高中数学(人教B版,选修2-2):第一章 导数及其应用+(课件+同步练习+章末归纳总结+综合检测,2
人教课标版(B版)高中数学选修2-2第一章 导数及其应用导数
感悟高考
由 g′(x)=0,得 x1=1,x2=2. 所以当 x∈(-∞, 1)时, g′(x)<0, g(x)在(-∞, 1)上为减函数;
当 x∈(1,2)时,g′(x)>0,g(x)在(1,2)上为增函数; 当 x∈(2,+∞)时,g′(x)<0,g(x)在(2,+∞)上为减函数; 1 所以,当 x=1 时,g(x)取得极小值 g(1)= ,当 x=2 时函数取 e 3 得极大值 g(2)= 2. e 函数 y=k 与 y=g(x)的图象的大致形状如上, 1 3 由图象可知,当 k= 和 k= 2时,关于 x 的方程 f(x)=kex 恰有两 e e 个不同的实根.
1 1 ①当 x∈-2,0时,h′(x)>0,∴h(x)在-2,0上单调递增.
②当 x∈(0,+∞)时,h′(x)<0,∴h(x)在(0,+∞)上单调递减.
1 1 1-2ln 2 ∴当 x∈-2,0时,h(x)>h-2= . 4
g(3)<0, 即a+4-2ln 2<0, 解得 2ln 3-5≤a<2ln 2-4. g(4)≥0, a+5-2ln 3≥0,
综上所述,a 的取值范围是[2ln 3-5,2ln 2-4). 2 方法二 ∵f(x)=2ln(x-1)-(x-1) ,
∴f(x)+x2-3x-a=0 x+a+1-2ln(x-1)=0, 即 a=2ln(x-1)-x-1, 令 h(x)=2ln(x-1)-x-1, 3-x 2 ∵h′(x)= -1= ,且 x>1, x-1 x-1 由 h′(x)>0,得 1<x<3;由 h′(x)<0,得 x>3. ∴h(x)在区间[2,3]上单调递增,在区间[3,4]上单调递减.
人教版高中数学选修2-2全套课件
(2)根据导数的定义
f′(x0)=Δlixm→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
= lim Δx→0
2x0+Δx2+4x0+Δx-2x20+4x0 Δx
= lim Δx→0
4x0·Δx+2Δx2+4Δx Δx
= lim Δx→0
(4x0+2Δx+4)
=4x0+4,
∴f′(x0)=4x0+4=12,解得 x0=2.
(1)函数f(x)在x1处有定义. (2)Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点, 即Δx=x2-x1≠0,但Δx可以为正,也可以为负. (3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1, 则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
解析: (1)由已知∵Δy=f(x0+Δx)-f(x0) =2(x0+Δx)2+1-2x20-1=2Δx(2x0+Δx), ∴ΔΔyx=2Δx2Δx0x+Δx=4x0+2Δx. (2)由(1)可知:ΔΔxy=4x0+2Δx,当 x0=2,Δx=0.01 时, ΔΔyx=4×2+2×0.01=8.02.
(3)在 x=2 处取自变量的增量 Δx,得一区间[2,2+Δx]. ∴Δy=f(2+Δx)-f(2)=2(2+Δx)2+1-(2·22+1)=2(Δx)2+ 8Δx. ∴ΔΔyx=2Δx+8,当 Δx→0 时,ΔΔxy→8.
1.求瞬时变化率时要首先明确求哪个点处的瞬时
变化率,然后,以此点为一端点取一区间计算平均变化率,并逐步
已知f(x)=x2+3.
(1)求f(x)在x=1处的导数;
(2)求f(x)在x=a处的导数.
[思路点拨]
确定函数 的增量
人教B版高中数学选修2-2课件1.1.1《函数的平均变化率》.pptx
在此输入您的封面副标题
第一章 导数
你 看 过 高 台 跳 水 比 赛 吗? 照片中锁定了运动员比 赛 的 瞬 间.已 知 起 跳1 s后, 运动员相对于水面的高
度 h 单位 : m 可用函数
ht 4.9t 2 6.5t 10表
示.如 何 求 他 在 某 时 刻 的 速 度 ?他 距水面的最大 高 度 是 多 少?
f 于是, 平均变化率可表示为 .
x
y
fx2 fx1
y fx
fx2 fx1
x2 x1
O
x1
x2
x
图1.1 1
思考 观察函数 f x
的图象图1.1.1, 平均
变化率
f f x2 f x1
x
x2 x1
表 示 什 么?
x2 x1
示, 我 们 把 这 个 式 子 称 为 函数 f x从 x1到 x2的 平均变化率 average rate of change .习 惯 上
用x表 示 x2 x1 ,即x x2 x1 ,
x是一个整体符号,而不是与x相乘.
可把x 看作是相对于x1 的一个"增量", 可用x1
x代替x2; 类似地, f f x2 f x1 .
人们发现, 在高台跳水运动中, 运动员相对于水
面的高度 h 单位 : m与起跳后的时间t单位 : s
存在函数关系ht 4.9t 2 6.5t 10.
如果我们用运动员某段时间内的平均速度v描
述其运动状态,那么
在0 t 0.5这段时间里,
v
h0.5
0.5
h0
0
4.05 m
/
s;
在1 t 2这段时间里,
v
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
高中数学第一章导数及其应用本章整合课件新人教B版选修2_2
, × - 2 = 12 .
5 125
专题一
专题二
专题三
专题四
专题三 函数的单调性与极值、最大(小)值 (1)求可导函数f(x)单调区间的步骤: ①求f'(x); ②解不等式f'(x)>0(或f'(x)<0); ③确认并指出函数的单调区间. (2)求可导函数f(x)在区间[a,b]上最大(小)值的步骤: ①求出f(x)在区间(a,b)内的极值; ②将f(x)在区间(a,b)内的极值与f(a),f(b)比较,确定f(x)的最大值与 最小值.
(1)当 a=1 时,f'(x)= 单调减区间为( 2, 2).
2),
(2)当 x∈(0,1]时,f'(x)=
1 . 2
> 0,
所以 f(x)在区间(0,1]上单调递增,故 f(x)在区间(0,1]上的最大值 为 f(1)=a,因此 a=
专题一
专题二
专题三
专题四
专题四 用定积分求平面图形的面积 用定积分求平面图形的面积是定积分的一个重要应用,几种典型 的平面图形的面积计算如下:
因为 l1⊥l2,所以 2b+1=− 3 , ������ = − 3. 所以直线 l2 的方程为 y=− 3 ������ − 9 .
