优选教育沪科版七年级上册二元一次方程组及其解课件.ppt

合集下载

沪科版七年级数学上册课件二元一次方程组及其解法

沪科版七年级数学上册课件二元一次方程组及其解法
沪科版七年级数学上册 课件二元一次方程组及
其解法
2023/5/10
旧知温习
含有一个未知数,并且未知数的次 数是1 系数不等于0的整式方程叫做一 元一次方程。
方程ax+b=0(a≠0)叫做一元一 次方程的标准形式。
使方程左、右两边相等的未知 数的值,叫做方程的解。
自学指导:
认真看课本P98~101内容完成:
4、方程组
的解是( )
课堂练习
s=1 2、若 t=-2
是方程
S 2
-
t -k=0 3
的解,则k值为 ( B )
A、
-1 6
C

1 6
B

7 6
D、 -7 6
3、关于x、y的方程ax2+bx+2y=3 是一个二元一次方程,
则a、b的值为( C )
A 、a=0且 b=0 B、 a=0或 b=0 C、 a=0且 b≠0 D、a≠0且 b≠0
m=__-_1___,n=___83___;
思考:.求二元一次方程2X+Y=10的 所有正整数解.
一、方程中含有两个未知数(x和y), 并且未知数的指数都是1,像这样的方程叫
你有哪些收 做二元一次方程。
二、把两个一次方程合在一起后共有两个
未知数,就组成获了给一个大二元家一分次方程组。 享一下 三、使二元一次方程两边的值相等的两
4、已知方程 ⑴5x+3y=7 ⑵ 5x-7=2
⑶ 2xy=1 ⑷ x2-y=1
⑸ 5(x-y)+2(2x-3y)=4
⑹ 1 =2 x+y
其中二元一次方程的个数是 ( B )
A 、1 B、 2 C、 3 D、 4

最新沪科版七年级上3.31二元一次方程组及其解法—二元一次方程PPT课件

最新沪科版七年级上3.31二元一次方程组及其解法—二元一次方程PPT课件
注意:二元一次方程组的解是成对出现的,用大 括号来连接,表示“且”。
知识探究
例1、已知方程3xm+3-2y1-2n=0是一个二元一次方程,
则m= −2 , n= 0
.
7
例2、若 x 2Βιβλιοθήκη 是方程组 2 x y1 的解,则k= 2 .
y3
kx3 y2
例3、若 x a 是方程组 2x+y=0的解,则6a+3b+2= 2 . yb
题目解说:
2001年11月11日,在经过15的艰苦谈判后,我国终于完成了 加入世贸组织的所在法律程序,根据世贸组织的规定,在2001年 12月11日正式成为世贸组织成员。
2000年,在中国入世进入最后关键阶段的时候,作为中国首 席谈判代表的龙图和他的同事们在面临着某些西欧国家的蓄意阻 挠,还面临着国内一些不明事理的以讹传讹。对此,江泽民总书 记要求他们“要让全国大企业和各行各业了解什么是世贸组织,‘ 世’有什么利弊,以使全社会对‘入世’这样一个外交政治的重大 有深刻的认识”。为此龙永图主动召集新华社、中新社、中国日报 等重要媒体的记者,宣传有关于加入世贸组织的重要意义,本文 即龙永图与记者的一番谈话。
2x+y=60.
满足这个方程 的x、y的值有 哪些?什么关 系?
满足这个方程 的x、y的值又 有哪些?
显然这里的x,y既要满足树苗的总数关系,又要满 足购买树苗的总费用关系,也就是说它们必须同时 满足上面两个方程。
x y45
表示为: 2 x y 60
思考:这个 问题中的x,y 要满足什么 样的关系呢?
相关概念
二元一次方程组: 把两个二元一次方程结合在一起,就组成了二元一次方程组(确切的
说法是含有两个未知数的两个一次方程组成的方程组 ,叫二元一次方 程组) 二元一次方程的解:

沪科版七年级上册数学3.3《二元一次方程组及其解法3》课件2 (共20张PPT)

