 1|+|BB 1|=|AB |,|AA 1|-|BB 1|=22|AB |,解得⎩⎪⎨⎪⎧|AA 1|=2+24|AB ||BB 1|=2-24|AB |,∴|AA 1||BB 1|=3+22,即|F A ||FB |=3+2 2. 14.(文)若点(3,1)是抛物线y 2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,则p =________.[答案] 2[解析] 设弦两端点P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎪⎨⎪⎧y 12=2px 1y 22=2px 2,两式相减得,y 1-y 2x 1-x 2=2p y 1+y 2=2,∵y 1+y 2=2,∴p =2.(理)(2010·衡水市模考)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则|AF |+|BF |=________.[答案] 8[解析] 过A 、B 、P 作准线的垂线AA 1、BB 1与PP 1,垂足A 1、B 1、P 1,则|AF |+|BF |=|AA 1|+|BB 1|=2|PP 1|=2[1-(-3)]=8.三、解答题15.(文)若椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的顶点上.(1)求抛物线C 2的方程;(2)若过M (-1,0)的直线l 与抛物线C 2交于E 、F 两点,又过E 、F 作抛物线C 2的切线l 1、l 2,当l 1⊥l 2时,求直线l 的方程.[解析] (1)已知椭圆的长半轴长为a =2,半焦距c =4-b 2,由离心率e =ca=4-b 22=32得,b 2=1. ∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), ∴p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2),∵y =14x 2,∴y ′=12x ,∴切线l 1,l 2的斜率分别为12x 1,12x 2,当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4,由⎩⎪⎨⎪⎧y =k (x +1)x 2=4y 得:x 2-4kx -4k =0, 由Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0. 又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为x -y +1=0.(理)在△ABC 中,CA →⊥CB →,OA →=(0,-2),点M 在y 轴上且AM →=12(AB →+CD →),点C在x 轴上移动.(1)求B 点的轨迹E 的方程;(2)过点F ⎝⎛⎭⎫0,-14的直线l 交轨迹E 于H 、E 两点,(H 在F 、G 之间),若FH →=12HG →,求直线l 的方程.[解析] (1)设B (x ,y ),C (x 0,0),M (0,y 0),x 0≠0, ∵CA →⊥CB →,∴∠ACB =π2,∴2x 0·y 0-x 0=-1,于是x 02=2y 0① M 在y 轴上且AM →=12(AB →+AC →),所以M 是BC 的中点,可得 ⎩⎪⎨⎪⎧x 0+x 2=0y +02=y,∴⎩⎪⎨⎪⎧x 0=-x ②y 0=y2 ③把②③代入①,得y =x 2(x ≠0),所以,点B 的轨迹E 的方程为y =x 2(x ≠0). (2)点F ⎝⎛⎭⎫0,-14,设满足条件的直线l 方程为: y =kx -14,H (x 1,y 1),G (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -14y =x 2消去y 得,x 2-kx +14=0.Δ=k 2-1>0⇒k 2>1,∵FH →=12HG →,即⎝⎛⎭⎫x 1,y 1+14=12(x 2-x 1,y 2-y 1), ∴x 1=12x 2-12x 1⇒3x 1=x 2.∵x 1+x 2=k ,x 1x 2=14,∴k =±233,故满足条件的直线有两条,方程为:8x +43y +3=0和8x -43y -3=0. 16.(文)已知P (x ,y )为平面上的动点且x ≥0,若P 到y 轴的距离比到点(1,0)的距离小1.(1)求点P 的轨迹C 的方程;(2)设过点M (m,0)的直线交曲线C 于A 、B 两点,问是否存在这样的实数m ,使得以线段AB 为直径的圆恒过原点.[解析] (1)由题意得:(x -1)2+y 2-x =1,化简得:y 2=4x (x ≥0).∴点P 的轨迹方程为y 2=4x (x ≥0).(2)设直线AB 为y =k (x -m ),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -m )y 2=4x,得ky 2-4y -4km =0,∴y 1+y 2=4k ,y 1·y 2=-4m .∴x 1·x 2=m 2,∵以线段AB 为直径的圆恒过原点, ∴OA ⊥OB ,∴x 1·x 2+y 1·y 2=0.即m 2-4m =0⇒m =0或4.当k 不存在时,m =0或4. ∴存在m =0或4,使得以线段AB 为直径的圆恒过原点.[点评] (1)点P 到定点F (1,0)的距离比到y 轴的距离大1,即点P 到定点F (1,0)的距离与到定直线l :x =-1的距离相等.∴P 点轨迹是以F 为焦点,l 为准线的抛物线,∴p =2,∴方程为y 2=4x .(理)已知抛物线y 2=4x ,过点(0,-2)的直线交抛物线于A 、B 两点,O 为坐标原点. (1)若OA →·OB →=4,求直线AB 的方程.(2)若线段AB 的垂直平分线交x 轴于点(n,0),求n 的取值范围.[解析] (1)设直线AB 的方程为y =kx -2 (k ≠0),代入y 2=4x 中得,k 2x 2-(4k +4)x +4=0①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k +4k 2,x 1x 2=4k 2.y 1y 2=(kx 1-2)·(kx 2-2)=k 2x 1x 2-2k (x 1+x 2)+4=-8k.∵OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=4k 2-8k =4,∴k 2+2k -1=0,解得k =-1±2.又由方程①的判别式Δ=(4k +4)2-16k 2=32k +16>0得k >-12,∴k =-1+2,∴直线AB 的方程为(2-1)x -y -2=0.(2)设线段AB 的中点的坐标为(x 0,y 0),则由(1)知x 0=x 1+x 22=2k +2k 2,y 0=kx 0-2=2k,∴线段AB 的垂直平分线的方程是y -2k =-1k ⎝ ⎛⎭⎪⎫x -2k +2k 2. 令y =0,得n =2+2k +2k 2=2k 2+2k+2 =2⎝⎛⎭⎫1k +122+32.又由k >-12且k ≠0得1k <-2,或1k>0, ∴n >2⎝⎛⎭⎫0+122+32=2.∴n 的取值范围为(2,+∞). 17.(文)(2010·全国Ⅰ)已知抛物线C :y 2=4x 的焦点为F ,过点K (-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设F A →·FB →=89,求△BDK 的内切圆M 的方程. [解析] 设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),l 的方程为x =my -1(m ≠0)(1)将x =my -1(m ≠0)代入y 2=4x 并整理得y 2-4my +4=0,从而y 1+y 2=4m ,y 1y 2=4①直线BD 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2) 即y -y 2=4y 2-y 1⎝⎛⎭⎫x -y 224 令y =0,得x =y 1y 24=1,所以点F (1,0)在直线BD 上. (2)由(1)知,x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2,x 1x 2=(my 1-1)(my 2-1)=1因为F A →=(x 1-1,y 1),FB →=(x 2-1,y 2),F A →·FB →=(x 1-1,y 1)·(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+4=8-4m 2,故8-4m 2=89,解得m =±43,直线l 的方程为3x +4y +3=0,3x -4y +3=0.从而y 2-y 1=±(4m )2-4×4=±437, 故4y 2-y 1=±37 因而直线BD 的方程为3x +7y -3=0,3x -7y -3=0.因为KF 为∠BKD 的角平分线,故可设圆心M (t,0),(-1<t <1),M (t,0)到直线l 及BD 的距离分别为3|t +1|5,3|t -1|4, 由3|t +1|5=3|t -1|4得t =19或t =9(舍去),故圆M 的半径为r =3|t +1|5=23, 所以圆M 的方程为⎝⎛⎭⎫x -192+y 2=49. (理)(2010·揭阳市模考)已知点C (1,0),点A 、B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.[解析] (1)法一:连结CP ,由AC →·BC →=0知,AC ⊥BC ,∴|CP |=|AP |=|BP |=12|AB |, 由垂径定理知|OP |2+|AP |2=|OA |2,即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9,化简得,x 2-x +y 2=4.法二:设A (x 1,y 1),B (x 2,y 2),P (x ,y ),根据题意知,x 12+y 12=9,x 22+y 22=9,2x =x 1+x 2,2y =y 1+y 2,∴4x 2=x 12+2x 1x 2+x 22,4y 2=y 12+2y 1y 2+y 22故4x 2+4y 2=(x 12+y 12)+(2x 1x 2+2y 1y 2)+(x 22+y 22)=18+2(x 1x 2+y 1y 2)①又∵AC →·BC →=0,∴(1-x 1,-y 1)·(1-x 2,-y 2)=0∴(1-x 1)×(1-x 2)+y 1y 2=0,故x 1x 2+y 1y 2=(x 1+x 2)-1=2x -1,代入①式得,4x 2+4y 2=18+2(2x -1),化简得,x 2-x +y 2=4.(2)根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px 上,其中p 2=1,∴p =2,故抛物线方程为y 2=4x , 由方程组⎩⎪⎨⎪⎧y 2=4xx 2-x +y 2=4得,x 2+3x -4=0, 解得x 1=1,x 2=-4,由于x ≥0,故取x =1,此时y =±2,故满足条件的点存在,其坐标为(1,-2)和(1,2).。
抛物线习题精选(带答案)
抛物线习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则 =________.13.过()的焦点的弦为,为坐标原点,则=________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。
高考数学复习抛物线方程专题练习(附答案)
高考数学复习抛物线方程专题练习(附答案)平面内,到定点与定直线的隔断相等的点的轨迹叫做抛物线。
以下是抛物线方程专题练习,请考生查缺补漏。
