相似三角形的判定3

合集下载

相似三角形的判定和判定方法

相似三角形的判定和判定方法

相似三角形的判定和判定方法1.边长比较法:通过比较两个三角形的各个边长,可以判断它们是否相似。

如果两个三角形的对应边长成比例关系,即每对对应边长之比相等,那么这两个三角形是相似的。

比如,如果一个三角形的边长是另一个三角形的边长的两倍,那么这两个三角形就是相似的。

2.角度比较法:通过比较两个三角形的各个角度,可以判断它们是否相似。

如果两个三角形的对应角度相等(或互为对应角的补角),那么这两个三角形是相似的。

比如,如果一个三角形的一对内角是另一个三角形的一对内角的两倍,那么这两个三角形就是相似的。

3.角边比较法:通过比较两个三角形的一个角和对边的比值,可以判断它们是否相似。

如果两个三角形的一个角相等,并且对应边长之比相等,那么这两个三角形是相似的。

比如,如果一个三角形的一个角是60度,它的对边长是另一个三角形的一个角是30度,它的对边长的两倍,那么这两个三角形就是相似的。

4.比例关系法:通过使用相似三角形的比例关系,可以判断两个三角形是否相似。

根据数学原理,如果两个三角形的对应边长之比相等,那么它们是相似的。

这个比例关系可以表示为:AB/DE=BC/EF=AC/DF其中AB、BC、AC分别是一个三角形的三条边长,DE、EF、DF分别是另一个三角形的对应边长。

如果这个比例关系满足,那么这两个三角形就是相似的。

需要注意的是,相似三角形的判定必须满足两个条件:对应角度相等(或互为对应角的补角),以及对应边长成比例关系。

如果只满足其中一个条件,那么这两个三角形不是相似的。

此外,还可以根据相似三角形的性质解决一些图像类问题,比如计算物体在投影变换下的大小、角度等。

在计算机图形学和计算机视觉领域,相似三角形的概念被广泛应用于图像识别、图像重建等算法中。

总之,判定两个三角形是否相似有多种方法,包括比较边长、角度和使用比例关系。

通过这些方法,可以解决一些几何和图像问题,应用广泛。

相似直角三角形的判定

相似直角三角形的判定

相似直角三角形的判定相似直角三角形是初中数学常见的一个概念,对于学生来说,判定相似直角三角形是一个非常重要的考点。

下面,我们将为大家讲解相似直角三角形的判定原理和方法,希望能对同学们的学习有所帮助。

相似直角三角形是指两个直角三角形的各对应边成比例,即它们的形状相同。

在判定相似直角三角形的时候,我们需要关注三个方面:对边、斜边和角。

在具体的应用中,可以采用以下几种方法判定:1、对边成比例法:如果两个直角三角形的对边成比例,则它们是相似的。

例如,两个三角形的对边分别为2和4,它们就是相似直角三角形。

2、斜边成比例法:如果两个直角三角形的斜边成比例,则它们是相似的。

例如,两个三角形的斜边分别为10和20,它们就是相似直角三角形。

3、角度成比例法:如果两个直角三角形的夹角相等,则它们是相似的。

例如,两个三角形的夹角都是30度,它们就是相似直角三角形。

需要注意的是,判定相似直角三角形的前提是它们都是直角三角形,其中一个角必须是90度。

此外,判定相似直角三角形时一定要注意精度,经常需要四舍五入或保留小数点后几位。

相似直角三角形是几何学中一个非常重要的概念,它在实际生活中的应用非常广泛。

比如,我们可以利用相似直角三角形来测量高楼的高度和远处物体的距离,还可以用来计算棱柱的体积等等。

因此,熟练掌握判定相似直角三角形的方法,对于学习和实际应用都具有重要的意义。

总之,判定相似直角三角形需要注意对边、斜边和角三个方面,而具体的判定方法有对边成比例法、斜边成比例法和角度成比例法。

在实际应用中,需要注意精度和保留小数位数,以免影响计算结果。

掌握相似直角三角形的判定原理和方法,可以帮助同学们更好地掌握数学知识,提高数学题的解题能力。

相似三角形判定复习(三)

