有限元单元的选择

合集下载

有限元二阶单元-概述说明以及解释

有限元二阶单元-概述说明以及解释

有限元二阶单元-概述说明以及解释1.引言1.1 概述有限元方法是一种数值计算方法,用于求解微分方程的近似解。

在实际工程应用中,通常需要通过数值模拟来分析结构的力学行为,了解结构在不同条件下的响应情况。

有限元方法通过将结构离散为有限个小单元,再在每个小单元上建立适当的数学模型,最终将整个结构的力学行为近似为每个小单元的力学行为,从而得到结构整体的响应。

本文将重点介绍有限元二阶单元,即在有限元计算中常用的一种单元类型。

通过对二阶单元的概念、优势以及应用前景的讨论,旨在帮助读者更深入地了解该方法在工程领域的应用和意义。

1.2 文章结构本文共分为引言、正文和结论三个部分。

在引言部分中,将对有限元方法和二阶单元进行简要介绍,并明确文章的目的。

在正文部分中,将详细讨论有限元方法的基本概念,介绍二阶单元的概念及其优势。

最后,在结论部分中对全文进行总结,并展望二阶单元在未来的应用前景。

整个文章结构清晰,条理分明,旨在全面展示有限元二阶单元的重要性和价值。

1.3 目的本文旨在探讨有限元二阶单元的特点和优势,对于有限元方法的进一步理解与应用具有重要意义。

通过深入研究二阶单元的概念和特性,可以更好地应用于实际工程问题的求解中,提高计算效率和精度。

同时,借助二阶单元的优势,可以更好地模拟复杂结构的力学行为,为工程设计和分析提供更加准确和可靠的结果。

因此,本文旨在帮助读者深入了解有限元二阶单元,为其在工程领域的应用奠定基础。

2.正文2.1 有限元方法简介有限元方法是一种数值分析技术,用于在给定几何和物理条件下解决工程和科学领域的复杂问题。

它可以将连续的实体分解为有限数量的子域,每个子域称为有限元,然后通过对有限元进行数学建模和计算,得到整个实体的近似解。

有限元方法可以应用于结构力学、热传导、流体力学等不同领域的问题求解。

有限元方法的基本思想是将连续的问题转化为离散的线性代数方程组,通过求解这些方程组得到问题的近似解。

这种离散化的处理可以有效地简化问题的复杂性,同时可以方便地应用计算机进行求解。

Abaqus单元类型选择解析

Abaqus单元类型选择解析

A1.2
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
• ABAQUS单元库中大量的单元为不同几何体和结构建模提供了非常大的灵活性。 – 可以通过以下的特征为单元分类: •族 • 节点个数 • 自由度 • 公式 • 积分点
二次插值 全积分 减缩积分
一次插值
A1.10
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
• 单元命名约定:例子
B21: Beam, 2-D, 1st-order interpolation S8RT: Shell, 8-node, Reduced integration, Temperature
A1.4
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
族 • 有限元族是一种广泛的分类 方法。 • 同族的单元共享许多基本特 征。 • 在同一族单元中又有许多变 异。
刚体单元 薄膜单元 连续体(实体单元) 壳单元 梁单元
无限单元
特殊单元,如弹簧、 阻尼器和质量单元
桁架单元
A1.5
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
节点个数 (插值) • 节点的单元编号决定了单元域内 节点自由度的插值方式。 • ABAQUS包含一阶和二阶插值方 式的单元。
一次插值 二次插值
A1.6
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
自由度 • 在有限元分析过程中,单元节点的自由度是基本变量。 • 自由度的例子: – 位移 – 转动 – 温度 – 电势 • 一些单元具有与用户定义的节点不相关的内部自由度。

有限元分析中常用单元类型与单位制

有限元分析中常用单元类型与单位制

SOLID453-D结构实体单元产品:MP ME ST <> <> PR <> <> <> PP EDSOLID45单元说明solid45单元用于构造三维实体结构.单元通过8个节点来定义,每个节点有3个沿着xyz方向平移的自由度.单元具有塑性,蠕变,膨胀,应力强化,大变形和大应变能力。

