野生桃金娘主要抗氧化成分及其抗氧化能力
预浸泡对桃金娘果汁中抗氧化物质和抗氧化活性的影响
Ef f e c t o f pr e -s o a ki n g o n t h e a n t i o x i da nt c o mp o u nd s
a n d a n t i o x i d a n t a c t i v i t y o f Hi l l Go o s e b e r r y ( R. T o me n t o s a ) j u i c e
制 。 因此不 同的 预 浸 泡 方 式影 响 桃 金娘 果 汁 P P O和 P O D 的酶 活 , 而抗 氧 化 物 质 和 抗 氧化 活性 的稳 定 性 与 P P O和 P O D
的 活性 负相 关。
关 键词 : 桃 金娘 果 汁 , 预 浸泡, 抗氧 化 物 质 , 多 酚氧 化 酶 , 过 氧 化 酶
摘 要: 本研 究将 桃 金娘 整 果 分 别浸 泡 在 不 同温 度 的 水 、 盐酸 、 柠檬 酸、 抗坏血 酸和亚硫 酸氢钠溶液 中 1 0 、 2 O 、 3 0 m i n , 分 析 不 同 处理 对 桃金 娘 果 汁 中 总 多酚 、 总花 青 素 、 总黄 酮 和 抗 氧 化 活性 的影 响 。 结 果 表 明 , 在4 0 - 6 0℃ 水 中浸 泡 总黄酮含量和抗氧化活性显著降低 , 然而在 8 0℃热 水和 1 % 盐酸 中预 浸泡可保持或增加
抗 氧化 物含 量 。 柠檬 酸 、 抗 坏 血 酸或 N a H S O 溶 液 能 降 低 抗 氧 化 物 质 的 损 失 程 度 。 同 时研 究 了桃 金 娘 中多 酚 氧 化 酶 ( P P O ) 和过 氧化 酶 ( P O D) 在不 同 p H 和 温 度 下 的稳 定性 。 温度 达 到 1 0 0 o C、 p H 小 于 2时 P P O和 P O D活 性 才被 完 全抑
标准桃金娘油
标准桃金娘油
桃金娘,又名金鸡菊,是一种常见的观赏植物,其花语为“幸福、忠诚、友爱”,深受人们喜爱。
而桃金娘油则是由桃金娘花提取的一种天然植物油,具有多种功效和用途。
本文将介绍标准桃金娘油的相关信息,包括其功效、用途和使用方法等。
首先,桃金娘油具有很高的营养价值。
它富含维生素E、维生素A和不饱和脂
肪酸等多种营养成分,对皮肤有很好的滋养和保湿作用。
同时,桃金娘油还具有抗氧化和抗炎的功效,能够帮助修复受损皮肤,减轻皮肤干燥和发炎等问题。
其次,桃金娘油在美容护肤方面有着广泛的应用。
它可以用来制作面部护肤品,如面霜、精华液等,能够改善肌肤干燥、细纹和暗沉等问题,使肌肤更加细腻光滑。
此外,桃金娘油还可以用于头发护理,能够滋润头发,修复发丝损伤,使头发更加柔顺有光泽。
此外,桃金娘油还具有一定的药用价值。
它在中医传统中被用于治疗皮肤疾病,如湿疹、疮疖等。
桃金娘油还具有抗菌和消炎的作用,可以帮助缓解皮肤炎症,促进伤口愈合。
在使用桃金娘油时,可以将其直接涂抹于皮肤上,也可以将其加入到护肤品中
一起使用。
对于头发护理,可以将桃金娘油均匀涂抹于湿发上,然后用毛巾包裹保持一段时间,再用清水洗净即可。
需要注意的是,使用桃金娘油时应避免过量使用,以免造成油腻感。
总的来说,桃金娘油是一种非常优秀的植物油,具有丰富的营养成分和多种功效,适合用于美容护肤和药用保健。
在选择桃金娘油时,建议选购标准桃金娘油,以确保产品的品质和纯度。
希望本文所介绍的内容能够帮助您更好地了解和使用桃金娘油,让您在护肤美容和健康保养中获得更好的效果。
桃金娘的根功效与作用
桃金娘的根功效与作用桃金娘(学名:Prunus persica)是一种常绿落叶乔木,属于蔷薇科蔷薇亚科桃属。
它是一种非常受欢迎的水果树,被广泛栽培于全球许多地区。
桃金娘的根部是其重要的一部分,不仅可以用作种植材料,还具有许多药用价值。
桃金娘的根具有多种功效和作用,下面将对其进行详细介绍。
1. 清热解毒:桃金娘根具有清热解毒的作用,可以治疗火热内盛的症状,如热毒痈肿、口腔溃疡、喉咙痛等。
桃金娘根中含有丰富的黄酮类化合物和单宁酸,这些物质具有抗菌和抗炎作用,可以抑制病原微生物的生长繁殖,减轻炎症症状。
2. 利尿消肿:桃金娘根具有利尿消肿的功效,可以帮助排除体内多余的水分和废物,减轻水肿和浮肿的症状。
桃金娘根中含有丰富的营养素,如维生素C、钾等,这些物质可以促进尿液的排出,改善肾脏功能。
3. 平肝息风:桃金娘根具有平肝息风的作用,可以缓解肝风上扰的症状,如头晕、头痛、眩晕等。
桃金娘根中含有多种活性成分,如黄酮类化合物和维生素B族等,这些物质可以调节神经系统的功能,改善头部血液循环,减少风症的发生。
4. 润肠通便:桃金娘根具有润肠通便的功效,可以缓解便秘和排便困难的症状。
桃金娘根中富含纤维素和多种天然类胆碱,这些物质可以增加肠道蠕动,促进粪便的排出,减少便秘的发生。
5. 抗氧化抗衰老:桃金娘根富含抗氧化物质,如维生素C、维生素E和多酚类化合物等,这些物质可以中和自由基,预防氧化应激的产生,从而延缓细胞的老化和衰老过程。
桃金娘根还可以促进皮肤的新陈代谢,提高皮肤弹性,使皮肤保持年轻和健康。
6. 护肝养肝:桃金娘根具有护肝养肝的作用,可以减轻肝脏负担,促进肝细胞的再生和修复。
桃金娘根中的黄酮类物质和单宁酸可以增加肝脏解毒酶的活性,减少毒素对肝脏的损害,保护肝脏健康。
7. 强壮身体:桃金娘根中富含多种营养物质,如维生素B族、维生素C、钙、铁等,这些物质可以增强机体的抵抗力,提高身体的免疫力。
桃金娘根还可以促进血液循环,增加氧气和营养物质的供应,改善机体的代谢功能。
桃金娘花青素的抗氧化能力就和主要花色苷的鉴定
Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.)and identification of the major anthocyaninsChun Cui a ,Shaomin Zhang a ,Lijun You a ,Jiaoyan Ren a ,Wei Luo b ,Wenfen Chen a ,Mouming Zhao a ,⇑a College of Light Industry and Food,South China University of Technology,Guangzhou 510640,China bAnalysis and Testing Center,South China University of Technology,Guangzhou 510640,Chinaa r t i c l e i n f o Article history:Received 30October 2012Received in revised form 5January 2013Accepted 28January 2013Available online 10February 2013Keywords:Rhodomyrtus tomentosa AnthocyaninsAntioxidant activity Cyanidin-3-O-glucosidea b s t r a c tThe anthocyanins in the fruits of Rhodomyrtus tomentosa (ACN)were extracted by 1%TFA in methanol,and then purified by X-5resin column and C 18(SPE)cartridges.The purified anthocyanin extract (ART)from the fruits of R.tomentosa showed strong antioxidant activities,including DPPH radical-scavenging capacity,ABTS radical scavenging capacity,reducing power and oxygen radical absorbance capacity (ORAC).The purified anthocyanin extract was analyzed by high performance liquid chromatography (HPLC).The major anthocyanins were purified by semi-preparative HPLC and Sephadex LH-20column chromatography,and were identified as cyanidin-3-O-glucoside,peonidin-3-O-glucoside,malvidin-3-O-glucoside,petunidin-3-O-glucoside,delphinidin-3-O-glucoside and pelargonidin-3-glucoside by HPLC–ESI/MS and nuclear magnetic resonance spectroscopy (NMR).Cyanidin-3-O-glucoside was consid-ered as the most abundant anthocyanin,which was 29.4mg/100g dry weight of R.tomentosa fruits.Addi-tionally,all the major anthocyanins were identified from R.tomentosa fruit for the first time.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionRhodomyrtus tomentosa (Ait.)Hassk,a member of the Myrtaceae family,commonly known as rose myrtle,is an abundant evergreen shrub native to southeast Asia,with rose-pink flowers and dark-purple edible bell-shaped fruits (Amporn,Tony,&John,2005).The stem,leaf,fruits of the whole plant can be used as medical materials.The R.tomentosa fruit possesses excellent pharmacolog-ical properties,including antibacterial activity against Gram-posi-tive bacteria,such as Streptococcus pyogenes and Escherichia coli (Dachriyanus et al.,2002;Surasak &Supayang,2008).R.tomentosa fruit is widely distributed in south China;its bright purplish-red colour is due to anthocyanins.Anthocyanins,an important group of water-soluble pigments in natural products,are widely spread in flowers,fruits and leaves.They usually link with sugar moieties and constitute flavonoids,attracting more and more attention due to their usage as natural food additives and excellent functional properties for human health (Kaliora,Dedoussis,&Schmidt,2006;Li,Wang,Guo,&Wang,2011).On the basis of their structural characteristics,anthocyanins possess various biological activities,including antioxidant (Cerezo,Cuevas,Winterhalter,Garcia-Parrilla,&Troncoso,2010),anticancer (Wang &Stoner,2008),anti-inflammatory (Greenspan et al.,2005),anti-artery atherosclerosis,anti-hypertensive (Pinent et al.,2004)and antibacterial activities (Lacombe,Wu,Tyler,&Edwards,2010).In recent decades,the antioxidant activities of anthocyanin and its working mechanism have attracted growing global interest.As re-ported,anthocyanin might play its protective role through the working system of H atom transfer,single electron transfer and metal chelation (Monica,Nino,&Marirosa,2011).However,to our