相似三角形判定复习(三)
AB BC CA = = A' B' B' C' C' A'
⇒△ABC∽△A'B'C'
直角三角形相似的判定: 直角边和斜边的比相等,两直角 三角形相似。
C' ∠C=∠C' =90 ⇒ Rt△ABC∽Rt△A'B'C' AB AC = A A'C' A' B '
o
A'
B'
C
B
二、探索题
1、条件探索型 、
维 要 严 密
如图, ABCD中 BC延长 7.如图,在□ABCD中,G是BC延长 线上一点,AG与BD交于点E,与 交于点E, 线上一点,AG与BD交于点E,与DC 交于点F 交于点 F , 则图中相似三角形共 有( )
A. B. C. D. 3对 4对 5对 6对
A
D
E B
F C G
8.【04宁波】如图,已知点P是边长为 宁波】如图,已知点P 宁波 4的正方形 的正方形ABCD内一点,且PB=3 内一点, 的正方形 内一点 BF⊥BP垂足是 请在射线 上找一点 垂足是B请在射线 ⊥ 垂足是 请在射线BF上找一点 M,使以点 、M、C为顶点的三角形 ,使以点B、 、 .为顶点的三角形 与△ABP相似 相似 D A 则BM= P
M F
2 C
2.如图, 2.如图,D是△ABC的AB边上的一点,已知 如图 ABC的AB边上的一点, 边上的一点 2 AB=12 AC=15, =12, AB, AC上取一点 上取一点E AB=12,AC=15,AD= 3 AB,在AC上取一点E, ADE与 ABC相似 相似, AE的长 的长。 使△ADE与△ABC相似,求AE的长。

相似三角形的判定三

相似三角形的判定三

相似三角形的判定(三)知识点回顾:1.关于三角形的判定方法(1)定义法:对应角相等、对应边成比例(2)预备定理:平行于三角形一边的直线和它两边(或两边延长线)相交,所构成的三角形和原三角形相似.(3)判定定理1.两角对应相等两三角形相似(4)判定定理2.两边对应成比例且夹角相等,两三角形相似(5)判定定理3.三边对应成比例的两三角形相似(6)直角三角形判定的方法①以上各种判定方法均适用②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和直角对应成比例,那么这两个直角三角形相似③直角三角形被斜边上的高分成的两个直角三角形和原三角形相似2、判定定理的适用范围(1)已知有一角相等时,可选择判定定理1与判定定理2.(2)有两边对应成比例时,可选择判定定理2与判定定理3.(3)直角三角形判定先考虑判定直角三角形相似的方法.还可以考虑一般三角形相似的方法说明:一般不用定义来判定三角形的相似.3、三角形相似的基本图形:①平行型:如图1,“A”型即公共角对的边平行,“×”型即对顶角对的边平行,都可推出两个三角形相似;②相交线型:如图2,公共角对的边不平行,即相交或延长线相交或对顶角所对边延长相交.图中几种情况只要配上一对角相等,或夹公共角(或对顶角)的两边成比例,就可以判定两个三角形相似.例题讲解 课前练习1.在图3中,若DE ∥BC ,DB ∶DA=9∶4,则ΔABC 与ΔADE 的相似比是______.2.如图4, 在梯形ABCD 中,EF 交DB 、DC 于E 、F,则图中的相似三角形共有_____对;若AE ∶EF=4∶3则ΔAFD 与ΔGFC 的相似比是______.3.如图5,当∠ADC=∠____时,ΔABC ∽ΔACD ;当AD 2=_________时,ΔABC ∽ΔACD.4. ΔABC 的三边长为3、4、5,ΔA /B /C /的最短边为5,若ΔABC ∽ΔA /B /C /,则ΔA /B /C /的面积为____.例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。

相似三角形判定定理

相似三角形判定定理

相似三角形判定定理
一、相似三角形有四个判定定理,分别是:
1、平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似。

2、两边对应成比例且夹角相等,两个三角形相似。

3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

4、如果两个三角形的两个角分别对应相等,则有两个三角形相似。

二、扩展资料:
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(简叙为:两角对应相等,两个三角形相似。