(2019泰州中学检测)给定圆P:x2+y2=2x及抛物线S:y2=4x,过圆心P作直线l,此直线与上述两曲线的四个交点,自上而下顺次记为A,B,C,D,要是线段AB,BC,CD的长按此顺序组成一个等差数列,求直线l的方程.[解] 圆P的方程为(x-1)2+y2=1,则其直径长|BC|=2,圆心为P(1,0),设l的方程为ky=x-1,即x=ky+1,代入抛物线方程得:y2=4ky+4,设A(x1,y1),D(x2,y2),有则(y1-y2)2=(y1+y2)2-4y1y2=16(k2+1).故|AD|2=(y1-y2)2+(x1-x2)2=(y1-y2)2+2=(y1-y2)2=16(k2+1)2,因此|AD|=4(k2+1).根据等差数列性质得2|BC|=|AB|+|CD|=|AD|-|BC|,|AD|=3|BC|=6,即4(k2+1)=6,k=,即l方程为x-y-=0或x+y-=0.2.(2019苏州调研)设抛物线y2=2px(p0)的焦点为F,议决点F的直线交抛物线于A,B两点,点C在抛物线的准线上,且BCx轴.求证:直线AC议决原点O.【常规证法】抛物线y2=2px(p0)的焦点为F,显然直线AB 的斜率不为0,当AB斜率不存在时,直线AP方程为x=,不妨设A在第一象限,则易知A,B,C,此时kOA==2,kOC==2.kOA=kOC,A,O,C三点共线,即直线AC议决原点O.当AB斜率存在且不为0时,设直线AB方程为y=k代入y2=2px 得k2x2-(k2+2)px+=0,设A(x1,y1),B(x2,y2),则x1x2=,(y1y2)2=p4,由题意知y1y20,y1y2=-p2kOC======kOA直线AC过原点O,综上,直线AC议决原点O.【奇妙证法】因为抛物线y2=2px(p0)的焦点为F,而直线AB的斜率不为零,所以议决点F的直线AB的方程可设为x=my+.代入抛物线方程消去x得y2-2pmy-p2=0.若记A(x1,y1),B(x2,y2),则y1,y2是该方程的两个根,所以y1y2=-p2.因为BCx轴,且点C在准线x=-上,所以点C的坐标为,故直线CO的斜率为k===,即k也是直线OA的斜率,所以直线AC议决原点O.3.(2019南师附中检测)设A(x1,y1),B(x2,y2)为抛物线y2=2px(p0)上位于x轴两侧的两点.(1)若y1y2=-2p,证明直线AB恒过一个定点;(2)若p=2,AOB(O是坐标原点)为钝角,求直线AB在x轴上的截距的取值范畴.[解] (1)设直线AB在x轴上的截距为t,则可设直线AB的方程为x=my+t.代入y2=2px得y2=2p(my+t),即y2-2pmy-2pt=0,于是-2p=y1y2=-2pt,所以t=1,即直线AB 恒过定点(1,0).(2)因为AOB为钝角,所以0,即x1x2+y1y20.y=2px1,y=2px2,yy=2px12px2,于是x1x2===t2,故x1x2+y1y2=t2-2pt=t2-4t.解不等式t2-4t0,得00)把点P(-2,-4)代入得(-4)2=-2p(-2).解得p=4,抛物线方程为y2=-8x.当焦点在y轴负半轴上时,设方程为x2=-2py(p0),把点P(-2,-4)代入得(-2)2=-2p(-4).解得p=.抛物线方程为x2=-y.综上可知抛物线方程为y2=-8x或x2=-y.[答案] y2=-8x或x2=-y4.(2019广东高考)已知抛物线C的极点为原点,其焦点F(0,c)(c0)到直线l:x-y-2=0的隔断为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,此中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF||BF|的最小值.[解题思路] (1)由点到直线的隔断求c的值,得到F(0,c)后可得抛物线的方程;(2)采取设而不求计谋,先设出A(x1,y1),B(x2,y2),连合导数求切线PA,PB的方程,代入点P 的坐标,根据布局,可得直线AB的方程;(3)将|AF||BF|转化为关于x(或y)的函数,再求最值.[解] (1)依题意,设抛物线C的方程为x2=4cy(c0),由点到直线的隔断公式,得=,解得c=1(负值舍去),故抛物线C的方程为x2=4y.(2)由x2=4y,得y=x2,其导数为y=x.设A(x1,y1),B(x2,y2),则x=4y1,x=4y2,切线PA,PB的斜率分别为x1,x2,所以切线PA的方程为y-y1=(x-x1),即y=x-+y1,即x1x-2y-2y1=0.同理可得切线PB的方程为x2x-2y-2y2=0.因为切线PA,PB均过点P(x0,y0),所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0,所以和为方程x0x-2y0-2y=0的两组解.所以直线AB的方程为x0x-2y-2y0=0.(3)由抛物线定义可知|AF|=y1+1,|BF|=y2+1,所以|AF||BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1.由消去x并整理得到关于y的方程为y2+(2y0-x)y+y=0.由一元二次方程根与系数的干系得y1+y2=x-2y0,y1y2=y.所以|AF||BF|=y1y2+(y1+y2)+1=y+x-2y0+1.又点P(x0,y0)在直线l上,所以x0-y0-2=0,即x0=y0+2,所以y+x-2y0+1=2y+2y0+5=22+,所以当y0=-时,|AF||BF|取得最小值,且最小值为.抛物线方程专题练习及答案就分享到这里,查字典数学网预祝考生可以考上自己理想的大学。
抛物线的练习题
抛物线的练习题一、选择题:1. 抛物线y = ax^2 + bx + c的顶点坐标为:A. (-b/2a, c - b^2/4a)B. (-b/a, c - b^2/4a)C. (-b/2a, c - b^2/2a)D. (-b/a, c - b^2/2a)2. 如果抛物线y = x^2 - 4x + 4的对称轴是:A. x = 1B. x = 2C. x = -2D. x = 03. 抛物线y = 2x^2 - 4x + 3的开口方向是:A. 向上B. 向下C. 向左D. 向右4. 抛物线y = -3x^2 + 6x - 5与x轴的交点个数是:A. 0B. 1C. 2D. 无穷多5. 对于抛物线y = x^2 + 2x + 1,其焦点坐标为:A. (0, 1/4)B. (1, 0)C. (-1, 0)D. (0, -1/4)二、填空题:6. 将抛物线y = 2x^2 - 8x + 7进行顶点式变换,得到y = 2(x - ______)^2 + ______。
7. 已知抛物线y = ax^2 + bx + c与y轴交于点(0, 5),且对称轴为x = -1,则b的值为______。
8. 当抛物线y = x^2 - 2x - 3的开口方向为向上时,其顶点的横坐标为______。
9. 抛物线y = 4x^2 - 12x + 9的焦点坐标为______。
10. 抛物线y = -x^2 + 4x - 3与x轴的交点坐标为______。
三、解答题:11. 已知抛物线y = ax^2 + bx + c经过点(1, 2)和(-1, -2),求抛物线的方程。
12. 抛物线y = 3x^2 - 6x + 5的顶点坐标是什么?并求出该抛物线与x轴的交点坐标。
13. 抛物线y = 2x^2 - 8x + 7的焦点坐标是什么?并求出其准线方程。
14. 已知抛物线y = -x^2 + 2x + 3,求其在x = 2时的函数值。
高中抛物线练习题
高中抛物线练习题一、选择题1. 抛物线y^2 = 4x的焦点坐标是:A. (1,0)B. (2,0)C. (0,2)D. (0,-2)2. 抛物线x^2 = 4y的准线方程是:A. y = -1B. y = 1C. x = -2D. x = 23. 抛物线y^2 = 8x的顶点坐标是:A. (0,0)B. (2,0)C. (4,0)D. (0,2)4. 抛物线x = 2y^2的开口方向是:A. 向上B. 向下C. 向左D. 向右5. 抛物线y = -x^2 + 4x - 3的对称轴方程是:A. x = 1B. x = 2C. x = -1D. x = -2二、填空题6. 抛物线y = 3x^2 - 6x + 5的顶点坐标是________。
7. 抛物线x^2 = 12y的焦点到准线的距离是________。
8. 抛物线y = 2x - x^2的焦点坐标是________。
9. 抛物线x^2 = -4y的准线方程是________。
10. 抛物线y^2 = 6x的焦距是________。
三、解答题11. 已知抛物线y^2 = 16x,求其焦点、准线及顶点坐标。
12. 已知抛物线x^2 = 8y,求其焦距、焦点坐标及顶点坐标。
13. 已知抛物线y = 4 - 2x^2,求其顶点坐标、对称轴及开口方向。
14. 已知抛物线x = -3y^2 + 6y - 5,求其顶点坐标、对称轴及开口方向。
15. 已知抛物线y = -x^2 + bx + c,若其顶点坐标为(2, -1),求b 和c的值。
四、综合题16. 抛物线y = ax^2 + bx + c经过点(1, 3)和(-1, 1),求a、b、c 的值。
17. 抛物线y = x^2 - 4x + 4的焦点坐标是什么?准线方程是什么?18. 已知抛物线y = 1/4x^2,求其在x轴上的焦点坐标。
19. 抛物线y = -x^2 + 2x + 3在x轴上的交点坐标是什么?20. 抛物线y^2 = 4px的焦距为8,求p的值,并写出其焦点坐标。
抛物线专项练习-2020-2021学年高中数学新教材人教A版选择性必修1
抛物线一、单选题1.(2020·陕西省西安市远东一中高二期末(理))准线方程为1y =的抛物线的标准方程是( ) A .22x y = B .22y x =C .24x y =- D .24y x =-【答案】C 【解析】根据题意,抛物线的准线方程为1y =,即其焦点在y 轴负半轴上,且12p=,得2p =, 故其标准方程为24x y =-.故选:C2.(2019·乐清市知临中学高二期末)抛物线22y x =的焦点坐标为( ) A .1(0,)2B .1(0,)8C .1(,0)2D .(1,0)【答案】B 【解析】整理抛物线方程得212x y =, ∴焦点在y 轴,14P =,∴焦点坐标为10,8⎛⎫⎪⎝⎭,故选B.3.(2020·北京高三月考)抛物线24x y =的准线与y 轴的交点的坐标为( )A .1(0,)2- B .(0,1)- C .(0,2)- D .(0,4)-【答案】B-,故选B.准线方程为:,与y轴的交点为(0,1)4.(2020·北京市八一中学高三月考)已知抛物线24=上一点A的纵坐标为4,则点A到抛物线焦点的x y距离为()A.2 B.3 C.4 D.5【答案】D【解析】y=-,因为点A的纵坐标抛物线24x y=焦点在y轴上,开口向上,所以焦点坐标为(0,1),准线方程为1+=,因为抛物线上的点到焦点的距离等于到准线的距离,所为4,所以点A到抛物线准线的距离为415以点A与抛物线焦点的距离为5.5.(2020·定远县育才学校高二月考(文))已知抛物线的准线经过点,则抛物线焦点坐标为()A.B.C.D.【答案】B【解析】由抛物线得准线,因为准线经过点,所以,所以抛物线焦点坐标为,故答案选6.(2020·江苏省泰州中学高二开学考试)已知抛物线2C y px p=>的焦点为F,准线为l,且l过点:2(0)()N,则MN MF+的最小值为1,22,3,M-在抛物线C上,若点()A.2 B.3C.4 D.5【答案】B由题可得,:2l x =-.由抛物线的定义可知,2M MF x =+,所以MN MF +=2123M MN x ++≥+=.故选B .7.(2020·湖北省高三月考(理))已知抛物线C :22(0)x py p =>的准线l 与圆M :22(1)(2)16x y -+-=相切,则p =( ) A .6 B .8 C .3 D .4【答案】D 【解析】因为抛物线2:2C x py =的准线为2py =-, 又准线l 与圆()()22:1216M x y -+-=相切, 所以242p+= ,则4p =. 故选D8.(2020·天津高三一模)已知抛物线24y x =与()220x py p =>的焦点间的距离为2,则p 的值为( )A .B .4C .6D .12【答案】A 【解析】抛物线24y x =的焦点坐标为()1,0,抛物线()220x py p =>的焦点坐标为0,2p ⎛⎫ ⎪⎝⎭,2=,0p >,解得p =故选:A.9.(2020·陕西省西安市远东一中高二期末(理))已知抛物线2:6C x y =的焦点为F 直线l 与抛物线C 交于,A B 两点,若AB 中点的纵坐标为5,则||||AF BF +=( ) A .8 B .11 C .13 D .16【答案】C 【解析】抛物线2:6C x y =中p =3, 设点A (x 1,y 1),B (x 2,y 2),由抛物线定义可得:|AF |+|BF |=y 1+ y 2+p =y 1+ y 2+3, 又线段AB 中点M 的横坐标为122y y +=5, ∴12y y +=10, ∴|AF |+|BF |=13; 故选:C .10.(2020·山东省青岛第一中学高三月考)已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( ) A .16 B .10 C .12 D .8【答案】C 【解析】因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .二、多选题11.