沪科版七年级上册数学3.3《二元一次方程组及其解法3》课件2 (共20张PPT)
所以原方程组的解是
x=1
y=-1
运用新知 拓展创新
3x-2y= -1 ① 6x+7y=9 ② 分析: 1、要想用加减法解二元一次方程组
必须具备什么条件? 2、此方程组能否直接用加减法消元?
用加减法解方程组:
2x 3y 12 ① 3x 4y 17 ②
解:
①×3得 6x+9y=36 ③ ②×2得 6x+8y=34 ④
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/272021/8/272021/8/272021/8/278/27/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月27日星期五2021/8/272021/8/272021/8/27 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/272021/8/272021/8/278/27/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/272021/8/27August 27, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/272021/8/272021/8/272021/8/27
7 2
y 1
谢谢观看
二元一次方程组的解法(3)
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程组的主要步骤是什么?
1.变
用含有一个未知数的代数式
表示另一个未知数
2.代
消去一个元

沪科版七年级数学上册二元一次方程组及其解法课件(共18张)

沪科版七年级数学上册二元一次方程组及其解法课件(共18张)
3x-2y=9 ②
解:
①×2,得:
4x+6y=38

②×3,得:
9x-6y=27 ④
加减法消元时,先 要把相同未知数的系数 化 把x=5代入①,得:
y=3 ∴原方程组的解是 x=5
y=3
课堂小结
用加减法解二元一次方程组的步骤:
(1).利用等式性质把一个或两个方程的两边都 乘以适当的数,变换两个方程的某一个未知数 的系数,使其绝对值相等;
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
解得 t = 0.5 所以这个方程组的解是
t 0.5 u
(2)
a 2b 3 a 3b 4
① ②
解:②-①, 得 b=1
把b= 1 代入①得 a+2×1=3
解得
a= 1
a 1 所以这个方程组的解是 b 1
例1、用加减法解二元一次方程组
利用相反数相加消去一个未知数
① 左边 +左边 ② = ①右边 + ② 右边
5x+6y +(5x-6y)=81 + 9
10x=90 把x=9代入① y=6
X=9,
{5x +6y =81 ① 5x -6y =9 ②
再视察上面方程组中方程(1)与方程(2),又可以发 现什么?
利用相同数相减消去一个未知数
(2).把变换系数后的两个方程的两边分别相加或相 减,消去一个未知数,得一元一次方程;
(3).解这个一元一次方程,求得一个未知数的值 ;
(4).把所求的这个未知的值代入方程组中较为简 便的一个方程,求出另一个未知数,从而得到方 程的解 .
1、 用加减法解下列方程时,你认为先消哪个未知

沪科版七上数学二元一次方程教学课件

沪科版七上数学二元一次方程教学课件

总结
知1-讲
在含有字母参数的方程中,如果指明它是二元一次 方程,那么它必定隐含两个条件:(1)含未知数的项的次 数都是1;(2)两个未知数的系数都不为0.根据这两个条 件,可分别得到关于这个字母参数的方程或不等式(下章 将学到),由此可求得这个字母参数的值或取值范围.
总结
知1-讲
易错警示: 由次数为1求字母参数的值时,若未知数的系数 含有这个字母参数,则需代入进行检验看其系 数是否不为0.
当x=4时,y=0.
所以原方程的非负整数解为
x=0,
y=6 或
x=2,
y=3

x=4,
y=0.
总结
知2-讲
求二元一次方程的整数解的方法: (1)变形:把x看成常数,把方程变形为用x表示y的情势; (2)划界:根据方程的解都是整数的特点,确定x的取值
范围; (3)试值:在x的取值范围内逐一试值; (4)确定:根据试值结果得到二元一次方程的整数解.
④x2+y=3; ⑤
x =3 y-1;
y
⑥ax2+2x+3y=0
4
(a=0),其中,二元一次方程有( C )
A.1 个
B.2 个
C.3个
D.4个
知1-讲
导引:①含未知数的项xy的次数是2;③不是整式方程; ④含未知数的项x2,y中,x2的次数不是1.只有②⑤⑥ 是二元一次方程.其中⑥已指明a=0,所以ax2=0, 则方程化简后为2x+3y=0.
知3-讲
(1)用含x的式子表示y;
(2)用含y的式子24时x的值;
(4)写出方程的两个解.
解:(1)y=12-3x.
知3-讲
(2) x=4- 1 y. 3
(3)当x=2时,y的值为6;当y=24时,x的值为-4.