knowledge,the information regarding the antioxidant capacity and major anthocyanins of R.tomentosa is limited.The objectives of the present study were to extract and purify the anthocyanins from the fruit of R.tomentosa and to evaluate their antioxidant capacity.The major anthocyanins were further isolated by semi-preparative HPLC and column chromatography,and identified by HPLC–ESI–MS and NMR spectroscopy.2.Materials and methods 2.1.Plant materialThe wild-grown mature fruits of R.tomentosa (Ait.)Hassk were collected in Shanwei,Guangdong Province,China,in August (Fig.1),freeze-dried after being washed with clean sterile water,and then stored at À20°C prior to extraction.2.2.Chemicals2,20-Azobis (2-methylpropionamidine)dihydrochloride (AAPH),2,2-diphenyl-1-picrylhydrazyl (DPPH),2,20-azino-bis (3-ethylbenz-thiazoline-6-sulphonic acid)(ABTS),6-hydroxy-2,5,7,8-tetra-methyl-2-chromanecarboxylic acid (trolox),sodium fluorescein,0308-8146/$-see front matter Ó2013Elsevier Ltd.All rights reserved./10.1016/j.foodchem.2013.01.107Corresponding author.Tel./fax:+862087113914.E-mail address:femmzhao@ (M.Zhao).30,60-dihydroxyspiro[isobenzofuran-1[3H],90[9H]-xanthen]-3-one (FL),ascorbic acid,CF3COOD and CD3OD were purchased from Sig-ma Chemical Co.(St.Louis,MO,USA).X-5resins were obtained from Haiguang Chemical Co.Ltd.,(Tianjin,China).Sephadex LH-20was purchased from Pharmacia Fine Chemicals Co.(Uppsala,Sweden) and Sep-Pak cartridges were purchased from Waters Co.,(Milford, Bedford,MA,USA).All the solvents for HPLC analysis were of HPLC grade.All the other chemicals used were of analytical grade.2.3.Extraction of anthocyaninsFree-dried sample(300g)was macerated with1000ml of TFA (trifluoroacetic acid):methanol(1:99;v/v)for48h in the dark at room temperature,and the remaining residues were extracted by 400ml of the extract solvent to extract anthocyanin.The superna-tants were obtained by centrifugation(8000g,15min)in a GL-21M refrigerated centrifuge(Xiangyi Instrument Co.Ltd.,Changsha,Chi-na)andfiltration.Finally,the acidic methanol extracts were com-bined and evaporated,using a rotary evaporator(RE-52AA, Yarong Instrument Factory,Shanghai,China)at40°C.2.4.Purification of anthocyaninsThe concentrated crude extract was purified by partition(sev-eral times)against ethylacetate and chloroform to remove non-po-lar compounds.The partial purified aqueous(10ml each time) phase was then subjected to a X-5resin column(1.6Â40cm)to remove free sugars,aliphatic acids and other water-soluble com-pounds by washing(several times)with the column volume of dis-tilled water.The adsorbed anthocyanins were eluted using methanol containing0.1%trifluoroacetic acid(TFA,v/v).The concentrated anthocyanin extract was further refined by solid phase extraction(SPE)in C18cartridges(Sep pak,Waters). The aqueous extract of anthocyanin was passed through a sorbent C-18Sep-Pak cartridge(Waters Associates,Milford,MA)previously activated with acidified methanol(0.01%HCl v/v)and equilibrated with water.The extract adsorbed onto the cartridge was rinsed with ultra-pure water to remove water-soluble impurities,and then eluted with acidified methanol(0.01%HCl,v/v).The acidified methanol solution was evaporated under vacuum,redissolved in water,and lyophilized(R2L-100KPS,Kyowa Vacuum Engineering, Tokyo,Japan).The dry fraction was dissolved with deionized water. Samples werefiltered through a0.45l mfilter before analysis. 2.5.Isolation and identification of the main anthocyanins from the purified extract2.5.1.IsolationThe purified extract,containing the major anthocyanin-derived pigments,was isolated by semi-preparative HPLC,using a Waters X-bridge reversed-phase C18column(5l m,10Â150mm,i.d.)at 35°C with aflow rate of 4.5ml/min and was monitored at 520nm.The solvents were(A),water/formic acid(98:2),and(B), formic acid/methanol(2:98),with the following gradient:10–15%B over5min,15–18%B over5min,18–23%B over20min, from23%to25%B over10min.and then each fraction was further chromatographed on a Sephadex LH-20column(1.0Â60cm), eluting with a mixture of methanol/water/trifluoroacetic acid at a ratio of20:79.5:0.5to obtain compounds1–6,respectively.2.5.2.Molecular weight determinationA MS system(Esquire HCT PLUS,Phenomenex,Torrance,CA, USA),equipped with a Hewlett–Packard1100series liquid chroma-tography system,was used to determine the molecular weight of each compound.One hundred microlitres of sample solution (100l g/ml)was injected into the MS system.Mass spectra in the positive-ion mode were generated under the following conditions: HV capillary=2800V;HV end plate offset=À500V;nebulizer pressure=10psi;dry temperature=300°C;dry gas=5.00l/min; m/z range=100–1000.A reversed-phase column(250Â4.6mm, 5l m,C18),thermostatted at35°C,was used for separation;sol-vents were(A)aqueous0.1%trifluoroacetic acid,and(B)100%ace-tonitrile,establishing the gradient as described in2.10.2.5.3.NMR identificationThe NMR results were obtained at400MHz and100MHz for1H and13C,respectively,on a Bruker AVANCE Spectrometer(Bruker DRX400,Bruker Biospin Co.,Karlsruhe,Germany)in the solvent, CF3COOD–CD3OD(5:95;v/v);coupling constants were expressed in Hertz,and chemical shifts were given on a d(ppm)scale with TMS(tetramethylsilane)or solvent signals as an internal standard.2.6.Determination of total anthocyanin content(TAC)TAC was determined according to the pH differential method by Kim,Jeong,and Lee(2003).Absorbance was measured at520and 700nm in buffers at pH1.0and4.5,using A=[(A520ÀA700)pH1.0-À(A520ÀA700)pH 4.5]and expressed as mg of cyanidin-3-glycoside (molar extinction coefficient of26,900and molecular weight of 449.2)equivalents per100g of dry fruit weight.TAC was calcu-lated using the following equation.Data were reported as means±standard deviation of triplicate determinations.TACðmg=100gÞ¼AÂMWÂDFÂ1eÂLÂVMÂ100ð1Þwhere A is absorbance,e is cyanidin-3-O-glucoside molar absor-bance(26,900),L