1 22
1
2
专题一
专题二
专题三
专题四
1 ������ = , ������ = 3������-3, 6 (2)解方程组 1 22 得 5 ������ = - 3 ������- 9 , ������ = - 2 , 1 5 所以直线 l1 和 l2 的交点坐标为 6 ,- 2 . 22 l1,l2 与 x 轴交点的坐标分别为(1,0), - ,0 3 1 22 所以所求三角形的面积为 S= 2 × 1 + 3
2019-2020学年高中数学(人教B版 选修2-2)教师用书:第1章 导数及其应用 1.2.1、1.2.2
1.2 导数的运算1.2.1 常数函数与幂函数的导数 1.2.2 导数公式表及数学软件的应用1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x ,y =x 的导数.(难点) 2.掌握基本初等函数的导数公式,并能进行简单的应用.(重点、易混点)[基础·初探]教材整理1 几个常用函数的导数 阅读教材P 14~P 15,完成下列问题.【答案】 0 1 2x -1x2判断(正确的打“√”,错误的打“×”) (1)若y =x 3+2,则y ′=3x 2+2.( ) (2)若y =1x ,则y ′=1x2.( ) (3)若y =e ,则y ′=0.( )【解析】(1)由y=x3+2,∴y′=3x2.(2)由y=1x,∴y′=-1x2.(3)由y=e,∴y′=0.【答案】(1)×(2)×(3)√教材整理2基本初等函数的导数公式阅读教材P17,完成下列问题.【答案】0 nx n-1μxμ-1a x ln a e x1xln a1xcos x-sin x1.给出下列命题:①y=ln 2,则y′=1 2;②y=1x2,则y′=-2x3;③y=2x,则y′=2x ln 2;④y=log2x,则y′=1 xln 2.其中正确命题的个数为( )A.1 B.2C.3 D.4【解析】对于①,y′=0,故①错;显然②③④正确,故选C.【答案】 C2.若函数f (x )=10x ,则f ′(1)等于( ) A.110 B .10 C .10ln 10D.110ln 10【解析】 ∵f ′(x )=10x ln 10,∴f ′(1)=10ln 10. 【答案】 C[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型](1)y =x 12;(2)y =1x4;(3)y =5x3;(4)y =3x ;(5)y =log 5x .【精彩点拨】 首先观察函数解析式是否符合求导形式,若不符合可先将函数解析式化为基本初等函数的求导形式.【自主解答】 (1)y ′=(x 12)′=12x 11. (2)y ′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -5=-4x5.(3)y ′=(5x3)′=(x 35)′=35x -25. (4)y ′=(3x )′=3x ln 3. (5)y ′=(log 5x )′=1xln 5.1.若所求函数符合导数公式,则直接利用公式求解.2.对于不能直接利用公式的类型,一般遵循“先化简,再求导”的基本原则,避免不必要的运算失误.3.要特别注意“1x 与ln x ”,“a x 与log a x ”,“sin x 与cos x ”的导数区别.[再练一题]1.若f (x )=x 3,g (x )=log 3x, 则f ′(x )-g ′(x )=__________.【导学号:05410008】【解析】 ∵f ′(x )=3x 2,g ′(x )=1xln 3, ∴f ′(x )-g ′(x )=3x 2-1xln 3. 【答案】 3x 2-1xln 3(1)求质点在t =π3时的速度; (2)求质点运动的加速度.【精彩点拨】 (1)先求s ′(t ),再求s ′⎝ ⎛⎭⎪⎫π3.(2)加速度是速度v (t )对t 的导数,故先求v (t ),再求导. 【自主解答】 (1)v (t )=s ′(t )=cos t ,∴v ⎝ ⎛⎭⎪⎫π3=cos π3=12.即质点在t =π3时的速度为12. (2)∵v (t )=cos t ,∴加速度a (t )=v ′(t )=(cos t )′=-sin t .1.速度是路程对时间的导数,加速度是速度对时间的导数.2.求函数在某定点(点在函数曲线上)的导数的方法步骤是:(1)先求函数的导函数;(2)把对应点的横坐标代入导函数求相应的导数值.[再练一题]2.(1)求函数f (x )=13x在(1,1)处的导数;(2)求函数f (x )=cos x 在⎝ ⎛⎭⎪⎫π4,22处的导数.【解】 (1)∵f ′(x )=⎝ ⎛⎭⎪⎪⎫13x ′=(x -13)′=-13x -43=-133x4, ∴f ′(1)=-1331=-13.(2)∵f ′(x )=-sin x , ∴f ′⎝ ⎛⎭⎪⎫π4=-sin π4=-22.[探究共研型]探究1 f (x )=x ,f (x ) 【提示】 ∵(x )′=1·x 1-1,(x 2)′=2·x 2-1,(x)′=⎝ ⎛⎭⎪⎫x 12′=12x 12-1,∴(x α)′=α·x α-1.探究2 点P 是曲线y =e x 上的任意一点,求点P 到直线y =x 的最小距离.【提示】 如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近,则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x , ∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1). 利用点到直线的距离公式得最小距离为22.求过曲线f (x )=cos x 上一点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点的切线垂直的直线方程.【精彩点拨】 错误!→错误!→所求直线斜率k =-1f′⎝ ⎛⎭⎪⎫π3→利用点斜式写出直线方程【自主解答】 因为f (x )=cos x ,所以f ′(x )=-sin x ,则曲线f (x )=cos x 在点P ⎝ ⎛⎭⎪⎫π3,12的切线斜率为f ′⎝ ⎛⎭⎪⎫π3=-sin π3=-32, 所以所求直线的斜率为23 3, 所求直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3, 即y =23 3x -239π+12.求曲线方程或切线方程时应注意:(1)切点是曲线与切线的公共点,切点坐标既满足曲线方程也满足切线方程; (2)曲线在切点处的导数就是切线的斜率;(3)必须明确已知点是不是切点,如果不是,应先设出切点.[再练一题]3.若将上例中点P 的坐标改为(π,-1),求相应的直线方程. 【解】 ∵f (x )=cos x ,∴f ′(x )=-sin x ,则曲线f (x )=cos x 在点P (π,-1)处的切线斜率为f ′(π)=-sin π=0, 所以所求直线的斜率不存在, 所以所求直线方程为x =π.[构建·体系]1.已知f (x )=x α(α∈Q +),若f ′(1)=14,则α等于( ) 【导学号:05410009】 A.13 B.12 C.18D.14【解析】∵f(x)=xα,∴f′(x)=αxα-1,∴f′(1)=α=1 4.【答案】 D 2.给出下列结论:①若y=1x3,则y′=-3x4;②若y=3x,则y′=133x;③若f(x)=3x,则f′(1)=3.其中正确的个数是( )A.1 B.2C.3 D.0【解析】对于①,y′=错误!=错误!=错误!,正确;对于②,y′=13x13-1=13x-23,不正确;对于③,f′(x)=3,故f′(1)=3,正确.【答案】 B3.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________. 【解析】∵f′(x)=3ax2+1,∴f′(1)=3a+1.又f(1)=a+2,∴切线方程为y-(a+2)=(3a+1)(x-1).∵切线过点(2,7),∴7-(a+2)=3a+1,解得a=1.【答案】 14.已知函数y=kx是曲线y=ln x的一条切线,则k=__________.【解析】设切点为(x0,y0),∵y′=1x,∴k=1x0,∴y=1x0·x,又点(x0,y0)在曲线y=ln x上,∴y0=ln x0,∴ln x0=x0x0,∴x0=e,∴k=1e.【答案】1 e5.已知直线y=kx是曲线y=3x的切线,则k的值为________. 【解析】设切点为(x0,y0).因为y′=3x ln 3,①所以k=3x0ln 3,所以y=3x0ln 3·x,又因为(x0,y0)在曲线y=3x上,所以3x0ln 3·x0=3x0,②所以x0=1 ln 3=log3 e.所以k=eln 3.【答案】eln 3我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
(人教版)高中数学选修2-2课件:第1章 导数及其应用1.1.3
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.1.3 导数的几何意义
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
自主学习 新知突破
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
[思路点拨]
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求曲线上某点(x0,y0)处切线方程的步骤: 求出f′x0即切线斜率 ↓ 写出切线的点斜式方程 ↓ 化简切线方程
时,割线 PQ 逼近点 P 的切线 l,从而割线的斜率逼近切线 l 的
斜率.因此,函数 f(x)在 x=x0 处的导数就是切线 l 的斜率 k, 即
k= lim Δx→0
fx0+ΔΔxx-fx0=f′(x0).