数学二元一次方程组的应用PPT课件(沪科版)

数学二元一次方程组的应用PPT课件(沪科版)
分析:篮球队数 + 排球队数 = 48
篮球运动员 + 排球运动员 = 520
练习2
200元
160元
根据图中提供的信息,求出每支网球拍的单价为多少 元?每支乒乓球拍的单价为多少元?
分析: 两支网球拍的价钱 + 一支乒乓球拍的价钱=200
一支网球拍的价钱 + 两支乒乓球拍的价钱=160
练习3
某蔬菜公司收购某种蔬菜140吨,准备加工后 上市销售。该公司的加工能力是:每天可以 精加工6吨或者粗加工16吨。现计划用15天完 成加工任务,该公司应安排几天粗加工,几 天精加工,才能按期完成任务?
作业: 课本112页:习题3.4第1、5题.
分析:
1、该队共进行比赛多少场,有没有输?
没有
2、若假设胜利了x场,则平多少场?
11-x

3、胜利一场得3分,胜利x场得了多少分?
3x
4、平一场得1分,平局共得多少分?
11-x
5、你找到等量关系了吗? 胜利得分 3x + 平局得分(11-x)= 总分27
新知探究
【例1】某市举行中学生足球赛,规定胜利一场得3分,平一 场得1分。市第二中学足球队比赛11场,没有输过一场,一 共得27分。问该队胜几场,平几场?
分析:精加工的天数+粗加工的天数=15天
精加工的蔬菜+粗加工的蔬菜=140吨
小结
1、对于含有两个未知数的应用题一般 用二元一次方程组求解。
2、列二元一次方程组解题的关键是寻 找等量关系
3、列二元一次方程组解应用题的 关键步骤:
审题 设两个未知数 找出两个等量关系式 列出两个方程
得出方程组 解方程组 答
分析(方法二): 若假设胜利了x场,平局为y场,你能找到两个等量关系, 列出二元一次方程组吗?

数学沪科七年级上册3.3 二元一次方程组及其解法【课件】 (共22张PPT)

数学沪科七年级上册3.3 二元一次方程组及其解法【课件】 (共22张PPT)

将第一个方程中的 x用 2y+6 表示,再代入第二个方程,得到一个关于 y
的一元一次方程.
问题:这个方程组的两个方程中未知数前的系数有什么特征?还有什么方法
能将方程组转化为一个一元二元一次方程组.
问题:这个方程组的两个方程中未知数前的系数有什么特征?还有什么方法
二元一次方程组.
课堂总结 问题:通过这节课的学习,你有哪些收获? 3. 代入消元法解二元一次方程组的步骤: ①把其中一个方程变形成用含有一个未知数的代数式表示另一个未知数的形式; ②代入另一个方程,消元变成一元一次方程,求出未知数的解;
③把未知数的解回代,求出另一个未知数的解.
课堂总结 问题:通过这节课的学习,你有哪些收获? 4. 加减消元法解二元一次方程组的步骤: ①变形,使某个未知数的系数相等或互为相反数; ②加减消元;
③解一元一次方程;
④代入得另一个未知数的值,从而得方程组的解.
巩固练习
巩固练习
课堂总结 问题:通过这节课的学习,你有哪些收获? 1. 二元一次方程的概念: 含有两个未知数的一次方程叫做二元一次方程. 2. 二元一次方程组的概念: 方程组中含有两个未知数,且含未知数的项的次数都是一次的方程组,叫做
做代入消元法,简称代入法.
问题:你能总结一下代入消元法解二元一次方程组的步骤吗?
①把其中一个方程变形成用含有一个未知数的代数式表示另一个未知数的形
式; ②代入另一个方程,消元变成一元一次方程,求出未知数的解; ③把未知数的解回代,求出另一个未知数的解.
探究新知 4. 利用加减消元法解二元一次方程组.
… …
22 23
24
25
… …
y