(2019·辽宁省高二期末)已知抛物线()220y px p =>上一点M 到其准线及对称轴的距离分别为10和6,则p 的值可取( )A .1B .2C .9D .18【答案】BD 【解析】设00(,)M x y ,所以有2002y px =,由点M 到其准线及对称轴的距离分别为10和6,所以有0102px +=,06y =,所以有20020021020360226y px p x p p p y ⎧=⎪⎪+=⇒-+=⇒=⎨⎪=⎪⎩或18p =.故选:BD12.(2020·山东省高三开学考试)已知抛物线22(0)x py p =>的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,以线段AB 为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q .若抛物线C 上存在一点(,2)E t 到焦点F 的距离等于3.则下列说法正确的是( ) A .抛物线的方程是22x y = B .抛物线的准线是1y =- C .sin QMN ∠的最小值是12D .线段AB 的最小值是6【答案】BC抛物线()2:20C x py p =>的焦点为02p F ⎛⎫ ⎪⎝⎭,,得抛物线的准线方程为2py =-,点()2E t ,到焦点F 的距离等于3,可得232p+=,解得2p =, 则抛物线C 的方程为24x y =,准线为1y =-,故A 错误,B 正确; 由题知直线l 的斜率存在,()0F ,1,设()11,A x y ,()22,B x y ,直线l 的方程为1y kx =+,由21 4y kx x y=+⎧⎨=⎩,消去y 得2440x kx --=, 所以124x x k +=,124x x =-,所以()21212242y y k x x k +=++=+,所以AB 的中点Q 的坐标为()2221k k +,, 221242244AB y y p k k =++=++=+,故线段AB 的最小值是4,即D 错误;所以圆Q 的半径为222r k =+, 在等腰QMN 中,22221111sin 11222222Qy k QMN r k k +∠===-≥-=++, 当且仅当0k =时取等号,所以sin QMN ∠的最小值为12,即C 正确,故选:BC.13.(2019·山东省高二期中)已知抛物线C :()220y px p =>的焦点为F ,且经过点F ,直线l 与抛物线C 交于点A ,B 两点(点A 在第一象限)、与抛物线的准线交于点D ,若4AF =,则以下结论正确的是( ) A .2p = B .F 为AD 中点C .2BD BF =D .2BF =【答案】ABC如图所示:作AC ⊥准线于C ,AM x ⊥轴于M ,BE ⊥准线于E . 直线的斜率为3,故tan 3AFM ∠=,3AFM π∠=,4AF =,故2MF =,3AM =.2,232p A ⎛⎫+ ⎪⎝⎭,代入抛物线得到2p =; 2NF FM ==,故AMF DNF ∆≅∆,故F 为AD 中点;6BDE π∠=,故22DB BE BF ==;2BD BF =,4BD BF DF AF +===,故43BF =; 故选:ABC .三、填空题14.(2020·黑龙江省铁人中学高二月考(文))设抛物线22y x =-上一点P 到x 轴的距离是4,则点P 到该抛物线焦点的距离是______. 【答案】338【解析】抛物线方程的标准形式为:22y x =-,准线方程为18y =,由抛物线的定义得:点P 到该抛物线焦点的距离等于点P 到准线18y =的距离d ,因为点P 到x 轴的距离是4,所以133488d =+=,故填:338.15.(2019·黑龙江省哈尔滨市第六中学校高二月考(理))抛物线2y ax =的准线方程是2y =,则a =________. 【答案】18- 【解析】抛物线2y ax =的标准方程为21x y a=, 则a <0且2=-14a, 得a =-18. 16.(2020·北京高三其他)如果抛物线22y px =上一点()4,A m 到准线的距离是6,那么m =______. 【答案】42± 【解析】抛物线22y px =的准线方程为2px =-, 由题意得462p+=,解得4p =. ∵点()4,A m 在抛物线22y px =上, ∴2244m =⨯⨯,∴42m =± 故答案为:42±.17.(2019·浙江省诸暨中学高三一模)抛物线24y x =的焦点F 坐标为_____,过F 的直线交抛物线24y x =于A 、B 两点,若2AF FB =,则A 点坐标为_____. 【答案】()1,0 (2,22± 【解析】抛物线24y x =的焦点F 的坐标为()1,0;设点()11,A x y ,()22,B x y ,设直线AB 的方程为1x my =+,()111,AF x y =--,()221,FB x y =-,由2AF FB =得122y y -=,122y y ∴=-,联立214x my y x=+⎧⎨=⎩,消去x 得2440y my --=,124y y ∴=-, 所以121242y y y y =-⎧⎨=-⎩,解得1y =±,21124y x ∴==,因此,点A的坐标为(2,±. 故答案为:()1,0;(2,±. 四、解答题18.(2020·四川省阆中中学高二月考(文))已知抛物线212y x =,双曲线221y x m-=,它们有一个共同的焦点.求:(1)m 的值及双曲线的离心率;(2)抛物线的准线方程及双曲线的渐近线方程.【答案】(1)8m =,3e =;(2)准线方程为3x =-,渐近线方程为y =± 【解析】(1)抛物线212y x =的焦点为(3,0),由双曲线221(0)y x m m-=>,可得19m +=,解得8m =,双曲线的1a =,3c =,则3ce a==; (2)抛物线212y x =的准线方程为3x =-,双曲线2218y x -=的渐近线方程为y =±.19.(2019·凤阳县第二中学高二期中(文))抛物线顶点在原点,焦点在x 轴上,且过点(4,4),焦点为F .(1)求抛物线的焦点坐标和标准方程;(2)P 是抛物线上一动点,M 是PF 的中点,求M 的轨迹方程.【答案】(1)抛物线标准方程为:y 2=4x ,焦点坐标为F (1,0);(2)M 的轨迹方程为 y 2=2x ﹣1. 【解析】(1)抛物线顶点在原点,焦点在x 轴上,且过点(4,4),设抛物线解析式为y 2=2px ,把(4,4)代入,得,16=2×4p ,∴p=2 ∴抛物线标准方程为:y 2=4x ,焦点坐标为F (1,0)(2)设M (x ,y ),P (x 0,y 0),F (1,0),M 是PF 的中点,则x 0+1=2x ,0+y 0="2y" ∴x 0=2x ﹣1,y 0=2y∵P 是抛物线上一动点,∴y 02=4x 0∴(2y )2=4(2x ﹣1),化简得,y 2=2x ﹣1. ∴M 的轨迹方程为 y 2=2x ﹣1.20.(2020·安徽省高二期末(文))已知抛物线()2:20C y px p =>上的点()5,M m 到焦点F 的距离为6.(1)求,p m 的值;(2)过点()2,1P 作直线l 交抛物线C 于,A B 两点,且点P 是线段AB 的中点,求直线l 方程. 【答案】(1)2p =,m =±(2)230x y --=. 【解析】(1)由抛物线焦半径公式知:562pMF =+=,解得:2p =, 2:4C y x ∴=,25420m ∴=⨯=,解得:m =±(2)设()11,A x y ,()22,B x y ,则21122244y x y x ⎧=⎨=⎩,两式作差得:()()()1212124y y y y x x +-=-,1212124l y y k x x y y -∴==-+, ()2,1P 为AB 的中点,122y y ∴+=,2l k ∴=,∴直线l 的方程为:()122y x -=-,即230x y --=.21.(2020·河南省实验中学高三二模(文))过点P(-4,0)的动直线l 与抛物线2:2(0)C x py p =>相交于D 、E 两点,已知当l 的斜率为12时,4PE PD =. (1)求抛物线C 的方程;(2)设DE 的中垂线在y 轴上的截距为b ,求b 的取值范围.【答案】()124x y =;()22b > 【解析】()1由题意可知,直线l 的方程为()142y x =+,与抛物线方程2:2(0)C x py p =>方程联立可得, ()22880y p y -++=,设()()1122,,,D x y E x y ,由韦达定理可得,12128,42p y y y y ++==, 因为4PE PD =,()()22114,,4,PE x y PD x y =+=+,所以214y y =,解得121,4,2y y p ===,所以抛物线C 的方程为24x y =; ()2设():4l y k x =+,DE 的中点为()00,x y ,由()244x y y k x ⎧=⎪⎨=+⎪⎩,消去y 可得24160x kx k --=, 所以判别式216640k k ∆=+>,解得4k <-或0k >,由韦达定理可得,()20002,4242D E x x x k y k x k k +===+=+,所以DE 的中垂线方程为()21242y k k x k k--=--, 令0x =则b =()2224221y k k k =++=+, 因为4k <-或0k >,所以2b >即为所求.22.(2020·广东省高二期末)已知直线4x =与抛物线2:2C y px =(0p >)相交于A ,B 两点,且OAB是等腰直角三角形.(1)求抛物线C 的方程;(2)若直线l 过定点(2,1)-,斜率为k ,当k 为何值时,直线l 与抛物线C 只有一个公共点?【答案】(1)24y x =(2)0k =或1k =-或12k = 【解析】(1)直线4x =与抛物线2:2C y px =(0p >)相交于A ,B 两点,可设A ,(4,B -,又OAB 是等腰直角三角形,可得OA OB ⊥,1=-,解得2p =, 即有抛物线的方程为24y x =;(2)直线l 过定点(2,1)-,斜率为k ,可设直线l 的方程为1(2)y k x -=+,当直线l 平行于抛物线的对称轴x 轴,可得直线与抛物线只有一个公共点,即0k =; 当直线l 与抛物线相切时,可得直线与抛物线只有一个公共点,由2124y kx k y x=++⎧⎨=⎩可得222[2(12)4](12)0k x k k x k ++-++=,0k ≠, 由2[2(12)4]k k ∆=+--()2224(12)16120k k k k +=--=,解得1k =-或12k =, 综上可得0k =或1k =-或12k =,直线l 与抛物线C 只有一个公共点. 23.(2019·安徽省阜阳第一中学高二期中(文))已知抛物线C :()220y px p =>的焦点为F ,准线为l ,若点P 在C 上,过点P 作PE 垂直于l ,交l 于E ,PEF 是边长为8的正三角形.(1)求C 的方程;(2)过点()1,0M 的直线m 与C 交于A ,B 两点,若3MA MB =,求直线m 的方程.【答案】(1)28y x =(2)66y x =-或66y x =-+ 【解析】(1) 由PEF ∆是边长为8的等边三角形,(2) 得||||||8PE PF EF ===,又由抛物线的定义可得PE l ⊥.设准线l 与x 轴交于D ,则//PE DF ,从而60PEF EFD ∠=∠=︒,在Rt EDF ∆中,1||||cos 842DF EF EFD =∠=⨯=,即4p =. 所以抛物线C 的方程为28y x =;(2)设直线m :1x ty =+,代入28y x =得2880y ty --=,设11(,)A x y ,22()B x y ,则128y y t +=,128y y =-, 因为3MA MB =, 所以123y y =,设123y y =-,则112y t =,24y t =-,()1248t t ⨯-=- 解得6t =±, 所以直线方程为616x y =±+, 即66y x =-或66y x =-+。
抛物线练习题
抛物线练习题抛物线是二次函数的图像,它在数学中有着重要的应用。
本文将为您提供一些抛物线的练习题,帮助您更好地理解和应用抛物线的概念。
练习题一:抛物线的标准方程已知抛物线的顶点坐标为(2,3),经过点(1,0)。
求该抛物线的标准方程。
解答:由于已知抛物线的顶点坐标为(2,3),则抛物线的标准方程可以表示为:y = a(x - 2)^2 + 3又因为抛物线经过点(1,0),将该点代入方程中可得:0 = a(1 - 2)^2 + 30 = a + 3a = -3所以,该抛物线的标准方程为:y = -3(x - 2)^2 + 3练习题二:抛物线的焦点和准线已知抛物线的顶点坐标为(0,0),焦点为(2,0)。
求该抛物线的准线方程。
