二次根式(中考精选题)(汇编)

合集下载

二次根式中考汇编(经典考题)真题训练,综合测试卷(带答案)

二次根式中考汇编(经典考题)真题训练,综合测试卷(带答案)
∴x﹣2≥0,解得x≥2.
故选A.
点评:本题考查了二次根式有意义的条件.关键是明确二次根式有意义时,被开方数为非负数.
4.(2011四川凉山,5,4分)已知 ,则 的值为()
A. B. C. D.
考点:二次根式有意义的条件.
分析:首先根据分式有意义的条件求出x的值,然后根据题干式子求出y的值,最后求出2xy的值.
【专题解读】涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解.
例1当x取何值时, 的值最小?最小值是多少?
分析由二次根式的非负性可知 的最小值为0,因为3是常数,所以 的最小值为3.
解:∵
∴ ,
∴当9x+1=0,即 时, 有最小值,最小值为3.
例18函数y= 中,自变量x的取值范围是.
分析本题比较容易,主要考查函数自变量的取值范围的求法,本题中 是二次根式,所以被开方数2x-4≥0,所以x≥2.故填x≥2.
例19如图21-9所示的是一个简单的数值运算程序,若输入x的值为 ,则输出的数值为.
图21-9
分析本题比较容易,根据程序给定的运算顺序将问题化为二次根式求值问题,易知图中所表示的代数式为 ,代入可知( )2-1=2.故填2.
【解题策略】本题中所求字母x的取值必须使原代数式有意义.
例5化简
【解题策略】本题应根据条件直接进行化简,主要应用性质
例6已知实数,a,b,c在数轴上的位置如图21-8所示,化简
解:由a,b,c在数轴上的位置可知:
【解题策略】利用间接给出的或隐含的条件进行化简时,要充分挖掘题目中的隐含条件,再进行化简.
(3)二次根式具有非负性. (a≥0)是一个非负数.

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。

初中数学 中考复习二次根式专题练习(含答案)

初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。

(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。

满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。

(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。

中考数学真题专项汇编解析—二次根式

中考数学真题专项汇编解析—二次根式

中考数学真题专项汇编解析—二次根式一.选择题1.(2022·湖南衡阳)那么实数a 的取值范围是( ) A .1a >B .1a ≥C .1a <D .1a ≤【答案】B【分析】根据二次根式中的被开方数是非负数求解可得.【详解】根据题意知1a -≥0,解得1a ≥,故选:B .【点睛】本题主要考查二次根式有意义的条件,解题的关键是掌握二次根式的双重非负性.2.(2022·江苏连云港)函数y =x 的取值范围是( ) A .1≥xB .0x ≥C .0x ≤D .1x ≤ 【答案】A【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∵1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.3.(2022·的值应在( )A .10和11之间B .9和10之间C .8和9之间D .7和8之间 【答案】B6=【详解】 6=∵43,∵910<,故选:B .【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.4.(2022·333,…,6666633n ++++++=个根号,一般地,对于正整数a ,b ,如果满足n b b b b b a a ++++++=个根号时,称(),a b 为一组完美方根数对.如上面()3,6是一组完美方根数对.则下面4个结论:∵()4,12是完美方根数对;∵()9,91是完美方根数对;∵若(),380a 是完美方根数对,则20a =;∵若(),x y 是完美方根数对,则点(),P x y 在抛物线2y x x 上.其中正确的结论有( )A .1个B .2个C .3个D .4个 【答案】C 【分析】根据定义逐项分析判断即可. 【详解】解:1244+=,∴()4,12是完美方根数对;故∵正确;10=9≠∴()9,91不是完美方根数对;故∵不正确;若(),380a a =即2380a a =+解得20a =或19a =- a 是正整数则20a =故∵正确;若(),x y x =2y x x ∴+=,即2y x x 故∵正确故选C 【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.5.(2022·河北)下列正确的是( )A23=+ B 23⨯ C D 0.7【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23≠+,故错误;23=⨯,故正确;=≠0.7≠,故错误;故选:B .【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键. 6.(2022·河南)下列运算正确的是( )A .2-=B .()2211a a +=+C .()325a a =D .2322a a a ⋅= 【答案】D【分析】根据二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式逐项分析判断即可求解.【详解】解:A. =B. ()22112a a a +=++,故该选项不正确,不符合题意; C. ()326a a =,故该选项不正确,不符合题意;D. 2322a a a ⋅=,故该选项正确,符合题意;故选:D.【点睛】本题考查了二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式,正确地计算是解题的关键.7.(2022·湖南怀化)下列计算正确的是( )A .()32626a a =B .824a a a ÷=C 2D .()222x y x y -=- 【答案】C【分析】依次对每个选项进行计算,判断出正确的答案.【详解】∵()32366822a a a ==∵ A 错误 ∵82826a a a a -÷==∵ B 错误2∵C 正确∵()2222x y x xy y -=-+∵ D 错误故选:C .【点睛】本题考查整式的运算,解题的关键是熟练掌握运算法则.8.(2022·湖南怀化)下列计算正确的是( )A .(2a 2)3=6a 6B .a 8÷a 2=a 4C 2D .(x ﹣y )2=x 2﹣y 2【答案】C【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;【详解】解:A.(2a 2)3=8a 6≠6a 6,故错误;B.a 8÷a 2=a 6≠a 4,故错误;=2,故正确;D.(x ﹣y )2=x 2﹣2xy +y 2≠x 2﹣y 2,故错误;故选:C .【点睛】本题主要考查积的乘方、同底数幂的除法、二次根式的化简、完全平方公式等知识,掌握相关运算法则是解题的关键.9.(2022·云南)下列运算正确的是( )A =B .030=C .()3328a a -=-D .632a a a ÷=【答案】C【分析】根据合并同类二次根式判断A ,根据零次幂判断B ,根据积的乘方判断C ,根据同底数幂的除法判断D .【详解】解:题意;B.031=,此选项运算错误,不符合题意;C.()3328a a -=-,此选项运算正确,符合题意;D.633a a a ÷=,此选项运算错误,不符合题意;故选:C .【点睛】本题考查了二次根式的加法、零次幂、积的乘方、同底数幂相除,熟练掌握运算法则是解题的关键.10.(2022·四川德阳)下列计算正确的是( )A .()222a b a b -=-B 1=C .1a a a a ÷⋅=D .32361126ab a b ⎛⎫-=- ⎪⎝⎭ 【答案】B【分析】根据完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则逐项判断即可.【详解】A.222()2a b a ab b -=-+,故本选项错误;1,故本选项符合题意;C.1111a a a a a÷⋅=⋅=,故本选项错误;D.23332336111228()()ab a b a b ⨯-=-=-,故本选项错误;故选:B .【点睛】本题考查了完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则,熟练掌握同底数幂的乘除法则、积的乘法法则是解答本题的关键.11.(2022·江苏连云港)函数y =x 的取值范围是( ) A .1≥xB .0x ≥C .0x ≤D .1x ≤ 【答案】A【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∵1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.12.(2022·四川自贡)下列运算正确的是( )A .()212-=-B .1=C .632a a a ÷= D .0102022⎛⎫-= ⎪⎝⎭ 【答案】B【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.()211-=,故A 错误;B.221=-=,故B 正确;C.633a a a ÷=,故C 错误;D.0112022⎛⎫-= ⎪⎝⎭,故D 错误.故选:B . 【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.13.(2022· )A .±2B .-2C .4D .2【答案】D【分析】先计算(-2)2=4,再求算术平方根即可.2,故选:D .【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键. 14.(2022·4的值在( )A .6到7之间B .5到6之间C .4到5之间D .3到4之间【答案】D【分析】根据49<54<64,得到78<<,进而得到344<<,即可得到答案.【详解】解:∵49<54<64,∵78<,∵344<<4的值在3到4之间,故选:D .【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二.填空题15.(2022·x 的取值范围是______.【答案】x ≥﹣1【分析】根据二次根式有意义的条件可得:x +1≥0,即可求得.【详解】解:∵∵x +1≥0,∵x ≥﹣1.故答案为:x ≥﹣1.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.16.(2022·_________.【答案】2【分析】根据二次根式的性质进行化简即可.2.故答案为:2. ()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<. 17.(2022·湖北荆州)若3a ,小数部分为b ,则代数式()2b ⋅的值是______.【答案】2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∵132<, ∵3的整数部分为a ,小数部分为b ,∵1a =,312b ==∵()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.18.(2022·x 的取值范围为_____.【答案】x ≥5【分析】根据二次根式有意义的条件得出x −5≥0,计算求解即可.【详解】解:由题意知,50x -≥,解得,5x ≥,故答案为:5x ≥.【点睛】本题考查了二次根式有意义的条件,解一元一次不等式.熟练掌握二次根式有意义的条件是解题的关键.19.(2022·四川南充)x 为正整数,则x 的值是_______________.【答案】4或7或8【分析】根据根号下的数大于等于0和x 为正整数,可得x 可以取1、2、3、4、5、6、7、8为整数即可得x 的值.【详解】解:∵80x -≥∵8x ≤∵x 为正整数∵x 可以为1、2、3、4、5、6、7、8为整数∵x 为4或7或8故答案为:4或7或8.【点睛】本题考查了利用二次根式的性质化简、解一元一次不等式等知识点,掌握二次根式的性质是解答本题的关键.20.(2022·天津)计算1)的结果等于___________.【答案】18【分析】根据平方差公式即可求解.【详解】解:221)119118=-=-=,故答案为:18.【点睛】本题考查了平方差公式的应用,熟练掌握平方差公式的展开式是解题的关键.21.(2022·浙江嘉兴)如图,在ABC中,∵ABC=90°,∵A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.【分析】先求解33,,3AB AD再利用线段的和差可得答案.【详解】解:由题意可得:1,15123,DE DC30,90, A ABC33, tan603BCAB同理:13,tan6033DEAD3233,33BD AB AD【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.22.(2022·新疆)在实数范围内有意义,则x的取值范围为__________.【答案】3x≥【分析】根据二次根式有意义的条件,得到不等式,解出不等式即可.有意义,则需要-30x≥,解出得到3x≥.故答案为:3x≥【点睛】本题考查二次根式有意义的条件,能够得到不等式是解题关键.23.(2022·2,…,排列:,2,4;…若2的位置记为(1,2)(2,3),则________.【答案】(4,2)【分析】先找出被开方数的规律,然后再求得∵规律为:被开数为从2开始的偶数,每一行4个数,∵28是第14个偶数,而14432÷=∵(4,2)故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.24.(2022·x的取值范围是__.【答案】1x.【分析】二次根式有意义的条件:被开方数为非负数,再列不等式,从而可得答案.10x -,解得:1x .故答案为:1x .【点睛】本题考查的是二次根式有意义的条件,解题的关键是根据二次根式有意义的条件列不等式.25.(2022·四川遂宁)实数a ,b 在数轴上的位置如图所示,化简1a +______.【答案】2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案. 【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∵1a +|1||1|||a b a b +--+- =1(1)()a b a b +---- =11a b a b +-+-+ =2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.26.(2022·_____. 【答案】4【分析】根据二次根式的乘法法则计算即可.4=.故答案为:4.【点睛】本题考查了二次根式的乘法,解题的关键是掌握运算法则.27.(2022·湖南娄底)函数y=x的取值范围是_______.【答案】1x>有意义可得:10,x->再解不等式可得答案.有意义可得:10,10xx即10,x->解得: 1.x>故答案为:1x>【点睛】本题考查的是二次根式与分式有意义的条件,函数自变量的取值范围,理解函数自变量的取值范围的含义是解本题的关键.28.(2022·________.【答案】3【分析】直接利用二次根式的乘法法则计算得出答案.3.故答案为:3.【点睛】此题主要考查了二次根式的乘法法则,熟练掌握二次根式的乘法法则是解题关键.29.(2022·四川宜宾)《数学九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=18的三角形的三边满足::4:3:2a b c=,则用以上给出的公式求得这个三角形的面积为______. 【答案】【分析】根据周长为18的三角形的三边满足::4:3:2a b c =,求得8,6,4a b c ===,代入公式即可求解.【详解】解:∵周长为18的三角形的三边满足::4:3:2a b c =,设4,3,2a k b k c k === ∵43218k k k ++=解得2k =∴8,6,4a b c ===∴S =====故答案为:【点睛】本题考查了化简二次根式,正确的计算是解题的关键.30.(2022·湖北荆州)如图,在Rt ∵ABC 中,∵ACB =90°,通过尺规作图得到的直线MN 分别交AB ,AC 于D ,E ,连接CD .若113CE AE ==,则CD =______.【分析】先求解AE ,AC ,再连结BE ,证明,,AE BE AD BD 利用勾股定理求解BC,AB,从而可得答案.【详解】解:113CE AE==,3,4,AE AC如图,连结,BE由作图可得:MN是AB的垂直平分线,3,,AE BE AD BD90,ACB∠=︒223122,BC2242226,AB16.2BD AB【点睛】本题考查的是线段的垂直平分线的作图与性质,勾股定理的应用,二次根式的化简,熟悉几何基本作图与基本图形的性质是解本题的关键.31.(2022·x的取值范围是______.【答案】4x>【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:根据题意,得:4040xx-≥⎧⎨-≠⎩,解得:x>4,故答案为:x>4.【点睛】本题考查了二次根式有意义的条件是二次根式的被开方数是非负数,分式有意义的条件是分母不为0.32.(2022·x 的取值范围是_______. 【答案】1x【分析】根据二次根式的被开方数是非负数列出不等式10x -,解不等式即可求得x 的取值范围.【详解】解:根据题意得10x -,解得1x .故答案为:1x .【点睛】本题考查了二次根式有意义的条件,解题的关键是利用被开方数是非负数得出不等式.33.(2022·__________.【答案】【解析】 【分析】先计算乘法,再合并,即可求解. 【详解】3=4233=,故答案为: 【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.34.(2022·湖北随州)已知mm 有最小值3721⨯=.设n 为正整数,是大于1的整数,则n 的最小值为______,最大值为______. 【答案】 3 75【分析】根据n 为正整数,1的整数,先求出n 的值可以为3、12、75,3001的整数来求解.【详解】解:=1的整数,∵1=. ∵n 为正整数∵n 的值可以为3、12、75,n 的最小值是3,最大值是75.故答案为:3;75.【点睛】本题考查了无理数的估算,理解无理数的估算方法是解答关键.35.(2022·0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =b =记11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++=_______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解:a =b =1ab ==∴, 1112211112a b a ba b b b a bS a a ++++=+===+++++++, 222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++ ∴12100S S S +++=121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键. 三.解答题36.(2022·四川乐山)1sin 302-︒ 【答案】3【分析】根据特殊角三角函数值、二次根式的性质、负整数指数幂求解即可. 【详解】解:原式113322=+-=.【点睛】本题主要考查了特殊角三角函数值、负整数指数幂、二次根式的性质等知识,熟知相关计算法则是解题的关键.37.(2022·江苏宿迁)计算:112-⎛⎫ ⎪⎝⎭4sin 60°.【答案】2【分析】先计算负整数指数幂,二次根式的化简,特殊角的三角函数值,再计算乘法,再合并即可.【详解】解:11124sin 6023422=+2= 【点睛】本题考查的是特殊角的三角函数值的运算,负整数指数幂的含义,二次根式的化简,掌握“运算基础运算”是解本题的关键.38.(2022·湖南娄底)计算:()11202212sin 602π-⎛⎫-++-︒ ⎪⎝⎭. 【答案】-2【分析】分别计算零指数幂、负整数指数幂、绝对值和特殊角的三角函数值,然后按照去括号、先乘除后加减的顺序依次计算即可得出答案.【详解】解:()-112022-12sin 602π⎛⎫+-+︒ ⎪⎝⎭(1212=---121=-- 2=-.【点睛】此题考查实数的混合运算,包含零指数幂、负整数指数幂、绝对值和特殊角的三角函数值.熟练掌握相关运算的运算法则以及整体的运算顺序是解决问题的关键.39.(2022·浙江湖州)计算:()223+⨯-.【答案】0【分析】先算乘方,再算乘法和减法,即可. 【详解】()26(6)6236=+-=+--=⨯【点睛】本题考查实数的混合运算,关键是掌握2a=.40.(2022·【答案】【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:原式==【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.41.(2022·湖南常德)计算:213sin30452-︒︒⎛⎫- ⎪⎝⎭【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=11422-⨯+1=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.42.(2022·四川广元)计算:2sin60°﹣2|+(π(﹣12)﹣2.【答案】3【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣2|+(π+(﹣12)﹣2-- =3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.43.(2022·湖北十堰)计算:1202212(1)3-⎛⎫+- ⎪⎝⎭.【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:1202212(1)3-⎛⎫+- ⎪⎝⎭321=-【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简. 44.(2022·四川宜宾)计算:4sin 302︒;(2)21111aa a ⎛⎫-÷ ⎪+-⎝⎭. 【答案】1a -【分析】(1)先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可;(2)先计算括号,再运用除法法则转化成乘法计算即可求解.【解析】(1)解:原式1422=⨯+=(2)解:原式211111a a a a a+-⎛⎫=-⋅ ⎪++⎝⎭ ()()111a a a a a+-=⋅+ 1a =-.【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算与分式混合运算法则,熟记特殊角的三角函数值.45.(2022·四川南充)先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.【答案】24x -;-【分析】利用多项式乘以多项式及单项式乘以多项式运算法则进行化简,然后代入求值即可.【详解】解:原式=22326424x x x x x -+---=24x -;当x 1时,原式=)214-=3+1-4=- 【点睛】题目主要考查整式的乘法及加减化简求值及二次根式混合运算,熟练掌握运算法则是解题关键.46.(2022·湖南岳阳)计算:2022032tan 45(1))π--︒+--.【答案】1【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1))π--︒+--32111=-⨯+-3211=-+-1=.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.47.(2022·湖南娄底)“体育承载着国家强盛、民族振兴的梦想”.墩墩使用握力器(如实物图所示)锻炼手部肌肉.如图,握力器弹簧的一端固定在点P 处,在无外力作用下,弹簧的长度为3cm ,即3cm PQ =.开始训练时,将弹簧的端点Q 调在点B 处,此时弹簧长4cm PB =,弹力大小是100N ,经过一段时间的锻炼后,他手部的力量大大提高,需增加训练强度,于是将弹簧端点Q 调到点C 处,使弹力大小变为300N ,已知120∠=︒PBC ,求BC 的长.注:弹簧的弹力与形变成正比,即F k x =⋅∆,k 是劲度系数,x ∆是弹簧的形变量,在无外力作用下,弹簧的长度为0x ,在外力作用下,弹簧的长度为x ,则0x x x ∆=-.【答案】2【分析】利用物理知识先求解,k 再求解336,PC 再求解,,BM PM 再利用勾股定理求解MC ,从而可得答案.【详解】解:由题意可得:当100F时,431,x 100,k 即100,F x 当300F =时,则3,x 336,PC 如图,记直角顶点为M ,120,90,PBC PMB30,BPM 而4,PB 222,4223,BMPM 226232426,MC 26 2.BC MC BM【点睛】本题是跨学科的题,考查了正比例函数的性质,三角形的外角的性质,勾股定理的应用,含30的直角三角形的性质,二次根式的化简,理解题意,建立数学函数模型是解本题的关键.。