12.5 12 11.5 11

沪科版七上《二元一次方程组及其解》PPT课件

沪科版七上《二元一次方程组及其解》PPT课件

整合方法
(2)xy==28,是方程组的解吗?小李预定的小组 赛和淘汰赛的球票分别为多少张?
解:xy==28,是方程组的解.小李预定的小组 赛的球票为 8 张,淘汰赛的球票为 2 张.
探究培优
13.甲、乙两人共同解关于 x,y 的方程组
a4xx+ -5byy= =-15①2②,,解完以后有下面一段对话,请认真
夯实基础
10.已知二元一次方程组53xx+ +42yy= =59, ,① ②下面说法正 确的是( ) A.同时适合方程①和方程②的 x,y 的值是方 程组的解 B.适合方程①的 x,y 的值是方程组的解 C.适合方程②的 x,y 的值是方程组的解 D.适合方程①或方程②的 x,y 的值,一定是 方程组的解
1. 你真让人感动,老师喜欢你的敢想、敢说、敢问和敢辩,希望你继续保持下去。 2. 这么难的题你能回答得很完整,真是了不起!你是我们班的小爱因斯坦。 3. 你预习的可真全面,自主学习的能力很强,课下把你的学习方法介绍给同学们,好不好? 4. 哎呀. 通过你的发言,老师觉得你不仅认真听,而且积极动脑思考了,加油哇! 四、提醒类
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类
x+y=3 A.z+x=5
x+y=5 B.y2=4
x+y=3 C.xy=2
x=y+11 D.x2-2x=y+x2
夯实基础
2.下列不.属.于.二元一次方程组的是( D )
x+y=3 A.x-y=1

沪科初中数学七年级上册《3.3二元一次方程组及其解法》PPT课件 (5)

沪科初中数学七年级上册《3.3二元一次方程组及其解法》PPT课件 (5)
最新初中数学精品课件设计
例题分析
例1、解方程组 ������+������=60 30%������+60%������=10%×60
解:方程可变形为 ������+������=60 ① ������+2������ =20② 由②−①,得
y=−40 把y=−40代入①,得
x+(−40)=60 ∴ x=100 所以,方程组的解为 ������=100 ������=−40
最新初中数学精品课件设计
例题分析
例2、解方程组 2 ������−150 =5(3������+50) 10%������+6%������=8.5%×800
解:原方程可变形为 2������−15������=550① 5������+3������=3400② 由①+②×5,得 27x=17550 ∴ x=650 把x=650代入②,得 5×650+3y=3400 ∴ y=50 所以,原方程组的解为 ������=650 ������=50
----加减消元法(3)
最新初中数学精品课件设计
知识回顾
1、运用代入消元法、加减消元法的步骤是怎样的? 2、运用所学的消元法解下列方程
(1) 3������−2������=11 4������−5������=6 (2) ������−2������=5 2������+3������=7 3、若 |������+2������+3|+(2������−������+1) 2 =0,则x=____, y=_____
最新初中数学精品课件设计
思考探究
如何运用所学解方程组 ������−2 2 = ������+3 3 =5

七年级沪科版数学上册第3章教学课件:3.3二元一次方程组及其解法(共16张PPT)