由于已知抛物线的顶点坐标为(0,0),准线方程可以表示为:y = -p又因为抛物线的焦点坐标为(2,0),代入焦准距离公式可得:p = 2所以,该抛物线的准线方程为:y = -2练习题三:抛物线的对称轴给定抛物线的焦点坐标为(3,0),顶点坐标为(1,2)。
求该抛物线的对称轴方程。
解答:由于已知抛物线的焦点坐标为(3,0),顶点坐标为(1,2),对称轴方程可以表示为:x = h其中,抛物线的对称轴与焦点的x坐标相等,所以对称轴方程为:x = 3练习题四:抛物线的焦点和顶点已知抛物线的焦点坐标为(0,1),顶点坐标为(1,4)。
求该抛物线的准线方程。
由于已知抛物线的焦点坐标为(0,1),顶点坐标为(1,4),首先可以求得焦准距离的值:p = 3根据抛物线性质可知,焦点的y坐标为顶点的y坐标减去焦准距离的绝对值,所以焦点的y坐标为:1 = 4 - |3|解得焦点的y坐标为1。
因此,该抛物线的准线方程为:y = 1练习题五:抛物线的焦点和顶点已知抛物线的焦点坐标为(2,-1),顶点坐标为(1,0)。
求该抛物线的准线方程。
解答:由于已知抛物线的焦点坐标为(2,-1),顶点坐标为(1,0),首先可以求得焦准距离的值:p = 1根据抛物线性质可知,焦点的y坐标为顶点的y坐标减去焦准距离的绝对值,所以焦点的y坐标为:-1 = 0 - |1|解得焦点的y坐标为-1。
(完整版)抛物线练习题(含答案)
抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线2.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为( )A.⎝⎛⎭⎫32,±62B.⎝⎛⎭⎫74,±72C.⎝⎛⎭⎫94,±32D.⎝⎛⎭⎫52,±102 3.抛物线y =ax 2的准线方程是y =2,则a 的值为( )A.18 B .-18C .8D .-8 4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .125.设过抛物线的焦点F 的弦为AB ,则以AB 为直径的圆与抛物线的准线的位置关系是( )A .相交B .相切C .相离D .以上答案都有可能6.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( )A .y 2=12xB .y 2=-12xC .x 2=12yD .x 2=-12y7.抛物线y 2=8x 上一点P 到x 轴距离为12,则点P 到抛物线焦点F 的距离为( )A .20B .8C .22D .248.抛物线的顶点在坐标原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离为( )A .2 3 B. 3 C.12 3 D.143 9.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )A .4B .4或-4C .-2D .2或-210.抛物线y =1mx 2(m <0)的焦点坐标是( ) A.⎝⎛⎭⎫0,m 4 B.⎝⎛⎭⎫0,-m 4 C.⎝⎛⎭⎫0,14m D.⎝⎛⎭⎫0,-14m 11.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x12.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12 B .1 C .2 D .4二、填空题13.过抛物线焦点F的直线与抛物线相交于A、B两点,若A、B在抛物线准线上的射影是A1、B1,则∠A1FB1= 。
初中抛物线经典练习题(含详细答案)
初中数学抛物线经典试题集锦【编著】黄勇权【第一组题型】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
3、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。
(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A 为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式【答案】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
解:【第一问】因为函数y=x²+bx+c过点A(2,0),C(0, -8)分别将x=2,y=0代入y=x²+bx+c,得0=4+2b+c-----①将x=0,y=-8代入y=x²+bx+c,得-8=c-------------②将②代入①,解得:b=2--------------------------------------③此时,将②③代入y=x²+bx+c,所以:二次函数的解析式y=x²+ 2x -8【第二问】△ABP的面积= 12│AB│*│y p│----------------------④因为A、B两点在x轴上,令x²+ 2x -8=0(x-2)(x+4)=0解得:x1=2,x2= -4所以:│AB│=│X1- X2│=│2-(- 4)│=6------⑤又△ABP的面积=15-------------------------------------⑥由④⑤⑥,得:12*6*│y p│=15│y p│=5故有:y p= ±5即:p点的纵坐标为5或-5.把y=5代入y=x²+ 2x -8,即:5=x²+ 2x -8x²+ 2x -13=0解得:x= -1± 14那么,此时p点坐标(-1+ 14,5),(-1- 14,5)-------⑦把y=-5代入y=x²+ 2x -8,即:-5=x²+ 2x -8x²+ 2x -3=0(x-1)(x+3)=0解得:x= 1或x= -3那么,此时p点坐标(1,-5),(-3,-5)------------------⑧由⑦⑧得,使△ABP的面积为15,p点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
抛物线练习题带答案,知识点总结(提高版)
抛物线重难点复习一.知识点总结2.,,C F p M C 焦抛物线的焦点为为是准距上的点min ;.2pMF OF MF MF p ===(1)(2)若与对称轴垂直,则2000(,)2(0)23p M x y y px p MF x =>=±+±若是抛物线上的点则() 2000(,)224p P x y x py PF y =±=±+若是抛物线上的(点,则) (5).()(90)1cos s ()1co p MF MF pp or MF p MF MF θθθθ≥≤-+==≤若与抛物线的为则夹角,对称轴1)2MF MF MF 以为直径的圆与坐标轴相切(的中点到坐标轴的距离为(6)1122(,)(,),.F l A x y B x y l k θ3.过焦点的直线交抛物线于点、,记直线的斜率为倾斜角为221222:2,(),sin 2sin AOB p p C y px AB x x p S θθ∆==++==(1)若抛物线则 221222:2,()cos 2cos AOB p p C x py AB y y p S θθ∆==++==(2)若抛物线则,112(3)2();p AF BF p+=通焦点弦的最径小值为222222121212124:2,,;:2,,44p p C y px y y p x x C x py x x p y y ==-===-=()若抛物线则若抛物线则 (5)以AB 为直径的圆与准线相切12MN AB ⎛⎫=⎪⎝⎭标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =>图形焦点坐标 (,0)2p (,0)2p -(0,)2p(0,)2p -准线方程 2p x =-2p x =2p y =-2p y =范围 0x ≥ 0x ≤ 0y ≥0y ≤对称性 x 轴x 轴y 轴 y 轴 顶点 (0,0)(0,0)(0,0)(0,0)离心率 1e =1e =1e =1e =通径2p(6)以CD 为直径的圆与AB 相切与焦点F1.已知抛物线C : 2x的焦点为F , ()00A x y ,是C 上一点,则0x =( )A. 2B. 2±C. 4D. 4± 【答案】D【解析】28x y =,如图,由抛物线的几何意义,可知0022AF Al y y ===+,所以02y =, 。
初中抛物线经典练习题(含详细答案)
【编著】 黄勇权【第一组题型】1、已知二次函数y=x ²+bx+c 过点A (2,0),C (0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p 使△ABP 的面积为15,请直接写出p 点的坐标。
2、在平面直角坐标系xOy 中,抛物线y=2x ²+mx+n 经过点A (5,0),B (2,-6).(1)求抛物线的表达式及对称轴(2)设点B 关于原点的对称点为C ,写出过A 、C 两点直线的表达式。
初中数学抛物线 经典试题集锦3、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。
(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式【答案】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。
解:【第一问】因为函数y=x ²+bx+c 过点A (2,0),C (0, -8)分别将x=2,y=0代入y=x ²+bx+c , 得 0=4+2b+c-----①将x=0,y=-8代入y=x ²+bx+c ,得-8=c-------------②将②代入①,解得:b=2--------------------------------------③此时,将② ③代入y=x ²+bx+c ,所以:二次函数的解析式 y=x ²+ 2x -8【第二问】△ABP 的面积= 12│AB │*│y p │----------------------④ 因为A 、B 两点在x 轴上,令x ²+ 2x -8=0(x-2)(x+4)=0解得:x 1=2,x 2= -4所以:│AB │=│X 1- X 2│=│2-(- 4)│=6------⑤又△ABP 的面积=--------------------------⑥由 ④ ⑤ ⑥,得 : 12*6*│y p │=15│y p│=5故有:y p= ±5即:p点的纵坐标为5或-5.把y=5代入 y=x²+ 2x -8,即:5=x²+ 2x -8x²+ 2x -13=0解得:x= -1± 14那么,此时p点坐标(-1+ 14,5),(-1- 14,5)-------⑦把y=-5代入 y=x²+ 2x -8,即:-5=x²+ 2x -8x²+ 2x -3=0(x-1)(x+3)=0解得:x= 1或x= -3那么,此时p点坐标(1,-5),(-3,-5)------------------⑧由⑦⑧得,使△ABP的面积为15,p点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。
高中数学高考总复习抛物线习题及详解