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1 . 设 f′(x0) = 0 , 则 曲 线 y = f(x) 在 点 (x0 , f(x0)) 处 的 切 线
()
A.不存在
B.与x轴平行或重合
C.与x轴垂直
D.与x轴相交
解析: 在点(x0,f(x0))处切线斜率为0的直线与x轴平行或 重合,故选B.
答案: B
数学 选修2-2
第一章 导数及其应用
高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.5.3
1.5.3 定积分的概念明目标、知重点1.了解定积分的概念,会用定义求定积分.2.理解定积分的几何意义.3.掌握定积分的基本性质.探究点一定积分的概念思考1 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点.答两个问题均可以通过“分割、近似代替、求和、取极限”解决,都可以归结为一个特定形式和的极限.思考2 怎样正确认识定积分ʃb a f(x)d x?答(1)定积分ʃb a f(x)d x是一个数值(极限值).它的值仅取决于被积函数与积分上、下限,另外ʃb a f(x)d x与积分区间a,b]息息相关,不同的积分区间,所得值也不同.(2)定积分就是和的极限lim n →∞∑i =1nf (ξi )·Δx ,而ʃba f (x )d x 只是这种极限的一种记号,读作“函数f (x )从a 到b 的定积分”.(3)函数f (x )在区间a ,b ]上连续这一条件是不能忽视的,它保证了和的极限(定积分)的存在(实际上,函数连续是定积分存在的充分条件,而不是必要条件). 例1 利用定积分的定义,计算ʃ10x 3d x 的值. 解 令f (x )=x 3. (1)分割在区间0,1]上等间隔地插入n -1个分点,把区间0,1]等分成n 个小区间i -1n ,in](i =1,2,…,n ),每个小区间的长度为Δx =i n -i -1n =1n.(2)近似代替、求和取ξi =i n(i =1,2,…,n ),则ʃ10x 3d x ≈S n =∑ni =1f (in)·Δx =∑ni =1(i n )3·1n=1n 4∑ni =1i 3=1n 4·14n 2(n +1)2=14(1+1n)2. (3)取极限ʃ10x 3d x =lim n →∞S n =lim n →∞ 14(1+1n )2=14. 反思与感悟 (1)利用定积分定义求定积分的数值仍然是“分割、近似代替、求和、取极值”这一过程,需要注意的是在本题中将近似代替、求和一起作为步骤(2),从而省略了解题步骤. (2)从过程来看,当f (x )≥0时,定积分就是区间对应曲边梯形的面积. 跟踪训练1 用定义计算ʃ21(1+x )d x .解 (1)分割:将区间1,2]等分成n 个小区间⎣⎢⎡⎦⎥⎤1+i -1n ,1+in (i =1,2,…,n ),每个小区间的长度为 Δx =1n.(2)近似代替、求和:在⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n 上取点ξi =1+i -1n(i =1,2,…,n ),于是f (ξi )=1+1+i -1n =2+i -1n ,从而得∑i =1n f (ξi )Δx =∑i =1n(2+i -1n )·1n =∑i =1n ⎝ ⎛⎭⎪⎫2n +i -1n 2=2n ·n +1n20+1+2+…+(n -1)]=2+1n 2·n (n -1)2=2+n -12n .(3)取极限:S =lim n →∞ ⎝⎛⎭⎪⎫2+n -12n =2+12=52. 因此ʃ21(1+x )d x =52.探究点二 定积分的几何意义思考1 从几何上看,如果在区间a ,b ]上函数f (x )连续且恒有f (x )≥0,那么ʃba f (x )d x 表示什么?答 当函数f (x )≥0时,定积分ʃba f (x )d x 在几何上表示由直线x =a ,x =b (a <b ),y =0及曲线y =f (x )所围成的曲边梯形的面积.思考2 当f (x )在区间a ,b ]上连续且恒有f (x )≤0时,ʃba f (x )d x 表示的含义是什么?若f (x )有正有负呢?答 如果在区间a ,b ]上,函数f (x )≤0时,那么曲边梯形位于x 轴的下方(如图①). 由于b -an>0,f (ξi )≤0,故 f (ξi )b -a n ≤0.从而定积分ʃb a f (x )d x ≤0,这时它等于如图①所示曲边梯形面积的相反值,即ʃbaf (x )d x =-S.当f (x )在区间a ,b ]上有正有负时,定积分ʃba f (x )d x 表示介于x 轴、函数f (x )的图象及直线x =a ,x =b (a ≠b )之间各部分面积的代数和(在x 轴上方的取正,在x 轴下方的取负).(如图②),即ʃba f (x )d x =-S 1+S 2-S 3. 例2 利用几何意义计算下列定积分: (1)ʃ3-39-x 2d x ;(2)ʃ3-1(3x +1)d x .解 (1)在平面上y =9-x 2表示的几何图形为以原点为圆心以3为半径的上半圆, 其面积为S =12·π·32.由定积分的几何意义知ʃ3-39-x 2d x =92π.(2)由直线x =-1,x =3,y =0,以及y =3x +1所围成的图形,如图所示: ʃ3-1(3x +1)d x 表示由直线x =-1,x =3,y =0以及y =3x +1所围成的图形在x 轴上方的面积减去在x 轴下方的面积,∴ʃ3-1(3x +1)d x =12×(3+13)×(3×3+1)-12(-13+1)×2=503-23=16. 反思与感悟 利用几何意义求定积分,关键是准确确定被积函数的图象,以及积分区间,正确利用相关的几何知识求面积.不规则的图象常用分割法求面积,注意分割点的准确确定. 跟踪训练2 根据定积分的几何意义求下列定积分的值: (1)ʃ1-1x d x ;(2)ʃ2π0cos x d x ;(3)ʃ1-1|x |d x . 解 (1)如图(1),ʃ1-1x d x =-A 1+A 1=0. (2)如图(2),ʃ2π0cos x d x =A 1-A 2+A 3=0.(3)如图(3),∵A 1=A 2,∴ʃ1-1|x |d x =2A 1=2×12=1.(A 1,A 2,A 3分别表示图中相应各处面积)探究点三 定积分的性质思考1 定积分的性质可作哪些推广? 答 定积分的性质的推广①ʃb a f 1(x )±f 2(x )±…±f n (x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ±…±ʃba f n (x )d x ; ②ʃb a f (x )d x =ʃc 1a f (x )d x +ʃc 2c 1f (x )d x +…+ʃb c n f (x )d x (其中n ∈N *). 思考2 如果一个函数具有奇偶性,它的定积分有什么性质? 答 奇、偶函数在区间-a ,a ]上的定积分①若奇函数y =f (x )的图象在-a ,a ]上连续不断,则ʃa-a f (x )d x =0. ②若偶函数y =g (x )的图象在-a ,a ]上连续不断,则ʃa -a g (x )d x =2ʃa0g (x )d x . 例3 计算ʃ3-3(9-x 2-x 3)d x 的值. 解 如图,由定积分的几何意义得ʃ3-39-x2d x=π×322=9π2,ʃ3-3x3d x=0,由定积分性质得ʃ3-3(9-x2-x3)d x=ʃ3-39-x2d x-ʃ3-3x3d x=9π2.