初中数学二次根式真题汇编

初中数学二次根式真题汇编

初中数学二次根式真题汇编一、选择题1.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;B=是同类二次根式;C b==D不是同类二次根式;故选:B.【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2.a的值为()A.2 B.3 C.4 D.5【答案】D【解析】【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【详解】根据题意得,3a-8=17-2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.3.下列各式计算正确的是()A .22221081081082-=-=-=B .()()()()4949236-⨯-=-⨯-=-⨯-= C .11111154949236+=+=+= D .9255116164-=-=- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式=36=6,所以A 选项错误;B 、原式=49⨯=49⨯=2×3=6,所以B 选项错误;C 、原式=1336=13,所以C 选项错误;D 、原式255164=-=-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b -=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.5.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .6.m 18m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】 m 18 【详解】 18=32A. 18m =12=84m ,是同类二次根式,故此选项不符合题意; B. 4m ==2m ,此选项符合题意C. 32m ==32=42m ,是同类二次根式,故此选项不符合题意;D. 627m =62==273m ,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.7.下列运算正确的是( )A.B)2=2 CD==3﹣2=1【答案】B【解析】【分析】根据二次根式的性质和加减运算法则判断即可.【详解】根据二次根式的加减,可知A选项错误;根据二次根式的性质2=a(a≥02=2,所以B选项正确;(0)=0(=0)(0)a aa aa a⎧⎪=⎨⎪-⎩><﹣11|=11,所以C选项错误;DD选项错误.故选B.【点睛】此题主要考查了的二次根式的性质2=a(a≥0(0)=0(=0)(0)a aa aa a⎧⎪=⎨⎪-⎩><,正确利用性质和运算法则计算是解题关键.8.如果一个三角形的三边长分别为12、k、72|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k【答案】D【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.9.如果0,0ab a b >+<,那么给出下列各式=;a =-;正确的是( ) A .①②B .②③C .①③D .①②③ 【答案】B【解析】【分析】由题意得0a <,0b <,然后根据二次根式的性质和乘法法则逐个判断即可.【详解】解:∵0ab >,0a b +<,∴0a <,0b <,无意义,故①错误;1==,故②正确;a a ====-,故③正确; 故选:B .【点睛】本题考查了二次根式的性质和乘法运算,熟练掌握运算法则是解题的关键.10的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到52a,再根据条件确定正整数a的最小值即可.【详解】∵50·a=50a=52a是一个整数,∴正整数a是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.11.下列二次根式中是最简二次根式的是()A.12B.15C.13D.2【答案】B【解析】【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),判断即可.【详解】解:A、12=23,故本选项错误;B、15是最简根式,故本选项正确;C、13=3,故本选项错误;D、2=22,故本选项错误.故选:B.【点睛】本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.12.如果,则a的取值范围是()A. B. C. D.【答案】B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.13.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.14.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为( )A .B .C .D . 【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D .【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.15.下列二次根式是最简二次根式的是( )A .57B .12C . 6.4D .37【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.16.二次根式3x +有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0得,3x +有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.17.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D .【答案】D【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】∵二次根式2x+在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.18.估计2262⨯值应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:226122⨯=∵91216<<∴91216<<∴3124<<∴估计2262⨯值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.下列运算正确的是()A.B.C.(a﹣3)2=a2﹣9 D.(﹣2a2)3=﹣6a6【答案】B【解析】各式计算得到结果,即可做出判断.【详解】解:A、原式不能合并,不符合题意;B、原式=,符合题意;C、原式=a2﹣6a+9,不符合题意;D、原式=﹣8a6,不符合题意,故选:B.【点睛】考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法,熟练掌握运算法则是解本题的关键.-有意义,那么直角坐标系中 P(m,n)的位置在()20.mmnA.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.【详解】依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.。

二次根式50道计算题(汇编)

二次根式50道计算题(汇编)