有用于沙漏控制的缩减积分选项。

有关该单元的细节参看ANSYS, 理论参考中的SOLID45部分。

类似的单元有适用于各向异性材料的solid64单元。

Solid45单元的更高阶单元是solid95。

图 45.1 SOLID45几何描述SOLID45输入数据该单元的几何形状、结点位置、坐标系如图45.1: "SOLID45 几何描述"所示。

该单元可定义8个结点和正交各向异性材料。

正交各向异性材料方向对应于单元坐标方向。

单元坐标系方向参见坐标系部分。

单元荷载参见结点和单元荷载部分。

压力可以作为表面荷载施加在单元各个表面上,如图45.1: "SOLID45 几何描述"所示。

正压力指向单元内部。

可以输入温度和流量作为单元节点处的体载荷。

节点 I 处的温度 T(I) 默认为 TUNIF。

如果不给出其它节点处的温度,则默认等于 T(I)。

对于任何其它的输入方式,未给定的温度默认为 TUNIF。

对于流量的输入与此类似,只是默认值用零代替了TUNIF。

KEYOPT(1)用于指定包括或不包括附加的位移形函数。

KEYOPT(5)和KEYOPT(6)提供不同的单元输出选项(参见单元输出部分)。

当KEYOPT(2)=1时,该单元也支持用于沙漏控制的均匀缩减(1点)积分。

均匀缩减积分在进行非线性分析时有如下好处:∙相对于完全积分选项而言,单元刚度集成和应力(应变)计算需要更少的CPU时间,而仍能获得足够精确的结果。

∙当单元数量相同时,单元历史存储记录(.ESAV 和 .OSAV)的长度约为完全积分(2×2×2)的1/7。

单元与网格选择技术在有限元分析中的应用

单元与网格选择技术在有限元分析中的应用

单元与网格选择技术在有限元分析中的应用作者:李跃超来源:《智能制造》 2014年第7期本文结合SolidWorks Simulation软件中单元的技术特点与网格划分的规则,阐述了结构有限元分析中常见的单元类型和力学模型,并在此基础上讨论了仿真分析中单元的选取技术和网格的离散规则,为得到准确的有限元仿真结果提供了技术参考。

撰文/北京盛维安泰系统技术有限公司李跃超一、引言有限元法解决工程实际问题一般包括前处理、计算和后处理三部分。

其中前处理部分的工作量占整个分析过程工作量的40%~50%,后处理过程占45%~55%,而计算只占5%左右。

计算和后处理过程是建立在前处理过程的基础上的,因此有限元的前处理过程相当重要。

在有限元的前处理过程中,进行的主要工作是划分网格。

网格划分的好坏直接关系到计算与分析的结果,是有限元分析的关键。

SolidWorksSimulation用四面体实体单元、三角形壳单元分别划分实体与面几何信息,只有这两种网格单元才能对几乎任何几何实体或面进行可靠的网格划分。

二、SolidWorks Simulation网格特点SolidWorks Simulation是一款基于三维设计软件SolidWorks界面的有限元仿真分析软件。