高中数学高考总复习抛物线习题及详解一、选择题1.(2010·湖北黄冈)若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4[答案] D[解析] 椭圆中,a 2=6,b 2=2,∴c =a 2-b 2=2, ∴右焦点(2,0),由题意知p2=2,∴p =4.2.已知点M 是抛物线y 2=2px (p >0)上的一点,F 为抛物线的焦点,若以|MF |为直径作圆,则这个圆与y 轴的关系是( )A .相交B .相切C .相离D .以上三种情形都有可能[答案] B[解析] 如图,由MF 的中点A 作准线l 的垂线AE ,交直线l 于点E ,交y 轴于点B ;由点M 作准线l 的垂线MD ,垂足为D ,交y 轴于点C ,则MD =MF ,ON =OF , ∴AB =OF +CM 2=ON +CM2=DM 2=MF 2, ∴这个圆与y 轴相切.3.(2010·山东文)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则线段AB 的中点(x 1+x 22,y 1+y 22),∴y 1+y 22=2,∵A 、B 在抛物线y 2=2px 上,∴⎩⎪⎨⎪⎧y 12=2px 1 ①y 22=2px 2 ② ①-②得y 12-y 22=2p (x 1-x 2),∴k AB =y 1-y 2x 1-x 2=2p y 1+y 2=p 2,∵k AB =1,∴,p =2∴抛物线方程为y 2=4x ,∴准线方程为:x =-1,故选B.4.双曲线x 29-y 24=1的渐近线上一点A 到双曲线的右焦点F 的距离等于2,抛物线y 2=2px (p >0)过点A ,则该抛物线的方程为( )A .y 2=9xB .y 2=4xC .y 2=41313xD .y 2=21313x[答案] C[解析] ∵双曲线x 29-y 24=1的渐近线方程为y =±23x ,F 点坐标为(13,0),设A 点坐标为(x ,y ),则y =±23x ,由|AF |=2⇒(x -13)2+⎝⎛⎭⎫23x 2=2⇒x =913,y =±613,代入y 2=2px 得p =21313,所以抛物线方程为y 2=41313x ,所以选C.5.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3 C. 5D.92[答案] A[解析] 记抛物线y 2=2x 的焦点为F ⎝⎛⎭⎫12,0,准线是l ,由抛物线的定义知点P 到焦点F 的距离等于它到准线l 的距离,因此要求点P 到点(0,2)的距离与点P 到抛物线的准线的距离之和的最小值,可以转化为求点P 到点(0,2)的距离与点P 到焦点F 的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F 与点(0,2)的距离,因此所求的最小值等于⎝⎛⎭⎫122+22=172,选A. 6.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为3 1,则点A 的坐标为( )A .(2,22)B .(2,-22)C .(2,±2)D .(2,±22)[答案] D[解析] 如图,由题意可得,|OF |=1,由抛物线定义得,|AF |=|AM |,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,∴S △AMFS △AOF =12×|AF |×|AM |×sin ∠MAF 12×|OF |×|AF |×sin (π-∠MAF )=3, ∴|AM |=3,设A ⎝⎛⎭⎫y 024,y 0,∴y024+1=3, 解得y 0=±22,∴y 024=2,∴点A 的坐标是(2,±22),故选D.7.(2010·河北许昌调研)过点P (-3,1)且方向向量为a =(2,-5)的光线经直线y =-2反射后通过抛物线y 2=mx ,(m ≠0)的焦点,则抛物线的方程为( )A .y 2=-2xB .y 2=-32xC .y 2=4xD .y 2=-4x[答案] D[解析] 设过P (-3,1),方向向量为a =(2,-5)的直线上任一点Q (x ,y ),则PQ →∥a ,∴x +32=y -1-5,∴5x +2y +13=0,此直线关于直线y =-2对称的直线方程为5x +2(-4-y )+13=0,即5x -2y +5=0,此直线过抛物线y 2=mx 的焦点F ⎝⎛⎭⎫m 4,0,∴m =-4,故选D.8.已知mn ≠0,则方程是mx 2+ny 2=1与mx +ny 2=0在同一坐标系内的图形可能是( )[答案] A[解析] 若mn >0,则mx 2+ny 2=1应为椭圆,y 2=-mnx 应开口向左,故排除C 、D ;∴mn <0,此时抛物线y 2=-mnx 应开口向右,排除B ,选A.9.(2010·山东聊城模考)已知A 、B 为抛物线C :y 2=4x 上的不同两点,F 为抛物线C 的焦点,若F A →=-4FB →,则直线AB 的斜率为( )A .±23B .±32C .±34D .±43[答案] D[解析] ∵F A →=-4FB →,∴|F A →|=4|FB →|,设|BF |=t ,则|AF |=4t ,∴|BM |=|AA 1|-|BB 1|=|AF |-|BF |=3t ,又|AB |=|AF |+|BF |=5t ,∴|AM |=4t ,∴tan ∠ABM =43,由对称性可知,这样的直线AB 有两条,其斜率为±43.10.已知抛物线C 的方程为x 2=12y ,过点A (0,-4)和点B (t,0)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(-∞,-1)∪(1,+∞) B.⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞ C .(-∞,-22)∪(22,+∞) D .(-∞,-22)∪(2,+∞) [答案] B[解析] 由题意知方程组⎩⎨⎧x 2=12y ①x t +y-4=1 ②无实数解由②得y =4xt -4,代入①整理得,2x 2-4x t +4=0,∴Δ=16t2-32<0,∴t >22或t <-22,故选B. [点评] 可用数形结合法求解,设过点A (0,-4)与抛物线x 2=12y 相切的直线与抛物线切点为M (x 0,y 0),则切线方程为y -y 0=4x 0(x -x 0), ∵过A 点,∴-4-2x 02=4x 0(0-x 0), ∴x 0=±2,∴y 0=4,∴切线方程为y -4=±42x -8, 令y =0得x =±22,即t =±22,由图形易知直线与抛物线无公共点时,t <-22或t >22. 二、填空题11.已知点A (2,0)、B (4,0),动点P 在抛物线y 2=-4x 上运动,则AP →·BP →取得最小值时的点P 的坐标是______.[答案] (0,0)[解析] 设P ⎝⎛⎭⎫-y 24,y ,则AP →=⎝⎛⎭⎫-y 24-2,y ,BP →=⎝⎛⎭⎫-y 24-4,y ,AP →·BP →=⎝⎛⎭⎫-y24-2⎝⎛⎭⎫-y 24-4+y 2=y 416+52y 2+8≥8,当且仅当y =0时取等号,此时点P 的坐标为(0,0).12.(文)(2010·泰安市模拟)如图,过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,交抛物线于A 、B 两点,且|F A |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 设抛物线准线为l ,作AA 1⊥l ,BB 1⊥l ,FQ ⊥l ,垂足分别为A 1、B 1、Q ,作BM ⊥AA 1垂足为M ,BM 交FQ 于N ,则由条件易知∠ABM =30°,设|BF |=t ,则|NF |=t 2,|MA |=t +32,∵|AM |=|QN |,∴3-t +32=p -t 2,∴p =32,∴抛物线方程为y 2=3x .(理)(2010·泰安质检)如图,过抛物线y 2=2px (p >0)的焦点的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 解法1:过A 、B 作准线垂线,垂足分别为A 1,B 1,则|AA 1|=3,|BB 1|=|BF |,∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴|AC |=2|AA 1|=2|AF |=6,∴|CF |=3,∴p =12|CF |=32,∴抛物线方程为y 2=3x .解法2:由抛物线定义,|BF |等于B 到准线的距离,由|BC |=2|BF |得∠BCB 1=30°,又|AF |=3,从而A ⎝⎛⎭⎫p 2+32,332在抛物线上,代入抛物线方程y 2=2px ,解得p =32.点评:还可以由|BC |=2|BF |得出∠BCB 1=30°,从而求得A 点的横坐标为|OF |+12|AF |=p2+32或3-p 2,∴p 2+32=3-p 2,∴p =32. 13.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.[答案] 3+2 2[解析] 分别由A 和B 向准线作垂线,垂足分别为A 1,B 1,则由条件知, ⎩⎪⎨⎪⎧|AA 1|+|BB 1|=|AB |,|AA 1|-|BB 1|=22|AB |,解得⎩⎪⎨⎪⎧|AA 1|=2+24|AB ||BB 1|=2-24|AB |,∴|AA 1||BB 1|=3+22,即|F A ||FB |=3+2 2. 14.(文)若点(3,1)是抛物线y 2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,则p =________.[答案] 2[解析] 设弦两端点P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎪⎨⎪⎧y 12=2px 1y 22=2px 2,两式相减得,y 1-y 2x 1-x 2=2p y 1+y 2=2,∵y 1+y 2=2,∴p =2.(理)(2010·衡水市模考)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则|AF |+|BF |=________.[答案] 8[解析] 过A 、B 、P 作准线的垂线AA 1、BB 1与PP 1,垂足A 1、B 1、P 1,则|AF |+|BF |=|AA 1|+|BB 1|=2|PP 1|=2[1-(-3)]=8.三、解答题15.(文)若椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的顶点上.(1)求抛物线C 2的方程;(2)若过M (-1,0)的直线l 与抛物线C 2交于E 、F 两点,又过E 、F 作抛物线C 2的切线l 1、l 2,当l 1⊥l 2时,求直线l 的方程.[解析] (1)已知椭圆的长半轴长为a =2,半焦距c =4-b 2, 由离心率e =c a =4-b 22=32得,b 2=1.∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), ∴p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2),∵y =14x 2,∴y ′=12x ,∴切线l 1,l 2的斜率分别为12x 1,12x 2,当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4,由⎩⎪⎨⎪⎧y =k (x +1)x 2=4y得:x 2-4kx -4k =0, 由Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0. 又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为x -y +1=0.(理)在△ABC 中,CA →⊥CB →,OA →=(0,-2),点M 在y 轴上且AM →=12(AB →+CD →),点C在x 轴上移动.(1)求B 点的轨迹E 的方程;(2)过点F ⎝⎛⎭⎫0,-14的直线l 交轨迹E 于H 、E 两点,(H 在F 、G 之间),若FH →=12HG →,求直线l 的方程.[解析] (1)设B (x ,y ),C (x 0,0),M (0,y 0),x 0≠0, ∵CA →⊥CB →,∴∠ACB =π2,∴2x 0·y 0-x 0=-1,于是x 02=2y 0① M 在y 轴上且AM →=12(AB →+AC →),所以M 是BC 的中点,可得 ⎩⎨⎧x 0+x 2=0y +02=y,∴⎩⎪⎨⎪⎧x 0=-x ②y 0=y2③ 把②③代入①,得y =x 2(x ≠0),所以,点B 的轨迹E 的方程为y =x 2(x ≠0). (2)点F ⎝⎛⎭⎫0,-14,设满足条件的直线l 方程为: y =kx -14,H (x 1,y 1),G (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -14y =x 2消去y 得,x 2-kx +14=0.Δ=k 2-1>0⇒k 2>1,∵FH →=12HG →,即⎝⎛⎭⎫x 1,y 1+14=12(x 2-x 1,y 2-y 1), ∴x 1=12x 2-12x 1⇒3x 1=x 2.∵x 1+x 2=k ,x 1x 2=14,∴k =±233,故满足条件的直线有两条,方程为:8x +43y +3=0和8x -43y -3=0. 16.(文)已知P (x ,y )为平面上的动点且x ≥0,若P 到y 轴的距离比到点(1,0)的距离小1.(1)求点P 的轨迹C 的方程;(2)设过点M (m,0)的直线交曲线C 于A 、B 两点,问是否存在这样的实数m ,使得以线段AB 为直径的圆恒过原点.[解析] (1)由题意得:(x -1)2+y 2-x =1,化简得:y 2=4x (x ≥0). ∴点P 的轨迹方程为y 2=4x (x ≥0).(2)设直线AB 为y =k (x -m ),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -m )y 2=4x ,得ky 2-4y -4km =0, ∴y 1+y 2=4k ,y 1·y 2=-4m .∴x 1·x 2=m 2,∵以线段AB 为直径的圆恒过原点, ∴OA ⊥OB ,∴x 1·x 2+y 1·y 2=0.