二次根式50道计算题(汇编)本文档包含了50道关于二次根式的计算题,可以帮助你巩固和练习有关二次根式的计算技巧。

题目1.计算 $2\\sqrt{3}$。

2.计算 $3\\sqrt{7}-\\sqrt{2}$。

3.计算 $\\sqrt{12}+\\sqrt{27}$。

4.计算 $4\\sqrt{6} - 2\\sqrt{3}$。

5.计算 $\\sqrt{50}$。

6.计算 $2(\\sqrt{5}+\\sqrt{3})$。

7.计算 $\\sqrt{18} - \\sqrt{8}$。

8.计算 $3\\sqrt{5} + 2\\sqrt{45}$。

9.计算 $\\sqrt{72} - 2\\sqrt{18}$。

10.计算 $4\\sqrt{10} - 3\\sqrt{8}$。

11.计算 $2\\sqrt{6} \\times 3\\sqrt{2}$。

12.计算 $(\\sqrt{3}+\\sqrt{5})^2$。

13.计算 $(\\sqrt{7}-\\sqrt{2})^2$。

14.计算 $(\\sqrt{20}+\\sqrt{5})(\\sqrt{20}-\\sqrt{5})$。

15.计算$(\\sqrt{3}+\\sqrt{2})(\\sqrt{3}-\\sqrt{2})$。

16.计算 $(4\\sqrt{2})^2$。

17.计算 $(\\sqrt{2})^4$。

18.计算 $(\\sqrt{3})^3$。

19.计算 $(\\sqrt{7})^2$。

20.计算 $3\\sqrt{5} \\div \\sqrt{3}$。

21.计算 $\\sqrt{8} \\div 2$。

22.计算 $\\sqrt{18} \\div (\\sqrt{6} \\times\\sqrt{2})$。

23.计算 $2\\sqrt{7} + \\sqrt{7}$。

24.计算 $\\sqrt{11} + 2\\sqrt{11}$。

2023中考数学真题汇编05 二次根式(含答案与解析)

2023中考数学真题汇编05  二次根式(含答案与解析)

2023中考数学真题汇编·05二次根式一、单选题1.(2023·是同类二次根式的是()AB C D 2.(2023·x的取值范围是()A .x <1B .x ≤1C .x >1D .x ≥13.(2023·x 的取值范围在数轴上表示为()A .B .C .D .4.(2023·有意义,则a 的值可以是()A .1 B .0C .2D .65.(2023·辽宁大连)下列计算正确的是()A .0B .CD 266.(2023·)A .0,0a bB .0,0a bC .0,0a bD .0,0a b7.(2023·山东临沂)设m m 所在的范围是()A .5mB .54mC .43mD .3m8.(2023·山东)若代数式2x 有意义,则实数x 的取值范围是()A .2xB .0xC .2xD .0x 且2x9.(2023·天津)sin 45 )A .1BC D .210.(2023·河北)若a b ()A .2B .4C D11.(2023·湖北荆州)已知k ,则与k 最接近的整数为()A .2B .3C .4D .5二、填空题12.(2023·湖北黄冈)请写出一个正整数mm _____________.13.(2023·湖南永州)已知x在实数的范围内没有意义....的x 值是_______.14.(2023·x 应满足的条件是__________.15.(2023·x 的取值范围是__________.16.(2023·有意义,则实数x 的取值范围是______17.(2023·黑龙江绥化)若式子x有意义,则x 的取值范围是_______.18.(2023·黑龙江齐齐哈尔)在函数12y x 中,自变量x 的取值范围是______.19.(2023·江苏连云港)计算:2 __________.20.(2023·天津)计算的结果为________.21.(2023·山东聊城)计算: ______.22.(2023·上海)已知关于x2 ,则x ________三、解答题23.(2023·24.(2023·213325.(2023· 10220231 .26.(2023·四川内江)计算:2202301(1)3tan 30(3)2|2【参考答案与解析】1.【答案】C【解析】解:A 2 B不是同类二次根式,不符合题意;C是同类二次根式,符合题意;D不是同类二次根式,不符合题意;故选:C .2.【答案】D【解析】解:由题意得,x -1≥0,解得x ≥1.故选:D .3.【答案】C【解析】解:根据题意得,10x ,解得1x ,在数轴上表示如下:故选:C .4.【答案】D【解析】解:有意义,∴40a ,解得:4a ,则a 的值可以是6故选:D .5.【答案】D【解析】解:A. 1 ,故该选项不正确,不符合题意;B. ,故该选项不正确,不符合题意;C.D.26 故选:D .6.【答案】D【解析】解:根据二次根式有意义的条件,得000a b ab,0,0a b ,故选:D .7.【答案】B【解析】解:m∵∴54 ,即54m ,故选:B .8.【解析】解:∵代数式2x 有意义,∴020x x ,解得0x 且2x ,故选:D.9.【答案】B 【解析】解:222sin 45222故选:B .10.【答案】A 【解析】解:∵a b2,故选:A .11.【答案】B【解析】解:k53∵22.5=6.25,23=9∴532 ,∴与k 最接近的整数为3,故选:B .二、填空题12.【答案】8【解析】解:∴8m 要是完全平方数,∴正整数m 的值可以为8,即864m 8 ,故答案为:8(答案不唯一).13.【答案】1(答案不唯一)【解析】解:当30x 没有意义,解得3x ,x ∵为正整数,x 可取1,2,故答案为:1.14.【答案】4x 【解析】根据题意得:40x ,解得:4x ,故答案为:4x .15.【答案】9x 【解析】解:∵∴90x ,解得:9x ,故答案为:9x .16.【答案】3x 【解析】有意义,∴3030x x ≥,且,解得x 3>,故答案为:x 3>.17.【答案】5x 且0x /0x 且5x【解析】∵∴50x 且0x ,∴5x 且0x ,故答案为:5x 且0x .18.【答案】1x 且2x 【解析】解:依题意,10,20x x∴1x 且2x ,故答案为:1x 且2x .19.【答案】5【解析】解:2 5故答案为:5.20.【答案】1【解析】解:22761 故答案为:1.21.【答案】3【解析】解:333 .故答案为:3.22.【答案】18【解析】解:根据题意得,140x ,即14x ,2 ,等式两边分别平方,144x 移项,18x ,符合题意,故答案为:18.三、解答题23.【答案】24.【答案】解:原式2293 6 .25.【答案】解: 102202313211211 4 .26.【答案】解:2202301(1)3tan 30(3)2|231431231412 4 .。

中考试题汇编 二次根式

中考试题汇编    二次根式
【答案】
=
=
=
把 代人上式中,得
16.(2011贵州安顺,20,8分)先化简,再求值: ,其中a=2-
【答案】原式=
=
=
当 = 时,原式= .
17.(2011湖南湘潭市,18,6分)(本题满分6分)
先化简,再求值: ,其中 .
【答案】解: ,当 ,原式= 。
A.1B.-1C.7D.-7
【答案】C
6.(2011山东日照,1,3分)(-2)2的算术平方根是()
(A)2(B)±2(C)-2(D)
【答案】A
7.(2011山东泰安,7,3分)下列运算正确的是()
A.=±5 B.4-=1 C.÷=9 D.·=6
【答案】D
8.(2011山东威海,1,3分)在实数 、 、 、 中,最小的是()
【答案】C
3.(2011山东菏泽,4,3分)实数a在数轴上的位置如图所示,则 化简后为
A.7 B.-7 C.2a-15 D.无 法确定
【答案】A
4.(20 2 B.-2 C.±2 D. 16
【答案】A
5.(2011山东济宁,5,3分)若 ,则 的值为()
当 时, = = .
6.(2011四川宜宾,17⑴,5分)计算:
【答案】解:原式= =
7.(2011四川宜宾,17⑵,5分)先化简,再求值: ,其中 .
【答案】解: =
当 时∴原式=
8.(2011重庆綦江,21,10分)先化简,再求值: 其中x=
【答案】:解:原式= = =
当x= 时,原式的值为
9.(2011江西南昌,17,6分)先化简,再求值:( )÷a,其中a= .
【答案】x≥1
9.(2011江苏泰州,9,3分)16的算术平方根是.

二次根式(31题)--2023年中考数学真题分项汇编(学生版)

二次根式(31题)--2023年中考数学真题分项汇编(学生版)

专题05二次根式一、单选题1(2023·湖南·统考中考真题)若代数式x-1在实数范围内有意义,则x的取值范围是()A.x<1B.x≤1C.x>1D.x≥12(2023·内蒙古通辽·统考中考真题)二次根式1-x在实数范围内有意义,则实数x的取值范围在数轴上表示为()A. B.C. D.3(2023·辽宁大连·统考中考真题)下列计算正确的是()A.20=2 B.23+33=56 C.8=42 D.323-2=6-234(2023·山东·统考中考真题)若代数式xx-2有意义,则实数x的取值范围是()A.x≠2B.x≥0C.x≥2D.x≥0且x≠25(2023·湖北荆州·统考中考真题)已知k=25+3⋅5-3,则与k最接近的整数为()A.2B.3C.4D.56(2023·河北·统考中考真题)若a=2,b=7,则14a2b2=()A.2B.4C.7D.27(2023·天津·统考中考真题)sin45°+22的值等于()A.1B.2C.3D.28(2023·山东临沂·统考中考真题)设m=515-45,则实数m所在的范围是()A.m<-5B.-5<m<-4C.-4<m<-3D.m>-39(2023·湖南·统考中考真题)对于二次根式的乘法运算,一般地,有a⋅b=ab.该运算法则成立的条件是()A.a>0,b>0B.a<0,b<0C.a≤0,b≤0D.a≥0,b≥010(2023·山东烟台·统考中考真题)下列二次根式中,与2是同类二次根式的是()A.4B.6C.8D.1211(2023·江西·统考中考真题)若a-4有意义,则a的值可以是()A.-1B.0C.2D.6二、填空题12(2023·湖南常德·统考中考真题)要使二次根式x-4有意义,则x应满足的条件是.13(2023·黑龙江绥化·统考中考真题)若式子x+5x有意义,则x的取值范围是.14(2023·黑龙江齐齐哈尔·统考中考真题)在函数y=1x-1+1x-2中,自变量x的取值范围是.15(2023·黑龙江鸡西·校考二模)函数y=x+3中,自变量x的取值范围是.16(2022春·贵州遵义·八年级校考阶段练习)计算3×12=.17(2023·山东聊城·统考中考真题)计算:48-31 3÷3=.18(2023·四川·统考中考真题)若1x -3有意义,则实数x 的取值范围是19(2023·湖北黄冈·统考中考真题)请写出一个正整数m 的值使得8m 是整数;m =.20(2018·云南·中央民族大学附属中学昆明五华实验学校校考一模)计算:2-8=21(2021春·广西南宁·八年级统考期中)计算(2+3)(2-3)的结果为.22(2023·天津·统考中考真题)计算7+6 7-6 的结果为.23(2023·湖南永州·统考中考真题)已知x 为正整数,写出一个使x -3在实数的范围内没有意义的x 值是.24(2023春·福建福州·九年级福建省福州第一中学校考期中)使x +1有意义的x 的取值范围是.25(2023·上海·统考中考真题)已知关于x 的方程x -14=2,则x =26(2023·湖南怀化·统考中考真题)要使代数式x -9有意义,则x 的取值范围是.27(2023·江苏连云港·统考中考真题)计算:(5)2=.三、解答题28(2023·四川·统考中考真题)计算:183+2-2+20230--11.29(2023·四川内江·统考中考真题)计算:(-1)2023+12-2+3tan30°-(3-π)0+|3-2|30(2023·上海·统考中考真题)计算:38+12+5-13-2+5-331(2023·甘肃武威·统考中考真题)计算:27÷32×22-62.。

二次根式分类汇编

二次根式分类汇编
n是一个正整数,
山35n是整数,则
B不符合题意;
C不符合题意;
n的最小值是().
A.3
【答案】
B.
C.15
D.
25
【解析】
【分析】
【详解】 解:Q Jl35n3/15?,若彳3丽是整数,则丿面 也是整数,
••• n的最小正整数值是15,故选C.
1在实数范围内有意义,则x的取值范围是(
【解析】
【分析】 根据被开方数大于等于0,分母不等于0列式计算即可得解.
C、
D、
2.下列式子为最简二次根式的是(
B
D.
【答案】A
【解析】
【分析】
【详解】
解:选项A,被开方数不含分母;被开Байду номын сангаас数不含能开得尽方的因数或因式, 选项 选项
A符合题意;
选项
故选
B,
C,
D,
A.
被开方数含能开得尽方的因数或因式, 被开方数含能开得尽方的因数或因式, 被开方数含分母,
D不符合题意,
3.已知
二次根式分类汇编
一、选择题
1.在下列各组根式中,是同类二次根式的是(
A.血,辰
B.
C
【答案】B
【解析】
D.
\f
【分析】
根据二次根式的性质化简,根据同类二次根式的概念判断即可.
【详解】
A、
B、
2/3,J2与J12不是同类二次根式;
¥,忑与是同类二次根式;
J
与不是同类二次根式;
故选:B.
【点睛】
本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式 后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.