根据模型几何特点并考虑设计工程师对操作速度的要求,Simulation中对网格分为五种基本单元类型:实体单元、壳单元、梁(杆)单元和2D单元。

其他如接触单元、刚性杆单元等存在于软件内核中,使用者不需要直接操作此类单元。

1.实体单元Simulation中的3D实体单元分为两种类型:一阶四面体单元也称为【草稿品质】,二阶四面体单元称为【高品质】。

一阶四面体单元在实体内沿着面和边缘模拟一阶线性位移场,即一阶单元。

每一个一阶四面体单元共有四个节点,分别对应四面体的四个角点。

每个节点有三个自由度,节点位移可完全由三个位移分量来表示。

一阶单元的边是直线,面是平面。

在单元加载变形后,这些边和面仍保持直线和平面,不能很好模拟曲面型几何模型。

ansys三角形和四边形单元

ansys三角形和四边形单元

一、概述在有限元分析中,选择合适的单元类型对于模拟结果的准确性和可靠性至关重要。

在ANSYS软件中,三角形和四边形单元是常用的两种单元类型,它们在不同的工程问题中具有各自的特点和适用范围。

本文将对ANSYS中的三角形和四边形单元进行介绍和分析,以期帮助工程师和研究人员在实际工程中做出正确的选择。

二、三角形单元的特点和适用范围1. 三角形单元是由三个节点和三个自由度构成的平面单元,适用于对称轴或面对称加载条件的问题。

它具有较好的形状适应性,可以适应复杂的几何形状。

2. 三角形单元适用于轻负载和小变形条件下的结构分析,例如弹性力学问题和轻负载的非线性分析。

3. 由于三角形单元仅有三个节点,所以对于边界条件和加载较复杂的问题,可能需要引入大量的单元来进行建模,从而增加了计算量和求解时间。

4. 三角形单元在非线性分析和大变形条件下的模拟效果较差,容易产生“锯齿”效应和收敛性问题。

三、四边形单元的特点和适用范围1. 四边形单元是由四个节点和四个自由度构成的平面单元,适用于矩形和正交结构的问题。

它具有简单的几何形状和稳定的性能。

2. 四边形单元适用于大变形和非线性条件下的结构分析,例如接触问题、塑性问题和大变形的非线性弹性力学问题。

3. 四边形单元相对于三角形单元具有更好的计算稳定性和收敛性,适用于对称和非对称加载条件的问题。

4. 由于四边形单元具有较好的几何适应性和稳定性,所以在建模过程中可以减少单元数量,从而降低了计算量和求解时间。

5. 在一些规则的结构问题中,四边形单元可能出现局部变形的问题,需要适当处理。

四、结论和建议在实际工程中,选择合适的单元类型是非常重要的。

根据上述分析,对于对称轴或面对称加载条件的问题可以选择三角形单元,而对于大变形和非线性条件下的问题可以选择四边形单元。

根据实际的工程需求和计算资源,也可以选择合适的单元类型,进行合理的建模和分析。

希望本文能够为工程师和研究人员在使用ANSYS软件进行有限元分析时提供一定的参考和帮助,使得模拟结果更加准确和可靠。

有限元分析第四章

有限元分析第四章

19
4)形函数的性质
形函数是有限单元法中的一个重要函数,它具 有以下性质: 性质1 形函数Ni在节点i上的值等于1,在其它节点 上的值等于0。对于本单元,有
20
Ni ( xi , yi ) 1 Ni ( x j , y j ) 0 Ni ( xm , ym ) 0
(i、j、m)
利用 N i 1 (ai bi x ci y )和ai、bi、ci公式证明 2A
对于一个具体问题进行分析,不管采用什么样的单元, 分析过程与思路是一样的,所不同的只是各种单元的位移模 式和单元刚度矩阵不一样,其他的包括整体刚度矩阵的组装 过程都完全一样,所以我们仅仅对矩形单元位移模式的求取 和单元刚度矩阵的求解加以介绍。
4.7 收敛准则
可以证明,对于一个给定的位移模式,其刚度系统的数 值要比精确值大。所以,在给定载荷的作用下,有限元计算 模型的变形要比实际结构的变形小。因而,当单元网格分得 越来越细时,位移的近似解将由下方收敛于精确解,即得到 真实解的下界。 为了保证解答的收敛性,要求选取的位移模式必须满足 以下三个条件: 1)位移模式必须包含单元的刚体位移 也就是说,当节点位移是某个刚体位移所引起时,弹 性体内将不会产生应变。所以位移模式不但要具有描述单元 本身形变的能力,而且还要具有描述由其他变形而通过节点 位移引起单元刚体位移的能力。例如,三角形三节点位移模 式中,常数项就是用于提供刚体位移的。
Ni(x、y)
1 i(xi,yi) x xi
x xi N i ( x, y ) 1 x j xi
N m ( x, y ) 0

N
y j (xj,yj)
m (xm,ym)
xj
x
N i ( x, y )

abaqus一次单元和完全积分单元

abaqus一次单元和完全积分单元

abaqus是一个用于有限元分析的强大软件。

在使用abaqus进行有限元分析时,用户需要选择合适的单元进行建模和求解。

abaqus中包含了多种类型的单元,其中一次单元和完全积分单元是比较常见且重要的两种类型。

本文将对这两种单元进行介绍和比较,以帮助用户更好地理解它们的特点和适用范围。

一次单元(C3D8)是abaqus中常用的一种典型六面体单元,其具有以下特点:1.1. 六面体单元:一次单元是一个六面体单元,具有8个节点和27个自由度。

它可以用于模拟各种三维结构的应力、应变分布和变形情况。

1.2. 简单高效:一次单元具有结构简单、计算高效的特点,适用于大多数情况下的有限元分析。

1.3. 局限性:但是,一次单元并不适用于所有情况。

在模拟高梯度场、弯曲效应或者非常规加载条件下,一次单元可能无法提供准确的结果。

相对而言,完全积分单元(C3D8I)是对一次单元的改进和扩展,其特点如下:2.1. 对弯曲效应和非线性材料有更好的适用性:完全积分单元具有更好的适用性,尤其是在模拟高梯度场、弯曲效应或者非线性材料的情况下更能提供准确的结果。

2.2. 全积分:完全积分单元是指在有限元积分时采用全积分法,这意味着对于单元内部的应力和应变的计算更加准确。

2.3. 计算量大:由于采用全积分法,完全积分单元的计算量较大,因此在处理大型模型或者需要高精度结果的情况下,需要考虑计算成本和时间。

一次单元和完全积分单元各有其特点和适用范围。

在实际应用中,用户需要根据具体的分析对象和需求来选择合适的单元类型。

对于结构简单、加载条件不太复杂的情况下,一次单元是一个非常合适的选择,它能够在保证计算效率的同时提供较为准确的结果;而对于复杂的加载条件或者非线性材料的模拟,完全积分单元则更能满足精度的要求。

对于有限元分析工程师来说,熟练掌握并灵活运用这两种单元类型是非常重要的。

3. 适用范围的具体案例在工程实践中,一次单元和完全积分单元的选择取决于具体的分析对象和需求。

有限元单元介绍

有限元单元介绍

第二章单元在显式动态分析中可以使用下列单元:·LINK160杆·BEAM161梁·PLANE162平面·SHELL163壳·SOLID164实体·COMBI165弹簧阻尼·MASS166质量·LINK167仅拉伸杆本章将概括介绍各种单元特性,并列出各种单元能够使用的材料类型。