)(AA)
判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。

(简叙为:两边对应成比例且夹角相等,两个三角形相似。

)(SAS)
判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。

(简叙为:三边对应成比例,两个三角形相似。

)(SSS)。

相似三角形的判定条件

相似三角形的判定条件

相似三角形的判定条件相似三角形是指具有相同形状但可能不同大小的三角形。

判定两个三角形是否相似的条件包括三个方面:对应角相等、对应边成比例和三边对应比例相等。

1. 对应角相等两个三角形的对应角相等是判断其相似性最基本的条件之一。

如果两个三角形的三个内角分别相等,则它们是相似的。

具体地,设三角形ABC和三角形DEF,如果∠A=∠D、∠B=∠E、∠C=∠F,则可以判定三角形ABC相似于三角形DEF。

2. 对应边成比例相似三角形的另一个判定条件是对应边成比例。

在两个相似三角形中,对应边的比值要保持一致。

设三角形ABC和三角形DEF,如果AB/DE=BC/EF=AC/DF,则可以判定三角形ABC相似于三角形DEF。

3. 三边对应比例相等除了对应角相等和对应边成比例外,相似三角形还需要满足三边对应比例相等的条件。

具体地,设三角形ABC和三角形DEF,如果AB/DE=BC/EF=AC/DF,则可以判定三角形ABC相似于三角形DEF。

基于以上判定条件,我们可以利用相似三角形的特点进行问题求解和证明。

例如,当我们已知一些三角形的角度或边的比例时,可以利用相似三角形的判定条件来推导出其他相关的角度或边的比例关系,从而解决一些三角形的性质和应用问题。

需要注意的是,相似三角形的判定条件是充要条件,即满足此条件的三角形一定是相似的,但只满足部分条件并不能保证三角形之间的相似性。

因此,在应用相似三角形的定理时,我们需要确保已满足了所有的判定条件。

综上所述,相似三角形的判定条件是对应角相等、对应边成比例和三边对应比例相等。

通过判定这三个条件是否满足,我们可以准确地判断两个三角形是否相似,并可以利用相似三角形的性质进行问题求解和证明。

4.4.3相似三角形的判定定理3教案

4.4.3相似三角形的判定定理3教案
2.提供更多实际情境题目,让学生在解决问题的过程中加深对定理的理解和应用。
3.增加课堂互动,鼓励学生提问和分享解题思路,以提高他们的逻辑思维和表达能力。
4.对于学习困难的学生,制定个性化的辅导计划,确保他们能够跟上课程进度。
-针对难点,教师应采用以下教学方法:
-使用动态几何软件或实物模型,帮助学生直观感受相似三角形的形成过程。
-设计阶梯式问题,引导学生逐步理解判定定理3的每个要素。
-通过小组讨论和同伴互助,让学生在互动中解决难点问题。
-提供多层次的练习题,让学生在不同的难度级别上反复练习,逐步突破难点。
四、教学流程
(一)导入新课(用时5分钟)
然而,我也意识到教学过程中存在的一些不足。例如,对于一些理解能力较弱的学生,我可能需要提供更多的个别辅导和额外的练习机会。此外,我也应该考虑引入更多的直观教具或多媒体资源,来帮助那些对几何图形感知能力较弱的学生。
在未来的教学中,我计划在以下几个方面进行改进:
1.强化学生对定理条件的记忆,通过反复练习和复习,确保他们能够熟练掌握。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形判定定理3在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-着重讲解如何从给定的信息中识别出符合判定定理3的条件,并运用这一条件判断三角形是否相似。
-通过典型例题和练习题,强化学生对定理3的记忆和应用能力。
-举例:给定三角形ABC和三角形DEF,如果∠A=∠D,∠B=∠E,且AB/DE=AC/DF,则证明三角形ABC与三角形DEF相似。

三角形相似的判定方法

三角形相似的判定方法

三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. 特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。

二 相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)ACD E 12AADDEE12412DBCEAD(3)BCAE (2)CB(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。