is the cell pathlength(1cm),MW is the molecular weight of cyanidin-3-glucoside(449.2Da),DF is the dilution factor, V is thefinal volume(ml),and M is the dry weight(mg). Fig.1.The fruit andflower of Rhodomyrtus tomentosa(Ait.)Hassk collected in Guangdong province.2.7.DPPH radical-scavenging activity assayDPPH radical-scavenging activity was measured according to the method of Wu,Chen,and Shiau(2003)with a slight modifica-tion.Aliquots(2.0ml)of0(control),2,4,6,8,10,12,20and30l g/ ml of anthocyanin extract(ART)dissolved in distilled water were added to2.0ml of0.2mM DPPHÅthat was dissolved in95%etha-nol.The mixture was then shaken vigorously using a mixer(QT-1 Mixer,Tianchen Technological Co.Ltd.,Shanghai,China).The reac-tion mixture was incubated for30min at30°C in the dark.The absorbance of the resulting solution was recorded at517nm by a spectrophotometer(UV2100,Unico Instrument Co.,Ltd.,Shanghai, China).The scavenging activity was calculated using the following equation:Scavenging activityð%Þ¼ðA DPPHÅsampleÀA sample controlÞÂ100=A DPPHÅblankð2Þwhere A DPPHÅsample=absorance of2ml of sample solution+DPPH solution;A sample control=absorance of2ml of sample solution+2ml of95%ethanol;and A DPPHÅblank=absorbance of2ml of95%etha-nol+DPPHÅsolution.Ascorbic acid was used as the reference.IC50 value(l g compound mlÀ1),the concentration of extract that was required to scavenge50%of radicals,was calculated.2.8.AbtsÅ+radical cation-scavenging activity assayABTS radical cation-scavenging activity of anthocyanins was determined as described by Wang and Xiong(2005)with a slight modification.The ABTSÅ+solution was prepared withfinal concen-trations of7mM ABTSÅ+and2.45mM potassium persulfate.The solution was incubated for16h at room temperature in the dark until the reaction was completed.Prior to the assay,the absor-bance of the ABTSÅ+solution at734nm was adjusted to 0.70±0.02by dilution with0.2M sodium phosphate-buffered sal-ine(pH7.4).Then40l l of ART(30,50,80,100,120,160,200l g/ ml)were added to4ml of diluted ABTSÅ+solution.The mixture was shaken vigorously for30s and allowed to stand in the dark for6min.An equivalent volume of distilled water,instead of the sample,was used for the blank.The absorbance of the resultant solution was measured at734nm.A standard curve was obtained by using trolox standard solution at various concentrations(0.4, 0.8,1.2,1.6,2.0,2.4mM)with ethanol.The standard curve was prepared by reacting40l l of trolox(0.4,0.8, 1.2, 1.6, 2.0, 2.4mM)with4ml of diluted ABTSÅ+solution.The degree of ABTS radical-scavenging activity of anthocyanins was calculated,based on the trolox standard curve,and was expressed in terms of mg trolox equivalents(TE)/mg anthocyanin.2.9.Reducing power assayThe reducing power of anthocyanins was determined according to the method of Oyaizu(1988)with a slight modification.ART were dissolved in distilled water to obtain various concentrations (10,20,40,60,80,100l g/ml)for analysis.Sample solution (1ml)was mixed with2.5ml of sodium phosphate buffer(0.2M, pH6.6)and2.5ml of1%(w/v)potassium ferricyanide.The mixture was incubated at50°C for20min.Then,2.5ml of10%trichloro-acetic acid were added.After centrifugating at1000g for10min, 2.5ml of the supernatant were collected and mixed with2.5ml of distilled water and0.4ml of0.1%(w/v)ferric chloride in a test tube.After incubation at room temperature for10min,the absor-bance was measured at700nm.Distilled water,instead of the sample,was used as the blank.The reducing power of ascorbic acid was also assayed for comparison.Decreased absorbance,at 700nm,of the reaction mixture indicated decreased reducing capacity.The concentration of the test sample needed to raise the absorbance at700nm to0.5was evaluated.2.10.ORAC assayThe peroxyl radical-scavenging activity of ART was measured according to the method of You,Zhao,and Liu(2011).2.11.HPLC analysis of purified anthocyanin extractHPLC analyses were performed using a Waters600pump (Waters,Milford,MA)equipped with a Waters2998photodiode array detector at520nm.Separation was performed with a Waters C18column(5l m,250mmÂ4.6mm,i.d.)at30°C.Elution was carried out by using a gradient procedure with a mobile phase con-taining solvent A(0.1%TFA in water)and solvent B(acetonitrile)as follows:0–5min,10–15%B;5–10min,15–18%B;10–20min,18–20%B;20–25min,20–23%B;25–30min,23–10%B;40–45min; 10%B(Paola-Naranjo,JoséSánchez-Sánchez,&González-Paramás, 2004).The solventflow rate was1.0ml/min,and the injection vol-ume was20l l.2.12.Statistical analysisThe total anthocyanin content was measured in triplicate and data represent mean values±standard deviation(n=3).Samples were analyzed in triplicate and one-way analysis of variance per-formed using SPSS11.5(SPSS Inc.,Chicago,IL,USA).Significant dif-ferences were detected at P<0.05.3.Results and discussion3.1.Total anthocyanin contentThe total anthocyanin content of the purified R.tomentosa ex-tract,determined by the pH differential method,was 62.8±1.2mg/100g of freeze-dried weight of R.tomentosa fruits, expressed as cyanidin-3-O-glucoside and reported as the average of three determinations.Cyanidin-3-O-glucoside was the major anthocyanin detected in large amount(47%),followed by peoni-din-3-O-glucoside(34%)and malvidin-3-O-glucoside(8%).3.2.Antioxidant activity3.2.1.Radical-scavenging activityDPPH and ABTS radical-scavenging activities of the purified anthocyanin extracted from R.tomentosa and ascorbic acid control are shown in Table1and Fig.2,respectively.As shown in Fig.2A,the purified anthocyanin extract showed strong DPPH radical-scavenging activity in a dose-dependent man-ner,and exhibited good DPPH radical-scavenging activity at the concentration of2l g/ml and it almost completely inhibited DPPH radicals(>90%)at a concentration of20l g/ml.The IC50value of DPPH radical-scavenging activity was6.27±0.25l g/ml(Table1). Furthermore,DPPH radical-scavenging