2007年普通高等学校招生全国统一考试数学卷(安徽.文)含答案

合集下载

2007年普通高等学校全国招生统一考试(广东卷)数学文科试题(WORD精校版)

2007年普通高等学校全国招生统一考试(广东卷)数学文科试题(WORD精校版)

试卷类型:A2007年普通高等学校招生全国统一考试(广东卷)数 学(文科)本试卷共4页,21小题。

满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再填涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答。

答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题号(或题组号),对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式V=31Sh ,其中S 是锥体的底面积,h 是锥体的高.如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ).用最小二乘法求线性回归方程系数公式x b y n xn x yx n y x b ni i ni i i-=-∑-∑===,2121一、选择题:本大题共l0小题,每小题5分,满分50分。

在每小题给出的四个选项中。

只有一项是符合题目要求的。

1.已知集合{|10}M x x =+>,1{|0}1N x x=>-,则M N = A .{x|-1≤x <0} B .{x |x>1} C .{x|-1<x <0} D .{x |x ≥-1}2.若复数(1+bi )(2+i )是纯虚数(i 是虚数单位,b 是实数),则b=A .-2B .12- C.12D .23.若函数f (x )=x 3(x ∈R ),则函数y=f (-x )在其定义域上是A .单调递减的偶函数B .单调递减的奇函数C .单凋递增的偶函数D .单涮递增的奇函数4.若向量a 、b 满足||||1a b ==,a 与b 的夹角为60︒,则a ·a+a ·b=A .12B .32C.312+ D .25.客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km /h 的速度匀速行驶l 小时到达丙地。

2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案

2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚 5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n kn n P k C p p k n -=-=,,,…, 一、选择题1.sin 210=( )AB.-C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2) C.D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .13- D .23-6.不等式2104x x ->-的解集是( ) A .(21)-,B .(2)+∞,C .(21)(2)-+∞ ,, D .(2)(1)-∞-+∞ ,, 7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( ) A.4B.4C.2D.28.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3 B .2 C .1 D .129.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( )ABCD12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2lim nn S n ∞=→ .全国卷Ⅱ理科数学(必修+选修Ⅱ)二.请把填空题答案写在下面相应位置处:13. 14 15. 16.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC △中,已知内角A π=3,边BC =B x =,周长为y .(1)求函数()yf x =的解析式和定义域;(2)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小. 20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.AEBCFSD21.(本小题满分12分) 设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =1n n b b +<,其中n 为正整数.22.(本小题满分12分)已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B二、填空题13.42- 14.0.815.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3, 2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭,(2)因为14sin cos sin 2y x x x ⎛⎫=+++ ⎪ ⎪2⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值18.解:(1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故 01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=- 于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)ξ的可能取值为012,,. 若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===. 1180202100C C 160(1)C 495P ξ===. 2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥.又AB ⊥平面SAD,所以AB DH ⊥,而AB AG A = , 所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角tan 1DH DMH HM ∠=== 所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系xyz .设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,02b EF a ⎛⎫=- ⎪⎝⎭,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭ ,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD , 所以EF ∥平面SAD .(2)不妨设(100)A ,,, 则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.EF 中点AEBCFSD H G M111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥ 又1002EA ⎛⎫=- ⎪⎝⎭ ,,,0EA EF EA EF =,⊥,所以向量MD 和EA 的夹角等于二面角A EF D --的平面角.cos MD EA MD EA MD EA <>==,. 所以二面角A EF D --的大小为20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即2r ==. 得圆O 的方程为224x y +=. (2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=. (2)(2)PA PB x y x y =----- ,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB 的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一:由(1)可知302n a <<,故0n b >.那么,221n nb b +- 2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,,因为132n n a a +-=, 所以1n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32na a - 即 1n nb b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使 23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根.记 32()23g t t at a b =-++,则 2()66g t t at '=- 6()t t a =-. 当t 变化时,()()g t g t ',变化情况如下表:当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2at t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。

2007年高考真题(全国卷1)(数学文)

2007年高考真题(全国卷1)(数学文)

2007年普通高等学校招生全国统一考试文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1. 答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2. 每小题选出答案后 ,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次实验中发生的概率是P ,那么 V =343R πn 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n p k C p p -=-(k=0,1,2,……,n )一、选择题(1)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂= A.∅B 。

1{|}2x x <C 。

5{|}3x x >D 。

15{|}23x x -<< (2)a 是第四象限角,12cos 13a =,则sin a =(A )513(B) 513-(C)512(D) 512-(3)已知向量a=(-5,6),b=(6,5),则a 与b(A )垂直 (B )不垂直也不平行 (C )平行且同向 (D )平行且反向(4)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为(A )221412x y -=(B )221124x y -= (C )221106x y -=(D )221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有(A )36种(B )48种(C )96种(D )192种(6)下面给出的四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是(A )(0,2)(B )(-2,0)(C ) (0,-2)(D )(2,0)(7)如图,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B与AD 1所成角的余弦值为(A )15 (B ) 25(C ) 35(D ) 45(8)设1a >,函数()log a f x x =在区间[],2a a 上的最大值与最小值之差为12,则a =(A (B )2 (C )(D )4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的(A )充要条件 (B )充分而不必要的条件 (C )必要而不充分的条件 (D )既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是(A )(,44ππ-) (B )(0,2π) (C )(3,44ππ) (D )(2π,π)(11)曲线2313y x x =+在点(1,43)处的切线与坐标轴围成的三角面积为(A )19 (B )29 (C )13 (D )23(12)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是(A )4(B )(C )(D )82007年普通高等学校招生全国统一考试文科数学 第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2007年全国各地高考数学试卷及答案(37套)word--完整版

2007年全国各地高考数学试卷及答案(37套)word--完整版
2007年普通高等学校招生全国统一考试数学卷(四川.理)含答案
2007年普通高等学校招生全国统一考试数学卷(四川.文)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.理)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.文)含答案
2007年普通高等学校招生全国统一考试数学卷(浙江.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.文)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.理)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.文)含答案
2007年普通高等学校招生全国统一考试数学卷(山东.理)含答案
2007年全国各地高考数学试卷及答案(37套)--完整版
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.文)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.文)含答案
宁夏和海南都是新课标教材,使用的是同一套数学题。
பைடு நூலகம் 四川省蓬安中学校 张万建 整理 zwjozwj@
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.理) 含答案
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.文) 含答案
2007年普通高等学校招生全国统一考试数学卷(江苏卷不分文理)含答案
注:使用全国卷Ⅰ的省份:河北 河南 山西 广西 ;
使用全国卷Ⅱ的省份:吉林 黑龙江 云南 贵州 新疆 青海 甘肃 内蒙 西藏