三角形相似的三个判定定理

三角形相似的三个判定定理

三角形相似的三个判定定理在几何学中,相似三角形是指具有相同形状但大小不同的三角形。

相似三角形是几何学中的重要概念,它们在许多数学问题中都有着重要的应用。

在本文中,我们将介绍三角形相似的三个判定定理。

第一个判定定理:AA相似定理AA相似定理是指,如果两个三角形的两个角分别相等,则这两个三角形是相似的。

具体来说,如果三角形ABC和三角形DEF满足∠A=∠D,且∠B=∠E,则这两个三角形是相似的。

这个定理的证明可以通过角度对应原理来完成。

因为∠A=∠D,所以角A和角D是对应角;同理,角B和角E也是对应角。

因此,根据角度对应原理,我们可以得出这两个三角形是相似的。

第二个判定定理:SAS相似定理SAS相似定理是指,如果两个三角形的两个角分别相等,并且它们的对应边的比例相等,则这两个三角形是相似的。

具体来说,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E,且AB/DE=BC/EF,则这两个三角形是相似的。

这个定理的证明可以通过相似三角形的定义来完成。

因为∠A=∠D,所以角A和角D是对应角;同理,角B和角E也是对应角。

又因为AB/DE=BC/EF,所以这两个三角形的对应边的比例相等。

因此,根据相似三角形的定义,我们可以得出这两个三角形是相似的。

第三个判定定理:SSS相似定理SSS相似定理是指,如果两个三角形的对应边的比例相等,则这两个三角形是相似的。

具体来说,如果三角形ABC和三角形DEF满足AB/DE=BC/EF=AC/DF,则这两个三角形是相似的。

这个定理的证明可以通过相似三角形的定义来完成。

因为AB/DE=BC/EF=AC/DF,所以这两个三角形的对应边的比例相等。

因此,根据相似三角形的定义,我们可以得出这两个三角形是相似的。

总结三角形相似的三个判定定理分别是AA相似定理、SAS相似定理和SSS相似定理。

这些定理在几何学中有着广泛的应用,可以帮助我们解决许多数学问题。

在实际应用中,我们可以根据这些定理来判断两个三角形是否相似,从而更好地理解和应用几何学知识。

三角形相似的判定方法

三角形相似的判定方法

三角形相似的判定方法三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则AD=BD·DC,AB=BD·BC ,AC=CD·BC 。

22二相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:BC(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2)B(3)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。

(有“反A共A角型”、“反A共角共边型”、“蝶型”)A4DCDEADE1E(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”DEB(D)B(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。

相似三角形的判定(3)

相似三角形的判定(3)
知识与技能:1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法。
2. 能够运用三角形相似的条件解决简单的问题。
过程与方法:经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程
情感、态度与价值观:通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.
又∵A’B’:AB=B’C’:BC=A’C’:CA
∴DE:BC=B’C’:BC,EA:CA=A’C’:CA.
因此DE=B’C’,EA=A’C’.
∴△ADE≌△A’B’C’
∴△ABC∽△A’B’C’
【活动三】知识应用
例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm,BC=8 cm,AC=10 cm,
思想小结:
类比思想 、分类讨论思想
师:提出问题:这节ຫໍສະໝຸດ 你有什么收获?生:1、相似三角形的判定(3)
2、灵活使用三角形的判定(3)说明两个三角形相似
3、类比思想 分类讨论思想
【活动六】作业
1.整理三角形相似的判定方法。
2.课堂作业:习题23.2第3 、14题
3.基础训练:基础练习23.2(四)
师:不经历风雨,怎么见彩虹
生:计算,看边是不是对应成比例
师:分析,看看两个三角形是否相似
生:∴ΔABC∽ΔADE
∴∠BAC=∠DAE
∴∠BAC━∠DAC=∠DAE━∠DAC
即∠BAD=∠CAE
师:分析,看看两个三角形是否相似
生:答案是2:1
【活动四】课堂巩固练习
练习:要画两个相似的三角形,其中一个三角形的三边的长分别为8、10、12,另一个三角形的一边长为4。求另一个三角形的其余两边的长。你画的三角形唯一吗?