activity was linearly corre-lated(positive)with the concentrations of anthocyanin extracts from0to10l g/ml,while ascorbic acid exhibited the activity from 2to30l g/ml,respectively.ABTSÅ+is often used for in vitro determination of free radical activity and the relative ability to scavenge the ABTSÅ+radical has been compared with the standard trolox.Fig.2B shows a steady in-crease in ABTS radical-scavenging capacity,up to a concentration of0.20mg/ml,that is equivalent to1.32mg/ml of trolox.The IC50 value of ABTS radical-scavenging activity was90.3±1.52l g/ml.It is noteworthy that both DPPH and ABTS radical-scavenging activities of the tested extract were higher than those of V CC.Cui et al./Food Chemistry139(2013)1–83(IC50=6.27±0.25l g/ml,206±2.37l g/ml)which is always con-sidered as an excellent tool for determining the antioxidant activ-ity of hydrogen-donating antioxidants and of chain breaking antioxidants.3.2.2.Reducing power activityReducing power is often used as an indicator of electron-donat-ing activity,which is an important mechanism for testing antioxida-tive action of phenolics.The reducing powers of ART and ascorbic acid control are shown in Table1and Fig.2C,respectively.As shown in Fig.2C,the tested ART extract exhibited high reducing power in a dose-dependent manner,but showed a slightly weaker ability com-pared with those of ascorbic acid.The value,raising the absorbance at700nm to0.5,of reducing power was51.7±0.74l g/ml(Table1). Furthermore,the reducing power was linearly correlated(positive) with the concentrations of anthocyanin extracts and ascorbic acid from0to0.08mg/ml.The corresponding correlation coefficients were0.996for anthocyanin extracts(Y=7.591X+0.107)and 0.995for ascorbic acid(Y=15.17X+0.026),respectively.3.2.3.ORAC capacity testThe ORAC assay is the only antioxidant test that combines both inhibition time and degree of inhibition into a single quantity.The assay uses a biologically relevant radical source,and is also an assay where an added antioxidant competes with a substrate(fluores-cein)for the radicals generated by thermal decomposition of azo compounds,like AAPH,and inhibits or retards substrate oxidation (Walton,Lentle,Reynolds,Kruger,&Mcghie,2006).As mentioned in2.9,final ORAC values were expressed as l mol of trolox equiva-lents(TE)/mg of ART,and a higher ORAC value indicated stronger antioxidant activity.As shown in Table1,The ORAC value of the tested ART extract was9.29±0.08l mol TE/mg,which was signifi-cantly higher than that of ascorbic acid(1.79±0.03l mol TE/mg). The result indicated that ART exhibited very good antioxidant activity.3.3.HPLC analysisUnder the optimital HPLC separation condition,a satisfactory separation of the purified anthocyanin extract of R.tomentosa was obtained and the HPLC chromatogram is shown in Fig.3A.The Major anthocyanins represented about99%of the total peak area with regard to the UV–Vis spectrum taken on-line during HPLC and chromatographic features.However,other minor peaks were also detected which had percentage areas of less than1%. No UV absorbance maxima in the310–320nm range were de-tected,indicating no acylation of anthocyanins with aromatic acids (Giusti&Jing,2001).3.4.Identification of compoundsThe detailed MS data,including retention times,molecular ion peaks,MS2fragments and percent area at520nm,of all anthocya-nins are summarized in Table2.Fig.4shows the electrospray mass spectrum and the structures of the isolated anthocyanins.Two major peaks,peak2and peak5(P2,P5)were obtained as amorphous red powder.As shown in Table2,P2and P5showed peaks at449m/z and463m/z from ESI–MS,which were in accor-dance with the mass calculated for C21H21O11(449.1)and C22H23O11(463),on the basis of the MS2detected mass fragments at m/z287and m/z301related to the loss of one hexose ([MÀ162]+)molecule,respectively,and the UV–Vis spectrum of the two compounds showed the visible k max to be516nm withTable1Antioxidant activities of anthocyanins(ART)extracted from Rhodomyrtus tomentosa and ascorbic acid using the DPPHÅassay,ABTSÅ+assay,reducing power assay and ORAC test.Samples IC50/DPPHÅ(l g/ml)A IC50/TEAC(l g/ml)B A700nm=0.5/reducing power(l g/ml)C ORAC value(l mol TE/mg)ART 6.27±0.25b90.3±1.52b51.7±0.74a9.29±0.08aAscorbic acid17.4±0.31a206±2.37a31.3±0.93b 1.79±0.03bAll the trials were performed in triplicate(n=3)and all the data represent the means±standard deviation(n>3).Data in the same column with different letters are significantly different(P<0.05).A The antioxidant activity was calculated as the concentration of the test sample needed to decrease the absorbance at517nm by50%.B The antioxidant activity was evaluated as the concentration of the test sample required to decrease the absorbance at734nm by50%.C The antioxidant activity was evaluated as the concentration of the test sample needed to raise the absorbance at700nm to0.5.4 C.Cui et al./Food Chemistry139(2013)1–8the ratio of A 440nm /A k max exceeding 0.20,corresponding to cyani-din-3-O-glucoside and peonidin-3-O-glucoside (Cerezo et al.,2010;Zhang,Xue,Yang,Ji,&Jiang,2004).The NMR data of P2and P5were as follows:Peak 2(P2):1H NMR (CF 3COOD–CD 3OD):d 6.64(1H,d,J =1.2Hz,H-6),d 6.86(1H,d,J =1.2Hz,H-8),8.22(1H,dd,J =8.8,2.2Hz,H-60),8.02(1H,d,J =2.2Hz,H-20),7.04(1H,d,J =8.8Hz,H-50),8.98(1H,s,H-4);5.31(1H,d,J =7.8Hz,H-1glc),3.69(1H,m,H-2glc),3.56(2H,m,H-3,5glc),3.46(1H,m,H-4glc),3.73(1H,dd,J =12.2,5.6Hz,H-6b glc),3.96(1H,dd,J =12.2,2.2Hz,H-6a glc).13C NMR (CF 3COOD–CD 3OD):d 164.5(C-2),145.8(C-3),137.2(C-4),159.6(C-5),103.7(C-6),170.8(C-7),95.4(C-8),157.9(C-9),113.6(C-10),121.5(C-10),118.7(C-20),147.6(C-30),156.0(C-40),117.7(C-50),128.4(C-60),104.1(C-1glc),75.0(C-2glc),78.3(C-3glc),71.3(C-4glc),79.0(C-5glc),62.6(C-6glc).Peak 5(P5):1H NMR (CF 3COOD–CD 3OD):d 6.64(1H,d,J =1.2Hz,H-6),6.88(1H,d,J =1.2Hz,H-8),7.02(1H,d,J =8.4Hz,H-50),8.21(1H,dd,J =8.4,2.0Hz,H-60),8.16(1H,d,J =2.0Hz,H-20),8.99(1H,s,H-4),3.99(3H,s,OCH 3);5.31(1H,d,J =8.0Hz,H-1glc), 3.65(1H,m,H-2glc),3.56(2H,m,H-3,5glc),3.46(1H,m,H-4glc),3.73(1H,dd,J =12.0,4.0Hz,H-6b glc),3.94(1H,dd,J =12.0,2.0Hz,H-6a glc).13C NMR (CF 3COOD–CD 3OD):d 163.2(C-2),144.7(C-3),136.5(C-4),158.5(C-5),103.1(C-6),170.6(C-7),94.5(C-8),157.0(C-9),112.8(C-10),120.3(C-10),114.5(C-20),148.7(C-30),155.7(C-40),116.8(C-50),128.1(C-60),103.5(C-1glc),75.1(C-2glc),78.5(C-3glc),71.1(C-4glc),78.8(C-5glc),62.5(C-6glc),57.0(OCH 3).The 1H NMR spectra of P2showed the presence of two meta-coupled doublet (J =1.2Hz)protons on the A-ring at d 6.64and 6.86ppm,which were assigned to H-6and H-8,respectively.Two sets of doublet and one set of double doublet of an ABM sys-tem at d 7.04(1H,d,J =8.8Hz),8.22(1H,dd,J =8.8, 2.2Hz),8.02ppm (1H,d,J =2.2Hz)were observed which were characteris-tic of H-50,H-60and H-20,respectively.The ring C was a flavanone moiety.The proton signal at d 3.46–5.31(H-1-glc–H-6-glc)showed a D -glucopyranose moiety which was assigned as -configuration based on the large proton-coupling constants of its anomeric proton d 5.31ppm (1H,d,J =7.8Hz,H-10)(Byamukama,Kiremire,showing the six anthocyanin profiles of Rhodomyrtus tomentosa extract monitored at 520nm.(Table 2isolated from the fruits of Rhodomyrtus tomentosa .Table 2LC–MS characteristics of anthocyanins separated from Rhodomyrtus tomentosa :retention time,wavelengths of maximum absorption (k max ),molecular ion,fragmentation pattern and tentative identification.Peak no.Elution time (min)Peak area (%)(520nm)k max (nm)Molecular ion [M +],m /z a Mass loss (M+H +)–MS 2m /z MS 2of [M +],m /z b Peak assignment Contents (mg/100g dry fruits)111.75 3.35523/277465À162302.9Delphinidin-3-O-glucoside2.07±0.03213.2047.27516/280449/286.9À162286.9Cyanidin-3-O-glucoside29.4±0.39313.73 5.42526/277479/316.9À162316.9Petunidin-3-O-glucoside3.51±0.14414.780.85516/281433/271.0À162271.0,415.1Pelargonidin-3-O-glucoside0.49±0.05515.4634.22506/279463/300.9À162300.9Peonidin-3-O-glucoside21.3±0.33615.908.86527/277493/331.0À162331.0Malvidin-3-O-glucoside5.69±0.16a,bThe fragment ions are shown in order of their relative abundance.Andersen,&Steigen,2005).The cross peak at d 5.31/145.8(H-1glc/C-3)in the HMBC spectrum of P2indicated that the sugar moiety was attached to C-3,which was confirmed by Zarena and Sankar (2012).Based on the above results and literature (Lee &Choung,2011),P2was identified as cyanidin-3-O-glucopyranoside.Comparing the 1H and 13C NMR spectra of P5with those of P2,its spectral features were closely similar to those of P2,except for the excess of the three-proton signal at d 3.99(3H,s)in the 1H NMR spectra and one carbon signal at d 57.0in the 13C NMR spectra,which was due to a methyl group attached to oxygen.Further sup-port for this structure was obtained by the mass spectrum of P5displaying a [M]+ion peak at m /z 463,corresponding to the excess of an methylene moiety (14mass units)from P2([M]+).Based on the above evidence,the structure of P5,which differed from P2by a methyl group attached to the H-30position instead of a hydro-xyl group attached to the H-30position on the B ring entity,was de-duced to be peonidin-3-O-glucoside and the chemical structure of P2was further confirmed by comparison of the NMR and MS data with the literature (Fossen,Slimestad,Øvstedal,&Andersen,2002).Peak 1(P1):amorphous red powder;ESI–MS m /z 465;1H NMR (CF 3COOD–CD 3OD):d 6.66(1H,d,J =1.2Hz,H-6), 6.87(1H,d,J =1.2Hz,H-8),7.74(2H,d,J =2.2Hz,H-20,60),8.93(1H,s,H-4);5.34(1H,d,J =7.8Hz,H-1glc),3.73(1H,m,H-2glc),3.60(2H,m,H-3,5glc),3.51(1H,m,H-4glc),3.79(1H,dd,J =12.2,5.4Hz,H-6b glc), 3.94(1H,dd,J =12.2, 2.0Hz,H-6a glc).13C NMR (CF 3COOD–CD 3OD):d 164.2(C-2),144.6(C-3),136.8(C-4),159.4(C-5),103.1(C-6),170.8(C-7),95.4(C-8),157.8(C-9),113.0(C-10),121.5(C-10),113.7(C-20),147.6(C-30),146.0(C-40),147.9Electrospray mass spectrum of identified anthocyanins.Peak 1:delphinidin-3-O-glucoside;peak 2:cyanidin-3-O-glucoside;peak 3:petunidin-3-O-glucoside;pelargonidin-3-O-glucoside;peak 5:peonidin-3-O-glucoside;peak 6:malvidin-3-O-glucoside.(C-50),113.4(C-60),103.5(C-1glc),74.8(C-2glc),78.0(C-3glc),71.2 (C-4glc),78.8(C-5glc),62.3(C-6glc).The MS analysis of P1(t R=11.75min)showed an[M]+ion at m/ z465and a major fragmentation in MS2at m/z303(À162amu) which would correspond to the monoglucoside of delphinidin(Cer-ezo et al.,2010),The UV–Vis spectrum of this compound showed the visible k max to be523nm;the ratio of absorbance at440nm to the absorbance at visible maximum wavelength(A440nm/A k max ratio)for peak1was found to be0.28,indicating that the com-pound is delphinidin-3-O-glucoside(Longo&Vasapollo,2006).The1H NMR spectra of P1showed the presence of two meta-coupled doublet(J=1.2Hz)protons on the A-ring at d6.66and 6.87ppm,which were assigned to H-6and H-8,respectively.One set of doublets of an AM system at d7.74(2H,d,J=2.2Hz)was ob-served which was characteristic of H-20and60.The analysis of the NMR spectral data also revealed only a single glucose moiety with a proton signal at d5.34(1H,d,J=7.8Hz)coupled with the C-3 aglycone at144.6ppm,indicating a D-glucopyranose moiety with a b-configuration attached to the C-3position.Thus the structure of P1was elucidated to be delphinidin-3-O-glucoside and was in agreement with the report of Pazmiño-Durán,Giusti,Wrolstad, and Glória(2001).Peak3(P3):amorphous purple powder;ESI–MS m/z479;1H NMR(CF3COOD–CD3OD):d6.64(1H,d,J=1.2Hz,H-6),6.89(1H, d,J=1.2Hz,H-8),7.74(1H,d,J=2.2Hz,H-60),7.90(1H,d, J=2.2Hz,H-20),8.97(1H,s,H-4),3.99(3H,s,OCH3);5.33(1H,d, J=8.0Hz,H-1glc),3.69(1H,dd,m,H-2glc),3.57(2H,m,H-3,5 glc),3.42(1H,m,H-4glc),3.74(1H,dd,J=12.2,5.6Hz,H-6b glc),3.92(1H,dd,J=12.2,2.0Hz,H-6a glc).13C NMR(CF3COOD–CD3OD):d162.9(C-2),145.0(C-3),135.6(C-4),158.9(C-5),103.4 (C-6),170.6(C-7),95.5(C-8),157.1(C-9),113.3(C-10),119.7(C-10),109.6(C-20),149.5(C-30),146.0(C-40),147.7(C-50),113.0(C-60),103.5(C-1glc),74.5(C-2glc),78.0(C-3glc),71.0(C-4glc), 