2007年高考文科数学试题及答案(全国卷1)

2007年高考文科数学试题及答案(全国卷1)

如果事件 A、B 相互独立,那么 P(A·B)=P(A)·P(B)
如果事件 A 在一次试验中发生的概率是 P,那么 n 次独立重复试验中事件 A 恰好发生 k 次的概率
C
1 n
pk
(1
p) nk
(k
0,1,2,
球的表面积公式 S 4R 2 其中 R 表示球的半径
球的体积公式
一、选择题
V 4 R3 3
1.a 是第四象限角, tan 5 ,则 sin 12
A. 1 5
B. 1 5
2.设 a 是实数,且 a 1 i 是实数,则 a= 1i 2
A. 1 2
B.1
3.已知向量 a=(-5,6),b=(6,5),则 a 与 b
n)
其中 R 表示球的半径
C. 5 13
C. 3 2
2.社会主义本质理论对探索怎样建设3.社19会57主年义2月具,有毛重在要《的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们邓社新。出寻始小会的邓(找终平主关小1一代坚义)键平种表持的我2在对能.1中把科本国人社9够国发学质社5才会从4先展社,会年,主更进作会是主,人义深生为主解义毛才本层产执义放制在的质次1力政理生度《成所.认社1的兴论产还论长作.识发会发国和力刚十靠的社展主展的实,刚大教概会才义要第践发建关坚育括主是本求一的展立系2持。,义硬质、,要基生,》以人一,道理发大务本产还重发才方从理论展力是成力没要展资面而,把才促由果,有讲社的源强为把我是进中,消完话会办是调四中发们(硬先国抓灭全中主法第必、国展对2道进共住剥建提三义解一)须科的生社理生产“削立出、经决资采解学社产会,产党什,(代济前源取放技会力主是力的么消还1表基进。从和术主作义)对的执是除不中础科低发是义1为的吧社3发政社两完9国基的学级展.第建发社认二国5会展地会极全先本问技到6生一设展会识、内主,年位主分巩进建题术高产生在才主提发外义是底所义化固生立,实级力产改是义高1展一时中我决,的邓产的是力9,力革硬建到是切间5国定怎最思小力同实和国另3开道设了党积经共对的样终想年平的时行国家一放理的一执极验产农,建达。1一发,改民资方中2,根个政因教党业是设到(月再展我革教本面探是本新兴素训站、对社共2,强要国开育主指索)适任的国都的在手一执会同毛调求的放水义出出第创应务科在的调深时工、政主富1泽,政以平的4了一三造.时,学社第动刻坚代.业发规义裕东中一治来,过2解条节性代符水会一起总持前.和展律”。关社 国个领我始度放发、地主合平阶要来结社列资才认这”于会 社公域们终形和展社提题马。级务为。会,本是识个1总主 会有也党是式发更会9出变克社二关中主保硬的根8路义 主制发的衡。展快主了化思会6、系国义持道深本3线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要基本.主变事所平化向业也,1整度 制,大要小国家的享本9义。本质义化业有方建的是深5的度一变经平力资手受社任原理6本的服问法设根社对刻表确 的个化验年提和本段到会 1务理论第质同务题进与本会党揭一.述立 确共,。出社主社和社主基,的二理时的行社体主实示、:, 立同确苏“会义会目会3义本是提节论,基关改会现义了社.从为 ,富立共社文,社主的主一改矛巩出、的我本键造主和改其社会中当 使裕了二会明就会义。义、造盾固,对重国方是。义根造所会之华代 占,中十主程是主基建中的和和为第社要针这改本基承主一人中 世这国大义度在义本设国基两发进一会意。靠不造要本担义本民国 界是共以财的国基制内成特本类展一节主义的(自仅同求完的本质共一 人我产后富重家本度涵果色完矛社步、义主2己保时。成历质理和切 口们党毛属要直)制的包最伴社成盾会推中本要的证并,史论国发 四必领泽于标接正度确括大随会,的主进国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学义改特理盾展2社。志五需是提立进 之坚的提民。制处确是1.能社义我说采制革色论也。会实着章要对)出,步 一持人出,和理立中够会建国,取度开社的发的践中。马把到奠 的民要社支经,国社充经设强积的放会提生稳证国克解社定 东民“会配济是历会分济道调极必和主出了定明历思放会了 方主以下建4广史主体制路要引然社义变,.史主和主把制 大专苏义的设大上义现度初严导要会二建化而党上义发义对度 国政为的资和劳最的出和步经格、求主设。且坚长的展改企基 进党的鉴致本社动深本对社探济区逐。义确道人极持达重生造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产基的。 了过本会,是义发民最和本经的构过代社的对的会千发力逐本改社渡原主探全经展真伟根主济理发正渡化会初于促主年展概步完造会时则义索民济中正大本义结论生确的建新主步经进义的,括实成和主期。基自共的成任优构成了处方设中义探济了改阶对为现,对义总本己同国一为社务越的果根理式提国基索文社造级于国这人制 社路政的致家系国会性根本两。供的本化会与剥建家是的度 会线治道富资列家变一的本变类中了成制迅主社削设的一改的 ,第制路。本重的革、道变化不国强立度速义会制中社个造建 这三主度。社大主,社路化,同这大,的发事主度国的会过结立 是节要。会义关人也会,1社性场的标重展业义的特本主.渡合极 世、内人主有系解和是主奠我会质巨思志大的的工结(色质义时起大 界社容民义初。决社2义定国主的大想着意需发业束3社0。工期来地 社(会被民原级了会基)世了社义矛而武我义要展化,会(业。,提 会2主概则和3在生本把纪理会经盾深器国同),同实主2化党把高 主对义括专,高一产制资中)论的济,刻。新经遵改总时现义新是在对了 义手制为政第级个资度本国强基阶成在特的通民济循革之并了具民党这资工 运二七度“实一形以料的主又调础级分新别社过主文自4过,举由有主在个本人 动、届 业在一质是式农的.(初义一消,关已民是它会(没主化愿于和的新重主过过主阶 史新社二 的中化上发之民主1步工次灭开系占主要是变4收义不互集平方民(大)义渡渡义级 上民会中 社国三已展)分为人确商划剥阔也绝主正中革官能利中改针主3的用社时时工和 又主全 会的改成生坚。主立)业时削了发对义确国,僚命满、的造,主理和会期期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义论平的.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向和赎五总总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3实买种路路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会践的经线线成人 性理历中 ,化级是导的义后√ 1农为巨极。的会内体对革成本要的和如刻主意)方济的和为民 的论史国 党”专共、工的中村自变分邓主指部实生命的结建国初实的义积法成主总自的 伟是经“ 和即政同稳家商半国的食。化小义导矛际产在走社束状设家步现社的。极改分体任食积 大以验稳 政社;致步资业殖社革阶其们平。公下盾出力一农会和况。帮构社会转引造—。务其极 胜一毛步 府会人富前本的民会命级力吐对1有,。发的个村主社之加助想会变导资—要.,力性 利、泽地 采主民。进农社地第的必和出社制中(,发以包义会间强的,变革农本社从是的和 。适东由 取义代”的业会半二阶须社了会已国3不展农围的主党原要革中社民主会根)要社创合为农 了工表这方是、主封节级走层会最主成共拘造民城国义矛的则求与保会组义主本从在会造中主业 积大段针国手义建、构农状主终义为产泥成为市营改盾建,2中经持主织工义上全一主性国要极化会话,家工改的.社成村况义达本我党武于破主、经造,设以央济社义起商性改体个义。特代转 领,制成采对业造东会主包,劳到质国领装已��

2007年普通高等学校招生全国统一考试(全国卷I)数学(文科)试卷参考答案

2007年普通高等学校招生全国统一考试(全国卷I)数学(文科)试卷参考答案

2007年普通高等学校招生全国统一考试(全国卷I)数学(文科)试卷参考答案一、选择题1.D2.B3.A4.A5.C6.C7.D8.D9.B 10.D11.A12.C二、填空题13.0.2514.3()x x∈R15.4π316.1 3三、解答题17.解:(Ⅰ)由a=2b sinA,根据正弦定理得sinA=2sinBsinA,所以1 sin2B=,由△ABC为锐角三角形得π6B=。

(Ⅱ)根据余弦定理,得b2=a2+c2-2ac cosB=27+25-45=7所以,b=18.解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则A表示事件:“3位顾客中无人采用一次性付款”。

()P A=(1-0.6)2=0.064,P(A)=1-()P A=1-0.064=0.936。

(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”。

B0表示事件:“购买该商品的3位顾客中无人采用分期付款”。

B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”。

则B= B 0+ B 1。

P (B 0)=0.63=0.216,1213()0.60.40.432P B C =⨯⨯=。

P (B )=P (B 0+ B 1) =P (B 0)+P (B 1) =0.216+0.432 =0.64819.解法一:(1)作SO ⊥BC ,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD 。

因为SA=SB ,所以AO=BO ,又∠ABC=45°,故AOB △为等腰直角三角形,AO ⊥BO , 由三垂线定理,得SA ⊥BC 。

(Ⅱ)由(Ⅰ)知SA ⊥BC , 依题设AD BC ∥, 故SA ⊥AD , 由,SA =SD =又AO=ABsin45°,作DE ⊥BC ,垂足为E ,则DE ⊥平面SBC ,连结SE 。

∠ESD 为直线SD 与平面SBC 所成的角。

2007年高考文科数学试题及参考答案(江西卷)

2007年高考文科数学试题及参考答案(江西卷)