反思与感悟根据定积分的性质计算定积分,可以先借助于定积分的定义或几何意义求出相关函数的定积分,再利用函数的性质、定积分的性质结合图形进行计算.跟踪训练3 已知ʃ10x3d x=14,ʃ21x3d x=154,ʃ21x2d x=73,ʃ42x2d x=563,求:(1)ʃ203x3d x;(2)ʃ416x2d x;(3)ʃ21(3x2-2x3)d x.解(1)ʃ203x3d x=3ʃ20x3d x=3(ʃ10x3d x+ʃ21x3d x)=3×(14+154)=12;(2)ʃ416x2d x=6ʃ41x2d x=6(ʃ21x2d x+ʃ42x2d x)=6×(73+563)=126;(3)ʃ21(3x2-2x3)d x=ʃ213x2d x-ʃ212x3d x=3ʃ21x2d x-2ʃ21x3d x=3×73-2×154=7-152=-12.1.下列结论中成立的个数是( )①ʃ10x3d x=∑i=1n i3n3·1n;②ʃ10x3d x=limn→∞∑i=1n(i-1)3n3·1n;③ʃ10x3d x=limn→∞∑i=1n i3n3·1n.A.0 B.1 C.2 D.3答案 C解析 ②③成立.2.定积分ʃba f (x )d x 的大小( )A .与f (x )和积分区间a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间a ,b ]无关D .与f (x )、积分区间a ,b ]和ξi 的取法都有关 答案 A3.根据定积分的几何意义,用不等号连接下列式子: ①ʃ10x d x ________ʃ10x 2d x ; ②ʃ204-x 2d x ________ʃ202d x . 答案 ①> ②<4.若ʃT 0x 2d x =9,则常数T 的值为________. 答案 3解析 令f (x )=x 2. (1)分割将区间0,T ]n 等分,则Δx =Tn. (2)近似代替、求和取ξi =T i n(i =1,2,…,n ),S n =∑i =1n(T i n )2·T n =T 3n 3∑i =1n i 2=T 3n 3(12+22+…+n 2)=T 3n 3·n (n +1)(2n +1)6=T 36(1+1n )(2+1n). (3)取极限S =lim n →∞T 36×2=T 33=9, ∴T 3=27,∴T =3. 呈重点、现规律]1.定积分ʃbaf (x )d x 是一个和式∑i =1nb -anf (ξi )的极限,是一个常数. 2.可以利用“分割、近似代替、求和、取极限”求定积分;对于一些特殊函数,也可以利用几何意义求定积分.3.定积分的几何性质可以帮助简化定积分运算.一、基础过关1.下列命题不正确的是( )A .若f (x )是连续的奇函数,则ʃa-a f (x )d x =0 B .若f (x )是连续的偶函数,则ʃa -a f (x )d x =2ʃa0f (x )d x C .若f (x )在a ,b ]上连续且恒正,则ʃba f (x )d x >0D .若f (x ) 在a ,b ]上连续且ʃba f (x )d x >0,则f (x )在a ,b ]上恒正 答案 D解析 对于A ,f (-x )=-f (x ),ʃa-a f (x )d x=ʃ0-a f (x )d x +ʃa 0f (x )d x =-ʃa 0f (x )d x +ʃa0f (x )d x =0,同理B 正确;由定积分的几何意义知,当f (x )>0时,ʃb a f (x )d x >0即C 正确;但ʃb a f (x )d x >0,不一定有f (x )恒正,故选D. 2.已知定积分ʃ60f (x )d x =8,且f (x )为偶函数,则ʃ6-6f (x )d x 等于( ). A .0 B .16 C .12 D .8 答案 B解析 偶函数图象关于y 轴对称, 故ʃ6-6f (x )d x =2ʃ60f (x )d x =16,故选B. 3.已知ʃt 0x d x =2,则ʃ0-t x d x 等于( ) A .0 B .2 C .-1 D .-2 答案 D解析 ∵f (x )=x 在-t ,t ]上是奇函数, ∴ʃt -t x d x =0.而ʃt -t x d x =ʃ0-t x d x +ʃt0x d x , 又ʃt0x d x =2,∴ʃ0-t x d x =-2.故选D.4.由曲线y =x 2-4,直线x =0,x =4和x 轴围成的封闭图形的面积(如图)是( ) A .ʃ40(x 2-4)d x B.||ʃ40(x 2-4)d x C .ʃ40|x 2-4|d xD .ʃ20(x 2-4)d x +ʃ42(x 2-4)d x 答案 C5.设a =ʃ10x 13d x ,b =ʃ10x 2d x ,c =ʃ10x 3d x ,则a ,b ,c 的大小关系是( )A .c >a >bB .a >b >cC .a =b >cD .a >c >b答案 B解析 根据定积分的几何意义,易知ʃ10x 3d x <ʃ10x 2d x <ʃ10x 13d x ,a >b >c ,故选B.6.若ʃa-a |56x |d x ≤2 016,则正数a 的最大值为( ) A .6 B .56 C .36 D .2 016 答案 A解析 由ʃa -a |56x |d x =56ʃa-a |x |d x ≤2 016, 得ʃa-a |x |d x ≤36,∴ʃa-a |x |d x =2ʃa0x d x =a 2≤36, 即0<a ≤6.故正数a 的最大值为6.7.lim n →∞ln n(1+1n )2(1+2n )2…(1+n n)2等于( )A .ʃ21ln 2x d x B .2ʃ21ln x d x C .2ʃ21ln(1+x )d x D .ʃ21ln 2(1+x )d x答案 B解析 lim n →∞ln n(1+1n )2(1+2n )2…(1+n n)2=lim n →∞2n ln ⎣⎢⎡⎦⎥⎤(1+1n )(1+2n)…(1+n n ) =2lim n →∞ ∑ni =1ln (1+i n )n =2ʃ21ln x d x (这里f (x )=ln x ,区间1,2]或者2lim n →∞ ∑ni =1ln (1+in )n=2ʃ10ln(1+x )d x ,区间0,1]).二、能力提升8.由y =sin x ,x =0,x =-π,y =0所围成图形的面积写成定积分的形式是S =________. 答案 -ʃ0-πsin x d x解析 由定积分的意义知,由y =sin x ,x =0,x =-π,y =0围成图形的面积为S =-ʃ0-πsinx d x .9.计算定积分ʃ1-14-4x 2d x =________. 答案 π解析 由于ʃ1-14-4x 2d x =2ʃ1-11-x 2d x 表示单位圆的面积π,所以ʃ1-14-4x 2d x =π. 10.设f (x )是连续函数,若ʃ10f (x )d x =1,ʃ20f (x )d x =-1,则ʃ21f (x )d x =________. 答案 -2解析 因为ʃ20f (x )d x =ʃ10f (x )d x +ʃ21f (x )d x ,所以ʃ21f (x )d x =ʃ20f (x )d x -ʃ10f (x )d x =-2.11.利用定积分的定义计算ʃ21(-x 2+2x )d x 的值,并从几何意义上解释这个值表示什么. 解 令f (x )=-x 2+2x . (1)分割在区间1,2]上等间隔地插入n -1个分点,把区间1,2]等分为n 个小区间1+i -1n ,1+in](i =1,2,…,n ),每个小区间的长度为Δx =i n -i -1n =1n.