数学中考试题二次根式200题(含解析)

数学中考试题二次根式200题(含解析)
113.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)
-(cos30°)0115.已知x= +1,求x2-2x-3的值.
116. 先化简,再求值 ,其中a=,b=.
117.计算: .
118.计算: .
119. 计算:
120.计算: .
121. 计算:.
122.计算:(2-)(2+)+(-1)2010 .
25.已知实数x、y、a满足: ,
试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果丌能,请说明理由.
26. 我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:
…①(其中 a、b、c 为三角形的三边长,s
163.计算:-(-3)=;如图所示,化简 =.
164.实数a在数轴上的位置如图所示,则化简|a-2|+ 的结果为.
165.已知a<2,则 =.
166.当x>2时,化简=.
167.计算: +| -2|+(2-π)0
168.计算: .
169.计算:-(-2009)0+( )-1+|-1|.
170.计算:
154.计算:(-1)(+1)-(sin35°- )0+(-1)2008-(-2)-2
155.计算:( +3)(3- )
156.阅读下列材料,然后回答问题.
在迚行二次根式的化简不运算时,我们有时会碰上如 一样的式子, 其实我们还可以将其迚一步化简:
=
=
= (三)
以上这种化简的步骤叫做分母有理化. 还可以用以下方法化简:

2022年全国中考数学真题分类汇编专题5:二次根式(附答案解析)

2022年全国中考数学真题分类汇编专题5:二次根式(附答案解析)
第8页共9页
故答案为:﹣10. 三.解答题(共 2 小题) 29.计算:(﹣2)×0+5.
【解答】解:(﹣2)×0+5 =0+5 =5. 30.计算:3×(﹣1)+22+|﹣4|. 【解答】解:原式=﹣3+4+4 =5.
第9页共9页
2022 年全国中考数学真题分类汇编专题 5:二次根式
一.选择题(共 7 小题)
1.代数式 A.x≥3
在实数范围内有意义,则 x 的取值范围是(
B.x>3
C.x≤3
) D.x<3
2.若二次根式
有意义,则实数 x 的取值范围是( )
A.x≥1
B.x>1
C.x≥0
D.x>0
3.下列正确的是( )
A. t h 2+3
使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其
加减法运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值:
﹣1﹣(﹣3)2=

三.解答题(共 2 小题)
29.计算:(﹣2)×0+5. 30.计算:3×(﹣1)+22+|﹣4|.
第2页共9页
2022 年全国中考数学真题分类汇编专题 5:二次根式

13.化简:

14.计算:

15.计算:
的结果为

16.计算:

17.若
在实数范围内有意义,则 x 的取值范围是
18.若
在实数范围内有意义,则实数 x 的取值范围是
第1页共9页
. .
19.若
有意义,则 x 的取值范围是

20.若

【中考数学分项真题】二次根式(共36题)-(解析版)

【中考数学分项真题】二次根式(共36题)-(解析版)

A
10.(2021·江苏苏州市·中考真题)已知点
2,m

B
3 2
,
n
在一次函数
y
2x
1的图像上,则
m

n 的大小关系是( )
A. m n
B. m n
C. m n
D.无法确定
【答案】C
【分析】
根据一次函数的增减性加以判断即可.
【详解】
解:在一次函数 y=2x+1 中,
∵k=2>0,
∴y 随 x 的增大而增大.
1
1
1
2015 2016 化为 2015 ﹣ 2016 ,再进行分数的加减运算即可.
【详解】
解:由题意可知,
1
1 n2
1 (n 1)2
1
1 n(n
1)

x2020
1
1
2020 2021
x1 x2 x3 x2020 2021
11 1
1
=1 2 +1 6 +1 12 +…+1 2020 2021 ﹣2021
a 0,b 1,
故选: C. 【点睛】 本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键. 二、填空题
14.(2021·天津中考真题)计算 ( 10 1)( 10 1) 的结果等于_____.
【答案】9 【分析】 根据二次根式的混合运算法则结合平方差公式计算即可. 【详解】
11 1
1
1
=2020+1﹣ 2 + 2 ﹣ 3 +…+ 2015 ﹣ 2016 ﹣2021
1 =2020+1﹣ 2016 ﹣2021

二次根式(优选真题60道)-三年(2021-2023)中考数学真题分项汇编(解析版)

二次根式(优选真题60道)-三年(2021-2023)中考数学真题分项汇编(解析版)