2007年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式 如果事件A 在一次试验中发的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}01M =,,{}012345I =,,,,,,则I M ð为( ) A.{}01,B.{}2345,,,C.{}02345,,,, D.{}12345,,,, 2.函数5tan(21)y x =+的最小正周期为( ) A.π4B.π2C.π D.2π3.函数1()lg 4x f x x -=-的定义域为( )A.(14),B.[14),C.(1)(4)-∞+∞ ,,D.(1](4)-∞+∞ ,,4.若tan 3α=,4tan 3β=,则tan()αβ-等于( )A.3- B.13-C.3 D.135.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++ , 则01211a a a a ++++ 的值为( ) A.2-B.1-C.1D.26.一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.3647.连接抛物线24x y =的焦点F 与点(10)M ,所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形O A M 的面积为( )A.1-+B.32- C.1+ D.32+8.若π02x <<,则下列命题正确的是( )A.2sin πx x <B.2sin πx x >C.3sin πx x <D.3sin πx x >9.四面体A B C D 的外接球球心在C D 上,且2C D =,AD =在外接球面上两点A B,间的球面距离是( ) A.π6B.π3C.2π3D.5π610.设32:()21p f x x x m x =+++在()-∞+∞,内单调递增,4:3q m ≥,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件11.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >> C.324h h h >>D.241h h h >>12.设椭圆22221(0)x y a b ab+=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20a x b x c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=上 B.必在圆222x y +=外 C.必在圆222x y +=内D.以上三种情形都有可能2007年普通高等学校招生全国统一考试(江西卷)文科数学 第II 卷注意事项:第II 卷2页,须要黑色墨水签字笔在答题卡上书写作答,若在试卷题上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.在平面直角坐标系中,正方形O A B C 的对角线O B 的两端点分别为(00)O ,,(11)B ,,则AB AC =.14.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.15.已知函数()y f x =存在反函数1()y f x -=,若函数(1)y f x =+的图象经过点(31),,则函数1()y fx -=的图象必经过点 .16.如图,正方体1AC 的棱长为1,过点作平面1A B D 的垂线,垂足为点H .有下列四个命题A.点H 是1A BD △的垂心 B.A H 垂直平面11C B DC.二面角111C B D C --D.点H 到平面1111A B C D 的距离为34其中真命题的代号是.(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)11C1B已知函数21(0)()21(1)x ccx x c f x c x -+<<⎧⎪=⎨⎪+<⎩≤满足29()8f c =.(1)求常数c 的值; (2)解不等式()18f x >+.18.(本小题满分12分)如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值; (2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是P A的中点,当02y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 19.(本小题满分12分)栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗..的概率; (2)求恰好有一种果树能培育成苗..且移栽成活..的概率. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13C C =.(1)设点O 是A B 的中点,证明:O C ∥平面111A B C ; (2)求A B 与平面11AA C C 所成的角的大小; (3)求此几何体的体积. 21.(本小题满分12分)设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ≥; (2)求和:212321232n nn T a a a a =-+--.C1122.(本小题满分14分)设动点P 到点1(10)F -,和2(10)F ,的距离分别为1d 和2d ,122F PF θ=∠,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)如图,过点2F 的直线与双曲线C 的右支交于A B ,两点.问:是否存在λ,使1F AB △是以点B 为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.2007年普通高等学校招生全国统一考试(江西文)参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.C 10.C 11.A 12.C 二、填空题13.1 14.7 15.(14), 16.A ,B ,C 三、解答题17.解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c =.(2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()18f x >+得,当102x <<时,解得142x <<,当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.18.解:(1)将0x =,y =代入函数2cos()y x ωθ=+中得cos 2θ=,因为π02θ≤≤,所以π6θ=.由已知πT =,且0ω>,得2π2π2T πω===.(2)因为点π02A ⎛⎫⎪⎝⎭,,00()Q x y ,是P A 的中点,02y =. 所以点P 的坐标为0π22x ⎛-⎝. 又因为点P 在π2cos 26y x ⎛⎫=+⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05πcos 462x ⎛⎫-= ⎪⎝⎭, 07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=,即02π3x =或03π4x =.19.解:分别记甲、乙两种果树成苗为事件1A ,2A ;分别记甲、乙两种果树苗移栽成活为事件1B ,2B ,1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =. (1)甲、乙两种果树至少有一种成苗的概率为 1212()1()10.40.50.8P A A P A A +=-=-⨯= ;(2)解法一:分别记两种果树培育成苗且移栽成活为事件A B ,, 则11()()0.42P A P A B ==,22()()0.45P B P A B ==. 恰好有一种果树培育成苗且移栽成活的概率为()0.420.550.580.450.492P A B AB +=⨯+⨯=.解法二:恰好有一种果树栽培成活的概率为11211221221212()0.492P A B A A B A B A A B A A B B +++=.20. 解法一:(1)证明:作1O D AA ∥交11A B 于D ,连1C D . 则11O D BB C C ∥∥, 因为O 是A B 的中点,2CA所以1111()32O D A A B B C C =+==.则1ODC C 是平行四边形,因此有1O C C D ∥,1C D ⊂平面111C B A ,且O C ⊄平面111C B A则O C ∥面111A B C .(2)解:如图,过B 作截面22BA C ∥面111A B C ,分别交1A A ,1C C 于2A ,2C , 作22BH A C ⊥于H ,因为平面22A BC ⊥平面11AA C C ,则BH ⊥面11AA C C . 连结A H ,则BAH ∠就是A B 与面11AA C C 所成的角.因为2BH =,AB =sin 10BH BAH AB==∠.A B 与面11AA C C所成的角为arcsin10BAH =∠.(3)因为2BH =,所以222213B A A CCA A C C V SB H -=.111(13222=+= . 1112211111212A B C A B C A B C V S B B -=== △.所求几何体的体积为221112232B A A CCA B C A B C V V V --=+=.解法二:(1)证明:如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是A B 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,,1102O C ⎛⎫=- ⎪⎝⎭,,,易知,(001)n =,,是平面111A B C 的一个法向量. 由0OC n =且O C ⊄平面111A B C 知O C ∥平面111A B C .1Bx(2)设A B 与面11AA C C 所成的角为θ. 求得1(004)A A = ,,,11(110)A C =- ,,.设()m x y z = ,,是平面11AA C C 的一个法向量,则由11100A A m A C m ⎧=⎪⎨=⎪⎩得00z x y =⎧⎨-=⎩,取1x y ==得:(110)m =,,.又因为(012)A B =--,,所以,cos m <,10m AB AB m AB>==-sin 10θ= 所以A B 与面11AA C C所成的角为arcsin 10.(3)同解法一21.解:(1)由已知条件得112113n n n a a a --⎛⎫== ⎪⎝⎭,因为67320073<<,所以,使2007n a ≥成立的最小自然数8n =. (2)因为223211234213333n n n T -=-+-+- ,…………① 2234212112342123333333n n nn n T --=-+-++-,…………②+①②得:2232124111121333333n n nn T -=-+-+--2211231313n n n -=-+22333843nnn--=所以22223924163n n nnT +--=.22.解:(1)在12PF F △中,122F F =22221212121242cos 2()4sin d d d d d d d d θθ=+-=-+ 212()44d d λ-=-12d d -=2的常数)故动点P 的轨迹C 是以1F ,2F为焦点,实轴长2a = 方程为2211xyλλ-=-.(2)方法一:在1AF B △中,设11AF d =,22AF d =,13BF d =,24BF d =. 假设1AF B △为等腰直角三角形,则12343421323422πsin 4d d a d d a d d d d d d λ⎧⎪-=⎪-=⎪⎪=+⎨⎪=⎪⎪=⎪⎩ ①②③④⑤ 由②与③得22d a =,则1343421)d a d d d a a=⎧⎪=⎨⎪=-=⎩ 由⑤得342d d λ=,21)2a λ=(8)2λλ--=,12(01)17λ-=∈,故存在1217λ-=满足题设条件.方法二:(1)设1AF B △为等腰直角三角形,依题设可得21212212122πsin π81cos 4πsin 24A F A F A F A F B F B F B F B F λλλλ⎧⎧===⎪⎪⎪⎪-⇒⎨⎨⎪⎪=⎪=⎪⎩⎩所以12121πsin1)24A F F S A F A F λ==+ △,121212B F F S B F B F λ== △.则1(2AF B S λ=+△.①由1212221AF F BF F S AF S BF ==△△,可设2BF d =,则21)AF d =,1(2BF AB d ==+.则122211(222A FB S A Bd ==+△.②由①②得2(22d λ+=.③根据双曲线定义122BF BF a -==1)d =.平方得:221)4(1)d λ=-.④由③④消去d可解得,12(01)17λ-=∈,故存在1217λ-=满足题设条件.。