即m 2-4m =0⇒m =0或4.当k 不存在时,m =0或4. ∴存在m =0或4,使得以线段AB 为直径的圆恒过原点.[点评] (1)点P 到定点F (1,0)的距离比到y 轴的距离大1,即点P 到定点F (1,0)的距离与到定直线l :x =-1的距离相等.∴P 点轨迹是以F 为焦点,l 为准线的抛物线,∴p =2,∴方程为y 2=4x .(理)已知抛物线y 2=4x ,过点(0,-2)的直线交抛物线于A 、B 两点,O 为坐标原点. (1)若OA →·OB →=4,求直线AB 的方程.(2)若线段AB 的垂直平分线交x 轴于点(n,0),求n 的取值范围.[解析] (1)设直线AB 的方程为y =kx -2 (k ≠0),代入y 2=4x 中得,k 2x 2-(4k +4)x +4=0①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k +4k 2,x 1x 2=4k 2.y 1y 2=(kx 1-2)·(kx 2-2)=k 2x 1x 2-2k (x 1+x 2)+4=-8k.∵OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=4k 2-8k =4,∴k 2+2k -1=0,解得k =-1±2.又由方程①的判别式Δ=(4k +4)2-16k 2=32k +16>0得k >-12,∴k =-1+2,∴直线AB 的方程为(2-1)x -y -2=0.(2)设线段AB 的中点的坐标为(x 0,y 0),则由(1)知x 0=x 1+x 22=2k +2k 2,y 0=kx 0-2=2k,∴线段AB 的垂直平分线的方程是 y -2k =-1k ⎝⎛⎭⎫x -2k +2k 2. 令y =0,得n =2+2k +2k 2=2k 2+2k +2=2⎝⎛⎭⎫1k +122+32.又由k >-12且k ≠0得1k <-2,或1k>0,∴n >2⎝⎛⎭⎫0+122+32=2.∴n 的取值范围为(2,+∞). 17.(文)(2010·全国Ⅰ)已知抛物线C :y 2=4x 的焦点为F ,过点K (-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设F A →·FB →=89,求△BDK 的内切圆M 的方程.[解析] 设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),l 的方程为x =my -1(m ≠0) (1)将x =my -1(m ≠0)代入y 2=4x 并整理得 y 2-4my +4=0,从而y 1+y 2=4m ,y 1y 2=4① 直线BD 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2)即y -y 2=4y 2-y 1⎝⎛⎭⎫x -y 224 令y =0,得x =y 1y 24=1,所以点F (1,0)在直线BD 上.(2)由(1)知,x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2, x 1x 2=(my 1-1)(my 2-1)=1因为F A →=(x 1-1,y 1),FB →=(x 2-1,y 2),F A →·FB →=(x 1-1,y 1)·(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+4=8-4m 2,故8-4m 2=89,解得m =±43,直线l 的方程为3x +4y +3=0,3x -4y +3=0. 从而y 2-y 1=±(4m )2-4×4=±437,故4y 2-y 1=±37因而直线BD 的方程为3x +7y -3=0,3x -7y -3=0.因为KF 为∠BKD 的角平分线,故可设圆心M (t,0),(-1<t <1),M (t,0)到直线l 及BD 的距离分别为3|t +1|5,3|t -1|4, 由3|t +1|5=3|t -1|4得t =19或t =9(舍去),故圆M 的半径为r =3|t +1|5=23, 所以圆M 的方程为⎝⎛⎭⎫x -192+y 2=49. (理)(2010·揭阳市模考)已知点C (1,0),点A 、B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.[解析] (1)法一:连结CP ,由AC →·BC →=0知,AC ⊥BC ,∴|CP |=|AP |=|BP |=12|AB |, 由垂径定理知|OP |2+|AP |2=|OA |2,即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9,化简得,x 2-x +y 2=4.法二:设A (x 1,y 1),B (x 2,y 2),P (x ,y ),根据题意知,x 12+y 12=9,x 22+y 22=9,2x =x 1+x 2,2y =y 1+y 2,∴4x 2=x 12+2x 1x 2+x 22,4y 2=y 12+2y 1y 2+y 22故4x 2+4y 2=(x 12+y 12)+(2x 1x 2+2y 1y 2)+(x 22+y 22)=18+2(x 1x 2+y 1y 2)①又∵AC →·BC →=0,∴(1-x 1,-y 1)·(1-x 2,-y 2)=0∴(1-x 1)×(1-x 2)+y 1y 2=0,故x 1x 2+y 1y 2=(x 1+x 2)-1=2x -1,代入①式得,4x 2+4y 2=18+2(2x -1),化简得,x 2-x +y 2=4.(2)根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px 上,其中p 2=1,∴p =2,故抛物线方程为y 2=4x ,由方程组⎩⎪⎨⎪⎧ y 2=4x x 2-x +y 2=4得,x 2+3x -4=0,解得x 1=1,x 2=-4,由于x ≥0,故取x =1,此时y =±2,故满足条件的点存在,其坐标为(1,-2)和(1,2).。
椭圆、双曲线、抛物线习题(有答案)
1.双曲线222x y -=的焦距为( )A. 1B. 4C. 2D. 2.抛物线22y x =的焦点坐标是( )A. 102⎛⎫ ⎪⎝⎭,B. 102⎛⎫ ⎪⎝⎭,C. 108⎛⎫ ⎪⎝⎭,D 108⎛⎫ ⎪⎝⎭,. 3.椭圆22143x y +=的焦距为( ) A. 1 B. 2 C. 3 D. 44.双曲线2214x y -=的渐近线方程为( )A. 2xy =±B. 2y x =±C. 2y x =±D. y = 5.方程22121x y m m +=-为椭圆方程的一个充分不必要条件是( ) A. 12m >B. 12m >且1m ≠ C. 1m > D. 0m >6且过点()2,0的椭圆的标准方程是( ) A. 2214x y += B. 2214x y +=或2214y x += C. 2241x y += D.2214x y +=或221416x y +=7.若点(P m 为椭圆22:12516x y C +=上一点,则m =( ) A. 1± B. 12±C. 32±D. 52± 8.若坐标原点到抛物线2y mx = 的准线的距离为2 ,则m = ( ) A. 1+8 B. 1+4C. 4±D. 8±9.【2018届福建省福州市高三3月质量检测】已知双曲线 的两顶点间的距离为4,则的渐近线方程为( ) A.B.C.D.10.已知m 是2,8的等比中项,则圆锥曲线221y x m+=的离心率是( ) A.32或52 B. 32 C. 5 D. 32或5 11.若圆22:2210M x y x y +-++=与x 轴的交点是抛物线2:2(0)C y px p =>的焦点,则p =( ) A. 1 B. 2 C. 4 D. 812.已知是椭圆:的左焦点,为上一点,,则的最大值为( )A.B. 9C.D. 1013.【2018届山东省泰安市高三上学期期末】若抛物线24x y =上的点A 到焦点的距离为10,则A 到x 轴的距离是_________.14.已知椭圆的两焦点坐标分别是()20-, 、()20, ,并且过点(233, ,则该椭圆的标准方程是__________.15.【2018届河北省武邑中学高三上学期期末】已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.16.【2018届北京市朝阳区高三第一学期期末】已知双曲线C 的中心在原点,对称轴为坐标轴,它的一个焦点与抛物线28y x =的焦点重合,一条渐近线方程为0x y +=,则双曲线C 的方程是________. 1.【答案】B【解析】双曲线的标准方程即: 22122x y -=,则:222222,4,2a b c a b c ==∴=+==, 双曲线的焦距为: 24c =. 本题选择B 选项. 2. 【答案】D【解析】转化为标准方程, 212x y =,所以焦点为10,8⎛⎫ ⎪⎝⎭.故选D.3.【答案】B【解析】在椭圆22143x y +=中, 224,3a b ==,所以21,1c c == ,故焦距22c =,选B.4.【答案】A【解析】Q 双曲线2214x y -=∴渐近线方程为2204x y -=,即2x y =±故选A . 5.【答案】C【解析】方程22121x y m m +=-表示椭圆的充要条件是0{210 21m m m m >->≠-,即12m >且1m ≠,所以方程22121x y m m +=-为椭圆方程的一个充分不必要条件是1m >,故选C.6.【答案】D【解析】当椭圆的焦点在x 轴上,设椭圆的方程为22221(0)x y a b a b +=>>,由离心率为3,∴222214b a c a =-=∵椭圆过点(2,0),∴2222201a b +=,∴a2=4,∴b2=1,∴椭圆标准方程为2214x y += 当椭圆的焦点在y 轴上,同理易得: 221416x y += 故选D.7.【答案】D【解析】由题意可得: (22312516m+=,则: 22125,2544m m ==,据此可得: 52m =±. 本题选择D 选项. 8. 【答案】A9.【答案】B【解析】由双曲线的方程可知:,即,∴,解得: 令,得到 故选:B.10.【答案】D【解析】由m 是2,8的等比中项得2264m m =⨯∴=±因此当4m =时,342,413,,c a c e a ===-===当4m =-时, 1,415,5,ca c e a ==+===所以离心率是3或5,选D.11.【答案】B【解析】圆M 的方程中,令0y =有: 2210,1x x x -+=∴=,据此可得抛物线的焦点坐标为()1,0, 则: 1,22pp =∴=. 本题选择B 选项.12.【答案】A【解析】连接P 点和另一个焦点即为E ,=. 故答案为:A.13.【答案】9【解析】根据抛物线方程可求得焦点坐标为()0,1,准线方程为1y =-∵抛物线24x y =上的点A 到焦点的距离为10 ∴点A 到x 轴的距离是1019-= 故答案为9.14.【答案】2211612x y +=15.【答案】2【解析】抛物线的准线为2p x =-,与圆相切,则342p+=, 2p =.16.【答案】22122x y -=【解析】抛物线28y x =的焦点坐标为20(,),所以双曲线C 的右焦点坐标为20(,),因为双曲线的一条渐近线方程为0x y +=,所以a b = ,所以224a a += ,所以22a = ,所以双曲线方程为22122x y -=.。
3.3.2 抛物线的简单几何性质(同步练习)(附答案)