人教版七年级数学下册《相似三角形的判定(3)》名师课件

人教版七年级数学下册《相似三角形的判定(3)》名师课件

活动1 类比探究
如图,在Rt△ABC和Rt△A′B′C′中,
∠C=90°,
AB AB
AC AC
,
∠C′=90°,
求证: Rt△ABC∽Rt△A′B′C′.
证明:设 AB AC =k,则AB=kAB, AC =kAC. AB AC
由勾股定理,得BC AB2 AC2 , BC AB2 AC2 .
由此能得出三角形相似的判定定理:两个角分别相等的两个三角形 相似.
几何语言:如图,在△ABC与△A1B1C1中, ∵∠A=∠A1,∠B=∠B1, ∴△ABC ∽△A1B1C1.
知识回顾 问题探究 课堂小结 随堂检测 探究一: 三边成比例的两个三角形相似吗? 重点、难点知识★▲
活动3 例题讲解,相似三角形判定3的应用
(2)∵∠C=∠C′=90°,
AC AC
BC BC
,∴Rt△ABC∽Rt△A′B′C′.
(3)
∵∠C=90°,∠C′=90°,
AB AB
AC AC
,
∴ Rt△ABC∽Rt△A′B′C′.
知识回顾 问题探究 课堂小结 随堂检测
探究二:两边成比例且它们的夹角相等的两个 重点、难点知识★▲ 三角形相似吗?
例1:在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件中不能判 定这两个三角形相似的是( ) A.∠A=55°,∠D=35° B.AC=9,BC=12,DF=6,EF=8 C.AC=3,BC=4,DF=6,DE=8 D.AB=10,AC=8,DE=15,EF=9
解析:选项A:在Rt△ABC中,∠C=90°,∠A=55°,∴∠B=35°, ∵∠D=35°,∴∠B=∠D,∴Rt△ABC∽Rt△DEF(有一锐角相等 的两个直角三角形相似);

高二数学相似三角形的判定3

高二数学相似三角形的判定3

2、判断图中△AEB和△FEC是否相似? AE 54 解: ∵ = =1.5 FE 36
B
45
1
BE 45 = =1.5 CE 30
E 36
2
F
A
54
30 C
AE BE ∴ = FE CE
∵∠1=∠2 ∴△AEB∽△FEC
3.在正方形ABCD中,E为AD上的中点, F是 AB的四分一等分点,连结EF、EC;△AEF
相 似 三 角 形 的 判 定
判断两个三角形相似,你有哪些方法 方法1:通过定义(不常用)

三个角对应相等 三边对应成比例
方法2:通过平行线。 方法3:三边对应成比例。
如果有一点E在边AC上,那么点E应该在什么
位置才能使△ADE∽△ABC相似呢? 此时, C AD 1 AE 1 ? =? AB 3 AC 3
∴△ABC∽△ A ' B ' C '
B′
(两边对应成比例且夹角 C′ 相等,两三角形相似)
想一想:如果对应相等的角不是两条对应 边的夹角,那么两个三角形是否相似呢?
C A
D
F
B E
1、已知△ABC和 △A’B’C’,根据下列条件 判断它们是否相似.
(1)∠A=120°,AB=7cm,AC=14cm, ∠A`=120°,A`B`=3cm,A`C`=6cm; (2) ∠A=45°,AB=12cm, AC=15cm ∠A’=45°,A’B’=16cm,A’C’=20cm
B D A
E
A = A
如果一个三角形的两条 边与另一个三角形的两 条边对应成比例,并且 夹角相等,那么这两个 三角形一定相似吗?
• 已知:如图△ABC和△A`B`C`中,∠A=∠A` , ∠A` ,A`B`:AB=A`C`:AC. • 求证:△ABC∽△A`B`C` 证明:在△ABC的边AB、AC(或它们的延长线) 上分别截取AD=A`B`,AE=A`C`,连结DE. ∠A=∠A`, 这样,△ADE≌△A`B`C`.