2007年全国高考数学卷(安徽.文)含答案

2007年全国高考数学卷(安徽.文)含答案

2007年普通高等学校招生全国统一考试(安徽卷)数学(文科)参考公式:(1)122n n n ++++=L 222(1)(21)126n n n n +++++=L22333(1)124n n n ++++=L第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{}21A x x ==,{}2230B x x x =--=,则A B =I ( ) A.{}3B.{}1C.∅D.{}1-2.椭圆2241x y +=的离心率为( )A.2B.34C.2D.233.等差数列{}n a 的前n 项和为n S ,若21a =,33a =,则4S =( ) A.12 B.10 C.8 D.64.下列函数中,反函数是其自身的函数为( ) A.2()f x x =,[0)x ∈+∞,B.3()()f x x x =∈-∞+∞,,C.()e ()xf x x =∈-∞+∞,,D.1()f x x=,(0)x ∈+∞,5.若圆22240x y x y +--=的圆心到直线0x y a -+=,则a 的值为( ) A.2-或2B.12或32C.2或0 D.2-或0 6.设t ,m ,n 均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件7.图中的图象所表示的函数的解析式为( ) A.312y x =- (02)x ≤≤第7题图B.33122y x =-- (02)x ≤≤C.312y x =-- (02)x ≤≤D.11y x =--(02)x ≤≤8.设1a >,且2log (1)a m a =+,log (1)a n a =-,log (2)a p a =,则m n p ,,的大小关系为( ) A.n m p >>B.m p n >> C.m n p >> D.p m n >>9.如果点P 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( ) A.321-C.1110.把边长为的正方形ABCD 沿对角线AC 折成直二面角,折成直二面角后,在A B C D ,,,四点所在的球面上,B 与D 两点之间的球面距离为( )C.π B.π2 D.π311.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A.0B.1C.3D.52007年普通高等学校招生全国统一考试(安微卷)数学(文科)第II 卷(非选择题共95分)注意事项: 请用0.5毫米黑色墨水签字笔在答题卡...上书写作答,在试题卷上书写作答无效........... 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.12.已知52345012345(1)x a a x a x a x a x a x -=+++++,则024135()()a a a a a a ++++的值等于 .13.在四面体O ABC -中,OA a =u u u r ,OB b =u u u r ,OC c =u u u r,D 为BC 的中点,E 为AD 的中点,则OE =u u u r(用a b c ,,表示)14.在正方体上任意选择两条棱,则这两条棱相互平行的概率为. 15.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,如下结论中正确的是(写出所有正确结论的编号..). ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫-⎪⎝⎭,内是增函数; ④由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C . 三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分) 解不等式(311)(sin 2)0x x --->.17.(本小题满分14分) 如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面1111A B C D ,1DD ⊥平面ABCD ,12DD =.(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示) 18.(本小题满分14分)设F 是抛物线2:4G x y =的焦点.(I )过点(04)P -,作抛物线G 的切线,求切线方程;(II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u rg ,延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 19.(本小题满分13分)在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔. (I )求笼内恰好剩下....1只果蝇的概率;ABCD1A1B1C 1D(II )求笼内至少剩下....5只果蝇的概率. 20.(本小题满分14分) 设函数232()cos 4sincos 43422x xf x x t t t t =--++-+,x ∈R , 其中1t ≤,将()f x 的最小值记为()g t . (I )求()g t 的表达式;(II )讨论()g t 在区间(11)-,内的单调性并求极值.21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a L ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+,L L .以n T 表示到第n 年末所累计的储备金总额.(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(文史)参考答案一、选择题:本题考查基本知识的基本运算.每小题5分,满分55分. 1.D 2.A 3.C 4.D 5.C 6.A7.B 8.B 9.A 10.C 11.D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.256-13.111244a b c ++ 14.31115.①②③三、解答题16.本小题主要考查三角函数的基本性质,含绝对值不等式的解法,考查基本运算能力.本小题满分10分.解:因为对任意x ∈R ,sin 20x -<,所以原不等式等价于3110x --<. 即311x -<,1311x -<-<,032x <<,故解为203x <<. 所以原不等式的解集为203x x ⎧⎫<<⎨⎬⎩⎭. 17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分. 解法1(向量法):以D 为原点,以1DADC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,. (Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-==u u u u r u u u r u u u u r u u u r,,,,,,,,,,,∵. 111122AC AC DB D B ==u u u r u u u u r u u u r u u u u r ,∴. AC u u u r ∴与11AC u u u u r 平行,DB u u u r 与11DB u u u u r 平行, 于是11AC 与AC 共面,11BD 与BD 共面.(Ⅱ)证明:1(002)(220)0DD AC =-=u u u u r u u u r,,,,··,(220)(220)0DB AC =-=u u u r u u u r ,,,,··, 1DD AC ⊥u u u u r u u u r ∴,DB AC ⊥u u ur u u u r .1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=-u u u r u u u r u u u u r,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+=u u u r ·n ,111120BB x y z =--+=u u u r n ·.于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+=u u u r m ·,12220CC y z =-+=u u u u r m ·.于是20x =,取21z =,则22y =,(021)=,,m .1cos 5==,m n m n m n ·. ∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DADC ,的中点,连结11EF A E C F ,,, 有111111A E D D C F D D DE DF ==,,,∥∥. 11A E C F ∴∥,于是11A C EF ∥.由1DE DF ==,得EF AC ∥, 故11AC AC ∥,11A C 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11OF B C ∥,OE OF =∴. ABCD1A1B1C 1DMOEF1111B A A D ⊥∵,OE AD ⊥∴. 1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.过点A 在平面1ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角.根据勾股定理,有111A A C C B B ==. 1OM B B ⊥∵,有11B O OB OM B B ==·,BM =AM =,CM =. 2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查抛物线的方程与性质,抛物线的切点与焦点,向量的数量积,直线与抛物线的位置关系,平均不等式等基础知识,考查综合分析问题、解决问题的能力.本小题满分14分.解:(I )设切点2004x Q x ⎛⎫ ⎪⎝⎭,.由2xy '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为2000()42x xy x x -=-. 即20424x x y x =-. 因为点(0)P -4,在切线上.所以2044x -=-,2016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,.由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >. 因直线AC 过焦点(01)F ,,所以直线AC 的方程为1y kx =+.点A C ,的坐标满足方程组214y kx x y =+⎧⎨=⎩,, 得2440x kx --=, 由根与系数的关系知121244.x x k x x +=⎧⎨=-⎩,24(1)AC k ===+.因为AC BD ⊥,所以BD 的斜率为1k -,从而BD 的方程为11y x k=-+. 同理可求得22214(1)41k BD k k ⎛⎫+⎛⎫=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭. 2222218(1)18(2)322ABCDk S AC BD k k k +===++≥. 当1k =时,等号成立.所以,四边形ABCD 面积的最小值为32.19.本小题主要考查排列、组合知识与等可能事件、互斥事件概率的计算,运用概率知识分析问题及解决实际问题的能力.本小题满分13分.解:以k A 表示恰剩下k 只果蝇的事件(016)k =L ,,,. 以m B 表示至少剩下m 只果蝇的事件(016)m =L ,,,. 可以有多种不同的计算()k P A 的方法.方法1(组合模式):当事件k A 发生时,第8k -只飞出的蝇子是苍蝇,且在前7k -只飞出的蝇子中有1只是苍蝇,所以17287()28kk C k P A C --==. 方法2(排列模式):当事件k A 发生时,共飞走8k -只蝇子,其中第8k -只飞出的蝇子是苍蝇,哪一只?有两种不同可能.在前7k -只飞出的蝇子中有6k -只是果蝇,有68kC -种不同的选择可能,还需考虑这7k -只蝇子的排列顺序.所以162688(7)!7()28kk kC C k kP A A ----==g . 由上式立得163()2814P A ==; 356563()()()()28P B P A A P A P A =+=+=. 20.本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力.本小题满分14分. 解:(I )我们有232()cos 4sin cos 43422x xf x x t t t t =--++-+222sin 12sin 434x t t t t =--++-+ 223sin 2sin 433x t x t t t =-++-+23(sin )433x t t t =-+-+.由于2(sin )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+.(II )我们有2()1233(21)(21)1g t t t t t '=-=+--1<<,. 列表如下:由此可见,()g t 在区间112⎛⎫-- ⎪⎝⎭,和112⎛⎫ ⎪⎝⎭,单调增加,在区间1122⎛⎫- ⎪⎝⎭,单调减小,极小值为122g ⎛⎫= ⎪⎝⎭,极大值为42g 1⎛⎫-= ⎪⎝⎭.21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥. (Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=L12121(1)(1)(1)n n n n a r a r a r a ---=+++++++L ,①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++L②②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-L1[(1)1](1)n n n dr r a r a r=+--++-. 即1122(1)nn a r d a r d d T r n r r r ++=+--.如果记12(1)nn a r d A r r +=+,12n a r d d B n r r+=--,则n n n T A B =+. 其中{}n A 是以12(1)a r dr r++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,dr-为公差的等差数列.。