3.3.2 抛物线的简单几何性质(同步练习)一、选择题1.顶点在原点,焦点为F ⎝ ⎛⎭⎪⎫32,0的抛物线的标准方程是( ) A .y 2=32x B .y 2=3x C .y 2=6x D .y 2=-6x2.已知A ,B 两点均在焦点为F 的抛物线y 2=2px(p>0)上,若|AF|+|BF|=4,线段AB 的中点到直线x =p 2的距离为1,则p 的值为( ) A .1 B .1或3C .2D .2或63.设F 为抛物线C :y 2=4x 的焦点,曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A.12B .1 C.32D .2 4.P 为抛物线y 2=2px(p >0)上任意一点,F 为抛物线的焦点,则以|PF|为直径的圆与y 轴的位置关系为( )A .相交B .相离C .相切D .不确定5.已知A ,B 为抛物线y 2=2x 上两点,且A 与B 的纵坐标之和为4,则直线AB 的斜率为( ) A.12 B .-12C .-2D .26.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,点A ∈l ,线段AF 交抛物线C 于点B , 若FA ―→=3FB ―→,则|AF ―→|=( )A .3B .4C .6D .77.已知抛物线x 2=2py(p>0)的焦点为F ,过F 作倾斜角为30°的直线与抛物线交于A ,B 两点,若|AF||BF|∈(0,1),则|AF||BF|=( ) A.15 B .14 C.13 D .128.(多选)设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离可以是( )A.2B.3C.4D.5二、填空题9.已知点F 为抛物线y 2=4x 的焦点,该抛物线上位于第一象限的点A 到其准线的距离为5,则直线AF 的斜率为________10.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,若|AF|=2,则|BF|=________11.抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线x 2-y 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________12.(2020·福州期末)设抛物线y 2=2px 上的三个点A ⎝ ⎛⎭⎪⎫23,y 1,B(1,y 2),C ⎝ ⎛⎭⎪⎫32,y 3到该抛物线的焦点距离分别为d 1,d 2,d 3.若d 1,d 2,d 3中的最大值为3,则p 的值为________13.(2018·全国卷Ⅲ)已知点M(-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________三、解答题14.根据下列条件分别求抛物线的标准方程.(1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)抛物线的焦点F 在x 轴上,直线y =-3与抛物线交于点A ,|AF|=5.15.已知过抛物线y 2=4x 的焦点F 的弦长为36,求弦所在的直线方程.16.已知AB 是抛物线y 2=2px(p>0)的过焦点F 的一条弦.设A(x 1,y 1),B(x 2,y 2),AB 的中点为M(x 0,y 0).求证:(1)若AB 的倾斜角为θ,则|AB|=2p sin 2θ;(2)x 1x 2=p 24,y 1y 2=-p 2;(3)1|AF|+1|BF|为定值2p.17.已知抛物线y 2=2x.(1)设点A 的坐标为⎝ ⎛⎭⎪⎫23,0,求抛物线上距离点A 最近的点P 的坐标及相应的距离|PA|; (2)在抛物线上求一点M ,使M 到直线x -y +3=0的距离最短,并求出距离的最小值.参考答案及解析:一、选择题1.C 解析:∵抛物线的焦点为⎝⎛⎭⎫32,0,∴p =3,且抛物线开口向右.∴抛物线的标准方程为y 2=6x.2.B 解析:|AF|+|BF|=4⇒x A +p 2+x B +p 2=4⇒x A +x B =4-p ⇒2x 中=4-p ,因为线段AB 的中点到直线x =p 2的距离为1,所以⎪⎪⎪⎪x 中-p 2=1,所以|2-p|=1⇒p =1或3. 3.D 解析:∵y 2=4x ,∴F(1,0).又∵曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,∴P(1,2). 将点P(1,2)的坐标代入y =k x(k >0),得k =2.故选D. 4.C 解析:设PF 的中点M(x 0,y 0),作MN ⊥y 轴于N 点,设P(x 1,y 1),则|MN|=x 0=12(|OF|+x 1)=12⎝⎛⎭⎫x 1+p 2=12|PF|.故相切. 5.A 解析:设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4.由⎩⎪⎨⎪⎧y 21=2x 1,y 22=2x 2,得(y 1+y 2)(y 1-y 2)x 1-x 2=2,即4k AB =2,k AB =12. 6.B 解析:由已知点B 为AF 的三等分点,作BH ⊥l 于点H ,如图,则|BH|=23|FK|=43,所以|BF|=|BH|=43.所以|AF ―→|=3|BF ―→|=4. 7.C 解析:因为抛物线的焦点为F ⎝⎛⎭⎫0,p 2,故过点F 且倾斜角为30°的直线的方程为y =33x +p 2,与抛物线方程联立得x 2-233px -p 2=0,解方程得x A =-33p ,x B =3p ,所以|AF||BF|=|x A ||x B |=13,故选C. 8.BCD 解析:因为抛物线的焦点到顶点的距离为3,所以p 2=3,即p =6.又因为抛物线上的点到准线的距离的最小值为p 2,所以抛物线上的点到准线的距离的取值范围为[3,+∞). 二、填空题9.答案:43解析:由抛物线定义得x A +1=5,x A =4,又点A 位于第一象限,因此y A =4,从而k AF =4-04-1=43. 10.答案:2解析:设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F(1,0),|AF|=x 1+1=2,x 1=1,直线AF 的方程是x =1,此时弦AB 为抛物线的通径,故|BF|=|AF|=2.11.答案:2 3解析:由抛物线可知焦点F ⎝⎛⎭⎫0,p 2,准线y =-p 2,由于△ABF 为等边三角形,设AB 与y 轴交于M ,则 |FM|=p ,不妨取B ⎝⎛⎭⎪⎫p 2+42,-p 2,|FM|=3|MB|,即p =3⎝ ⎛⎭⎪⎫p 2+42,解得p =2 3. 12.答案:3解析:根据抛物线的几何性质可得d 1=p 2+23,d 2=p 2+1,d 3=p 2+32,由题意可得p>0,因此可判断d 3最大,故d 3=p 2+32=3,解得p =3. 13.答案:2解析:设点A(x 1,y 1),B(x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2),∴k =y 1-y 2x 1-x 2=4y 1+y 2. 设AB 中点M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足为A ′,B ′,则|MM ′|=12|AB|=12(|AF|+|BF|)=12(|AA ′|+|BB ′|). ∵M ′(x 0,y 0)为AB 的中点,∴M 为A ′B ′的中点,∴MM ′平行于x 轴,∴y 1+y 2=2,∴k =2.三、解答题14.解:(1)双曲线方程可化为x 29-y 216=1,左顶点为(-3,0), 由题意设抛物线方程为y 2=-2px(p>0)且-p 2=-3,∴p =6,∴抛物线的方程为y 2=-12x. (2)设所求焦点在x 轴上的抛物线的方程为y 2=2px(p ≠0),A(m ,-3),由抛物线定义得5=|AF|=⎪⎪⎪⎪m +p 2. 又(-3)2=2pm ,∴p =±1或p =±9,故所求抛物线方程为y 2=±2x 或y 2=±18x.15.解:∵过焦点的弦长为36,∴弦所在的直线的斜率存在且不为零.故可设弦所在直线的斜率为k ,且与抛物线交于A(x 1,y 1),B(x 2,y 2)两点.∵抛物线y 2=4x 的焦点为F(1,0),∴直线的方程为y =k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,整理得k 2x 2-(2k 2+4)x +k 2=0(k ≠0).∴x 1+x 2=2k 2+4k 2. ∴|AB|=|AF|+|BF|=x 1+x 2+2=2k 2+4k 2+2. 又|AB|=36,∴2k 2+4k 2+2=36,∴k =±24. ∴所求直线方程为y =24(x -1)或y =-24(x -1).16.证明:(1)设直线AB 的方程为x =my +p 2,代入y 2=2px ,可得y 2-2pmy -p 2=0, 则y 1y 2=-p 2,y 1+y 2=2pm ,∴y 21+y 22=2p(x 1+x 2)=(y 1+y 2)2-2y 1y 2=4p 2m 2+2p 2,∴x 1+x 2=2pm 2+p. 当θ=90°时,m =0,x 1+x 2=p ,∴|AB|=x 1+x 2+p =2p =2p sin 2θ; 当θ≠90°时,m =1tan θ,x 1+x 2=2p tan 2θ+p ,∴|AB|=x 1+x 2+p =2p tan 2θ+2p =2p sin 2θ. ∴|AB|=2p sin 2θ. (2)由(1)知,y 1y 2=-p 2,∴x 1x 2=(y 1y 2)24p 2=p 24. (3)1|AF|+1|BF|=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24=x 1+x 2+p p 2(x 1+x 2+p )=2p .17.解:(1)设抛物线上任一点P(x ,y),则|PA|2=⎝⎛⎭⎫x -232+y 2=⎝⎛⎭⎫x -232+2x =⎝⎛⎭⎫x +132+13, 因为x ≥0,且在此区间上函数单调递增,所以当x =0时,|PA|min =23, 故距点A 最近的点P 的坐标为(0,0).(2)设点M(x 0,y 0)是y 2=2x 上任一点,则M 到直线x -y +3=0的距离为d =|x 0-y 0+3|2=⎪⎪⎪⎪y 20-2y 0+622=|(y 0-1)2+5|22, 当y 0=1时,d min =522=524,所以点M 的坐标为⎝⎛⎭⎫12,1.。
抛物线相交问题练习题
抛物线相交问题练习题一、基础题1. 已知抛物线 $y = x^2 4x + 3$ 与 $y = 2x^2 3x 1$,求两抛物线的交点坐标。
2. 抛物线 $y = x^2 + 6x 7$ 与 $y = x^2 8x + 15$ 相交于A、B两点,求线段AB的中点坐标。
3. 已知抛物线 $y = 2x^2 4x + 1$ 与 $y = x^2 + 2x + 3$,求两抛物线的交点个数。
4. 抛物线 $y = x^2 2x 3$ 与 $y = 2x^2 + 4x + 5$ 相交于C、D两点,求CD线段的长度。
5. 已知抛物线 $y = 3x^2 6x + 2$ 与 $y = 3x^2 + 6x 2$,求两抛物线的公共弦方程。
二、提高题1. 抛物线 $y = x^2 5x + 6$ 与 $y = 2x^2 + 8x 7$ 相交于E、F两点,若线段EF的中点在直线 $y = 3x 1$ 上,求EF的长度。
2. 已知抛物线 $y = 4x^2 12x + 9$ 与 $y = 2x^2 + 8x 7$,求两抛物线交点处的切线方程。
3. 抛物线 $y = x^2 4x + 3$ 与 $y = x^2 + 6x 7$ 相交于G、H两点,若GH线段的长度为4,求两抛物线的交点坐标。
4. 已知抛物线 $y = 2x^2 8x + 8$ 与 $y = x^2 + 4x 1$,求两抛物线交点处的切线夹角。
5. 抛物线 $y = x^2 2x 3$ 与 $y = 2x^2 + 8x 11$ 相交于I、J两点,若IJ线段的长度为 $\sqrt{5}$,求两抛物线的交点坐标。
1. 抛物线 $y = x^2 6x + 9$ 与 $y = 2x^2 + 12x 18$ 相交于K、L两点,求以KL为直径的圆的方程。
2. 已知抛物线 $y = 3x^2 12x + 11$ 与 $y = x^2 + 4x 3$,求两抛物线交点处的切线平行于直线 $y = 2x + 1$ 的交点坐标。
【初中数学】人教版九年级上册第4课时 抛物线型类问题(练习题)