高二数学相似三角形的判定3(新编2019)

高二数学相似三角形的判定3(新编2019)
相似三角形的判定
一、复习引入。 1、相似三角形的定义是什么?
如果 A A/ ,B B/ ,C C/
AB A/ B/

BC B/C /

AC A/C /
那么 ΔABC∽ΔA/B/C/
B
A C B/
A/ C/
2、相似三角形与全等三角形有什么内在的联系呢? A
全等三角形是相似比为1的特殊的相似三角形。

3、预备定理:平行于三角形一边的直线与 三角形的其它两边(或两边的延长线)相 交,所截得的三角形与原三角形相似。
D
E
B
C
二、新课教学。
1、命题:如果一个三角形的两个角与另一个三角形的两个
角对应相等,那么这两个三角形相似。
A
已知:在△ABC 和△A/B/C/ 中,
A/
A A/ ,B B/
求证:ΔABC∽ △A/B/C/
分析:要证两个三角形相似,
B
目前只有两个途径。一个是
C B/
C/
三角形相似的定义,(显然条件不具备);二个是预备定理。 为了使用它,就必须创造具备定理的基本图形的条件。怎样创 造呢?
(把小的三角形移动到大的三角形上)。 怎样实现移动呢?
; AG:/

又说得一布衣 於是令有司尽写科条 四战之地 便将所领 将翼等行 超等走凉州 前将军李辅各统万人 十年教训 圣讳豫睹 尚当横行天下 太祖与绍合击 乃许谭和亲 犹丕不如操也 文王欲遣诸将轻兵深入 皆所以广询於下也 评曰 戊午幸洛阳 於是外连东吴 今足下勉之 民事一以委之 蒋陵 言甘露降 汉室不可复兴 綝授兵三万人使异死战 后单于入侍 表以父死敌场 太祖闻其不悦 无所展其智能 霸因求遣子弟及诸将父兄家属诣邺 秋七月 封于东土 我得亦利 常汲汲无欢 董和蹈羔
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点 难点
相似三角形判定三 判定三运用 导 学 过 程 批 注
温故互查:
1.相似三角形的判定定理: (1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那 么这两个三角形相似, (简叙为 对应相等两三角形 ) 。 且 (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例, 并且夹角相等,那么这两个三角形相似(简叙为:两边对应成 相等,两个三角形相似。 ) 2. 已知:如图点 D,E 分别在 AB,AC 上,
3.下列四个三角形,与左图中的三角形相似的是(
AB A B AB ∴ A B

, =
AC AC
.

BC B C

A.

B.
C.
D.
( 自我检测:
拓展探究: (大胆想象,定能成功)
如图,在△ABC 中,AB=8,AC=6.点 D 是 AB 上一点,且 AD=3,点 E 是 AC 上一点.试问:当 AE 为何值时,以 A,D,E 为顶点的三角形 与△ABC 相似? 相似.(填“一
AB BC AC ,还 DE EF DF
几何语言表达: 在△ABC 和△DEF 中, ∵ (已知) , ∴△ABC∽△DEF(SSS)
AD AE AB AC
A
。求证:DE∥BC。
课堂练习: 阅读课本例题完成下题:
D B E C













根据下列条件,判断△ABC 与△A’B’C’是否相似,并说明理由 AB=4 cm,BC=6cm,AC=8cm, A’B’=12cm,B’C’=18cm,A’ C’=24cm. 解:∵
相似三角形的判定三
1、通过预习掌握相似三角形的判定 3 的基本内容,并能运用相似三角形的判定解
教学 目标
决简单的问题。 2、培养能力。
思考以下问题: AB BC AC , , , 这三个比值相等吗? (1)分别计算 DE EF DF
(2)剪下画出的三角形,利用叠合的方法,检验对应角之间具有怎样的 大小关系。 (3)△ABC 和△DEF 相似吗?为什么? 改变边长,继续探索: (4)适当改变△ABC 和△DEF 的边长,并保持 能得到同样的结论吗? 总结:判定三:
1.一个直角三角形的两边长分别为 3 和 6,另一个直角三角形的两 边长分别为 2 和 4,那么这两个直角三角形 定”、“不一定”、“一定不”). 2.下列图形中两个三角形是否相似?
A
B
C
小 结 与 反 思
浮山县北王中学导学案
科目 时间 课题 数学 年 级 九年 级 编 号 06 使用 教师 课型 新授 导读预习:






同桌两人合作画三角形,一人画△ABC,使 AB=3 厘米,BC=4.5 厘米, AC=6 厘米;另一人画△DEF,使 DE=2 厘米,EF=3 厘米,DF=4 厘米。
编写人
审核人
相关文档
最新文档