专题03二次根式(优选真题60道)一.选择题(共24小题)1(2023•烟台)下列二次根式中,与2是同类二次根式的是()A.4B.6C.8D.12【答案】C【分析】先根据二次根式的性质化成最简二次根式,再根据同类二次根式的定义得出答案即可.【解答】解:A.4=2,和2不是同类二次根式,故本选项不符合题意;B.6和2不是同类二次根式,故本选项不符合题意;C.8=22,和2是同类二次根式,故本选项符合题意;D.12=23,和2不是同类二次根式,故本选项不符合题意;故选:C.【点评】本题考查了同类二次根式的定义,能熟记同类二次根式的定义是解此题的关键,几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫同类二次根式.2(2023•岳阳)对于二次根式的乘法运算,一般地,有a•b=ab.该运算法则成立的条件是()A.a>0,b>0B.a<0,b<0C.a≤0,b≤0D.a≥0,b≥0【答案】D【分析】根据二次根式的乘法法则,即可解答.【解答】解:对于二次根式的乘法运算,一般地,有a•b=ab.该运算法则成立的条件是a≥0,b≥0,故选:D.【点评】本题考查了二次根式的乘除法,熟练掌握二次根式的乘法法则是解题的关键.3(2023•金华)要使x-2有意义,则x的值可以是()A.0B.-1C.-2D.2【答案】D【分析】根据二次根式有意义的条件列出不等式,解不等式求出x的范围,判断即可.【解答】解:由题意得:x-2≥0,解得:x≥2,则x的值可以是2,故选:D.【点评】本题考查的是二次根式有意义的条件,熟记二次根式的被开方数是非负数是解题的关键.4(2023•巴中)下列运算正确的是()A.x2+x3=x5B.3×2=6C.(a-b)2=a2-b2D.|m|=m【答案】B【分析】根据二次根式的乘法、合并同类项、完全平方公式、绝对值的性质计算,判断即可.【解答】解:A、x2与x3,不是同类项,不能合并,故本选项计算错误,不符合题意;B、3×2=6,计算正确,符合题意;C、(a-b)2=a2-2ab+b2,故本选项计算错误,不符合题意;D、当m≥0时,|m|=m,故本选项计算错误,不符合题意;故选:B.【点评】本题考查的是二次根式的乘法、合并同类项、完全平方公式、绝对值的性质,掌握相关的运算法则和性质是解题的关键.5(2023•江西)若a-4有意义,则a的值可以是()A.-1B.0C.2D.6【答案】D【分析】直接利用二次根式的定义得出a的取值范围,进而得出答案.【解答】解:a-4有意义,则a-4≥0,解得:a≥4,故a的值可以是6.故选:D.【点评】此题主要考查了二次根式的有意义的条件,正确得出a的取值范围是解题关键.6(2023•临沂)设m=515-45,则实数m所在的范围是()A.m<-5B.-5<m<-4C.-4<m<-3D.m>-3【答案】B【分析】将原式进行化简后判断其在哪两个连续整数之间即可.【解答】解:m=515-45=25×15-35=5-35=-25=-20,∵16<20<25,∴16<20<25,即4<20<5,那么-5<-20<-4,则-5<m<-4,故选:B.【点评】本题考查无理数的估算,将原式计算后得出结果为-20是解题的关键.7(2023•天津)sin45°+22的值等于()A.1B.2C.3D.2【答案】B【分析】根据特殊锐角的三角函数值及二次根式的加法法则计算即可.【解答】解:原式=22+22=2,故选:B.【点评】本题考查二次根式的运算及特殊锐角的三角函数,其相关运算法则是基础且重要知识点,必须熟练掌握.8(2023•扬州)已知a=5,b=2,c=3,则a、b、c的大小关系是()A.b>a>cB.a>c>bC.a>b>cD.b>c>a【答案】C【分析】一个正数越大,其算术平方根越大,据此进行判断即可.【解答】解:∵3<4<5,∴3<4<5,即3<2<5,则a>b>c,故选:C.【点评】本题考查实数的大小比较,此为基础且重要知识点,必须熟练掌握.9(2023•台州)下列无理数中,大小在3与4之间的是()A.7B.22C.13D.17【答案】C【分析】一个正数越大,其算术平方根越大;据此进行无理数的估算进行判断即可.【解答】解:∵4<7<8<9<13<16<17,∴4<7<8<9<13<16<17,即2<7<22<3<13<4<17,那么13在3和4之间,故选:C.【点评】本题考查无理数的估算,此为基础且重要知识点,必须熟练掌握.10(2023•云南)按一定规律排列的单项式:a,2a2,3a3,4a4,5a5,⋯,第n个单项式是() A.n B.n-1a n-1 C.na n D.na n-1【答案】C【分析】根据题干所给单项式总结规律即可.【解答】解:第1个单项式为a,即1a1,第2个单项式为2a2,第3个单项式为3a3,...第n个单项式为na n,故选:C.【点评】本题考查数式规律问题,根据已知单项式总结出规律是解题的关键.11(2023•重庆)估计5×6-1 5的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】A【分析】先化简题干中的式子得到30-1,明确30的范围,利用不等式的性质求出30-1的范围得出答案.【解答】解:原式=30-1.∵5<30<6.∴4<30-1<5.故选:A.【点评】本题以计算选择为背景考查了无理数的估算,考核了学生对式子的化简和比较大小的能力,解题关键是将式子化简,确定无理数的范围最后利用不等式的性质.12(2022•内蒙古)实数a在数轴上的对应位置如图所示,则a2+1+|a-1|的化简结果是()A.1B.2C.2aD.1-2a【答案】B【分析】根据数轴得:0<a<1,得到a>0,a-1<0,根据a2=|a|和绝对值的性质化简即可.【解答】解:根据数轴得:0<a<1,∴a>0,a-1<0,∴原式=|a|+1+1-a=a+1+1-a=2.故选:B.【点评】本题考查二次根式的性质与化简,实数与数轴,掌握a2=|a|是解题的关键.13(2022•安顺)估计(25+52)×15的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】B【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【解答】解:原式=2+10,∵3<10<4,∴5<2+10<6,故选:B.【点评】此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.14(2022•广州)代数式1x+1有意义时,x应满足的条件为()A.x≠-1B.x>-1C.x<-1D.x≤-1【答案】B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:代数式1x+1有意义时,x+1>0,解得:x>-1.故选:B.【点评】此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确掌握相关定义是解题关键.15(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=2as进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为()A.0.4×103m/sB.0.8×103m/sC.4×102m/sD.8×102m/s【答案】D【分析】把a=5×105m/s2,s=0.64m代入公式v=2as,再根据二次根式的性质化简即可.【解答】解:v=2as=2×5×105×0.64=8×102(m/s),故选:D.【点评】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16(2022•青岛)计算(27-12)×13的结果是()A.33B.1C.5D.3【答案】B【分析】先根据二次根式的乘法进行计算,再根据二次根式的性质进行计算,最后算减法即可.【解答】解:(27-12)×1 3=27×13-12×13=9-4=3-2=1,故选:B.【点评】本题考了二次根式的混合运算,能正确运用二次根式的运算法则进行计算是解此题的关键.17(2022•绥化)若式子x+1+x-2在实数范围内有意义,则x的取值范围是()A.x>-1B.x≥-1C.x≥-1且x≠0D.x≤-1且x≠0【答案】C【分析】根据二次根式的被开方数是非负数,a-p=1a p(a≠0)即可得出答案.【解答】解:∵x+1≥0,x≠0,∴x≥-1且x≠0,故选:C.【点评】本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a-p=1a p (a≠0)是解题的关键.18(2021•内江)函数y=2-x+1x+1中,自变量x的取值范围是()A.x≤2B.x≤2且x≠-1C.x≥2D.x≥2且x≠-1【答案】B【分析】根据二次根式的被开方数是非负数、分母不为0计算即可.【解答】解:由题意得:2-x≥0,x+1≠0,解得:x≤2且x≠-1,故选:B.【点评】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.19(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.8与3B.2与12C.5与15D.75与27【答案】D【分析】一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.先将各选项进行化简,再根据被开方数是否相同进行判断即可.【解答】解:A、8=22和3不是同类二次根式,本选项不合题意;B、12=23与2不是同类二次根式,本选项不合题意;C、5与15不是同类二次根式,本选项不合题意;D、75=53,27=33是同类二次根式,本选项符合题意.故选:D.【点评】本题考查了同类二次根式,解答本题的关键在于熟练掌握二次根式的化简及同类二次根式的概念.20(2021•大连)下列计算正确的是()A.(-3)2=-3B.12=23C.3-1=1D.(2+1)(2-1)=3【答案】B【分析】根据二次根式的性质,立方根的概念,平方差公式进行化简计算,从而作出判断.【解答】解:A、(-3)2=3,故此选项不符合题意;B、12=23,正确,故此选项符合题意;C、3-1=-1,故此选项不符合题意;D、(2+1)(2-1)=2-1=1,故此选项不符合题意,故选:B.【点评】本题考查二次根式的性质,立方根的概念和二次根式的混合运算,理解二次根式的性质和概念是解题基础.21(2021•益阳)将452化为最简二次根式,其结果是()A.452B.902C.9102D.3102【答案】D【分析】根据二次根式的性质进行化简即可.【解答】解:452=9×5×22×2=3102,故选:D.【点评】本题考查了最简二次根式的定义和二次根式的性质,注意:满足以下两个条件:①被开方数中的因式是整式,因数是整数,②被开方数中不含有能开得尽方的因式或因数,像这样的二次根式叫最简二次根式.22(2021•娄底)2、5、m是某三角形三边的长,则(m-3)2+(m-7)2等于()A.2m-10B.10-2mC.10D.4【答案】D【分析】直接利用三角形三边关系得出m的取值范围,再利用二次根式的性质化简得出答案.【解答】解:∵2、5、m是某三角形三边的长,∴5-2<m<5+2,故3<m<7,∴(m-3)2+(m-7)2=m-3+7-m=4.故选:D.【点评】此题主要考查了三角形三边关系以及二次根式的化简,正确化简二次根式是解题关键.23(2021•河北)与32-22-12结果相同的是()A.3-2+1B.3+2-1C.3+2+1D.3-2-1【答案】A【分析】化简32-22-12=9-4-1=4=2,再逐个选项判断即可.【解答】解:32-22-12=9-4-1=4=2,∵3-2+1=2,故A符合题意;∵3+2-1=4,故B不符合题意;∵3+2+1=6,故C不符合题意;∵3-2-1=0,故D不符合题意.故选:A.【点评】本题考查了二次根式的运算性质,熟悉二次根式的运算性质是解题关键.24(2021•常德)计算:5+12-1•5+12=()A.0B.1C.2D.5-12【答案】B【分析】直接利用二次根式的混合运算法则计算得出答案.【解答】解:5+12-1•5+12=5+1-22×5+12=5-12×5+12=(5)2-124=44=1.故选:B.【点评】此题主要考查了二次根式的混合运算,正确运用乘法公式计算是解题关键.二.填空题(共26小题)25(2023•滨州)一块面积为5m2的正方形桌布,其边长为 5m .【答案】5m.【分析】结合已知条件,求得5的算术平方根即可.【解答】解:设正方形桌布的边长为am(a>0),则a2=5,那么a=5,即正方形桌布的边长为5m,故答案为:5m.【点评】本题考查算术平方根的应用,其定义是基础且重要知识点,必须熟练掌握.26(2023•陕西)如图,在数轴上,点A表示3,点B与点A位于原点的两侧,且与原点的距离相等.则点B表示的数是 -3 .【答案】-3.【分析】根据原点左边的数是负数,由绝对值的定义可得答案.【解答】解:由题意得:点B表示的数是-3.故答案为:-3.【点评】此题考查了数轴,绝对值,掌握绝对值的意义是解本题的关键.27(2023•枣庄)计算(2023-1)0+12-1= 3 .【答案】3.【分析】根据零指数幂和负整数指数幂的计算法则求解即可.【解答】解:(2023-1)0+12 -1=1+2=3故答案为:3.【点评】本题主要考查了零指数幂和负整数指数幂,正确计算是解题的关键,注意非零底数的零指数幂的结果为1.28(2023•安徽)计算:38+1= 3 .【答案】3.【分析】直接利用立方根的性质化简,进而得出答案.【解答】解:原式=2+1=3.故答案为:3.【点评】此题主要考查了实数的运算,正确掌握立方根的性质是解题关键.29(2023•广安)16的平方根是 ±2 .【答案】±2.【分析】利用算术平方根与平方根的意义解答即可.【解答】解:∵16=4,4的平方根为±2,∴16的平方根为±2.故答案为:±2.【点评】本题主要考查了算术平方根与平方根,熟练掌握上述法则与性质是解题的关键.30(2023•自贡)请写出一个比23小的整数 4(答案不唯一) .【答案】4(答案不唯一).【分析】根据算术平方根的定义估算无理数23的大小即可.【解答】解:∵42=16,52=25,而16<23<25,∴4<23<5,∴比23小的整数有4(答案不唯一),故答案为:4(答案不唯一).【点评】本题考查估算无理数的大小,理解算术平方根的定义是正确解答的前提.31(2023•天津)计算(7+6)(7-6)的结果为 1 .【答案】1.【分析】利用平方差公式进行计算,即可解答.【解答】解:(7+6)(7-6)=(7)2-(6)2=7-6=1,故答案为:1.【点评】本题考查了二次根式的混合运算,平方差公式,熟练掌握平方差公式是解题的关键.32(2023•永州)已知x为正整数,写出一个使x-3在实数范围内没有意义的x值是 1(答案也可以是2) .【答案】1(答案也可以是2).【分析】根据二次根式没有意义即被开方数小于0求解即可.【解答】解:要使x-3在实数范围内没有意义,则x-3<0,∴x<3,∵x为正整数,∴x的值是1(答案也可以是2).故答案为:1(答案也可以是2).【点评】本题考查了二次根式有意义的条件,熟知二次根式a有意义,则a≥0,若没有意义,则a<0.本题较简单,属于基础题.33(2023•连云港)计算:(5)2= 5 .【答案】5.【分析】(a)2=a(a≥0),据此即可求得答案.【解答】解:(5)2=5,故答案为:5.【点评】本题考查二次根式的性质,此为基础且重要知识点,必须熟练掌握.34(2022•朝阳)计算:63÷7-|-4|= -1 .【答案】-1.【分析】先算除法,去绝对值,再合并即可.【解答】解:原式=63÷7-4=3-4=-1.故答案为:-1.【点评】本题考查二次根式的运算,解题的关键是掌握二次根式运算的相关法则.35(2022•日照)若二次根式3-2x在实数范围内有意义,则x的取值范围为 x≤32 .【答案】x≤3 2.【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:3-2x≥0,解得:x≤3 2,故答案为:x≤3 2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.36(2022•青海)若式子1x-1有意义,则实数x的取值范围是x>1.【答案】x>1.【分析】根据二次根式的被开方数为非负数,分式的分母不等于零列式计算可求解.【解答】解:由题意得x-1>0,解得x>1,故答案为:x>1.【点评】本题主要考查二次根式有意义的条件,分式有意义的条件,掌握二次根式有意义的条件,分式有意义的条件是解题的关键.37(2022•北京)若x-8在实数范围内有意义,则实数x的取值范围是x≥8.【答案】x≥8.【分析】根据二次根式有意义的条件,可得:x-8≥0,据此求出实数x的取值范围即可.【解答】解:∵x-8在实数范围内有意义,∴x-8≥0,解得:x≥8.故答案为:x≥8.【点评】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.38(2022•哈尔滨)计算3+313的结果是23 .【答案】23.【分析】先化简各二次根式,再根据混合运算的顺序依次计算可得答案.【解答】解:原式=3+3×3 3=3+3=23.故答案为:23.【点评】此题考查的是二次根式的运算,掌握其运算法则是解决此题的关键.39(2022•包头)若代数式x+1+1x在实数范围内有意义,则x的取值范围是x≥-1且x≠0.【答案】见试题解答内容【分析】根据二次根式有意义的条件,分式有意义的条件是分母不等于零,列不等式组,解出即可.【解答】解:根据题意,得x+1≥0 x≠0,解得x≥-1且x≠0,故答案为:x≥-1且x≠0.【点评】本题主要考查了二次根式有意义的条件、分式有意义的条件,掌握这两个知识点的应用,列出不等式组是解题关键.40(2022•荆州)若3-2的整数部分为a,小数部分为b,则代数式(2+2a)•b的值是2.【答案】2.【分析】根据2的范围,求出3-2的范围,从而确定a、b的值,代入所求式子计算即可.【解答】解:∵1<2<2,∴1<3-2<2,∵若3-2的整数部分为a,小数部分为b,∴a=1,b=3-2-1=2-2,∴(2+2a)•b=(2+2)(2-2)=2,故答案为:2.【点评】本题考查了估算无理数的大小的应用,解题的关键是求出a、b的值.41(2022•常德)要使代数式xx-4有意义,则x的取值范围为x>4.【答案】x>4.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:x-4>0,解得:x>4,故答案为:x>4.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.42(2022•随州)已知m为正整数,若189m是整数,则根据189m=3×3×3×7m=33×7m可知m有最小值3×7=21.设n为正整数,若300n是大于1的整数,则n的最小值为3,最大值为75.【答案】3;75.【分析】先将300n化简为103n,可得n最小为3,由300n是大于1的整数可得300n越小,300n越小,则n越大,当300n=2时,即可求解.【解答】解:∵300n=3×100n=103n,且为整数,∴n最小为3,∵300n是大于1的整数,∴300n越小,300n越小,则n越大,当300n=2时,300n=4,∴n=75,故答案为:3;75.【点评】本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.43(2022•天津)计算(19+1)(19-1)的结果等于18.【答案】18.【分析】根据平方差公式即可求出答案.【解答】解:原式=(19)2-12=19-1=18,故答案为:18.【点评】本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.44(2022•泰安)计算:8•6-343= 23 .【答案】23.【分析】化简二次根式,然后先算乘法,再算减法.【解答】解:原式=8×6-3×23 3=43-23=23,故答案为:23.【点评】本题考查二次根式的混合运算,理解二次根式的性质,准确化简二次根式是解题关键.45(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|-(b-1)2+(a-b)2=2.【答案】2.【分析】根据数轴可得:-1<a<0,1<b<2,然后即可得到a+1>0,b-1>0,a-b<0,从而可以将所求式子化简.【解答】解:由数轴可得,-1<a<0,1<b<2,∴a+1>0,b-1>0,a-b<0,∴|a+1|-(b-1)2+(a-b)2=a+1-(b-1)+(b-a)=a+1-b+1+b-a=2,故答案为:2.【点评】本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.46(2022•内蒙古)已知x,y是实数,且满足y=x-2+2-x+18,则x⋅y的值是 12 .【答案】见试题解答内容【分析】根据负数没有平方根求出x的值,进而求出y的值,代入计算即可求出值.【解答】解:∵y=x-2+2-x+1 8,∴x-2≥0,2-x≥0,∴x=2,y=18,则原式=2×18=14=12,故答案为:12【点评】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.47(2022•六盘水)计算:12-23=0.【答案】见试题解答内容【分析】先化简各个二次根式,再合并同类二次根式.【解答】解:12-23=23-23=0.故答案为0.【点评】本题考查二次根式的加减,解题的关键是首先化简各个二次根式,再合并同类二次根式.48(2022•邵阳)若1x -2有意义,则x 的取值范围是x >2.【答案】x >2.【分析】先根据二次根式及分式有意义的条件列出x 的不等式组,求出x 的取值范围即可.【解答】解:∵1x -2有意义,∴x -2≥0x -2≠0 ,解得x >0.故答案为:x >2.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.49(2021•铜仁市)计算(27+18)(3-2)=3.【答案】3.【分析】先把二次根式化为最简二次根式,然后利用平方差公式计算.【解答】解:原式=(33+32)(3-2)=3(3+2)(3-2)=3×(3-2)=3.故答案为3.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解决问题的关键.50(2021•荆州)已知:a =12 -1+(-3)0,b =(3+2)(3-2),则a +b =2.【答案】2.【分析】先计算出a ,b 的值,然后代入所求式子即可求得相应的值.【解答】解:∵a =12-1+(-3)0=2+1=3,b =(3+2)(3-2)=3-2=1,∴a +b=3+1=4=2,故答案为:2.【点评】本题考查二次根式的化简求值、平方差公式、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.三.解答题(共10小题)51(2023•内江)计算:(-1)2023+12-2+3tan30°-(3-π)0+|3-2|.【答案】4.【分析】直接利用有理数的乘方运算法则、负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质、绝对值的性质分别化简,进而得出答案.【解答】解:原式=-1+4+3×33-1+2-3=-1+4+3-1+2-3=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.52(2023•十堰)计算:|1-2|+12-2-(π-2023)0.【答案】2+2.【分析】直接利用负整数指数幂的性质、零指数幂的性质、绝对值的性质分别化简,进而得出答案.【解答】解:原式=2-1+4-1=2+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.53(2023•岳阳)计算:|-3|+4+(-2)×1.【答案】3.【分析】利用绝对值的意义,算术平方根的意义和有理数的乘法法则化简运算即可.【解答】解:原式=3+2+(-2)=3+2-2=3.【点评】本题主要考查了实数的运算,绝对值的意义,算术平方根的意义和有理数的乘法法则,熟练掌握上述法则与性质是解题的关键.54(2023•上海)计算:38+12+5-13-2+|5-3|.【答案】-6.【分析】根据立方根定义,二次根式的化简,负整数指数幂,绝对值的性质进行计算即可.【解答】解:原式=2+5-2(5+2)(5-2)-9+3-5=2+5-2-9+3-5=-6.【点评】本题考查实数的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.55(2023•陕西)计算:5×(-10)-17-1+|-23|.【答案】-52+1.【分析】直接利用二次根式的乘法运算法则以及负整数指数幂的性质、绝对值的性质分别化简,进而得出答案.【解答】解:原式=-52-7+|-8|=-52-7+8=-52+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.56(2023•岳阳)计算:22-tan60°+|3-1|-(3-π)0.【答案】2.【分析】先化简特殊角的三角函数值,绝对值,零指数幂,再根据实数的运算法则计算即可.【解答】解:22-tan60°+|3-1|-(3-π)0.=4-3+3-1-1=2.【点评】本题考查了实数的混合运算,掌握运算法则是解题的关键.57(2023•眉山)计算:(23-π)0-|1-3|+3tan30°+-1 2-2.【答案】6.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=1-(3-1)+3×33+4=1-3+1+3+4=6.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,绝对值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.58(2023•武威)计算:27÷32×22-62.【答案】62.【分析】直接利用二次根式的乘除运算法则计算,进而得出答案.【解答】解:原式=33×23×22-62=122-62=62.【点评】此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.59(2022•陕西)计算:5×(-2)+2×8-13-1.【答案】-9.【分析】先算乘法,负整数指数幂,求出算术平方根,再算加减即可.【解答】解:原式=-10+16-3=-10+4-3=-9.【点评】本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.60(2022•襄阳)先化简,再求值:(a+2b)2+(a+2b)(a-2b)+2a(b-a),其中a=3-2,b=3 +2.【答案】6ab,6.【分析】直接利用完全平方公式、平方差公式化简,进而合并同类项,再把已知数据代入得出答案.【解答】解:原式=a2+4b2+4ab+a2-4b2+2ab-2a2=6ab,∵a=3-2,b=3+2,∴原式=6ab=6×(3-2)(3+2)=6.【点评】此题主要考查了二次根式的混合运算与整式的混合运算--化简求值,正确掌握整式的混合运算法则是解题关键.。