78.2(C-5glc),62.6(C-6glc),57.5(OCH3).The ESI–MS spectrum of peak3(t R=13.73min)was character-ized by an ion signal at m/z479with an MS2fragment at m/z 317([MÀ162]+)coinciding with the molecular formula C22H23O12 of petunidin aglycone linked with a glucose moiety(Lin,Harnly, Pastor-Corrales,&Luthria,2008).The UV–Vis spectrum of pigment 3,taken on-line during HPLC,showed a visible maximum at 526nm.Comparing the1H and13C NMR spectra of P3with those of P1, its spectral features were closely similar to those of P1,except for the excess of the three-proton signal at d3.99(3H,s)in1H NMR spectra and one carbon signal at d57.5in13C NMR spectra due to a methyl group attached to the H-30position instead of a hydro-xyl group attached to the H-30position on the B ring entity.By comparison with previous research data(Lee et al.,2009),P3was assigned as petunidin-3-O-glucoside.Peak4(P4):amorphous red powder;ESI–MS m/z433;1H NMR (CF3COOD–CD3OD):d6.67(1H,d,J=1.2Hz,H-6),6.94(1H,d, J=1.2Hz,H-8),7.05(2H,d,J=8.8Hz,H-30,50),8.60(2H,d, J=8.8Hz,H-20,60),9.08(1H,s,H-4), 5.34(1H,d,J=8.0Hz,H-1 glc),3.68(1H,m,H-2glc),3.54(2H,m,H-3,5glc),3.42(1H,m, H-4glc),3.80(1H,dd,J=12.2,6.0Hz,H-6b glc),4.04(1H,dd, J=12.2, 2.0Hz,H-6a glc).13C NMR(CF3COOD–CD3OD):d164.8 (C-2),145.8(C-3),137.4(C-4),159.9(C-5),103.7(C-6),170.9(C-7),95.5(C-8),158.1(C-9),114.5(C-10),121.5(C-10),136.8(C-20), 118.6(C-30),166.0(C-40),118.7(C-50),136.4(C-60),104.1(C-1 glc),75.3(C-2glc),78.5(C-3glc),71.3(C-4glc),79.0(C-5glc), 62.6(C-6glc).The molecular ion[M]+at m/z433received from the ESI–MS analysis of P4(t R=15.46min)confirmed the molecular formula, C21H21O10,for glucoside derivatives of pelargonidin aglycone.The fragment ion[M+HÀ162]+at m/z271was consistent with the structure of pelargonidin with a loss of glucose moiety from pelargonidin-3-O-glucoside(Hong&Wrolstad,1990).The UV–Vis spectrum of this compound showed the visible k max at506nm.The1H NMR and13C NMR spectra suggested that P4contained a flavanone moiety;the proton signals at d6.67(1H,d,J=1.2Hz)and 6.94(1H,d,J=1.2Hz)implied the presence of two meta-coupled doublet protons on the A-ring which were assigned to H-6and H-8,respectively.Two sets of doublets of an AB system at d7.05 (2H,d,J=8.8Hz)and8.60(2H,d,J=8.8Hz)were observed,which were characteristic of H-30,H-50and H-20,H-60,respectively.As P2, the large coupling constants(J=8Hz)for the anomeric protons (d5.34,1H,d,J=8.0Hz,H-1glc)confirmed the presence of a b-D-glucosidic linkage in P4.By comparison with the literature,P4 was further confirmed as pelargonidin-3-O-glucoside(Pedersen, Andersen,Aksnes,&Nerdal,1993).Peak6(P6):amorphous dark red powder;ESI–MS m/z493;1H NMR(CF3COOD–CD3OD):d6.74(1H,d,J=1.9Hz,H-6),7.06(1H, d,J=1.9Hz,H-8),7.96(2H,d,J=2.2Hz,H-20,60),8.96(1H,s,H-4), 3.90(6H,s,2ÂCH3);5.37(1H,d,J=7.8Hz,H-1glc),3.64(1H,m, H-2glc),3.74(1H,m,H-3glc),3.79(1H,m,H-5glc),3.43(1H, m,H-4glc),3.51(1H,dd,J=12.4,4.8Hz,H-6b glc),3.96(1H,dd, J=12.4, 2.2Hz,H-6a glc).13C NMR(CF3COOD–CD3OD):d163.0 (C-2),145.0(C-3),136.2(C-4),158.9(C-5),103.1(C-6),170.5(C-7),95.1(C-8),157.4(C-9),112.9(C-10),120.0(C-10),110.5(C-20), 149.1(C-30),146.7(C-40),149.2(C-50),111.0(C-60),103.8(C-1 glc),74.6(C-2glc),78.0(C-3glc),70.9(C-4glc),77.8(C-5glc), 67.3(C-6glc),57.3(2ÂOCH3).The last peak in the chromatogram was peak6,with the MS and MS2profiles from ESI–MS spectra showing strong ion peaks at m/z 493and331for peak6(t R=15.91min)coinciding with the molec-ular ion of malvidin-3-O-glucoside with a loss of a glucose moiety (Li et al.,2011).Based on the spectrum data and comparing with previously reported data(Alcalde-Eon,Escribano-Bailón,Santos-Buelga,&Rivas-Gonzalo,2006),P6was identified as malvidin-3-O-glucoside.As shown in Fig.3A,there are six principal anthocyanin peaks, and two major peaks(peak2and peak5)with concentrations of 47%(29.4±0.39mg/100g)and34%(21.3±0.33mg/100g)of the total peak area with retention times of13.20and15.46min,respec-tively,(Table2).The elution times of the other four peaks with the concentration of3.35%(peak1,2.07±0.03mg/100g),5.42%(peak 3, 3.51±0.14mg/100g),0.85%(peak4,0.49±0.05mg/100g), 8.86%(peak6,5.69±0.16mg/100g)were11.75(peak1),13.73 (peak3),14.78(peak4),15.90(peak6)min.Thefinal structures of the six compounds isolated and identified are shown in Fig.3B.Based on the available literature,there have been only a few re-ports in previous studies regarding the extraction and preliminary qualitative research of the anthocyanins in R.tomentosa fruits.This is thefirst time that all the major anthocyanins were systemati-cally isolated and identified from R.tomentosa fruits.4.ConclusionsThe total anthocyanin content of the purified R.tomentosa(Ait.) Hassk fruits extract was62.8±1.2mg/100g of freeze-dried weight of R.tomentosa fruits and it possessed excellent in vitro free radi-cal-scavenging activity.Pure anthocyanins were isolated and ana-lyzed by ESI–MS and NMR spectroscopy.The six anthocyanin structures characterized were delphinidin-3-O-glucoside,cyani-din-3-O-glucoside,petunidin-3-O-glucoside,pelargonidin-3-O-glucoside,peonidin-3-O-glucoside,and malvidin-3-O-glucoside. As a result,this study has systematically documented,for thefirst time,the presence of six anthocyanin derivatives from the tested extract.Fruits of R.tomentosa also contain important amounts of other phenolics,amino acids and ascorbic acid.These phytochemi-cals may partially explain the diverse bioactive properties of thisC.Cui et al./Food Chemistry139(2013)1–87。
桃金娘根的功能主治
桃金娘根的功能主治桃金娘根简介桃金娘(学名:Rehmannia glutinosa),中草药,主要生长在中国北方的河北、山西、内蒙古等地。
桃金娘是一种多年生草本植物,其根部富含多种有效成分,被广泛应用于中医药领域。
桃金娘根的功能桃金娘根具有多种功能主治作用,包括:1.补血滋阴:桃金娘根含有丰富的多糖、黄酮类等成分,具有滋阴养血的功效,可用于补血滋阴的药物配方中。
它是一种滋养肝、肾、脾的药物,可改善体内气血的不足状况,对于血虚引起的症状如面色苍白、失眠多梦等有一定的缓解效果。
2.调节免疫系统:桃金娘根所含的多糖和黄酮类化合物,具有显著的免疫调节作用,能够增强机体的免疫力,提高抵抗力,对于调节免疫系统功能有一定的改善效果。
3.改善肝脏功能:桃金娘根含有丰富的多种氨基酸和黄酮类成分,具有保护肝脏、促进肝脏细胞再生的作用,可以改善肝脏功能,保护肝脏健康。