(2)近似代替、求和取ξi =1+in(i =1,2,…,n ),则S n =∑ni =1f (1+i n )·Δx =∑ni =1-(1+i n )2+2(1+i n )]·1n=-1n 3(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n2(n +1)+(n +2)+(n +3)+…+2n ]=-1n 32n (2n +1)(4n +1)6-n (n +1)(2n +1)6]+2n 2·n (n +1+2n )2=-13(2+1n )(4+1n )+16(1+1n )(2+1n )+3+1n .(3)取极限ʃ21(-x 2+2x )d x =lim n →∞S n =lim n →∞-13(2+1n )(4+1n )+16(1+1n )(2+1n )+3+1n ]=23, ʃ21(-x 2+2x )d x =23的几何意义为由直线x =1,x =2,y =0与曲线f (x )=-x 2+2x 所围成的曲边梯形的面积.12.用定积分的意义求下列各式的值:(1)ʃ30(2x +1)d x ;(2)⎰x .解 (1)在平面上,f (x )=2x +1为一条直线,ʃ30(2x +1)d x 表示直线f (x )=2x +1,x =0,x =3与x 轴围成的直角梯形OABC 的面积,如图(1)所示,其面积为S =12(1+7)×3=12.根据定积分的几何意义知ʃ30(2x +1)d x =12.(2)由y =1-x 2可知,x 2+y 2=1(y ≥0)图象如图(2),由定积分的几何意义知⎰1-x 2d x等于圆心角为120°的弓形CED 的面积与矩形ABCD 的面积之和.S 弓形=12×23π×12-12×1×1×sin 23π=π3-34,S 矩形=|AB |·|BC |=2×32×12=32,∴⎰1-x 2d x =π3-34+32=π3+34.三、探究与拓展13.已知函数f (x )=⎩⎪⎨⎪⎧x 3, x ∈[-2,2)2x , x ∈[2,π)cos x , x ∈[π,2π],求f (x )在区间-2,2π]上的积分.解 由定积分的几何意义知 ʃ2-2x 3d x =0,ʃπ22x d x =(π-2)(2π+4)2 =π2-4, ʃ2ππcos x d x =0, 由定积分的性质得ʃ2π-2f (x )d x =ʃ2-2x 3d x +ʃπ22x d x +ʃ2ππcos x d x =π2-4.。
人教b版选修2-2第一章 导数及其应用.docx
高中数学学习材料马鸣风萧萧*整理制作第一章 导数及其应用一、知识体系:1.导数的概念如果函数)(x f y = ,则称)(x f 在点0x 处可导,并称此极限值为函数)(x f y =在点0x 处的导数,记为 或 。
(答:满足xx f x x f x ∆-∆+→∆)()(000lim存在,00),(x x y x f ='')2.函数)(x f y = ,就说)(x f 在区间(b a ,)内可导,其导数也是(b a ,)内的函数,叫做)(x f 的导函数,记作 或 。
(答:在开区间(a,b )内每一点都可导,y x f ''),()3.函数=y )(x f 在点0x 处可导是函数)(x f y =在点0x 处连续的 条件。
(答:充分而不必要)4.导数的几何意义:①设函数)(x f y =在点0x 处可导,那么 等于函数所表示曲线的相应点),(00y x M 处的切线斜率。
(答:)(0x f ')②设)(t s s =是位移函数,则 表示物体在0t t =时刻瞬时速度。
(答:)(0t s ')5.几种常见函数的导数:①='c (答:0) ②=')(nx (答:nx n-1)③=')(sin x (答:cosx ) ④=')(cos x (答:-sinx ) ⑤=')(xe (答:e x)⑥=')(xa (答:a xlna )⑦=')(ln x (答:1x )⑧=')(log x a (答:1x log a e )6.两个函数的四则运算的导数: 若)(),(x v x u 的导数都存在,则①='±)(v u (答:v u '±')②='⋅)(v u , =')(cu (答:v u v u '÷') ③=')(v u (答:2vv u v u '-') 7.复合函数的导数:设 ,则复合函数))((x f y φ=在点x 处可导,且='x y 。
人教版高二数学选修2-2(B版)全册PPT课件
3.1.1 实数系
3.1.3 复数的几何意义
3.2.2 复数的乘法
பைடு நூலகம்
本章小节
附录 部分中英文词汇对照表
第一章 导数及其应用
人教版高二数学选修2-2(B版)全册 PPT课件
1.2 导数的运算
1.2.1 常数函数与冥函数的导
1.2.3 导数的四则运算法则
1.3.2 利用导数研究函数的极值
1.4 定积分与微积分基本定理
1.4.1 曲边梯形
本章小结
第二章 推理与证明
2.1.2 演绎推理
2.2.2 反证法
2.3.2 数学归纳法应用举例
阅读与欣赏
《原本》与公理化思想
3.1 数系的扩充与复数的概念
人教版高二数学选修2-2(B版)全 册PPT课件目录
0002页 0036页 0087页 0156页 0219页 0238页 0254页 0282页 0336页 0371页 0418页 0458页 0460页 0495页 0555页 0598页 0600页
第一章 导数及其应用
1.1.2 瞬时速度与导数
高中数学选修2-2(人教B版)第一章导数及其应用1.4知识点总结含同步练习题及答案
1 1 1 25 . + +⋯+ < n+1 n+2 2n 36
即
2n 1 1 1 1 n + +⋯+ <∫ dx = ln x| 2 n = ln 2n − ln n = ln 2, n+1 n+2 2n x n
因为ln 2 ≈ 0.6931 , 25 ≈ 0.6944 ,所以ln 2 < 25 .所以
3 1
π 2 dx;(3)∫ 0 2 (sin x − cos x)dx. x
∫
(1 + x + x2 ) = ∫
3 1
1 2 3 1 x | 1 + x3 | 3 1 2 3 1 1 = (3 − 1) + (3 2 − 1 2 ) + (3 3 − 1 3 ) 2 3 44 = . 3 = x| 3 1 +
∑ f (ξi )Δx = ∑
i =1 i =1 n n
b−a f (ξi ), n
当 n → ∞ 时,上述和式无限接近某个常数,这个常数叫做函数 f (x) 在区间 [a, b] 上的定积分(definite integral),记作 ∫ ab f (x)dx,即
∫
b a
f (x)dx = lim ∑
∫
b a
f (x)dx = F (x)| b a = F (b) − F (a).
例题: 利用定积分定义计算: (1)∫ 1 (1 + x)dx;(2)∫ 0 xdx. 解:(1)因为 f (x) = 1 + x 在区间 [1, 2] 上连续,将区间 [1, 2] 分成 n 等份,则每个区间的
2020版高中数学人教B版选修2-2课件:1.1.1 函数的平均变化率
【解析】质点在2到2+Δt之间的平均速度为
[(2 t)2 1] 22 1 4t (t)2
v
4 t.
t
t
又 v≤5,即4+Δt≤5,
所以Δt≤1.
又Δt>0,
所以Δt的取值范围为(0,1]. 答案:(0,1]
【易错误区案例】 求解函数的平均变化率问题 【典例】函数y=2x2+3x在[1,2]内的平均变化率为_-_9_.
y x
f x2 f x1
x2 x1
公式中Δx与Δy可能同号,也可能异号.