专题06 二次根式(24题)(解析版)--2024年中考数学真题分类汇编

专题06 二次根式(24题)(解析版)--2024年中考数学真题分类汇编

专题06二次根式(24题)一、单选题1(2024·湖南·中考真题)计算2×7的结果是()A.27B.72C.14D.14【答案】D【分析】此题主要考查了二次根式的乘法,正确计算是解题关键.直接利用二次根式的乘法运算法则计算得出答案.【详解】解:2×7=14,故选:D2(2024·内蒙古包头·中考真题)计算92-62所得结果是()A.3B.6C.35D.±35【答案】C【分析】本题考查化简二次根式,根据二次根式的性质,化简即可.【详解】解:92-62=81-36=45=35;故选C.3(2024·云南·中考真题)式子x在实数范围内有意义,则x的取值范围是()A.x>0B.x≥0C.x<0D.x≤0【答案】B【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.【详解】解:∵式子x在实数范围内有意义,∴x的取值范围是x≥0.故选:B4(2024·黑龙江绥化·中考真题)若式子2m-3有意义,则m的取值范围是()A.m≤23B.m≥-32C.m≥32D.m≤-23【答案】C【分析】本题考查了二次根式有意义的条件,根据题意可得2m-3≥0,即可求解.【详解】解:∵式子2m-3有意义,∴2m-3≥0,解得:m≥3 2,故选:C.5(2024·四川乐山·中考真题)已知1<x<2,化简x-12+x-2的结果为()A.-1B.1C.2x -3D.3-2x【答案】B【分析】本题考查了二次根式的性质,去绝对值,熟练掌握知识点是解题的关键.先根据a 2=a 化简二次根式,然后再根据1<x <2去绝对值即可.【详解】解:x -1 2+x -2 =x -1 +x -2 , ∵1<x <2,∴x -1>0,x -2<0,∴x -1 +x -2 =x -1+2-x =1,∴x -12+x -2 =1,故选:B .6(2024·重庆·中考真题)已知m =27-3,则实数m 的范围是()A.2<m <3B.3<m <4C.4<m <5D.5<m <6【答案】B【分析】此题考查的是求无理数的取值范围,二次根式的加减运算,掌握求算术平方根的取值范围的方法是解决此题的关键.先求出m =27-3=12,即可求出m 的范围.【详解】解:∵m =27-3=33-3=23=12,∵3<12<4,∴3<m <4,故选:B .7(2024·江苏盐城·中考真题)矩形相邻两边长分别为2cm 、5cm ,设其面积为Scm 2,则S 在哪两个连续整数之间()A.1和2B.2和3C.3和4D.4和5【答案】C【分析】本题主要考查无理数的估算,二次根式的乘法,先计算出矩形的面积S ,再利用放缩法估算无理数大小即可.【详解】解:S =2×5=10,∵9<10<16,∴9<10<16,∴3<10<4,即S 在3和4之 间,故选:C .8(2024·安徽·中考真题)下列计算正确的是()A.a 3+a 5=a 6B.a 6÷a 3=a 2C.-a2=a 2D.a 2=a【答案】C【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可【详解】解:A、a3与a5不是同类项,不能合并,选项错误,不符合题意;B、a6÷a3=a3,选项错误,不符合题意;C、-a2=a2,选项正确,符合题意;D、当a≥0时,a2=a,当a<0时,a2=-a,选项错误,不符合题意;故选:C9(2024·重庆·中考真题)估计122+3的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间【答案】C【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.【详解】解:∵122+3=26+6,而4<24=26<5,∴10<26+6<11,故答案为:C10(2024·四川德阳·中考真题)将一组数2,2,6,22,10,23,⋯,2n,⋯,按以下方式进行排列:则第八行左起第1个数是()A.72B.82C.58D.47【答案】C【分析】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.求出第七行共有28个数,从而可得第八行左起第1个数是第29个数,据此求解即可得.【详解】解:由图可知,第一行共有1个数,第二行共有2个数,第三行共有3个数,归纳类推得:第七行共有1+2+3+4+5+6+7=28个数,则第八行左起第1个数是2×29=58,故选:C.二、填空题11(2024·江苏连云港·中考真题)若式子x-2在实数范围内有意义,则x的取值范围是.【答案】x≥2【详解】根据二次根式被开方数必须是非负数的条件,要使x-2在实数范围内有意义,必须x-2≥0,∴x≥2.故答案为:x≥212(2024·江苏扬州·中考真题)若二次根式x-2有意义,则x的取值范围是.【答案】x≥2【详解】解:根据题意,使二次根式x-2有意义,即x-2≥0,解得:x≥2.故答案为:x≥2.【点睛】本题主要考查使二次根式有意义的条件,理解二次根式有意义的条件是解题关键.13(2024·贵州·中考真题)计算2⋅3的结果是.【答案】6【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式=2×3=6,故答案为:6.【点睛】本题考查二次根式的乘法运算,掌握二次根式乘法的运算法则a⋅b=ab(a≥0,b>0)是解题关键.14(2024·北京·中考真题)若x-9在实数范围内有意义,则实数x的取值范围是.【答案】x≥9【分析】根据二次根式有意义的条件,即可求解.【详解】解:根据题意得x-9≥0,解得:x≥9.故答案为:x≥9【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数为非负数是解题的关键.15(2024·天津·中考真题)计算11-1的结果为.11+1【答案】10【分析】利用平方差公式计算后再加减即可.【详解】解:原式=11-1=10.故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16(2024·四川德阳·中考真题)化简:-32=.【答案】3【分析】根据二次根式的性质“a2=a ”进行计算即可得.【详解】解:-32=-3=3,故答案为:3.【点睛】本题考查了化简二次根式,解题的关键是掌握二次根式的性质.17(2024·黑龙江大兴安岭地·中考真题)在函数y=x-3x+2中,自变量x的取值范围是.【答案】x≥3/3≤x【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,x-3≥0,且x+2≠0,解得,x≥3,故答案为:x≥3.18(2024·山东烟台·中考真题)若代数式3x-1在实数范围内有意义,则x的取值范围为.【答案】x>1/1<x【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:x-1>0,解得:x>1;故答案为:x>1.19(2024·山东威海·中考真题)计算:12-8⋅6=.【答案】-23【分析】本题考查了二次根式的混合运算,根据二次根式的性质以及二次根式的乘法进行计算即可求解.【详解】解:12-8⋅6=23-43=-23故答案为:-23.20(2024·黑龙江齐齐哈尔·中考真题)在函数y=13+x+1x+2中,自变量x的取值范围是.【答案】x>-3且x≠-2【分析】本题考查了求自变量的取值范围,根据二次根式有意义的条件和分式有意义的条件列出不等式组解答即可求解,掌握二次根式有意义的条件和分式有意义的条件是解题的关键.【详解】解:由题意可得,3+x>0 x+2≠0,解得x>-3且x≠-2,故答案为:x>-3且x≠-2.三、解答题21(2024·内蒙古包头·中考真题)(1)先化简,再求值:x+12-2x+1,其中x=22.(2)解方程:x-2x-4-2=xx-4.【答案】(1)x2-1,7;(2)x=3【分析】本题考查了整式的运算,二次根式的运算,解分式方程等知识,解题的关键是:(1)先利用完全平方公式、去括号法则化简,然后把x的值代入计算即可;(2)先去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可.【详解】解:(1)x+12-2x+1=x2+2x+1-2x-2=x2-1,当x=22时,原式=222-1=7;(2)x-2x-4-2=xx-4去分母,得x-2-2x-4=x,解得x=3,把x=3代入x-4=3-4=-1≠0,∴x=3是原方程的解.22(2024·上海·中考真题)计算:|1-3|+2412+12+3-(1-3)0.【答案】26【分析】本题考查了绝对值,二次根式,零指数幂等,掌握化简法则是解题的关键.先化简绝对值,二次根式,零指数幂,再根据实数的运算法则进行计算.【详解】解:|1-3|+2412+12+3-(1-3)0=3-1+26+2-3(2+3)(2-3)-1 =3-1+26+2-3-1=26.23(2024·甘肃·中考真题)计算:18-12×3 2.【答案】0【分析】根据二次根式的混合运算法则计算即可.本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.【详解】18-12×32=18-12×32=18-18=0.24(2024·河南·中考真题)(1)计算:2×50-1-30;(2)化简:3a-2+1÷a+1a2-4.【答案】(1)9(2)a+2【分析】本题考查了实数的运算,分式的运算,解题的关键是:(1)利用二次根式的乘法法则,二次根式的性质,零指数幂的意义化简计算即可;(2)先把括号里的式子通分相加,然后把除数的分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约分化简即可.【详解】解:(1)原式=100-1=10-1=9;(2)原式=3a-2+a-2 a-2÷a+1a+2a-2=a+1 a-2⋅a+2a-2a+1=a+2.。