4.抗衰老:桃金娘根所含的多种抗氧化成分,如黄酮类、维生素C等,具有抗氧化、抗衰老的作用,可以减缓细胞老化的过程,延缓身体的衰老。
5.清热解毒:桃金娘根可用于清热解毒的药物配方中,能够减轻热毒引起的炎症反应,有一定的抗炎、消肿、解毒的效果。
桃金娘根的应用桃金娘根可通过多种途径应用于中医药领域,包括:•中药煎剂:桃金娘根可制成中药煎剂,用于口服服用,补血滋阴、调节免疫系统等功效。
•药材炖品:桃金娘根可与其他药材一同制成炖品,如桃金娘根炖猪肚汤,具有补血滋阴、养胃、益肾等作用。
•复方制剂:桃金娘根作为一种重要的中药材,常被用于制作复方制剂,如桃金娘片、桃金娘颗粒等,方便患者服用。
•中药浴:桃金娘根可制成中药浴,用于泡浴,具有滋养皮肤、调节身体机能的作用。
注意事项•孕妇禁用:桃金娘根属于温补类药材,孕妇应慎用,避免影响胎儿发育。
•用量控制:使用桃金娘根时,需根据情况控制用量,遵医嘱使用,以免过量引起不良反应。
•过敏反应:个别人群对桃金娘根可能存在过敏反应,如出现过敏症状应及时停止使用。
标准桃金娘油副作用
标准桃金娘油副作用桃金娘油是一种常见的中草药,被广泛用于中医药和美容保健领域。
它具有清热解毒、消肿止痛、促进伤口愈合等功效,因此备受青睐。
然而,就像所有药物一样,桃金娘油也存在着一些副作用。
在使用桃金娘油的过程中,我们需要了解这些副作用,以便更好地保护自己的健康。
首先,桃金娘油可能会引起过敏反应。
一些人在使用桃金娘油后可能会出现皮肤红肿、瘙痒、甚至皮疹等过敏症状。
这是因为个体差异导致的,有些人对桃金娘油中的成分可能存在过敏反应。
因此,在使用桃金娘油之前,最好先进行皮肤敏感测试,以避免过敏反应的发生。
其次,长期大量使用桃金娘油可能会对肝脏造成损害。
桃金娘油中的一些成分可能对肝脏产生负担,长期大量使用可能会导致肝脏功能异常甚至损害。
因此,在使用桃金娘油时,需要注意控制使用量和使用频率,避免对肝脏造成不可逆的损害。
此外,桃金娘油还可能对消化系统产生刺激作用。
长期使用或者大量使用桃金娘油可能会导致胃肠道不适,出现恶心、呕吐、腹泻等症状。
对于消化系统较为脆弱的人群,更需要慎重使用桃金娘油,避免对消化系统造成不良影响。
最后,桃金娘油在一定程度上可能会影响药物代谢。
一些成分可能会影响肝脏中药物代谢酶的活性,从而影响其他药物的代谢和清除。
因此,在使用桃金娘油的同时,需要注意避免与其他药物同时使用,尤其是那些需要通过肝脏代谢的药物。
总的来说,桃金娘油作为一种中草药,具有明显的药理作用,但也存在一定的副作用。
在使用桃金娘油前,我们需要了解这些副作用,并在医生的指导下进行合理使用,以免对健康造成不良影响。
希望大家在使用桃金娘油时,能够注意这些副作用,保护好自己的健康。
标准桃金娘油胶囊
标准桃金娘油胶囊
桃金娘,又名金银花,是一种常见的中草药,具有清热解毒、抗病毒、抗菌等
功效。
桃金娘油胶囊是一种以桃金娘为主要原料提取制成的保健品,具有调节免疫、抗炎、抗感染等功能。
本文将对标准桃金娘油胶囊进行详细介绍,以便读者对其有更深入的了解。
桃金娘油胶囊的主要成分是桃金娘提取物,其中含有丰富的黄酮类、挥发油、
有机酸等活性成分。
这些成分具有抗氧化、抗炎、抗菌、抗病毒等作用,可以有效地增强人体免疫力,帮助人体抵抗各种疾病。
桃金娘油胶囊适用于各种炎症性疾病的辅助治疗,如感冒、咽喉炎、扁桃体炎等。
同时,它还具有抗病毒作用,可以用于辅助治疗流感、病毒性肝炎等疾病。
此外,桃金娘油胶囊还能够改善皮肤状况,减轻炎症反应,对于皮肤瘙痒、湿疹等有一定的辅助疗效。
在使用桃金娘油胶囊时,建议遵循医生或药师的建议,按照说明书上的用法用
量进行服用。
一般情况下,成人每次口服2粒,每日3次,饭后服用,连续服用7-10天为一个疗程。
对于儿童、孕妇、哺乳期妇女等特殊人群,应在医生的指导下
使用。
需要注意的是,桃金娘油胶囊属于保健品范畴,不能替代药物治疗。
在治疗疾
病时,应结合药物治疗,不宜单独使用。
另外,对于过敏体质者,使用桃金娘油胶囊前应进行敏感性测试,以免引发过敏反应。
总的来说,标准桃金娘油胶囊是一种具有抗炎、抗病毒、调节免疫等功能的保
健品,适用于各种炎症性疾病的辅助治疗。
在使用时,应按照说明书上的用法用量进行服用,并遵循医生或药师的建议。
希望本文能够帮助读者更好地了解桃金娘油胶囊,正确合理地使用这一保健品,从而达到更好的保健效果。
标准桃金娘油与切诺
标准桃金娘油与切诺
桃金娘油和切诺油都是常见的植物油,它们在烹饪和保养方面都有着广泛的用途。
标准桃金娘油和切诺油在成分和用途上有着一些差异,下面我们就来详细比较一下这两种植物油的特点。
首先,我们来看一下标准桃金娘油。
桃金娘油是由桃金娘果实榨取而成,它的
主要成分是油酸、亚油酸和硬脂酸。
这些成分富含不饱和脂肪酸,对人体健康有益。
桃金娘油的烟点较高,适合用于烹饪中的高温烹饪,如煎、炸等。
此外,桃金娘油还具有抗氧化和抗炎的功效,常常被用于美容保养中。
而切诺油则是由切诺果实榨取而成,它的主要成分是油酸、亚油酸和亚麻酸。
切诺油中富含的亚麻酸对心血管健康有益,有降低胆固醇、预防动脉硬化的作用。
切诺油的烟点较低,适合用于凉拌、蘸食等低温烹饪方式。
此外,切诺油还具有抗衰老和改善皮肤干燥的功效,常常被用于护肤保养中。
综上所述,标准桃金娘油和切诺油在成分和用途上有着一些差异。
桃金娘油适
合高温烹饪和美容保养,而切诺油适合低温烹饪和护肤保养。
在选择使用时,可以根据实际需求来进行合理的选择。
这两种植物油都具有丰富的营养成分和多种功效,可以在日常生活中发挥重要的作用。
希望本文对您有所帮助,谢谢阅读!。
丹红对股骨干骨折愈合的影响
丹红对股骨干骨折愈合的影响股骨干骨折是指股骨的骨折发生在股骨干部位,是一种常见的骨折类型。
股骨干骨折的愈合对患者的康复非常重要,而丹红是一种中草药,被广泛认为具有促进骨折愈合的作用。
本文将详细介绍丹红对股骨干骨折愈合的影响。
首先,我们来了解一下丹红的基本情况。
丹红,学名桃金娘,是一种传统的中草药,在中国已有几千年的历史。
丹红有着红色的花朵,通常用于中医药治疗方面。
它被认为具有活血化瘀、止血、消肿等药理作用,适用于骨折等创伤的恢复过程。
股骨干骨折的治疗过程通常包括保守治疗和手术治疗两种方式。
无论采用哪种治疗方式,创伤愈合是非常重要的环节。
而丹红被认为可以加速骨折的愈合过程,从而缩短患者的康复时间。
丹红的主要有效成分是丹参酮类化合物,具有抗炎、抗氧化、促进血液循环等作用。
这些作用对于股骨干骨折的愈合非常有益。
首先,抗炎作用可以减少骨折部位的炎症反应,从而减轻疼痛和肿胀。
其次,抗氧化作用可以减少自由基的损伤,保护细胞免受氧化应激的影响。
最后,促进血液循环作用可以增加骨折部位的血液供应,提高营养物质和修复细胞的输送效率。
实验证据也支持丹红对股骨干骨折愈合的影响。
一篇名为《丹参对股骨干骨折术后患者恢复的影响研究》的研究表明,与对照组相比,使用丹红治疗的患者恢复时间更短,骨折线愈合更好,且有更好的生活质量。
另外,还有一些临床试验表明,丹红可以减少股骨干骨折术后的感染风险,改善术后疼痛和肿胀。
虽然丹红被广泛认为对股骨干骨折的愈合有益,但任何治疗方法都有其局限性。
一方面,丹红可能对部分患者产生不良反应,包括过敏反应、胃肠道不适等。
另一方面,丹红的剂量和使用时间也需要谨慎掌握,过量使用可能导致药物不良反应。
因此,在使用丹红时,建议患者在医生的指导下进行,并根据个体情况进行调整和监测。
综上所述,丹红作为一种中草药,被认为具有促进股骨干骨折愈合的作用。
丹红的抗炎、抗氧化和促进血液循环的药理作用均有助于加速骨折的愈合过程。
园林新秀——桃金娘
园林新秀——桃金娘作者:韩飞黄小春来源:《现代园艺·综合版》2017年第10期摘要:桃金娘(Rhodomyrtus tomentosa(Ait.)Hassk.),其叶浓绿、花色艳丽、秋果累累,具有很高的观赏价值、食用价值以及药用价值。
从桃金娘的形态特征、生态学特性着手,介绍其利用价值、繁殖方式,为桃金娘的开发利用提供参考。
关键词:园林新秀;桃金娘桃金娘(Rhodomyrtus tomentosa(Ait.)Hassk.)为桃金娘科桃金娘属常绿灌木,别名山稔、乌肚子、桃舅娘等,盛产于我国南部和东南部。
桃金娘性耐贫瘠,适应性强,是低海拔自然植被的一个重要矮生灌木,其叶浓绿、花色艳丽、秋果累累,具有很高的观赏价值、食用价值以及药用价值。
本文从桃金娘的形态特征、生态学特性着手,介绍其利用价值、繁殖方式,为桃金娘的开发利用提供参考。
1形态特征桃金娘为矮小常绿灌木,高1~2m,叶对生,叶柄短,4~6mm,叶革质,椭圆形或倒卵形,长3~6cm,宽1.5~3cm,先端钝,基部楔形,表面深绿色,无毛,背面灰绿色,密披茸毛。
聚伞花序腋生,花1~3朵,直径约2cm,有红、粉红、白、玫瑰红色,状似梅花,漫山遍野,绚丽多彩。
幼枝常呈红色,密披柔毛。
结紫色浆果,浆果球形或卵形,布满枝头,直径可达1.4cm,顶上有宿存的萼片,状似乳头,味甜可食,花期5~7月,果期7~9月。
2生态学特性桃金娘主要分布于我国福建、广东、广西、江西、湖南等地自然生长在低海拔的红黄壤丘陵山地,通常零星或成片生长于山坡灌木丛中,花开时节成为野生的美丽自然景观,秋果佳美,深受人们喜爱。
3利用价值3.1园林价值桃金娘生长迅速,耐贫瘠,抗逆性强,株形紧凑,四季常青,花先白后红,红白相映,十分艳丽,甚为显目,引人入胜,花陆续开放,花期可达2个多月。
果色鲜红转为酱红,枝干韧性强,可以制作盆景,园林绿化中可用其丛植、片植或孤植点缀绿地,可收到较好的效果,是具有良好绿化美化效果的野生花卉,已逐渐被部分城市列入园林植物观赏花卉名录。
桃金娘的功效与作用
桃金娘的功效与作用
桃金娘,又称为桃花金吾,是一种中药材,具有多种功效和作用。
1. 温经散寒:桃金娘可温经散寒,对于寒凝经络、经脉不通的症状有一定的改善作用。
2. 活血化瘀:桃金娘有活血化瘀的作用,能够改善血液循环,促进组织修复和新陈代谢。
3. 抗菌消炎:桃金娘具有一定的抗菌消炎作用,可以用于治疗感染性疾病和炎症。
4. 调节内分泌:桃金娘对于女性内分泌的调节作用比较显著,可缓解痛经、月经不调等问题。
5. 改善肝脏功能:桃金娘可以促进肝脏的排毒功能,有助于改善肝脏健康,预防和治疗肝脏疾病。
6. 抗氧化:桃金娘中含有丰富的抗氧化物质,可以抑制自由基的生成,减少氧化损伤,对于抗衰老、保护细胞健康有一定效果。
总之,桃金娘作为一种中药材,具有温经散寒、活血化瘀、抗菌消炎、调节内分泌、改善肝脏功能和抗氧化等多种功效和作用,对多种病症有一定的预防和治疗作用。
桃金娘根的作用与功能主治
桃金娘根的作用与功能主治桃金娘根简介桃金娘(学名:Rehmannia glutinosa)是一种常见的草本植物,属于玄参科,又被称为狗牙参、Di Huang等。
桃金娘根是该植物的地下块茎,被广泛应用于中医药领域。
它是一种重要的中药材,对人体有多种作用与功能主治。
桃金娘根的作用桃金娘根具有以下几个方面的作用:1.补益作用:桃金娘根被认为是一种滋补品,可以补充机体需要的营养成分,同时增强人体的免疫力。
2.血液调节作用:桃金娘根对于血液循环有一定的调节作用,可以改善血液循环不畅导致的一些病症。
3.抗氧化作用:桃金娘根富含多种抗氧化物质,可以清除体内自由基,减缓衰老过程,起到抗衰老的作用。
4.抗炎作用:桃金娘根中的一些有效成分具有抗炎作用,可以减轻炎症反应,缓解一些炎症相关疾病的症状。
5.利尿作用:桃金娘根具有一定的利尿作用,可以促进尿液排出,有利于排除体内废物和毒素。
6.抗血栓作用:桃金娘根中的一些成分具有抗血栓作用,可以防止血栓的形成,减少心脑血管疾病的发生。
桃金娘根的功能主治桃金娘根的功能主治涵盖了多个方面的疾病和不适情况:1.肝肾阴虚:桃金娘根被广泛应用于中医治疗肝肾阴虚的病症,如头晕目眩、耳鸣健忘、腰膝酸软等。
它可以滋养肝肾,并有助于平衡阴阳。
2.糖尿病:桃金娘根被认为对糖尿病有一定的辅助治疗作用,可以调节血糖水平,减轻糖尿病引起的一些症状。
3.肾虚阳痿早泄:桃金娘根对于肾虚引起的阳痿早泄有一定的治疗效果。
它可以补益肾阳,增强性功能。
4.内分泌失调:桃金娘根对于女性内分泌失调引起的不适症状有一定的调节作用。
它可以缓解经期不调、月经量少等问题。
5.肢体麻木:桃金娘根被用于治疗肢体麻木的症状,具有活血化瘀的作用,可以改善血液循环,缓解麻木感。
6.皮肤病:桃金娘根中的一些有效成分对于一些皮肤病,如湿疹、疮疡等有一定的治疗效果。
它可以清热解毒,减轻皮肤炎症。
需要注意的是,桃金娘根作为草本药材,不同于传统药物,它的治疗效果可能需要食用一段时间才能显现,并且效果因个体差异而异,应根据具体情况和医生指导合理使用。
标准桃金娘油胶囊
标准桃金娘油胶囊桃金娘,又名月见草,是一种常见的草本植物,其种子被用来提取桃金娘油,具有多种保健功效。
标准桃金娘油胶囊是以优质桃金娘油为主要原料,经过科学配方和精细加工制成的保健品,具有多种营养成分,适合广大人群食用。
首先,桃金娘油胶囊富含丰富的亚油酸。
亚油酸是人体必需的脂肪酸,对维持细胞膜的完整性和柔韧性有重要作用,有助于维持人体正常的生理功能。
同时,亚油酸还能够调节血脂,降低胆固醇,对预防心血管疾病具有积极作用。
其次,桃金娘油胶囊含有丰富的γ-亚麻酸。
γ-亚麻酸是一种重要的多不饱和脂肪酸,对促进脑细胞的发育和保护脑细胞功能具有重要作用,有助于提高记忆力和学习能力。
此外,γ-亚麻酸还能够调节神经系统的功能,有助于缓解焦虑和抑郁情绪,对改善情绪和睡眠质量有一定的帮助。
再者,桃金娘油胶囊富含丰富的维生素E。
维生素E是一种重要的抗氧化物质,能够清除体内的自由基,延缓细胞的衰老,保护细胞膜的完整性,对预防衰老和维护皮肤健康具有重要作用。
此外,维生素E还能够促进血液循环,改善微循环,对预防动脉粥样硬化和心脑血管疾病有一定的作用。
最后,桃金娘油胶囊还含有丰富的植物固醇。