除了PLANE162之外,以上讲述的显式动态单元都是三维的,缺省时为缩减积分(注意:对于质量单元或杆单元缩减积分不是缺省值)缩减积分意味着单元计算过程中积分点数比精确积分所要求的积分点数少。

因此,实体单元和壳体单元的缺省算法采用单点积分。

当然,这两种单元也可以采用全积分算法。

详细信息参见第九章沙漏,也可参见《LS-DYNA Theoretical Manual》。

这些单元采用线性位移函数;不能使用二次位移函数的高阶单元。

因此,显式动态单元中不能使用附加形状函数,中节点或P-单元。

线位移函数和单积分点的显式动态单元能很好地用于大变形和材料失效等非线性问题。

值得注意的是,显单元不直接和材料性能相联系。

例如,SOLID164单元可支持20多种材料模型,其中包括弹性,塑性,橡胶,泡沫模型等。

如果没有特别指出的话(参见第六章,接触表面),所有单元所需的最少材料参数为密度,泊松比,弹性模量。

参看第七章材料模型,可以得到显式动态分析中所用材料特性的详细资料。

也可参看《ANSYS Element Reference》,它对每种单元作了详细的描述,包括单元的输入输出特性。

2.1实体单元和壳单元2.1.1 SOLID164SOLID164单元是一种8节点实体单元。

缺省时,它应用缩减(单点)积分和粘性沙漏控制以得到较快的单元算法。

单点积分的优点是省时,并且适用于大变形的情况下。

当然,也可以用多点积分实体单元算法(KEYOPT(1)=2);关于SOLID164的详细描述,请参见《ANSYS Element Reference》和《LS-DYNA Theoretical Manual》中的§3.3节。

有限元网格划分

有限元网格划分

本文讨论了有限元网格的重要概念,包括单元的分类、有限元误差的分类与影响因素;并讨论分析结果的收敛性控制方法,并由实例说明了网格质量及收敛性对取得准确分析结果的重要性。

同时讨论了一些重要网格控制的建议及其他网格设定的说明。

一、基本有限元网格概念1.单元概述几何体划分网格之前需要确定单元类型。

单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。

为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。

2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。

根据不同的分类方法,上述单元可以分成以下不同的形式。

3.按照维度进行单元分类根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。

一维单元的网格为一条直线或者曲线。

直线表示由两个节点确定的线性单元。

曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。

杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。

二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸。

这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。

二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。

采用薄壳单元通常具有相当好的计算效率。

三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示。

在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。

4.按照插值函数进行单元分类根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。

第05讲-有限元分析方法及工程常用单元类型、单元选择

第05讲-有限元分析方法及工程常用单元类型、单元选择

=0时,6个自由度(3D) =2时,3个线位移自由度(3D) =3时,UX,UY,ROTZ共3个自由度(2D) =4时,UX,UY共2个自由度(2D)
5-23
Mass21单元
• Mass21单元实参数也需要根据单元自由度数量的多少进行确定 (Keyout(3)的值而定)。 Mass21无单元结果数据输出,位移结果包含在整体位移结果当中。 质量单元不适应在静力分析中。除非具有加速度或旋转加载时、或 者惯性解除时(IRLF)。
• • • LINK8 可用于不同工程领域的应用,例如桁架、杆件、弹簧等结构。该 单元为三维空间并承受轴向的拉力及压力,不考虑弯矩。 每个节点具有X、Y、Z位移方向的三个自由度。 实参数输入: 面积:AREA - Cross-sectional area 初应变:ISTRN - Initial strain(受拉为正) 荷载:节点荷载、温度 输出:单元轴向应力、轴向力。 与LINK1 基本一致。
5-12
单元形函数(续)
二次曲线的线性逼近 (不理想结果) DOF值二次分布
.
1
节点 单元 线性近似 (更理想的结果)
.
2
真实的二次曲线
.
节点 单元
真实的二次曲线
.
二次近似 (接近于真实的二次近似拟合) (最理想结果)
.. . . .
3
5-13
.
4
节点 单元
.
节点
单元
单元形函数(续)
遵循原则: • DOF值可以精确或不太精确地等于在节点处的真实解,但单元内的平均值与实际情 况吻合得很好。 这些平均意义上的典型解是从单元DOFs推导出来的(如,结构应力,热梯度)。 如果单元形函数不能精确描述单元内部的DOFs,就不能很好地得到导出数据,因为 这些导出数据是通过单元形函数推导出来的。 当选择了某种单元类型时,也就十分确定地选择并接受该种单元类型所假定的单元 形函数。 在选定单元类型并随之确定了形函数的情况下,必须确保分析时有足够数量的单元 和节点来精确描述所要求解的问题。