(3)×.函数值的改变量应是f(x0+Δx)-f(x0).
2.若已知函数f(x)=x2-1的图象上一点(1,0)及附近一 点(1+Δx,Δy),则Δy的值为________. 【解析】Δy=f(1+Δx)-f(1)= (1+Δx)2-1=(Δx)2+2Δx. 答案:(Δx)2+2Δx
33 3
所以函数f(x)=3-x2在x0=1附近的平均变化率最大.
【方法技巧】 比较平均变化率的方法步骤
(1)求出两不同点处的平均变化率. (2)作差(或作商),并对差式(或商式)作合理变形,以 便探讨差的符号(或商与1的大小). (3)下结论.
【补偿训练】一质点做直线运动,其位移s与时间t的 关系为s(t)=t2+1,该质点在2到2+Δt(Δt>0)之间的 平均速度不大于5,则Δt的取值范围是______.
为 f x1 f x2 ?
x1 x2
提示:能.若从x1变为x2,平均变化率为
若从x2变为x1,平均变化率为
而 f x2 =f x1 f x.1 f x2
f x1 f,
2019-2020学年高中数学(人教B版 选修2-2)教师用书:第1章 导数及其应用 1.3.1
1.3导数的应用1.3.1利用导数判断函数的单调性1.理解导数与函数的单调性的关系.(易混点)2.掌握利用导数判断函数单调性的方法.(重点)3.会用导数求函数的单调区间.(重点、难点)[基础·初探]教材整理函数的单调性与导数之间的关系阅读教材P24,完成下列问题.用函数的导数判定函数单调性的法则(1)如果在(a,b)内,________,则f(x)在此区间是增函数,(a,b)为f(x)的单调增区间;(2)如果在(a,b)内,________,则f(x)在此区间是减函数,(a,b)为f(x)的单调减区间.【答案】f′(x)>0 f′(x)<0判断(正确的打“√”,错误的打“×”)(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )【答案】(1)×(2)×(3)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型](1)函数y=f(图1-3-1①函数y=f(x)的定义域是[-1,5];②函数y=f(x)的值域是(-∞,0]∪[2,4];③函数y=f(x)在定义域内是增函数;④函数y=f(x)在定义域内的导数f′(x)>0.其中正确的序号是( )A.①②B.①③C.②③D.②④(2)设函数f(x)在定义域内可导,y=f(x)的图象如图1-3-2所示,则导函数y=f′(x)的图象可能为( )图1-3-2【精彩点拨】研究一个函数的图象与其导函数图象之间的关系时,注意抓住各自的关键要素,对于原函数,要注意其图象在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数,则应注意其函数值在哪个区间内大于零,在哪个区间内小于零,并分析这些区间与原函数的单调区间是否一致.【自主解答】(1)由图象可知,函数的定义域为[-1,5],值域为(-∞,0]∪[2,4],故①②正确,选A.(2)由函数的图象可知:当x<0时,函数单调递增,导数始终为正;当x>0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.【答案】(1)A (2)D1.利用导数判断函数的单调性比利用函数单调性的定义简单的多,只需判断导数在该区间内的正负即可.2.通过图象研究函数单调性的方法(1)观察原函数的图象重在找出“上升”“下降”产生变化的点,分析函数值的变化趋势;(2)观察导函数的图象重在找出导函数图象与x轴的交点,分析导数的正负.[再练一题]1.(1)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不正确的是( )A B C D(2)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )A B C D【解析】(1)A,B,C均有可能;对于D,若C1为导函数,则y=f(x)应为增函数,不符合;若C2为导函数,则y=f(x)应为减函数,也不符合.(2)因为y=f(x)的导函数在区间[a,b]上是增函数,则从左到右函数f(x)图象上的点的切线斜率是递增的.【答案】(1)D (2)A求函数f(x)=x+ax(a≠0)的单调区间.【精彩点拨】求出导数f′(x),分a>0和a<0两种情况.由f′(x)>0求得单调增区间,由f′(x)<0求得单调减区间.【自主解答】f(x)=x+ax的定义域是(-∞,0)∪(0,+∞),f′(x)=1-a x2.当a>0时,令f′(x)=1-ax2>0,解得x>a或x<-a;令f′(x)=1-ax2<0,解得-a<x<0或0<x<a;当a<0时,f′(x)=1-ax2>0恒成立,所以当a>0时,f(x)的单调递增区间为(-∞,-a)和(a,+∞);单调递减区间为(-a,0)和(0,a).当a<0时,f(x)的单调递增区间为(-∞,0)和(0,+∞).利用导数求函数单调区间的步骤1.确定函数f(x)的定义域.2.求导数f′(x).3.由f′(x)>0(或f′(x)<0),解出相应的x的范围.当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0时,f(x)在相应区间上是减函数.4.结合定义域写出单调区间.[再练一题]2.(1)函数f(x)=e x-e x,x∈R的单调递增区间为( ) 【导学号:05410017】A.(0,+∞) B.(-∞,0)C.(-∞,1) D.(1,+∞)(2)函数f(x)=ln x-x的单调递增区间是( )A.(-∞,1) B.(0,1)C .(0,+∞)D .(1,+∞)【解析】 (1)∵f ′(x )=(e x -e x )′=e x -e , 由f ′(x )=e x -e>0,可得x >1.即函数f (x )=e x -e x ,x ∈R 的单调增区间为 (1,+∞),故选D.(2)函数的定义域为(0,+∞),又f ′(x )=1x -1, 由f ′(x )=1x -1>0,得0<x <1,所以函数f (x )=ln x -x 的单调递增区间是(0,1),故选B. 【答案】 (1)D (2)B[探究共研型]探究1 【提示】 由已知得f ′(x )=3x 2-a , 因为f (x )在(-∞,+∞)上是单调增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立,因为3x 2≥0,所以只需a ≤0. 又因为a =0时,f ′(x )=3x 2≥0, f (x )=x 3-1在R 上是增函数,所以a ≤0.探究2 若函数f (x )=x 3-ax -1的单减区间为(-1,1),如何求a 的取值范围. 【提示】 由f ′(x )=3x 2-a , ①当a ≤0时,f ′(x )≥0, ∴f (x )在(-∞,+∞)上为增函数. ②当a >0时,令3x 2-a =0,得x =±3a3, 当-3a 3<x <3a3时,f ′(x )<0. ∴f (x )在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数, ∴f (x )的单调递减区间为⎝⎛⎭⎪⎫-3a 3,3a 3,∴3a3=1,即a=3.已知关于x的函数y=x3-ax+b.(1)若函数y在(1,+∞)内是增函数,求a的取值范围;(2)若函数y的一个单调递增区间为(1,+∞),求a的值.【精彩点拨】(1)函数在区间(1,+∞)内是增函数,则必有y′≥0在(1,+∞)上恒成立,由此即可求出a的取值范围.(2)函数y的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a 的值.【自主解答】y′=3x2-a.(1)若函数y=x3-ax+b在(1,+∞)内是增函数.则y′=3x2-a≥0在x∈(1,+∞)时恒成立,即a≤3x2在x∈(1,+∞)时恒成立,则a≤(3x2)最小值.因为x>1,所以3x2>3.所以a≤3,即a的取值范围是(-∞,3].(2)令y′>0,得x2>a3.若a≤0,则x2>a3恒成立,即y′>0恒成立,此时,函数y=x3-ax+b在R上是增函数,与题意不符.若a>0,令y′>0,得x>a3或x<-a3.因为(1,+∞)是函数的一个单调递增区间,所以a3=1,即a=3.1.