二次根式-中考真题数学分项汇编(全国通用)

二次根式-中考真题数学分项汇编(全国通用)

中考数学真题——二次根式一、单选题1.(2021·取1.442 )A .-100B .-144.2C .144.2D .-0.014422.(2021· ).A .321−+B .321+−C .321++D .321−−3.(2021·湖北恩施·中考真题),这三个实数中任选两数相乘,所有积中小于2的有( )个.A .0B .1C .2D .34.(2021·湖南常德市·中考真题)计算:1⎫−=⎪⎝⎭( )A .0B .1C .2D .12−5.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021−=C =D 3=6.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=−C 2=±D 2=±7.(2021·上海中考真题)下列实数中,有理数是( )A B C D8.(2021·江苏苏州市·中考真题)计算2的结果是( )A B .3 C .D .99.(2021·甘肃武威市·中考真题)下列运算正确的是( )A 3=B .4=C =D 4=10.(2021· )A.7 B .C .D .11.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( )A .1x =−B .1x =+C .x =D .x =12.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2=C =D 3=13.(2020·是同类二次根式的是( )A B C D14.(2020·内蒙古赤峰市·中考真题)估计(的值应在 ( ) A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间15.(2020·辽宁朝阳市· )A .0BC .D .1216.(2020·辽宁丹东市·中考真题)在函数y =x 的取值范围是( ) A .3x ≤ B .3x < C .3x ≥D .3x >17.(2020·湖北宜昌市·其运算结果能成为有理数的是( ).A .−BC .3D .018.(2020·山东菏泽市·中考真题)函数5y x =−的自变量x 的取值范围是( ) A .5x ≠ B .2x >且5x ≠ C .2x ≥ D .2x ≥且5x ≠19.(2020·黑龙江绥化市·中考真题)下列等式成立的是( )A 4=±B 2=C .−=D .8=−20.(2020·山东济宁市·中考真题)下列各式是最简二次根式的是( )A B C D 21.(2020·江苏泰州市·中考真题)下列等式成立的是( )A .3+=B =C= D 3=22.(2019·湖北恩施土家族苗族自治州·中考真题)函数11=−+y x 中,自变量x 的取值范围是( ) A .23x ≤ B .23x ≥ C .23x <且1x ≠− D .23x ≤且1x ≠− 23.(2019·湖北宜昌市·中考真题)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为S =如图,在ABC ∆中,A ∠,B Ð,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .B .C .18D .19224.(2019·湖北中考真题)“分母有理化”是我们常用的一种化简的方法,如:7==+除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:设x =>,故0x >,由22332x ==+=,解得x =,即=)A .5+B .5+C .5D .5−25.(2019·山东聊城市·中考真题)下列各式不成立的是( )A= B =C .52== D =26.(2019·江苏常州市·中考真题)下列各数中与2的积是有理数的是( )A .2B .2CD .2−27.(2021· )A .4B .4±C .D .±28.(2020·重庆中考真题)下列计算中,正确的是( )A+=B .2+=C =D .2=29.(2020·山东聊城市·÷ ).A .1B .53 C .5 D .930.(2020·内蒙古鄂尔多斯市·中考真题)中,x 的取值范围在数轴上表示正确的是( )A .B .C .D .二、填空题31.(2021·天津中考真题)计算1)的结果等于_____.32.(2021·湖北武汉市·_______________________.33.(2021·浙江丽水市·有意义,则x 可取的一个数是__________.34.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___.35.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设12a =,12b =,则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++.则1210S S S +++=____.36.(2021·湖南岳阳市·中考真题)已知1x x+=,则代数式1x x +−=______.37.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯;…… 根据以上规律,计算12320202021x x x x ++++−=______.38.(2021·有意义的x 的取值范围是________.39.(2020·山东青岛市·中考真题)计算:−=______.40.(2020·山西中考真题)计算:2=_____________.41.(2020·江苏南通市·中考真题)若m <m +1,且m 为整数,则m =_____.42.(2020·湖南益阳市·中考真题)m 的结果为正整数,则无理数m 的值可以是__________.(写出一个符合条件的即可)43.(2020·内蒙古中考真题)计算:2+=______.44.(2020·湖南邵阳市·中考真题)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.45.(2020·=−=,则ab =_________.46.(2020·甘肃金昌市·中考真题)已知5y x =+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.47.(2020·江苏南京市·__________.48.(2020·黑龙江绥化市·中考真题)在函数15y x =+−中,自变量x 的取值范围是_________.49.(2020·青海中考真题)对于任意不相等的两个实数a ,b ( a > b )定义一种新运算a ※,如3※,那么12※4=______50.(2019·四川绵阳市·中考真题)单项式1a x y −−与2是同类项,则b a =______.51.(2019·辽宁营口市·中考真题)和则这个长方形的面积为________.52.(2019·四川内江市·中考真题)若1001a a −+=,则21001a −=_____. 53.(2019·山东枣庄市·中考真题)观察下列各式:11111122⎛⎫=+=+− ⎪⨯⎝⎭,111112323⎛⎫=+=+− ⎪⨯⎝⎭,111113434⎛⎫=+=+− ⎪⨯⎝⎭, 请利用你发现的规律,计算:____.54.(2019·山东菏泽市·中考真题)已知x =,那么2x −的值是_____. 55.(2019·湖南益阳市·中考真题)观察下列等式:①3﹣=﹣1)2,②5﹣=﹣)2,③7﹣=﹣2,…请你根据以上规律,写出第6个等式____________.56.(2019·山东滨州市·中考真题)计算:21|2|2−⎛⎫−−= ⎪⎝⎭_________.57.(2019·山东青岛市·0−=___________.58.(2020·辽宁营口市·中考真题)(()=_____.三、解答题59.(2021·湖南长沙市·中考真题)计算:(02sin 451+−+°60.(2021·山东临沂市·中考真题)计算221122⎫⎫+−⎪⎪⎭⎭.61.(2021·四川遂宁市·中考真题)计算:()101tan 60232−⎛⎫−+︒−− ⎪⎝⎭π62.(2020·广西玉林市·()203.141π−+63.(2020·上海中考真题)计算:1327(12)﹣2+|3.64.(2019·2318−65.(2019·辽宁大连市·中考真题)计算:22)−+。

历年初三数学中考二次根式分类汇编试题及答案

历年初三数学中考二次根式分类汇编试题及答案

中考数学二次根式分类汇编试题一、选择题1、下列二次根式中与2是同类二次根式的是( ).DA .12B .23C .32 D .18 2、下面与2是同类二次根式的是( )CA .3B .12C .8D .21-3、在下列二次根式中,与a 是同类二次根式的是( )CA .2aB .23aC .3aD .4a4、25的算术平方根是( )AA .5B . 5C .–5D .±55、9的平方根是( ).CA 、3B 、-3C 、±3D 、816、已知01b 2a =-++,那么2007)b a (+的值为( ).AA 、-1B 、1C 、20073D 、20073-7.下列计算正确的是( )CA .0(2)0-=B .239-=-C .93=D .235+=8、1x -实数范围内有意义,则x 的取值范围是( )B (A )x >1 (B )x ≥l (C )x <1 (D )x ≤19、如图,数轴上点P 表示的数可能是( )BA .7B .7-C . 3.2-D .10-10、下列计算正确的是( )AA .632=⨯B .532=+C .248=D .224=-11、已知:20n 是整数,则满足条件的最小正整数n 为( )DA .2B .3C .4D .512、下列计算正确的是( )BA .235+=B .236=·C .84=D .2(3)3-=-二、填空题3- 2- 1-O 1 2 3 P 第9题1、当x ___________时,二次根式3x -在实数范围内有意义 ≥32、计算:2(3)=__________.33、要使二次根式26x -有意义,x 应满足的条件是_____________.x ≥34、如图,在数轴上,A B ,两点之间表示整数的点有 个.45、计算:2613⨯-=_______.1 6、在数轴上与表示3的点的距离最近的整数点所表示的数是___________.27、观察下列各式: 11111112,23,34, (334455)+=+=+=请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________________.12n n ++=1(1)2n n ++ 8、计算:188-=___________.2三、解答题1、计算:0(π1)123+-+-. 解:0(π1)123123313+-+-=-+=-.2、计算:8+(-1)3-2×22. 解:原式=22-1-2=2-1A B 3- 5第4题。