七年级沪科版数学上册第3章教学课件:3.3二元一次方程组及其解法(共16张PPT)
你还能找到其他 x 、 y 值适合方程x + y = 8吗? 这样的x和y组合多吗?
适合一个二元一次方程的一组未知数的值,
叫做这个二元一次方程的一个解.
x = 6,
如x=6,y=2是方程x+y=8的一个解,记作
y = 2.
同样,
x = 5, 也是方程x+y=8的一个解 .
y= 3
二、新课讲解
想一想
3.3 二元一次方 程组及其解法
一、新课引入
谁的包裹多?
累死我 了!
哼!我从你背上 拿来1个,我的包 裹数就是你的2倍!
你还累?这么大 的个,才比我多
驮了2个.
真的?!
它们各驮 了多少包 裹呢?
一、新课引入
解:设老牛驮了x个包裹,小马驮了y个包裹.根据题意 得到方程:
x-y=2 和 x+1=2(y-1)
例:暴风雨即将来临, 一群蚂蚁正忙着搬家.其中有
大蚂蚁和小蚂蚁,已知大小蚂蚁总共有100只,小蚂蚁 一次只能搬一粒食物,大蚂蚁一次能搬两粒,一场忙 碌过后,洞里的160粒食物刚好一次被安全转移,求大 小蚂蚁各有几只? 解:设小蚂蚁有x只,大蚂蚁有y只,根据题意得到方程:
x+y=100 和 x+2y=160
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/72021/9/72021/9/72021/9/79/7/2021 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月7日星期二2021/9/72021/9/72021/9/7 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/72021/9/72021/9/79/7/2021 16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/72021/9/7September 7, 2021 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/72021/9/72021/9/72021/9/7

沪科版数学七年级上册复习二元一次方程组及其解法精品PPT

沪科版数学七年级上册复习二元一次方程组及其解法精品PPT
3.3二元一次方程组及其解法
(复习)
关于定义
1、二元一次方程:
含有两个未知数,未知项的次数是1,且等式两 边都是整式(分母不含未知数)的方程。
2、二元一次方程组:
由两个一次方程组成的含两个未知数的方程组。
3、二元一次方程的解:
使二元一次方程两边相等的两个未知数的取值叫 做二元一次方程的解。
4、二元一次方程组的解:
y=-2.5
把y=-2.5代入(1)得
3x+2×(-2.5)=4
3x=9
x=3
x=3 ∴ y=-2.5是原方程的解
沪科版数学七年级上册复习二元一次 方程组 及其解 法精品 课件
沪科版数学七年级上册复习二元一次 方程组 及其解 法精品 课件
1.解二元一次方程组的基本思路是 消元 .
2.用加减法解方程组{ 2x-5y=7①由①与②
解,只有把它们组合在一起,才是二元一次方
程 x + y = -5的一个解.
沪科版数学七年级上册复习二元一次 方程组 及其解 法精品 课件
沪科版数学七年级上册复习二元一次 方程组 及其解 法精品 课件
x 2,
1、已知
y
3
是方程3x-3y=m和5x+y=n的公共
解,则m2-3n= 246.
沪科版数学七年级上册复习二元一次 方程组 及其解 法精品 课件
下列是二元一次方程组的是 (B )
1 x
+
y
=3
(A)
2x+y =0
3x -1 =0
(B) 2y =5
x + y = 7
(C) 3y + z= 4
5x2 - y = -2
(D) 3y + x = 4

沪科版初一数学上册《3.3.2 二元一次方程组及其解》课件

沪科版初一数学上册《3.3.2  二元一次方程组及其解》课件

A.-4
B.4
C.-2
D.2
(来自《典中点》)
知3-讲
知识点
3
建立二元一次方程组的模型
例4
已知方程(k+2)x+(k-6)y=k+8(其中x,y 为未知数,k为常数). (1)当k为何值时,方程为一元一次方程? (2)当k为何值时,方程为二元一次方程?
知3-讲
k+2=0, 导引:(1)由一元一次方程的定义可知,当 k-6 0 k+2 0, 或 时,原方程是一元一次方程; k-6=0 k+2 0, (2)由二元一次方程的定义知,当 k-6 0
(来自《点拨》)
知2-讲
例3
甲、乙两人共同解关于x,y的方程组
ax+5 y=15, ① 甲看错了方程①中的a, 4 x-by=-2.②
x=-3, 得到方程组的解为 乙看错了方 y=-1; x=5, 程②中的b,得到方程组的解为 y=4.
1 2 014 试计算 a + - b 10
A.1个 C.3个 B.2个 D.4个
知1-讲
导引:①方程组中第一个方程含未知数的项xy的 次数不是1;②方程组中第二个方程不是
整式方程;③方程组中共有3个未知数.只
有④⑤满足二元一次方程组的定义,其中 ⑤中的π是常数.
(来自《点拨》)
知1-讲
总 结
判断一个方程组是否为二元一次方程组的方法:
一看方程组中的方程是否都是整式方程;二看方程 组中是不是只含两个未知数;三看含未知数的项的 次数是不是都为1. 注意:有时还需将方程化简后再看.
知1-练
2 (中考·凉山州)下列方程组中,是二元一次方程 组的是( )
xy=1 A. x+y=2