解答本题注意:可导函数f(x)在(a,b)上单调递增(或单调递减)的充要条件是f′(x)≥0(或f′(x)≤0)在(a,b)上恒成立,且f′(x)在(a,b)的任何子区间内都不恒等于0.2.已知f(x)在区间(a,b)上的单调性,求参数范围的方法(1)利用集合的包含关系处理f(x)在(a,b)上单调递增(减)的问题,则区间(a,b)是相应单调区间的子集;(2)利用不等式的恒成立处理f(x)在(a,b)上单调递增(减)的问题,则f′(x)≥0(f′(x)≤0)在(a,b)内恒成立,注意验证等号是否成立.[再练一题]3.将上例(1)改为“若函数y在(1,+∞)上不单调”,则a的取值范围又如何?【解】y′=3x2-a,当a<0时,y′=3x2-a>0,函数在(1,+∞)上单调递增,不符合题意.当a>0时,函数y在(1,+∞)上不单调,即y′=3x2-a=0在区间(1,+∞)上有根.由3x2-a=0可得x=a3或x=-a3(舍去).依题意,有a3>1,∴a>3,所以a的取值范围是(3,+∞).[构建·体系]1.函数y=f(x)的图象如图1-3-3所示,则导函数y=f′(x)的图象可能是( )图1-3-3【解析】∵函数f(x)在(0,+∞),(-∞,0)上都是减函数,∴当x>0时,f′(x)<0,当x<0时,f′(x)<0.【答案】 D2.已知函数f (x )=x +ln x ,则有( ) A .f (2)<f (e)<f (3) B .f (e)<f (2)<f (3) C .f (3)<f (e)<f (2)D .f (e)<f (3)<f (2)【解析】 因为在定义域(0,+∞)上,f ′(x )=12x+1x >0,所以f (x )在(0,+∞)上是增函数,所以有f (2)<f (e)<f (3).故选A.【答案】 A3.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.【解析】 f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2. 【答案】 (1,2)4.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________. 【解析】 f ′(x )=错误!,由题意得f ′(x )≤0在(-2,+∞)内恒成立,∴解不等式得a ≤12,但当a =12时,f ′(x )=0恒成立,不合题意,应舍去,所以a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 【答案】 ⎝ ⎛⎭⎪⎫-∞,125.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 h (x )=ln x -12ax 2-2x ,x ∈(0,+∞), 所以h ′(x )=1x -ax -2. 因为h (x )在[1,4]上单调递减, 所以x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 即a ≥1x2-2x 恒成立,所以a ≥G (x )最大值,而G (x )=⎝ ⎛⎭⎪⎫1x -12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )最大值=-716(此时x =4),所以a ≥-716. 当a =-716时,h ′(x )=1x +716x -2=16+7x2-32x 16x=错误!. 因为x ∈[1,4], 所以h ′(x )=错误!≤0, 即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。
高中数学 第一章 导数及其应用本章整合 新人教B版选修2-2(2021年最新整理)
高中数学第一章导数及其应用本章整合新人教B版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章导数及其应用本章整合新人教B版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章导数及其应用本章整合新人教B版选修2-2的全部内容。
高中数学 第一章 导数及其应用本章整合 新人教B 版选修2-2知识网络专题探究专题一 导数的几何意义的应用1.函数y =f (x )在点x 0处的导数f ′(x 0),就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =tan α=f ′(x 0).2.利用导数求曲线过点P (x 0,y 0)的切线方程时要注意首先判断点P 是否在曲线上,若点P 在曲线上,则切线斜率即为f ′(x 0),切线方程易得;若点P 不是曲线上的点,则应首先设出切点Q (x 1,y 1),则切线斜率为f ′(x 1),再结合k PQ =f ′(x 1)以及y 1=f (x 1)进行求解.【例1】 已知函数f (x )=错误!+1,g (x )=a ln x ,若在x =错误!处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( )A 。
错误!B 。
错误!C .1D .4解析:由题意可知f ′(x )=错误!12x ,g ′(x )=错误!,由f ′错误!=g ′错误!,得错误!×1214-⎛⎫⎪⎝⎭=错误!,可得a=错误!,经检验,a=错误!满足题意.答案:A【例2】已知直线y=x+1与曲线y=ln(x-a)相切,则实数a的值为()A.1 B.2 C.-1 D.-2解析:设直线y=x+1与曲线y=ln(x-a)相切的切点为(x0,y0),则y0=x0+1且y0=ln(x0-a).又∵y′=错误!,∴y′错误!x=x0=错误!=1,即x0-a=1,故x0=a+1,所以a+1+1=ln(a+1-a),解得a=-2.答案:D专题二利用导数研究函数的单调性1.求函数单调区间的步骤如下:(1)确定f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或f′(x)<0)解出相应的x的范围.当f′(x)>0时,f(x)在相应区间上是增函数;当f′(x)<0时f(x)在相应区间上是减函数.2.已知f(x)在区间I上单调递增(递减),等价于f′(x)≥0(≤0)在区间I上恒成立,由此可根据不等式恒成立求得函数解析式中所含参数的取值范围.3.在利用导数的符号判断函数的单调性的解题过程中,只能在函数的定义域内通过讨论导数的符号,判断函数的单调区间.解单调性的题目时要注意判断端点能否取到.【例3】已知函数f(x)=x2-4x+(2-a)ln x,a∈R。
(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1)
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求简单函数的导函数有两种基本方法: (1)用导数的定义求导,但运算比较繁杂; (2)用导数公式求导 ,可以简化运算过程、降低运算难 度.解题时根据所给问题的特征,将题中函数的结构进行调 整,再选择合适的求导公式.
数学 选修2-2
第一章 导数及其应用
A.(0,0)
B.(0,1)
C.(1,0)
D.以上都不是
解析: (x3)′=3x2,若切线平行或重合于x轴则切线斜率k
=0,即3x2=0得x=0,
∴y=0,即切点为(0,0).故选A.
答案: A
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.函数f(x)=sin x,则f′(6π)=________. 解析: f′(x)=cos x,所以f′(6π)=1. 答案: 1
6分 8分
10 分 12 分
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.求过点P的切线方程时应注意,P点在曲线 上还是在曲线外,两种情况的解法是不同的.
2.解决此类问题应充分利用切点满足的三个关系: 一是切点坐标满足曲线方程;二是切点坐标满足对应切线 的方程;三是切线的斜率是曲线在此切点处的导数值.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(1)y′=-3x-4.(2)y′=3xln 3.
(4)y′=xln1 5.(5)y=sin x,y′=cos x. (6)y′=0.(7)y′=1x.(8)y′=ex.