有限元-第9讲-动力学问题有限单元法

有限元-第9讲-动力学问题有限单元法

a1 ae a2
... an
ui(t) ai vi(t)
wi(t)
(i 1,2,...n,)
(3)形成系统的求解方程
••

M a(t)C a(t)K(ta )Q (t)
(1.8)
其中
••

a(t)和a(t)
分别是系统的结点加速度向量和结点速度向量,
M,C,K和Q(t)分别是系统的质量、阻尼、刚度和结点载荷向量。9

at
1 2t
att att
中心差分法的递推公式
(3.1) (3.2)
1 t2 M 2 1 tC a t t Q t K 2 t2 M a t 1 t2 M 2 1 tC a t t(3.3)
上式是求解各个离散时间点解的递推公式,这种数值积分方法又 称为逐步积分法。
动力分析的计算工作量很大,因此提高效率,节省计算工作量的 数值方案和方法是动力分析研究工作中的重要组成部分。目前两 种普遍应用的减缩自由度的方法是减缩法和动力子结构法。
11
第2节 质量矩阵和阻尼矩阵
一、协调质量矩阵和集中质量矩阵
单元质量矩阵
Me NTNdV称为协调质量矩阵。 Ve
集中质量矩阵假定单元的质量集中在结点上,这样得到的质量矩 阵是对角线矩阵。以下分实体单元和结构单元进行讨论。
16
第2节 质量矩阵和阻尼矩阵
按第二种方法计算,得到集中质量矩阵与第一种方法结果一样。
注:对于8结点矩形单元,两种方法得到的集中质量矩阵不同。
在实际分析中,更多的是推荐用第二种方法来计算集中质量矩阵。 2.结构单元
2结点经典梁单元、协调质量矩阵和集中质量矩阵如下所示: (1)协调质量矩阵
位移插值函数是 N N 1 N 2 N 3N 4(2.7)

有限元分析及应用

有限元分析及应用

有限元分析及应用有限元分析是一种数值计算方法,用于解决各种工程和科学领域中的复杂问题。

该方法基于物体或结构的离散性近似模型,将其分割成许多小的子领域,进而进行数学求解。

有限元分析广泛应用于结构力学、流体力学、电磁学、热传导等领域,在工程设计、产品开发和科学研究中发挥着重要作用。

一、有限元分析的原理有限元分析的核心原理是将一个复杂的物体或结构离散为许多互相连接的小尺寸单元,如三角形或四边形。

每个单元被视为一个小的、局部的子问题,并假设在每个单元内部的场变量(如位移、温度、电势等)为局部常数。

根据这一假设,可以建立一个局部方程来描述每个单元内部的行为。

为了求解整个系统的行为,将这些局部方程组合为一个整体方程组,并且采用边界条件来限制解的自由度。

然后,通过求解整体方程组,就可以得到整个系统在给定加载条件下的响应。

二、有限元分析的步骤有限元分析通常需要经过以下几个步骤:1. 几何建模:将待分析的物体或结构建立几何模型,包括定义节点、边界和连接关系等。

2. 单元划分:将几何模型划分为许多小的单元,选择合适的单元类型和尺寸。

3. 材料属性和加载条件:分配材料属性和加载条件给每个单元,如材料的弹性模量、材料的线性或非线性特性以及加载的力、温度等。

4. 单元方程建立:根据每个单元的几何形状和材料特性,建立每个单元内部的方程。

5. 整体方程建立:将所有单元的方程组合成一个整体方程,引入边界条件和约束条件。

6. 方程求解:通过数值方法(如矩阵解法)求解整体方程组。

7. 结果后处理:根据求解得到的结果,进行分析和后处理,如位移、应力和应变的计算、轴力图、位移云图等的绘制。

三、有限元分析的应用有限元分析已经应用于各种领域,主要包括以下几个方面:1. 结构力学:有限元分析可以用于评估结构的强度和刚度,预测结构的变形和破坏情况。

它广泛应用于建筑、桥梁、汽车、飞机等结构的设计和优化。

2. 流体力学:有限元分析可以用于模拟流体力学问题,如流体流动、传热和传质等。

有限元分析中常用单元类型与单位制

有限元分析中常用单元类型与单位制

SOLID453-D结构实体单元产品:MP ME ST <> <> PR <> <> <> PP EDSOLID45单元说明solid45单元用于构造三维实体结构.单元通过8个节点来定义,每个节点有3个沿着xyz方向平移的自由度.单元具有塑性,蠕变,膨胀,应力强化,大变形和大应变能力。