2007年高考全国卷2(理科数学)

2007年高考全国卷2(理科数学)

2007年普通高等学校招生全国统一考试理科数学(全国卷Ⅱ)一、选择题本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin 210=A .2 B .2- C .12 D .12- 2.函数sin y x =的一个单调增区间是A .()ππ-44,B .3()ππ44,C .()3ππ2,D .3(2)ππ2,3.设复数z 满足12ii z+=,则z =A .2i -+B .2i --C .2i -D .2i + 4.下列四个数中最大的是A .2(ln 2)B .ln(ln 2)C .ln .ln 25.在ABC ∆中,已知D 是AB 边上一点,若2AD DB =,13CD CA CB λ=+,则λ=A .23B .13C .13-D .23-6.不等式2104x x ->-的解集是A .(2,1)-B .(2,)+∞C .(2,1)(2,)-+∞D .(,2)(1,)-∞-+∞7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于A .2 D 8.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为A .3B .2C .1D .129.把函数x y e =的图像按向量(2,3)a =平移,得到()y f x =的图像,则()f x = A .32x e -+ B .32x e +- C .23x e -+ D .23x e +- 10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有A .40种B .60种C .100种D .120种11.设12F F ,分别是双曲线2222x y a b -的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为A D 12.设F 为抛物线24y x =的焦点,,,ABC 为该抛物线上三点,若0FA FB FC ++= ,则FA FB FC ++=A .9B .6C .4D .3 二、填空题:本大题共4小题,每小题5分,共20分.13.281(12)()x x x+-的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1,)(0)N σσ>.若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 2cm . 16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC ∆中,已知内角A π=3,边BC =B x =,周长为y . (Ⅰ)求函数()y f x =的解析式和定义域; (Ⅱ)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (Ⅰ)求从该批产品中任取1件是二等品的概率p ;(Ⅱ)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列. 19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E ,F 分别为AB ,SC 的中点. (Ⅰ)证明EF ∥平面SAD ;(Ⅱ)设2SD DC =,求二面角A EF D --的大小.20.(本小题满分12分)在直角坐标系xoy 中,以O为圆心的圆与直线4x =相切. (Ⅰ)求圆O 的方程;(Ⅱ)圆O 与x 轴相交于A ,B 两点,圆内的动点P 使PA ,PO ,PB 成等比数列,求PA PB ⋅的取值范围. 21.(本小题满分12分)设数列{}n a 的首项1(01)a ∈,,132n n a a --=,2,3,4,n =.(Ⅰ)求{}n a 的通项公式;AEBCFSD(Ⅱ)设n b a =,证明1n n b b +<,其中n 为正整数. 22.(本小题满分12分) 已知函数3()f x x x =-.(Ⅰ)求曲线()y f x =在点(,())M t f t 处的切线方程;(Ⅱ)设0a >,如果过点(,)a b 可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题 1.D 2.C 3.C 4.D5.A6.C7.A8.A9.C10.B 11.B 12.B二、填空题 13.42- 14.0.8 15.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3. 应用正弦定理,知sin sin 4sin sin sin BC AC B x x A ===π3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=++ ⎪ ⎪⎝⎭5x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值 18.解:(1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=-于是20.961p =-.解得120.20.2p p ==-,(舍去). (2)ξ的可能取值为012,,.若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===.1180202100C C 160(1)C 495P ξ===.2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19.解法一:(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD ∥,,又CD AB ∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥. 又AB ⊥平面SAD ,所以AB DH ⊥,而AB AG A =,所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥.AEBCFSD H G M连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角tan DH DMH HM ∠=== 所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,00222a a b E a F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,, 02b EF a ⎛⎫=- ⎪⎝⎭,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭,,. EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD ,所以EF ∥平面SAD .(2)不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,. EF 中点111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥ 又1002EA ⎛⎫=- ⎪⎝⎭,,,0EA EF EA EF =,⊥, 所以向量MD 和EA 的夹角等于二面角A EF D --的平面角.3cos 3MD EA MD EA MD EA<>==,. 所以二面角A EF D --的大小为. 20.解:(1)依题设,圆O 的半径r 等于原点O 到直线4x =的距离,即2r ==.得圆O 的方程为224x y +=.(2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得 (20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得2222(2)x x y -+=+,即 222x y -=. (2)(2)PA PB x y x y =-----,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB 的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…,整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,,因为132nn a a +-=,所以1n n b a ++==由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32nn a a a -<.即 1n n b b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为:()()()y f t f t x t '-=-,即 23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根. 记 32()23g t t at a b =-++, 则 2()66g t t at '=-6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根;当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2at t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。