人教版九年级上册第4课时抛物线型类问题(353) 1.如图,龙丽公路某隧道横截面为抛物线,其最大高度为9米,底部宽度OM为18米.现以点O为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD−DC−CB,使点C,D在抛物线上,点A,B在地面OM上,则这个“支撑架”总长的最大值是多少?2.一座拱桥的轮廓是抛物线形(如图①),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图②),求抛物线的函数解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由3.有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升ℎ(m)时,桥下水面的宽度为d(m),写出ℎ关于d的函数解析式;(3)设正常水位时,桥下的水深为2m,为保证过往船只的顺利通过,桥下水面的宽度不得小于18m,则水深超过多少米时就会影响过往船只在桥下顺利航行?4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线,它们关于y轴对称.AB//x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y=14(x+3)2 B.y=−14(x+3)2C.y=14(x−3)2 D.y=−14(x−3)25.如图是拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=−1400(x−80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴.若OA=10米,则桥面离水面的高度AC为()A.16940米 B.174米 C.16740米 D.154米6.如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端拴于立柱与铁结合处,绳子自然下垂呈抛物线状态,一身高0.7米的小女孩站在离立柱0.4米处,其头刚好触到绳子,则绳子最低点到地面的距离为()A.0.16米B.0.2米C.0.4米D.0.64米7.某公园草坪的防护栏是由100段形状相同的抛物线形组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50mB.100mC.160mD.200m8.设计师以y=2x2−4x+8的图象为灵感设计杯子如图所示.若AB=4,DE=3,则杯子的高CE=()A.17B.11C.8D.79.如图,需在一面墙上绘制几个相同的抛物线形图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为34m,到墙边OA的距离分别为12m,32m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?10.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小孔顶点N距水面4.5米(即NC=4.5米).当水位上涨到刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF.11.某公路有一个抛物线形状的隧道ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=−110x2+c,且过顶点C(0,5)(长度单位:m).(1)直接写出c=;(2)该隧道为双车道,现有一辆运货卡车高4米、宽3米,则这辆卡车能否顺利通过隧道?请说明理由;(3)为了车辆安全快速通过隧道,对该隧道加固维修.维修时需搭建的“脚手架”为矩形EFGH.使点H,G在抛物线上,点E,F在地面AB上.施工队最多需要筹备多少材料(即求出“脚手架”三根木杆HE,HG,GF的长度之和的最大值)?12.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直x2,当水面离桥拱顶的高度DO是4m时,这时角坐标系,其函数解析式为y=−125水面宽度AB为()A.−20mB.10mC.20mD.−10m参考答案1(1)【答案】解:由题意可得M(18,0),P(9,9).(2)【答案】设抛物线的解析式为y =a(x −9)2+9.∵抛物线y =a(x −9)2+9经过点(0,0),∴0=a(0−9)2+9,即a =−19,∴抛物线的解析式为y =−19(x −9)2+9, 即y =−19x 2+2x .(3)【答案】设A(m ,0),则B(18−m ,0),C (18−m ,−19m 2+2m),D (m ,−19m 2+2m). 则“支撑架”总长AD +DC +CB=(−19m 2+2m)+(18−2m)+(−19m 2+2m) =−29m 2+2m +18=−29(m −4.5)2+22.5,∴当m =4.5时,AD +DC +CB 有最大值,为22.5,即这个“支撑架”总长的最大值为22.5米.2(1)【答案】解:根据题目条件,点A ,B ,C 的坐标分别是(−10,0),(10,0),(0,6). 设抛物线的函数解析式为y =ax 2+c ,将B ,C 两点的坐标代入y =ax 2+c ,得 {0=100a +c,6=c,解得a =−350,c =6.所以抛物线的函数解析式是y =−350x 2+6.(2)【答案】可设F(5,y F ),于是y F =−350×52+6=4.5.从而支柱EF的长度是10−4.5=5.5(m)(3)【答案】能.理由:如图,设DN是隔离带的宽,NG是三辆车的宽度和,则点G的坐标是(7,0).过点G作GH⊥AB交抛物线于点H,则y H=−350×72+6=3.06>3.根据抛物线的特点,可知一条行车道能并排行驶宽2m、高3m的三辆汽车.3(1)【答案】解:设抛物线的解析式为y=ax2,代入点(10,−4),得−4=100a,解得a=−125,因此抛物线的解析式为y=−125x2(2)【答案】把点(d2,−4+ℎ)代入函数解析式y=−125x2,得ℎ=4−1100d2(3)【答案】把x=9代入y=−125x2中,得y=−125×92=−8125(m),∴4+2−8125=6925(m).答:当水深超过6925m时就会影响过往船只在桥下顺利航行4.【答案】:C5.【答案】:B【解析】:∵OA=10米,∴x C=−10,把x C=−10代入y=−1400(x−80)2+16,得y C=−174,所以AC=|y C|=174米6.【答案】:B【解析】:以抛物线的对称轴为纵轴,以地平面所在的直线为横轴,建立平面直角坐标系,如图.设二次函数的解析式为y =ax 2+c .∵点D(−0.4,0.7),B(0.8,2.2)在抛物线上,∴{0.16a +c =0.7,0.64a +c =2.2,∴{a =258,c =0.2,∴绳子最低点到地面的距离为0.2米.7.【答案】:C【解析】:建立如图所示的平面直角坐标系.由题意得B(0,0.5),C(1,0). 设抛物线的解析式为y =ax 2+c ,代入点B ,C 的坐标可解得a =−12,c =12, ∴抛物线的解析式为y =−12x 2+12.当x =0.2时,y =0.48;当x =0.6时,y =0.32,∴B 1C 1+B 2C 2+B 3C 3+B 4C 4=2×(0.48+0.32)=1.6(m ),∴所需不锈钢支柱的总长度至少为1.6×100=160(m ).8.【答案】:B【解析】:∵y =2x 2−4x +8=2(x −1)2+6,∴抛物线顶点D 的坐标为(1,6).∵AB =4,∴点B 的横坐标为3,把x =3代入y =2x 2−4x +8,得y =14,∴CD =14−6=8,∴CE =CD +DE =8+3=119(1)【答案】根据题意,得B (12,34),C (32,34),把B ,C 两点的坐标分别代入y =ax 2+bx得{34=14a +12b,34=94a +32b, 解得{a =−1,b =2, ∴拋物线的函数关系式为y =−x 2+2x ,∴图案最高点到地面的距离=−224×(−1)=1(m)(2)【答案】令y =0,即−x 2+2x =0,∴x 1=0,x 2=2,∵10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案10.【答案】:解:设大孔所对应的抛物线的函数解析式为y =ax 2+6, 依题意可知B(10,0),∴102a +6=0,解得a =−0.06,即y =−0.06x 2+6.当y =4.5时,−0.06x 2+6=4.5,解得x =±5.∴EF =10米.答:此时大孔的水面宽度EF 为10米.11(1)【答案】5(2)【答案】能.理由:把x=3代入解析式,得y=−110×32+5=4.1>4,故能顺利通过.(3)【答案】设F(x,0),则G(x,−110x2+5),∴HE=FG=−110x2+5,GH=EF=2x,∴HE+FG+GH=−15x2+2x+10=−15(x−5)2+15(0<x<5√2),∴当x=5时有最大值,最大值为15,∴施工队最多需要筹备15米材料12.【答案】:C【解析】:由已知水面离桥拱顶的高度DO是4m,知点A,B的纵坐标为−4,把y=−4代入y=−125x2,得−4=−125x2,解得x=10或x=−10,所以这时水面宽度AB为20m.故选 C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线综合练习题
1.若点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为
A .2
B .3
C
D .92
2. 已知直线1:4360l x y -+=和2:1l x =-,抛物线24y x =上一动点P 到1l 和2l 的距离之和的最小值是
A .115
B .3
C .2
D .3716
3.已知点P 在24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为
A .114⎛⎫- ⎪⎝⎭,
B .114⎛⎫ ⎪⎝⎭,
C .(12),
D .(12)-, 4.已知22y px =的焦点为F ,点111222()()P x y P x y ,,,,33
3()P x y ,在抛物线上,且2132x x x =+,则( ) A.123FP FP FP += B.222123FP FP FP += C.2132FP FP FP =+ D.2213FP
FP FP =⋅ 5.连结抛物线24x y =的焦点F 与点(1,0)M 所得线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( )
A .1-
B .32-
C .1
D .32
+ 6.已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若2FA FB =,则k =( )
A .13
B .3
C .23
D .3 7.过点(1,0)-作抛物线21y x x =++的切线,则其中一条切线方程是
A .220x y ++=
B .330x y -+=
C .10x y ++=
D .10x y -+= 8.设P 为曲线2:23C y x x =++上一点,且曲线C 在点P 处切线倾斜角的范围是[0,
]4π,则点P 横坐标的取值范围是
A .1[1,]2--
B .[1,0]-
C .[0,1]
D .1[,1]2 9. 抛物线2y x =-上的点到直线4380x y +-=距离的最小值为
A .
43 B .75 C .85 D .3
10.设抛物线24x y =的焦点为F ,A 、B 、C 为该抛物线上三点,若0FA FB FC ++=,则FA +FB +FC =
A .9
B .6
C .4
D .3
11.设O 是坐标原点,F 是22(0)y px p =>的焦点,A 是抛物线上的点,FA 与x 轴正向的夹角为60,则OA =
A .214p
B
C p
D .1336
p 12.已知抛物线的准线方程为20x y +-=,焦点是(5,5)F ,则抛物线的顶点坐标是
.(3,5)A B .(5,3) C .(2,2) D .(3,3)
13.若点P 到直线1x =-的距离比它到点(20),
的距离小1,则点P 的轨迹方程为 14. 已知动圆过定点,02p ⎛⎫ ⎪⎝⎭
,且与直线2p x =-相切,其中0p >.则动圆圆心C 的轨迹的方程是 15. 与圆0422=-+x y x 外切且与y 轴相切的动圆的圆心的轨迹方程是
16. 已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为
17. 已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF =△S .
18.已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于A B ,两点,若6AB =,则圆C 的方程为
19.(本小题满分13分)
如图,已知抛物线C :24x y =,过点(02)M ,
任作一直线与C 相交于A,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).
(Ⅰ)证明:动点D 在定直线上;
(Ⅱ)作C 的任意一条切线l (不含x 轴)与直线y=2相交于点1N ,与(1)中的定直线相交于点2N ,证明: 22
21MN MN -为定值,并求此定值.
20.在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .
(1)求轨迹为C 的方程
(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.
21.已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54Q F P Q =.
(1)求抛物线C 的方程;
(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.。