有用于沙漏控制的缩减积分选项。

有关该单元的细节参看ANSYS, 理论参考中的SOLID45部分。

类似的单元有适用于各向异性材料的solid64单元。

Solid45单元的更高阶单元是solid95。

图 45.1 SOLID45几何描述SOLID45输入数据该单元的几何形状、结点位置、坐标系如图45.1: "SOLID45 几何描述"所示。

该单元可定义8个结点和正交各向异性材料。

正交各向异性材料方向对应于单元坐标方向。

单元坐标系方向参见坐标系部分。

单元荷载参见结点和单元荷载部分。

压力可以作为表面荷载施加在单元各个表面上,如图45.1: "SOLID45 几何描述"所示。

正压力指向单元内部。

可以输入温度和流量作为单元节点处的体载荷。

节点 I 处的温度 T(I) 默认为 TUNIF。

如果不给出其它节点处的温度,则默认等于 T(I)。

对于任何其它的输入方式,未给定的温度默认为 TUNIF。

对于流量的输入与此类似,只是默认值用零代替了TUNIF。

KEYOPT(1)用于指定包括或不包括附加的位移形函数。

KEYOPT(5)和KEYOPT(6)提供不同的单元输出选项(参见单元输出部分)。

当KEYOPT(2)=1时,该单元也支持用于沙漏控制的均匀缩减(1点)积分。

均匀缩减积分在进行非线性分析时有如下好处:∙相对于完全积分选项而言,单元刚度集成和应力(应变)计算需要更少的CPU时间,而仍能获得足够精确的结果。

∙当单元数量相同时,单元历史存储记录(.ESAV 和 .OSAV)的长度约为完全积分(2×2×2)的1/7。

有限元分析论文写作范文(专业推荐6篇)

有限元分析论文写作范文(专业推荐6篇)

有限元分析论文写作范文(专业推荐6篇)车架作为汽车的承载基体,安装着发动机、传动系、转向系、悬架、驾驶室、货厢等有关部件和总成,承受着传递给它的各种力和力矩。

车架工作状态比较复杂,无法用简单的数学方法对其进行准确的分析计算,而采用有限元方法可以对车架的静动态特性进行较为准确的分析,从而使车架设计从经验设计进入到科学设计阶段。

以下是我们为你准备的6篇有限元分析论文,希望对你有帮助。

有限元分析论文范文第一篇:油罐运输车的有限元分析及优化摘要:为验证油罐运输车的结构强度是否满足使用要求,运用有限元仿真分析方法分别建立其弯曲、扭转、紧急制动3种工况的模型并进行了最大应力分析。

结果显示,罐体结构的应力小于材料的屈服应力,在满足使用要求的基础上,采用尺寸优化分析方法减薄罐体的厚度可实现轻量化。

关键词:油罐运输车;有限元分析;尺寸优化伴随着世界经济持续发展,石油、天然气的需求逐步增加,油罐车作为短途运输交通工具发挥着重要的作用。

存在部分结构不合理和整车质量过重现象及潜在运输的危险性,同时使得运输成本增加。

因此基于CAD/CAE技术对整车进行结构分析与轻量化设计,可以提高产品的科技含量,为企业以后的生产提供设计指导。

1罐车有限元模型的建立1.1单元类型的选择罐体单元主要采用单元类型中的壳单元来划分网格,车架部分由于用梁单元不能分析应力集中问题,所以同样采用壳单元来划分车架网格,这样可以准确地得出分析结果。

罐体的单元选用四边形壳单元(QUAD4),在几何形状复杂的位置可以采用少量的三角形单元(TRIA3)来过渡,以满足总体网格质量的要求,通常要求三角形单元占总单元数的比例不超过5%【2】.罐体以及车架的单元全部为10mm尺寸单元。

1.2罐体与车架连接方式罐体与前后封头、罐体与防波板以及加强板与相应连接部件之间用节点耦合的方式模拟焊接。

大梁与副车架之间的连接采用ACM单元。

ACM单元模拟的是一种特殊的焊接方法(AreaContactMethod),不同于刚性单元结点连接的方法。

有限元计算单元网格划分

有限元计算单元网格划分
元计算产品适用范围广泛,目前有国内外专业客户300余家,涉及美、加、日、韩、澳、德、 新等国,遍布石油化工、土木建筑、电磁电子、国防军工、装备制造、航空航天……等多个领域。
有限元语言及编译器(Finite Element Language And it’s Compiler,以下简称FELAC) 是中国科学院数学与系统科学研究院梁国平研究院于1983年开始研发的通用有限元软件平 台,是具有国际独创性的有限元计算软件,是PFEPG系列软件三十年成果(1983年—2013 年)的总结与提升,有限元语言语法比PFEPG更加简练,更加灵活,功能更加强大。目前 已发展到2.0版本。其核心采用元件化思想来实现有限元计算的基本工序,采用有限元语 言来书写程序的代码,为各领域,各类型的有限元问题求解提供了一个极其有力的工具。 FELAC可以在数天甚至数小时内完成通常需要一个月甚至数月才能完成的编程面或体单元过渡
1)从小单元到大单元过渡时,应使同一节点所连接的单元不致相差太大,避免突然过渡现象。 通常用计算结果调整,保证同一节点所连接的单元精度值至少在0.1以下。单元精度值根据单元内节 点应力与节点平均应力的误差计算。
2)难于过度处最好使用过渡单元,过渡单元的使用要比用同一单元勉强过渡的计算结果要好。 例如:对于复杂体结构间的过渡,最好使用“金子塔”单元过渡。 (5)面或体转接部位的单元 几何模型圆角过渡处的单元划分,根据弧长对应的圆心角和半径确定,对于半径为3mm左右、 圆心角大于90度的转接弧长,通常至少要划分3~4个单元。 (6)高应力区的单元 对高应力区,要进行网格细分应力稳定性计算。即采用多次局部网格细分并进行计算,当前、 后两次计算结果满足所需的精度要求时(通常要求小于0.03)确定网格。 总之,几何模型网格划分时,要在单元类型、单元形态、单元大小、单元过渡和局部应力稳定 等方面下功夫,才能满足工程上的精度要求,达到预期的结果。