二元一次方程组及其解法第1课时PPT课件(沪科版)

二元一次方程组及其解法第1课时PPT课件(沪科版)
你会用已经学过的一元 一次方程解决这个问题吗?
解:设胜x场,则负(22-x)场,根据题意得方程 2x+(22-x) ×1=40。 这是_一元一_次方程.
解得 x=18。 22-18=4(场)。
答:这个队胜18场,只负4场.
你会了吗?
分析
篮球联赛中,每场比赛都要分出胜负, 每队胜1场得2分,负1场得1分。某队为了争 取较好名次,想在全部22场比赛中得到40 分,那么这个队胜负场数应分别是多少?
沪科版七年级上册
3.3第1课时 二元一次方程组
某班同学在植树节时植樟树和白杨树共45棵。已 知樟树苗每棵2元,白杨树苗每棵1元,购买这些树 苗用了60元。问樟树苗、白杨苗各买了多少棵?
分析:
棵树
樟树 X棵
花费
2x元
白杨 (45–x)棵 (45–x)元
购买樟树的花费+购买白杨的花费=总花费. 2x+ (45–x)= 60. 解得x =15. 所以45-x=30.
所以樟树买了15棵,白杨买了30棵.
分析: 樟树
白杨
棵数
x
+y
= 45.
花费 2x + y
= 60.
{ 列出方程组: x + y = 45; 2x + y = 60.
这里的x、y同时满足两个关系, 因此我们可以把它们加上括号 联列在一起
问题
篮球联赛中,每场比赛都要分出胜负, 每队胜1场得2分,负1场得1分。某队为了争 取较好名次,想在全部22场比赛中得到40 分,那么这个队胜负场数应分别是多少?
3.含未知数的式子是( 整式 )
含有两个未知数的1次方 程叫做二元一次方程。
注意:方程两边都是整式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程,则a, b须满足条件( )
(A )a0, b1(B)a1 , b1
(C )a2, b1(D )a0, b1
2、下列方程中是二元一次方程的是( B )
次数是2
分母中含有未知数
(A)2x1=1 (B)xy2(xy)
(C)3xy1 (D) 1 y 2 x
x y 15
那么什么是二元一次方程组的解呢?
共识: 二元一次方程组的解必须同时满足方程组中的 两个方程.即:既是方程①又是方程②的解.
定义:二元一次方程组的两个方程的公共解 叫做二元一次方程组的解.
比如:从方案一,我们知道,x=23,y=12使
方程组中每一个方程成立.所以我们把x=23
,y=12叫做 x y 35 的解
x 11

y

4
定义1:使二元一次方程两边的值相等的
两个未知数的值,叫做二元一次方程的解.
记作: x a

y

b
定义2 :二元一次方程组的两个方程的公共解,
叫做二元一次方程组的解.
如 方 程 组 2 xx y4 y1 538的 解 是 x y 1 4 1
例2 求二元一次方程3x+2y=19的 正整数解.
3.下列各对数值中,
(A ) x y 2 0(B ) x y 2 2(C ) x y 1 0 ( D ) x y 1 1
(1)是二元一次方程 x2y 2 的解的是(ABC )
(2)是方程组
如 : x1, y14; x1.5, y13.5; x1.7, y13.3; x2, y13… …