高二数学选修2-2(B版)(人教版)
第一章 应用
本意小结
导数及其
第一章 导数及其应用
阅读与欣赏
《原本》与公理化思想
3.1 数系的扩充与复数的概念
3.1.1 实数系
3.1.2 复数的概念 3.1.3 复数的几何意义
3.2 复数的运算
3.2.1 复数的加法与减法
3.2.2 复数的乘法 3.2.3 复数的除法 阅读与欣赏
第一章 导数及其应用
高二数学选修2-2(B版)(人教版)
演讲人
202X-06-08
目录
01. 第一章 导数及其应用 02. 第二章 推理与证明 03. 第三章 数系的扩充与复数 04. 附录 部分中英文词汇对照表 05. 后记
01 第一章 导数及其应用
1.1 导数
1.1.1 函数的平均变化率
1.1.2 瞬时速度与导数 1.1.3 导数的几何意义
1.2 导数的运算
1.2.1 常数函数与冥函数的导数
1.2.2 导数公式表及数学软件的应用 1.2.3 导数的四则运算法则
1.3 导数Leabharlann 应用1.3.1 利用导数判断函数的单调性
1.3.2 利用导数研究函数的极值 1.3.3 导数的实际应用
1.4
定积分与微积分基本定理
1.4.1 曲边梯形面积与定积分
本章小节
复平面与高斯
02 第二章 推理与证明
第二章 推理与证 明
03 第三章 数系的扩充与复数
第三章 数系的扩 充与复数
04
附录 部分中英文词汇对照表
附录 部分中英文词汇对照 表
05 后记
后记
一.
感谢聆听
1.4.2 微积分基本定理
第一章 应用
本章小结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=12180x2+80x0-145,
h′(x)=64x0-8x020=x63-408x02 3(0≤x≤120).
令h′(x)=0,得x=80.
当x∈(0,80)时,h′(x)<0,h(x)是减函数; 当x∈(80,120)时,h′(x)>0,h(x)是增函数. ∴当x=80时,h(x)取得极小值. 此时h(x)=1281000×803-830×80+8×54=445=11.25(L). ∴当汽车以80 km/h的速度匀速行驶时,从甲地到乙地耗 油最少,最少为11.25 L.
要耗油1281000×403-830×40+8×2.5=17.5(L). ∴当汽车以40 km/h的速度匀速行驶时,从甲地到乙地要 耗油17.5L.
(2)当速度为x
km/h时,汽车从甲地到乙地行驶了
100 x
h,
设耗油量为h(x) L,依题意得
h(x)=1281000x3-830x+8×10x 0
成才之路 ·数学
人教B版 • 选修2-2
路漫漫其修远兮 吾将上下而求索
第一章 导数及其应用
第一章
1.3 导数的应用 第3课时 导数的实际应用
1 课前自主导学 2 课堂互动探究
3 学法归纳总结 4 课后强化作业
课前自主导学
低碳生活(low-carbon life)可以理解为减少二氧化碳的排 放,就是低能量、低消耗、低开支的生活.低碳生活节能环 保,势在必行.现实生活中,当汽车行驶路程一定时,我们 希望汽油的使用效率最高,即每千米路程的汽油消耗最少或 每升汽油能使汽车行驶的路程最长.
课堂互动探究
费用最省问题
已知A、B两地相距200 km,一只船从A地逆水 而行到B地,水速为8km/h,船在静水中的速度为v km/h(8<v≤v0).若船每小时的燃料费与其在静水中的速度的 平方成正比.当v=12 km/h时,每小时的燃料费为720元,为 了使全程燃料费最省,船的实际速度为多少?
本节重点:利用导数知识解决实际中的最优化问题. 本节难点:将实际问题转化为数学问题,建立函数模型.
利用导数求实际问题的最值的一般步骤: (1)找出实际问题的数学模型,写出实际问题中变量之间 的函数关系y=f(x). (2)______求__导__数__f′_(x_)_,__解__方__程__f′_(x_)_=__0________. (3)比较函数在区间端点和使f′(x)=0的点的值的大小,最 大(小)者为最大(小)值.
所以函数v=16时取得极值,并且是极小值. 当v0≥16时,v=16使y最小. 即全程燃料费最省. 当v0<16时,可得y=1v0-008v2在(8,v0]上递减, 即当v=v0时,ymin=1v000-0v820. 综合上述得:若v0≥16,当v=16km/h时,全程燃料费最 省;若8<v0<16,则当v=v0时,全程燃料费最省.
水库的蓄水量随时间而变化.现用t表示时间,
以月为单位,年初为起点.根据历年数据,某水库的蓄水量
(单位:亿立方米)关于t的近似函数关系式为
[解析] 设每小时的燃料费为y1,比例系数为k, 则y1=kv2.当v=12时,y1=720, ∴720=k·122解得k=5,∴y1=5v2. ∴全程的燃料费y=y1·v2-008=1v0-008v2(8<v≤v0). y′=2000vv- v-88-2 1000v2=1000vv2--8162000v. 令y′=0得v=16或v=0(舍去).
所以当x= 23时,S取得最大值, 此时,S最大=329 3,y=83. 即矩形的边长分别为4 3 3,83时,矩形的面积最大. [说明] 本题的关键是利用抛物线方程,求出矩形的另一 边长.
已知圆柱的表面积为定值S,求当圆柱的容积V最大时圆 柱的高h的值.
[解析] 设圆柱的底面半径为r,高为h,则S圆柱底=2πr2,S 圆柱侧=2πrh,
[说明] 解决费用最省问题,也是导数的一个重要应 用.解决这类问题,首先要选取合适的量为自变量,并确定 其取值范围,然后将费用表示为自变量的函数,再利用导数 求最值,使问题得到解决.
统计表明:某种型号的汽车在匀速行驶中每小时的耗油量
y(升)关于行驶速度x(km/h)的函数解析式可以表示为y=
1 128000
面积、体积最大问题
已知矩形的两个顶点位于x轴上,另两个顶点 位于抛物线y=4-x2在x轴上方的曲线上,求矩形的面积最大 时的边长.
[分析] 如图所示,设出AD的长, 进而求出|AB|表示出面积S,然后利用导 数求最值.
[解析] 设矩形边长AD=2x, 则|AB|=y=4-x2. ∴矩形面积为S=2x(4-x2)(0<x<2),即S=8x-2x3.所以 S′=8-6x2. 令S′=0,解得x1= 23,x2=- 23(舍去). 当x< 23时,S′>0;当x> 23时,S′<0.
如何使汽油的使用效率最高?
1.知识与技能 能利用导数解决实际问题中的最优化问题. 2.过程与方法 通过利用导数解决实际问题,学会将实际问题转化为数 学问题的方法,掌握利用导数求解实际问题中的最值问题的 方法.
3.情感态度与价值观 通过本节的学习,进一步体会数学是从实践中来,又将 应用于实践中去,体验数学的应用价值,从而提高学习数学 的兴趣,坚定学好数学的信心.
x3-830x+8(0≤x≤120),已知甲、乙两地相距100 km. (1)当汽车以40 km/h的速度匀速行驶时,从甲以多大的速度匀速行驶时,从甲地到乙地耗油 最少?最少为多少升?
[解析] (1)当x=40 km/h时,汽车从甲地到乙地行驶了 14000=2.5 h,
∴圆柱的表面积S=2πr2+2πrh. ∴h=S-2π2rπr2,
又圆柱的体积V=πr2h=2r(S-2πr2)=rS-22πr3, V′=S-26πr2, 令V′=0得S=6πr2,∴h=2r,
又r= 6Sπ,
∴h=2
6Sπ=
6πS 3π .
即当圆柱的容积V最大时,圆柱的高h为 36ππS.
实际应用问题