2007年理科数学安徽省高考真题含答案

2007年理科数学安徽省高考真题含答案
答D A B B C C A C D B D 案
(1) 在下列函数中,反函数是其自身的函数为,选D。 (2) 设l,m,n均为直线,其中m,n在平面内,“l”,则“lm且ln”,反之若“lm 且ln”,当m//n时,推不出“l”,∴ “l”是“lm且ln”的充分不必要条件,选 A。
(3)若对任意R,不等式≥ax恒成立,当x≥0时,x≥ax,a≤1,当x<0时,- x≥ax,∴a≥-1,综上得,即实数a的取值范围是≤1,选B。 (4)若a为实数,=-i,则,a=-,选B。
2007年普通高等学校招生全国统一考试(安徽卷)
数 学(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2 页,第Ⅱ卷第3至第4页。全卷满分150分,考试时间120分钟。 考生注意事项:
1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、 姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、 科类”与本人座位号、姓名、科类是否一致。
(Ⅰ)证明: A B C D . . 与平行,与平行, 于是与共面,与共面. (Ⅱ)证明:, , ,. 与是平面内的两条相交直线.
平面. 又平面过. 平面平面. (Ⅲ)解:. 设为平面的法向量, ,. 于是,取,则,. 设为平面的法向量, ,. 于是,取,则,. . 二面角的大小为. 解法2(综合法): (Ⅰ)证明:平面,平面. ,,平面平面.
(A)0
(B)1
(C)2
(D)3
(7)如果点在平面区域上,点在曲线上,那么 的最小值为
(A)
(B)
(C) (D)
(8)半径为1的球面上的四点是正四面体的顶点,则与两点间的球面距
离为
(A) (B) (C)(D)
(9)如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆

2007年高考数学试题(北京.文)含答案

2007年高考数学试题(北京.文)含答案

年普通高等学校招生全国统一考试一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知cos tan 0θθ< ,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 2.函数()3(02)xf x x =<≤的反函数的定义域为( ) A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.函数()sin 2cos 2f x x x =-的最小正周期是( ) A.π2B.πC.2πD.4π4.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( ) A.102⎛⎤ ⎥⎝⎦,B.202⎛⎤ ⎥ ⎝⎦,C.112⎡⎫⎪⎢⎣⎭,D.212⎡⎫⎪⎢⎪⎣⎭, 5.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )A.()2142610C A 个 B.242610A A 个C.()2142610C 个D.242610A 个6.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a <B.7a ≥C.57a <≤D.5a <或7a ≥7.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥.对于函数①()2f x x =+,②2()(2)f x x =-,③()c os(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( )A.①② B.①③ C.② D.③2007年普通高等学校招生全国统一考试数学(文史类)(北京卷) 第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .10.若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为.11.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是.12.在ABC △中,若1tan 3A =,150C =,1BC =,则AB = .13.2002年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于 .14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;当[()]2g f x =时,x =.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共12分)x1 2 3 ()f x211x1 23 ()f x32 1x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . (I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围. 16.(本小题共13分)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值;(II )求{}n a 的通项公式. 17.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点.(I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.18.(本小题共12分)某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:(I )这6位乘客在其不相同的车站下车的概率; (II )这6位乘客中恰有3人在终点站下车的概率; 19.(本小题共14分) 如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上. (I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程. 20.(本小题共14分)已知函数y kx =与22(0)y x x =+≥的图象相交于11()A x y ,,22()B x y ,,1l ,2l 分别是22(0)y x x =+≥的图象在A B ,两点的切线,M N ,分别是1l ,2l 与x 轴的交点.(I )求k 的取值范围;(II )设t 为点M 的横坐标,当12x x <时,写出t 以1x 为自变量的函数式,并求其定义域和值域;OCADBD TN OABCMxyIII )试比较OM 与ON 的大小,并说明理由(O 是坐标原点).2007年普通高等学校招生全国统一考试 数学(文史类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分)1.C 2.B 3.B 4.D 5.A6.C7.D 8.C二、填空题(本大题共6小题,每小题5分,共30分) 9.310.211n -11.3-12.10213.72514.11三、解答题(本大题共6小题,共80分) 15.(共12分) 解:(I )由301x x -<+,得{}13P x x =-<<. (II ){}{}1102Q x x x x =-=≤≤≤.由0a >,得{}1P x x a =-<<,又Q P ⊆,所以2a >, 即a 的取值范围是(2)+∞,. 16.(共13分)解:(I )12a =,22a c =+,323a c =+, 因为1a ,2a ,3a 成等比数列, 所以2(2)2(23)c c +=+, 解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于21a a c -=, 322a a c -=,1(1)n n a a n c --=-,1(1)[12(1)]2n n n a a n c c --=+++-=. 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+= ,,. 当1n =时,上式也成立,所以22(12)n a n n n =-+= ,,. 17.(共14分)解法一:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O = ,CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,225CE CO OE ∴=+=.又132DE AO ==. ∴在Rt CDE △中,515tan 33CE CDE DE ===. ∴异面直线AO 与CD 所成角的大小为15arctan3. 解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(0023)A ,,,(200)C ,,,(013)D ,,,(0023)OA ∴= ,,,(213)CD =-,,,cos OA CDOACD OA CD∴<>=,6642322== . OC ADBEOCADB xyz异面直线AO 与CD 所成角的大小为6arccos4. 18.(共13分) 解:(I )这6位乘客在互不相同的车站下车的概率为610661512.15121010A P ==0≥. (II )这6位乘客中恰有3人在终点站下车的概率为33666914580.014581010C P ⨯===.19.(共14分)解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上,所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,. 所以M 为矩形ABCD 外接圆的圆心. 又22(20)(02)22AM =-++=.从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切, 所以22PM PN =+, 即22PM PN -=.故点P 的轨迹是以M N ,为焦点,实轴长为22的双曲线的左支. 因为实半轴长2a =,半焦距2c =. 所以虚半轴长222b c a =-=.P 的圆心的轨迹方程为221(2)22x y x -=-≤. 20.(本小题共14分)解:(I )由方程22y kx y x =⎧⎨=+⎩,消y 得220x kx -+=. ····················· ① 依题意,该方程有两个正实根,故212800k x x k ⎧∆=->⎨+=>⎩,,解得22k >. (II )由()2f x x '=,求得切线1l 的方程为1112()y x x x y =-+, 由2112y x =+,并令0y =,得1112x t x =- 1x ,2x 是方程①的两实根,且12x x <,故2128428k k x k k --==+-,22k >,1x 是关于k 的减函数,所以1x 的取值范围是(02),.t 是关于1x 的增函数,定义域为(02),,所以值域为()-∞,0,(III )当12x x <时,由(II )可知1112x OM t x ==-+. 类似可得2212x ON x =-.1212122x x x x OM ON x x ++-=-+. 由①可知122x x =. 从而0OM ON -=.当21x x <时,有相同的结果0OM ON -=. 所以OM ON =.。