植物固醇是一种植物性的甾醇类物质,具有调节胆固醇代谢和降低血脂的作用,有助于预防心血管疾病和高血脂症。
此外,植物固醇还能够调节免疫系统的功能,增强机体的抵抗力,对提高免疫力有一定的帮助。
总之,标准桃金娘油胶囊是一种营养丰富、功能全面的保健品,具有多种保健功效,适合广大人群食用。
长期坚持食用桃金娘油胶囊,有助于维护人体的健康,提高免疫力,延缓衰老,是一种理想的保健品选择。
桃金娘开发及应用
桃金娘的培育及其开发利用摘要:桃金娘作为一种野生资源,在当今社会崇尚自然的时代,无论是从风景园林绿化、保健饮料的开发、果酒的制造、色素的提取,还是医学药物的开发来看,都为我们提供了广阔的开发前景。
但当前桃金娘本身的繁殖率低、无适合市场需要的改良品种关键词:桃金娘繁殖无籽化处理市场开发及应用桃金娘(Rhodomyrtus tomentosa)为桃金娘科桃金娘属,又名桃娘、棯子、山棯、仲尼等。
是桃金娘科桃金娘属在我国有天然分布的唯一一种,广泛分布于我国东南部、南部至西南部以及日本等地也有分布。
、、广西、分布较多,也较适合其生长。
多为野生灌木,主要生长在旷野或丘陵地灌丛中,为酸性土壤指示植物。
桃金娘耐干旱耐贫瘠,适应性强。
是华南地区荒山绿化水土保持的优良树种,也是重要的观赏、蜜源、药用和香料树种。
桃金娘的利用价值高,其有关桃金娘人工育种、品种改良、加工开发都有待提高。
本文从桃金娘的形态特征、生活习性入手,介绍桃金娘的繁殖及改良技术,探讨桃金娘在观赏、食用、药用等方面的开发利用价值及市场推广。
一、桃金娘的简介1、形态特征灌木,高1-2米;嫩枝有灰白色柔毛。
叶对生,革质,叶片椭圆形或倒卵形,长3-8厘米,宽1-4厘米,先端圆或钝,常微凹入,有时稍尖,基部阔楔形,上面初时有毛,以后变无毛,发亮,下面有灰色茸毛,离基三出脉,直达先端且相结合,边脉离边缘3-4毫米,中脉有侧脉4-6对,网脉明显;叶柄长4-7毫米。
花有长梗,常单生,紫红色,直径2-4厘米;萼管倒卵形,长6毫米,有灰茸毛,萼裂片5,近圆形,长4-6毫米,宿存;花瓣5,倒卵,形,长1.3-2厘米;雄蕊红色,长7-8毫米;子房下位,3室,花柱长1厘米。
浆果卵状壶形,长1.5-2厘米,宽1-1.5厘米,熟时紫黑色;种子每室2列。
花期4-5月。
2、生长习性2.1温度桃金娘原产于热带地区,喜欢高温高湿环境,因此对冬季温度的要求很严,当环境温度在10℃以下停止生长,在霜冻出现时不能安全越冬。
标准桃金娘油肠溶胶囊的药理作用
标准桃金娘油肠溶胶囊的药理作用下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documents can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!标准桃金娘油肠溶胶囊的药理作用。
桃金娘叶的化学成分研究
桃金娘叶的化学成分研究朱春福;刘洪新;贺峦;王建国;邱声祥【摘要】In order to understand the chemical constituents ofRhodomyrtus tomentosa(Ait.) Hassk., ten compounds were isolated from alcohol extract ofR. tomentosaleaves. On the basis of spectral data, they were identified as: lupeol (1), myricetin-3-O-α-L-rhamnoside (2), rhodomyrtone (3), 4,8,9,10-tetrahydroxy-2,3,7-trimethoxyanthracene-6-O-β-D-glucopyranoside (4), stigmasterol (5), kaempferol-3-O-α-L-furanoarabinoside (6), myricetin (7), 23-hydroxytormentic acid (8), 2α,3β,19α,23-tetrahydroxyurs-12-en-28-oic acid β-D-glucopyranosyl ester (9) and laricitrin (10). Compounds5–10 were obtained from this plant for the ifrst time. Compound3 showed antibacterial activity againstStaphylococcus aureus, Bacillus cereusandB. subtiliswith MIC=0.78 μg mL–1.%为了解桃金娘[Rhodomyrtustomentosa(Ait.) Hassk.]的化学成分,从其叶的醇提物中分离得到10个化合物,经波谱分析分别鉴定为羽扇豆醇(1)、杨梅素-3-O-α-L-鼠李糖苷(2)、rhodomyrtone (3)、4,8,9,10-四羟基-2,3,7-三甲氧基蒽醌-6-O-β-D-葡萄糖苷(4)、豆甾醇(5)、山奈酚-3-O-α-L-呋喃阿拉伯糖苷(6)、杨梅素(7)、23-羟基委陵菜酸(8)、2α,3β,19α,23-四羟基乌苏-12-烯-28-酸28-O-β-D-吡喃葡萄糖苷(9)和laricitrin (10)。
桃金娘及其盆栽技术
桃金娘及其盆栽技术作者:罗文扬来源:《现代农业科技》2018年第03期摘要桃金娘具有较高的营养价值、药用价值、生态价值和园林价值,盆栽可观花观果,成熟的鲜果可生食,风味独特,盆栽桃金娘具有广阔的市场前景。
本文介绍了桃金娘的形态特征及生长习性,分析了桃金娘的开发利用前景,并总结了桃金娘盆栽技术,包括盆栽营养土配制、盆栽用苗培育、盆栽管理和病虫害防治等,以期为桃金娘的栽培及应用提供参考。
关键词桃金娘;形态特征;生长习性;价值;盆栽技术中图分类号 S567.19 文献标识码 B 文章编号 1007-5739(2018)03-0153-02Abstract Rhodomyrtus tomentosa has many value,such as nutritional value,medicinal value,ecological value and garden value. Rhodomyrtus tomentosa potted has attractive flowers and fruits,and its ripe fruits can be eaten raw with unique flavor. Therefore,Rhodomyrtus tomentosa potted should have broad market prospect.This paper introduced morphological characteristics and growth habit of Rhodomyrtus tomentosa,development and utilization prospects of Rhodomyrtus tomentosa were analyzed. Potted cultivation techniques of Rhodomyrtus tomentosa were summarized,including potting nutrient soil preparation,seedling cultivation,management and pest control,so as to provide references for the application and cultivation of Rhodomyrtus tomentosa.Key words Rhodomyrtus tomentosa;morphological characteristic;growth habit;value;potted cultivation technique桃金娘(Rhodomyrtus tomentosa),灌木,高可达2 m,花期4—5月。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
食 子酸 ;对 三价铁 的还原能力相 当于2 8 . 7 g mo l 的抗坏血 酸和3 . 1 ̄ t mo l 没食子 酸 。野生 桃金娘 的总多酚含量和 总黄
p h e n o l i c s , t o al t l f a v o n o i d s ,a s c o r b i c a c i d c o n t e n t s , nd a nt a h o c y ni a n c o mp o s i t i o n . Ul t r a p e r f o m a r nc e l i q u i d c ro h ma t o g r a p h y
2 . Gu a n g d o n g S a s k a t c h e wa n Oi l s e e d s J o i n t La b o r a t o r y , J i n a n Un i v e r s i t y& Un i v e r s i t y o f S a s k a t c h e wa n, Gu ng a z h o u 5 1 0 6 3 2 , Ch i n a )
I T . MS )鉴 定花青素 类化合物 ,通过高通 量的 自由基清 除方 法测定抗 氧化能力 。结果表 明:野生桃金 娘具有较 高
的抗氧化能力 。每克桃金 娘的1 , 1 . 二 苯基 . 2 . 三硝基 苯肼 ( 1 , 1 . d i p h e n y 1 . 2 . p i c r y l h y d r a z y l ,D P P H) 自由基清 除能力相 当于6 7 . 2 I x mo l 的抗坏血 酸和2 8 . 5 ̄ t mo l 没食子酸 ;过氧化氢 自由基清 除能力 ( P S C单位 )相 当于2 3 . 2 ̄ t mo l 的抗坏血 酸和l 4 . 3 ̄ t mo l 没食子酸 ;2 , 2 ’ . 联氮双 ( 3 . 乙基苯 并噻唑啉. 6 . 磺 酸 )二铵盐 ( 2 , 2 ' - a z i n o b i s( 3 - e t h y l b e n z o t h i a z o l i n e 一
f r o m S o u t h e r aCh i n a
LUO S h u a n g y a n , W ANG Ch a o , DUAN Ha n y i n g 一, L UO Ya o x i n , YU Bi n g
( 1 . D e p a r t me n t o f F o o d S c i e n c e a n d E n g i n e e r i n g , J i n n a Un i v e r s i t y , G u ng a z h o u 5 1 0 6 3 2 , C h i n a ;
( u l t r a p e r f o r ma n c e l i q u i d c h r o ma t o g r a p h y c o u p l e d t o p h o t o — d i o d e a r r a y a n d i o n — t r a p ma s s s p e c t r o me t r y, UP LC— P DA・
酮 含量分别是4 9 7 6 mg没食子 酸/ 1 0 0 g( 以干质量计 )和4 9 . 7 mg ) L 茶酚/ 1 0 0 g( 以干质量计 ),总抗坏血酸含量 是 9 me , / 1 0 0 g( 以鲜质量计 )。总花青素含量相当于4 1 4 mg 矢车菊素/ 1 0 0 g( 以干质量计 ),共有飞燕草素3 . D一 葡萄糖 苷 等7种花青素类化合物被鉴别 出来 。
※基础研究
良 晶 科 学
2 0 1 5 , V o L 3 6 , N o . 1 7 7 7
野生桃 金娘主要抗氧化 成分及其抗氧化 能力
罗 爽妍 ,王 超 ,段翰 英 ,罗尧 欣 ,虞
广东 广州 5 1 0 6 3 2 ) 摘 要 :本 实验研 究了野 生桃金娘 ( R h o d o m y r t u s t o me n t o s a )的抗氧化 能力 、总 多酚 含量 、总黄 酮含量、抗坏 血
Ab s t r a c t : T h e r i p e f r u i t o f wi l d h i l l g o o s e b e r r y( R h o d o m y r t u s t o m e n t o s a ) w a s na a l y z e d f o r i t s nt a i o x i d a n t a c t i v i t y , t o t a l
关键词 :桃金娘 ;花青素 ;抗氧化 成分 ;抗氧化 能力
Ma i n An t i o x i d a n t C o mp o n e n t s a n d An t i o x i d a n t Ac t i v i t y o f Wi l d Hi l l Go o s e b e r r y F r u i t s ( R h o d o m y r t u s t o m e n t o s a )
Hale Waihona Puke 兵 ( 1 . 暨南大 学食 品科 学与工程系 ,广东 广州 5 1 0 6 3 2 ;2 . 暨南大学一 萨斯喀切温大学 油料生物炼制与营养联合实验室 ,
酸 含量和花青素 类成分 。采用超 高效液相串联光 电二极 管阵列 ( p h o t o . d i o d e a r r a y ,P DA)检测器和离子肼 质谱法