x y

1 14
一个二元一次方程有无数多个解.
x y 15 ①

2
x

4
y

38

满足方程 x y 15 方①程,且组符的合解问题是实什际么意义?的
3.3 二元一次方程组及其解
今有鸡兔同笼, 上有一十五头, 下有三十八足, 问鸡兔各几何?
一解元:你一设能次鸡利方有用程以x的只前知学识过来的解
决这2 个x问+4 题(1 吗5?-x)38
鸡兔同笼
解:设笼内有鸡 x 只,兔子 y 只,
“上有一十五头”,列出方程为 “下有三十八足”,列出方程为
xy15

11 4
答:笼中共有11只鸡,4只兔子.
练一练
1、方程2x+3y=8的解 ( )
A、只有一个
B、只有两个
C、只有三个
D、有无数个
2、下列4组数值中,哪些是二元一次方程组
解?( )

2 x
x
y
y
4
5的
x 2
A

y

6
B

x y

3 1
x 3
C

2x 4 y 38
把具有相同未知数的两个二元一次方程合在一起,
就组成了一个二元一次方程组
抢答:请判断下列各方程组中,哪些是二元一次
方 程组,哪些不是?并说明理由.
x y 3
不是(1)

x2

y

7
x z 4
不(2是) x 2 y 8
不 3是 xx
x 2y

y


x
2
的解的是(
B

4.
已知


x y

1
2
mx 2y
是二元一次方程组

3
x

y

n
6
的解,求 m,n的值.
解:把xy12代入二元一次方程组得
2x 4y 94
记为: xy

23 12
注意:二元一次方程组的解是成对出现的,
用大括号来连接,表示“且”.
今有鸡兔同笼,上有一十五头, 下有三十八足,问鸡兔各几何?
解:设笼内有鸡 x 只,兔子 y 只,则
x y 15 2 x 4 y 38


x

y
y

1
D

x y

3 1
练一练
3、下列属于二元一次方程组的是 ( )
A
x

3

y 5

4
B
3

x

5 y

4
x y 0
x y 0
x y 5
C

x
2

y2

4、方程组
3x 5x
A
x 1

y

1
x
B

y
1
2y 4y
2x4y38
x y 15 2x 4 y 38
含有两个未知数,并且含有未知数的项的
次上数面都所是1列的方方程程叫有做二什元么一共次方同程点?
特点:1、含有两个未知数
2、含有未知数的项的次数都是1
你还能举出其它的二元一次方程吗?
1、若关于x,y的方程 ax yb 1 是二元一次
2x+2y=20
(3)甲、乙两人各工作5天,共生产零件80件.
设甲每天生产零件x件,乙每天生产零件y件.
5x+5y=80
2.若方程 x2m15y3n27 是二元一次方程,
则 m= 1 ,n= 1 .
例1
(1)方程(a+2)x +(b-1)y = 3是二 元一次方程,试求a、b的取值范围.
(2)方程x∣a∣ – 1+(a-2)y = 2是二元一 次方程,试求a的值.
1


1
5 1
D

y


1 2
x
x y 1
的解是(
C
x

y

2 1 2
2
D

x y

1 3 2
1.根据下列语句, 列出二元一次方程:
(1)甲数比乙数大3.设甲数为x,乙数为y. x- y =3
(2)一个长方形的周长是20cm. 设这个长方形的长是xcm,宽是ycm.
x, y的值有哪些 ?请将下表补充完整.
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
y 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
满足方程 2x4y38 ②,且符合问题实际意义的
x, y的值有哪些 ?请将下表补充完整.
x 1 3 5 7 9 11 13 15 17 19 y 9 87 6 54 3 2 1 0
y
2
2 y

5
x y 5
(4)


x

y

4
x 3 y
(5
)

1
不是 x
+y

2
x 2 0
(否6 )

y

3
你 能 每一写 对x出 ,y的使 值二 都是元 方程一 x+次 y=15方 程 xy15 成 立 的 的x 解, ,共y的 有无值 数多吗 对?
相关文档
最新文档