初中数学二次根式真题汇编含答案

初中数学二次根式真题汇编含答案

初中数学二次根式真题汇编含答案一、选择题1.n的最大值为()A.12B.11C.8D.3【答案】C【解析】【分析】如果实数n取最大值,那么12-n22,从而得出结果.【详解】2时,n取最大值,则n=8,故选:C【点睛】本题考查二次根式的有关知识,解题的关键是理解”的含义.2.下列计算中,正确的是()A.=B1b=(a>0,b>0)C=D.=【答案】B【解析】【分析】a≥0,b≥0a≥0,b>0)进行计算即可.【详解】A、B 1b(a>0,b>0),故原题计算正确;C 、559377⨯=368577⨯=6857,故原题计算错误; D 、()()22483248324832÷⨯+-=32×165=245,故原题计算错误; 故选:B .【点睛】 此题主要考查了二次根式的乘除法,关键是掌握计算法则.3.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】 解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .4.在下列算式中:257=②523x x x =;③1889442==;94a a a =,其中正确的是( ) A .①③B .②④C .③④D .①④ 【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】 25①错误;523x x x =②正确;188322252222==,故③错误; 934a a a a a ==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.5.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0, ∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.6.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.7.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C【解析】由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.8.1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.9.把(a b -根号外的因式移到根号内的结果为( ).A B C .D .【答案】C【解析】先判断出a-b的符号,然后解答即可.【详解】∵被开方数1b a≥-,分母0b a-≠,∴0b a->,∴0a b-<,∴原式(b a=--==故选C.【点睛】=|a|.也考查了二次根式的成立的条件以及二次根式的乘法.10.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.11.下列各式中,属于同类二次根式的是()A B.C.3D.【答案】C【解析】【分析】化简各选项后根据同类二次根式的定义判断.A、xy与2=xy y x的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、2x与2x的被开方数不同,所以它们不是同类二次根式;故本选项错误;C、3a a与1=a的被开方数相同,所以它们是同类二次根式;故本选项正确;aD、3a是三次根式;故本选项错误.故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.12.如图,数轴上的点可近似表示(4630-)6÷的值是()A.点A B.点B C.点C D.点D【答案】A【解析】【分析】-55先化简原式得4545【详解】-原式=45<<3,由于25-<2.∴1<45故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.-有意义,那么直角坐标系中 P(m,n)的位置在()13.mmnA.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.【详解】依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.14.a 的取值范围为()n nA .0a >B .0a <C .0a =D .不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0.所以a=0.故选C .15.下列计算或化简正确的是( )A .=BC 3=-D 3= 【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B =,故B 错误;C 3=,故C 错误;D 3===,正确.故选D .16.有意义时,a 的取值范围是( ) A .a ≥2B .a >2C .a ≠2D .a ≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a ≠2,∴a >2.故选B .17.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.18.下列运算正确的是( )A .235a a a +=B .23241(2)()162a a a -÷=-C .1133a a-=D .2222)3441a a a ÷=-+ 【答案】D【解析】 试题分析:A .23a a +,无法计算,故此选项错误;B .()23262112824aa a a ⎛⎫⎛⎫-÷=-÷ ⎪ ⎪⎝⎭⎝⎭=432a -,故此选项错误; C .133a a-=,故此选项错误;D .()22223441a a a ÷=-+,正确.故选D .19.有意义的x 的取值范围( ) A .x >2B .x≥2C .x >3D .x≥2且x≠3 【答案】D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数.根据题意,得20{30x x -≥-≠解得,x≥2且x≠3. 考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件20.若代数式y =有意义,则实数x 的取值范围是( ) A .0x ≥ B .0x ≥且1x ≠ C .0x > D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:10xx≥⎧⎨-≠⎩,解得:x≥0且x≠1.故选:B.【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末复习(一) 二次根式
各个击破
命题点1 二次根式有意义的条件 【例1】 要使式子
x +3
x -1
+(x -2)0有意义,则x 的取值范围为____________. 【思路点拨】 从式子的结构看分为三部分,二次根式、分式、零次幂,每一部分都应该有意义. 【方法归纳】
1.(潍坊中考)若代数式x +1
(x -3)2
有意义,则实数x 的取值范围是( )
A .x ≥-1
B .x ≥-1且x ≠3
C .x >-1
D .x >-1且x ≠3 2.若式子x +4有意义,则x 的取值范围是__________. 命题点2 二次根式的非负性
【例2】 (自贡中考)若a -1+b 2-4b +4=0,则ab 的值等于( ) A .-2 B .0 C .1 D .2
【方法归纳】 这一类问题主要利用非负数的和为0,进而得出每一个非负数的式子为0构造方程求未知数的解,通常利用的非负数有:(1)||x ≥0;(2)x 2≥0;(3)x ≥0.
3.(泰州中考)实数a ,b 满足a +1+4a 2+4ab +b 2=0,则b a 的值为( ) A .2 B.12 C .-2 D .-1
2
命题点3 二次根式的运算
【例3】 (大连中考)计算:3(1-3)+12+(13
)-
1.
【思路点拨】 先去括号、化简二次根式及进行实数的负整指数幂的运算,把各个结果相加即可.
【方法归纳】 二次根式的运算是实数运算中的一种,运算顺序与运算律都遵循有理数的运算顺序与运算律.
4.(泰州中考)计算:1
2
12-(3
1
3
+2).
命题点4 与二次根式有关的化简求值
【例4】 (青海中考)先化简,再求值:y 2-x 2x 2-xy ÷(x +2xy +y 2x )·(1x +1
y ),其中x =2+3,y =2- 3.
【思路点拨】 运用分式的运算法则先化简原式,然后将x 和y 的值代入化简后的式子求值即可.
【方法归纳】 将二次根式的运算与分式的化简求值相结合考查,是最常见的考查形式.当未知数的值是无理数时,求值时就用到二次根式的运算.
5.(成都中考)先化简,再求值:(a a -b -1)÷b a 2-b 2,其中a =3+1,b =3-1.
命题点5 与二次根式有关的规律探究 【例5】 (黄石中考)观察下列等式: 第1个等式:a 1=1
1+2
=2-1;
第2个等式a2=
1
2+3
=3-2;
第3个等式:a3=
1
3+2
=2-3;
第4个等式:a4=
1
2+5
=5-2.
按上述规律,回答以下问题:
(1)请写出第n个等式:a n=____________;
(2)a1+a2+a3+…+a n=____________.
【思路点拨】(1)观察上面四个式子可得第n个等式;(2)根据所得的规律可得a1+a2+a3+…+a n=2-1+3-2+2-3+5-2+…+n+1-n.
【方法归纳】规律的探究都遵循从特殊到一般的思维过程,在探究过程中要认真分析等式左右两边“变的量”与“不变的量”.
6.(菏泽中考)下面是一个按某种规律排列的数阵:
).整合集训
一、选择题(每小题3分,共30分)
1.下列二次根式是最简二次根式的为()
A.23a B.8x2 C.y3 D.b 4
2.下列二次根式中,可与12进行合并的二次根式为()
A. 6
B.32
C.18
D.75 3.(宁夏中考)下列计算正确的是()
A.a+b=ab B.(-a2)2=-a4
C.(a-2)2=a2-4 D.a÷b=a
b(a≥0,b>0)
4.化简3-3(1-3)的结果是()
A.3 B.-3 C. 3 D.- 3 5.设m=32,n=23,则m,n的大小关系为()
A.m>n B.m=n
C.m<n D.不能确定
6.已知x+y=3+22,x-y=3-22,则x2-y2的值为()
A.4 2 B.6 C.1 D.3-2 2
7.如果最简二次根式3a-8与17-2a可以合并,那么使4a-2x有意义的x的取值范围是()
A.x≤10 B.x≥10 C.x<10 D.x>10
8.甲、乙两人计算a+1-2a+a2的值,当a=5时得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2
=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是() A.甲、乙都对B.甲、乙都错
C.甲对,乙错D.甲错,乙对
9.若a3+3a2=-a a+3,则a的取值范围是()
A.-3≤a≤0 B.a≤0
C.a<0 D.a≥-3
10.已知一个等腰三角形的两条边长a,b满足|a-23|+b-52=0,则这个三角形的周长为()
A.43+5 2 B.23+5 2
C.23+10 2 D.43+52或23+10 2
二、填空题(每小题3分,共18分)
11.(常德中考)使代数式2x-6有意义的x的取值范围是____________.
12.(金华中考)能够说明“x2=x不成立”的x的值是____________(写出一个即可).
13.(南京中考)比较大小:5-3____________5-2
2.(填“>”“<”或“=”)
14.若m,n都是无理数,且m+n=2,则m,n的值可以是m=____________,n=____________.(填一组即可) 15.在实数范围内分解因式:4m2-7=____________.
16.当x≤0时,化简|1-x|-x2的结果是__________.
三、解答题(共52分)
17.(8分)计算:
(1)75×
6

1
2

(2)a(a+2)-a2b÷ b.
18.(10分)先化简,再求值:2(a +3)(a -3)-a(a -6)+6,其中a =2-1.
19.(10分)(雅安中考)先化简,再求值:x 2+y 2-2xy x -y ÷(x y -y
x ),其中x =2+1,y =2-1.
20.(12分)若实数a ,b ,c 满足|a -2|+b -2=c -3+3-c. (1)求a ,b ,c ;
(2)若满足上式的a ,b 为等腰三角形的两边,求这个等腰三角形的周长.
21.(12分)在如图8×10方格内取A ,B ,C ,D 四个格点,使AB =BC =2CD =4.P 是线段BC 上的动点,连接AP ,DP.
(1)设BP =a ,CP =b ,用含字母a ,b 的代数式分别表示线段AP ,DP 的长;
(2)设k=AP+DP,k是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
参考答案
【例1】 x ≥-3且x ≠1,x ≠2 【例2】 D
【例3】 原式=3-3+23+3 =3 3.
【例4】 原式=(y +x )(y -x )x (x -y )÷x 2+2xy +y 2x ·y +x xy =(y +x )(y -x )x (x -y )·x (x +y )2·y +x xy =-1
xy .当x =2+3,y =2-3时,原式=-1(2+3)(2-3)=-1.
【例5】 (1)
1
n +n +1
=n +1-n
(2)n +1-1 题组训练
1.B 2.x ≥-4 3.B
4.原式=1
2
×23-3-2=- 2.
5.原式=(a a -b -a -b a -b )÷b
(a +b )(a -b )=a -a +b a -b ·(a +b )(a -b )b =a +b.∵a =3+1,b =3-1,∴原式=3
+1+3-1=2 3.
6.n 2-2
整合集训 1.A 2.D 3.D 4.A 5.A 6.C 7.A 8.D 9.A 10.C 11.x ≥3 12.答案不唯一,如:-1 13.< 14.1+2 1-2 15.(2m +7)(2m -7) 16.1 17.(1)原式=53×
6
3
×2=10. (2)原式=a +2a -a =2 a.
18.原式=a 2+6a.当a =2-1时,原式=42-3.
19.原式=(x -y )2x -y ÷x 2-y 2xy =(x -y )2x -y ·xy (x +y )(x -y )=xy
x +y .当x =2+1,y =2-1时,原式=
(2+1)(2-1)(2+1)+(2-1)=122=24
.
20.(1)由题意,得c -3≥0,3-c ≥0,即c =3.∴|a -2|+b -2=0.∴a -2=0,b -2=0,即a =2,b =2. (2)当a 是腰长,b 是底边时,等腰三角形的周长为2+2+2=22+2;当b 是腰长,a 是底边时,等腰三角形的周长为2+2+2=2+4.综上,这个等腰三角形的周长为22+2或2+4. 21.(1)AP =a 2+16,DP =b 2+4.
(2)k 有最小值.作点A 关于BC 的对称点A′,连接A′D ,AP ,交BC 于点P ,过A′作A′E ⊥DC 于点E.∴AP =A′P.∴k =AP +DP =A′P +DP =A′E 2+DE 2=16+36=52=213.。

相关文档
最新文档