有限元总结

有限元总结

有限元教学内容总结对知识掌握得如何,可以从他对这些知识的概括能力来判断。

对一门课程学得好,那么可以用一句话对这门课程做一个经典的概括,也可以用一堂课对这门课的内容作一次简练而精彩的报告,也可以用几十个学时对这门课的内容作全面的讲解。

我们的复习,希望能从这门课的核心部分开始,逐步向外展开。

希望抓住核心内容这个节点,就能象一张网一样,将主要内容连接在一起。

一、核心部分有限元的基本思路:化整为零,集零为整。

有限元的基本概念:节点,单元。

有限元的基本方程:结构的整体刚度方程{}[]{}P K δ=[K]为整体刚度矩阵;{P}为节点载荷列阵;{δ}为节点位移列阵。

二、骨干部分(整体刚度方程如何得来?如何解?)(一)如何得来?([K]如何得来?{P}如何得来?)1. [K]如何得来?(e k ⎡⎤⎣⎦如何得来?如何坐标变换?如何组集?) (1)e k ⎡⎤⎣⎦如何得来?(直接法,变分法) Ⅰ. 直接法基本原理:位移法基本步骤:(Ⅰ)由杆件基本变形中的内力与变形间的关系得到单元刚度方程{}{}e e e F k δ⎡⎤=⎣⎦式中:e k ⎡⎤⎣⎦为单元刚度矩阵;{}e δ为单元位移列阵;{}e F为单元节点力列阵。

(Ⅱ)由单元刚度方程得单元刚度矩阵e k ⎡⎤⎣⎦Ⅱ. 变分法基本原理:最小势能原理基本步骤:(Ⅰ)求单元位移函数假设:{}[]{}0δα=Φ,要求具有连续性(单元内位移连续)、协调性(相邻单元间位移连续)、完备性(有刚体位移项和常应变项),收敛的必要条件。

式中:{}δ为单元内任意点的位移列阵;[]0Φ为与单元内任意点坐标相关的矩阵;{}α为待定系数列阵。

将单元各节点坐标代入上式,得:{}[]{}eδα=Φ式中:{}e δ为单元节点位移列阵;[]Φ为与单元节点坐标相关的矩阵。

由上式得:{}[]{}1e αδ-=Φ将上式代入假设的位移插值函数得:{}[]{}e N δδ=式中:[N]为形函数矩阵(Ⅱ)求应变矩阵利用几何方程,对位移函数求导得:{}[]{}e B εδ=式中:[B]为单元应变矩阵;{}ε为单元内任意点的应变列阵。

有限元计算的流程

有限元计算的流程

有限元计算的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!有限元计算的流程一、问题定义阶段在进行有限元计算之前,首先需要明确要解决的问题。

有限元单元的选择

有限元单元的选择

单元类型的选择单元类型的选择,跟你要解决的问题本身密切相关。

在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。

1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。

杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。

梁单元则既可以承受拉,压,还可以承受弯矩。

如果你的结构中要承受弯矩,肯定不能选杆单元。

对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。

2)beam4是3D的梁单元,可以解决3维的空间梁问题。

3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。

2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。

而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell 单元计算准确。

实际工程中常用的shell单元有shell63,shell93。

shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。

对于一般的问题,选用shell63就足够了。

除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。

abaqus瞬态动力学的单元类型

abaqus瞬态动力学的单元类型

abaqus瞬态动力学的单元类型在进行结构动力学仿真分析时,选择合适的单元类型是非常关键的。

abaqus作为一款常用的有限元分析软件,提供了多种不同类型的单元供用户选择。

其中,用于瞬态动力学分析的单元类型有很多,如C3D8、C3D8R、C3D8I等。

不同的单元类型适用于不同的情况,下面将对abaqus瞬态动力学的几种常用单元类型进行简要介绍。

首先是C3D8单元,它是典型的八节点三维实体单元。

C3D8单元适用于对三维实体结构的动力学分析,具有较好的精度和稳定性。

在模拟结构动态响应时,使用C3D8单元可以较为准确地预测结构的振动特性和动态响应。

其次是C3D8R单元,它是C3D8单元的一种改进类型,具有更好的数值稳定性和收敛性。

C3D8R单元在处理动态加载和振动分析时,可以减少计算误差,提高仿真结果的准确性。

因此,在进行大变形或高速动态加载分析时,选择C3D8R单元可以获得更可靠的仿真结果。

另外,C3D8I单元是一种八节点三维实体单元,具有更高的数值精度和收敛性。

C3D8I单元适用于要求较高精度和准确性的动力学分析,如地震响应分析、碰撞仿真等。

使用C3D8I单元可以有效减小数值误差,提高仿真结果的可靠性。

除了以上介绍的几种单元类型外,abaqus还提供了其他适用于瞬态动力学分析的单元,如C3D10、C3D10M、C3D20等。

用户在选择单元类型时,应根据具体的仿真需求和结构特性进行合理的选择,以获得准确可靠的仿真结果。

总的来说,abaqus提供的各种瞬态动力学单元类型都具有各自的优势和适用范围,用户在进行动力学仿真分析时,应充分了解不同单元类型的特点和适用条件,选择合适的单元类型进行建模和分析。

通过合理选择单元类型,可以提高仿真结果的准确性和可靠性,为工程设计和分析提供有力支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元类型的选择
单元类型的选择,跟你要解决的问题本身密切相关。

在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。

1.该选杆单元(Link)还是梁单元(Beam)?
这个比较容易理解。

杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。

梁单元则既可以承受拉,压,还可以承受弯矩。

如果你的结构中要承受弯矩,肯定不能选杆单元。

对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:
1)beam3是2D的梁单元,只能解决2维的问题。

2)beam4是3D的梁单元,可以解决3维的空间梁问题。

3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。

2.对于薄壁结构,是选实体单元还是壳单元?
对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。

而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell 单元计算准确。

实际工程中常用的shell单元有shell63,shell93。

shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。

对于一般的问题,选用shell63就足够了。

除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。

通常情况下,shell63单元就够用了。

3.实体单元的选择。

实体单元类型也比较多,实体单元也是实际工程中使用最多的单元类型。

常用的实体单元类型有solid45, solid92,solid185,solid187这几种。

其中把solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于不可压缩超弹性材料)。

Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单元,单元的主要功能基本相同。

实际选用单元类型的时候,到底是选择第一类还是选择第二类呢?也就是到底是选用六面体还是带中间节点的四面体呢?
如果所分析的结构比较简单,可以很方便的全部划分为六面体单元,或者绝大部分是六面体,只含有少量四面体和棱柱体,此时,应该选用第一类单元,也就是选用六面体单元;如果所分析的结构比较复杂,难以划分出六面体,应该选用第二类单元,也就是带中间节点的四面体单元。

新手最容易犯的一个错误就是选用了第一类单元类型(六面体单元),但是,在划分网格的时候,由于结构比较复杂,六面体划分不出来,单元全部被划分成了四面体,也就是退化的六面体单元,这种情况,计算出来的结果的精度是非常糟糕的,有时候即使你把单元划分的很细,计算精度也很差,这种情况是绝对要避免的。

六面体单元和带中间节点的四面体单元的计算精度都是很高的,他们的区别在于:一个六面体单元只有8个节点,计算规模小,但是复杂的结构很难划分出好的六面体单元,带中间节点的四面体单元恰好相反,不管结构多么复杂,总能轻易地划分出四面体,但是,由于每个单元有10个节点,总节点数比较多,计算量会增大很多。

前面把常用的实体单元类型归为2类了,对于同一类型中的单元,应该选哪一种呢?通常情况下,同一个类型中,各种不同的单元,计算精度几乎没有什么明显的差别。

选取的基本原则是优先选用编号高的单元。

比如第一类中,应该优先选用solid185。

第二类里面应该优先选用solid187。

ANSYS的单元类型是在不断发展和改进的,同样功能的单元,编号大的往往意味着在某些方面有优化或者增强。

对于实体单元,总结起来就一句话:复杂的结构用带中间节点的四面体,优选solid187,简单的结构用六面体单元,优选solid185。

.
总结:
线单元:用于单个单元上应力为常数的情况
梁单元:用于螺栓、薄壁管件、角钢、型材或细长薄膜构建等模型
杆单元:用于弹簧、螺杆、预应力螺杆或桁架等模型
弹簧单元:用于弹簧、螺杆、细长结构或通过刚度等效替代复杂结构等模型
壳单元:用于薄板或曲面模型(面板厚度需小于其版面尺寸的1/10)
面单元:普遍用于各种2D模型或可简化为2D的模型
实体单元:用于各种3D实体模型。

相关文档
最新文档