2007年全国高考文科数学真题(含答案)-天津卷

2007年全国高考文科数学真题(含答案)-天津卷

2007年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上无效.3.本卷共10小题,每小题5分,共50分. 参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T = ( ) A .{}2 B .{}12,C .{}012,,D .{}1012-,,, (2)设变量x y ,满足约束条件142x y x y y --⎧⎪+⎨⎪⎩≥,≤,≥则目标函数24z x y =+的最大值为( )A.10 B.12 C.13 D.14(3) “2a =”是“直线20ax y +=平行于直线1x y +=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件(4)设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<(5)函数2log (4)(0)y x x =+>的反函数是( ) A .24(2)xy x =+> B .24(0)xy x =+> C .24(2)x y x =->D .24(0)xy x =->(6)设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a α∥,b β∥,αβ∥,则a b ∥ C .若a α⊂,b β⊂,a b ∥,则αβ∥ D .若a α⊥,b β⊥,αβ⊥,则a b ⊥(7)设双曲线22221(00)x y a b ab-=>>,的离心率为3,且它的一条准线与抛物线24y x =的准线重合,则此双曲线的方程为( )A.2211224xy-= B.2214896xy-=C.222133xy -= D.22136xy-=(8)设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( )A.2 B.4C.6 D.8(9)设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数(10)设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意的[]2x t t ∈+,,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是( )A .)2⎡+⎣,∞B .[)2+,∞C .(]02,D .2120⎡⎤⎡⎤--⎣⎦⎣⎦,,第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚.2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. (11)从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下: 分组 [)90100,[)100110,[)110120, [)120130, [)130140, [)140150, 频数1 2 3 10 1则这堆苹果中,质量不小于...120克的苹果数约占苹果总数的 %.(12)921x x ⎛⎫+ ⎪⎝⎭的二项展开式中常数项是 (用数字作答).(13)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .(14)已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线A B 的方程是 .(15)在A B C △中,2A B =,3A C =,D 是边B C 的中点,则AD BC =.(16)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有 种(用数字作答).三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 在A B C △中,已知2A C =,3B C =,4cos 5A =-.(Ⅰ)求sin B 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. (18)(本小题满分12分)已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为红球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率; (19)(本小题满分12分)如图,在四棱锥P A B C D -中,P A ⊥底面A B C D ,AB AD AC CD ⊥⊥,,60A B C ∠=°,P A A B B C ==,E 是P C 的中点.(Ⅰ)求P B 和平面PAD 所成的角的大小; (Ⅱ)证明A E ⊥平面PC D ; (Ⅲ)求二面角A P D C --的大小.(20)(本小题满分12分)ABCDPE在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列{}n a n -是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立. (21)(本小题满分14分)设函数2()()f x x x a =--(x ∈R ),其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的极大值和极小值;(Ⅲ)当3a >时,证明存在[]10k ∈-,,使得不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立. (22)(本小题满分14分) 设椭圆22221(0)x y a b ab+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212A F F F ⊥,原点O 到直线1A F 的距离为113O F .(Ⅰ)证明2a b =;(Ⅱ)求(0)t b ∈,使得下述命题成立:设圆222x y t +=上任意点00()M x y ,处的切线交椭圆于1Q ,2Q 两点,则12OQ OQ ⊥.2007年普通高等学校招生全国统一考试(天津卷)数学(文史类)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. (1)B (2)C (3)C (4)A (5)C (6)D (7)D (8)B (9)A (10)A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. (11)70(12)84 (13)14π (14)30x y +=(15)52(16)630三、解答题(17)本小题考查同角三角函数的基本关系式、两角和公式、倍角公式、正弦定理等的知识,考查基本运算能力.满分12分. (Ⅰ)解:在A B C △中,2243sin 1cos 155A A ⎛⎫=-=--= ⎪⎝⎭,由正弦定理,sin sin BC AC AB=.所以232sin sin 355A CB A B C==⨯=.(Ⅱ)解:因为4cos 5A =-,所以角A 为钝角,从而角B 为锐角,于是22221cos 1sin 155B B ⎛⎫=-=-=⎪⎝⎭,22117cos 22cos 121525B B =-=⨯-=,221421sin 22sin cos 25515B B B ==⨯⨯=.sin 2sin 2cos cos 2sin 666B B B πππ⎛⎫+=+ ⎪⎝⎭4213171252252=⨯+⨯1271750+=.(18)本小题主要考查互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分.(Ⅰ)解:设“从甲盒内取出的2个球均为红球”为事件A ,“从乙盒内取出的2个球均为红球”为事件B .由于事件A B ,相互独立,且2327C 1()C7P A ==,2329C 5()C18P B ==,故取出的4个球均为红球的概率是155()()()718126P A B P A P B ==⨯=.(Ⅱ)解:设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件C ,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件D .由于事件C D ,互斥,且1123442279C C C 2()C C 21P C == ,1125242275C C C 10()C C 63P D == . 故取出的4个红球中恰有4个红球的概率为21016()()()216363P C D P C P D +=+=+=.(19)本小题考查直线与平面垂直、直线和平面所成的角、二面角等基础知识.考查空间想象能力、记忆能力和推理论证能力.满分12分.(Ⅰ)解:在四棱锥P A B C D -中,因P A ⊥底面A B C D ,A B ⊂平面A B C D ,故P A A B⊥. 又AB AD ⊥,PA AD A = ,从而AB ⊥平面PAD .故P B 在平面PAD 内的射影为P A ,从而APB ∠为P B 和平面PAD 所成的角. 在R t PAB △中,AB PA =,故45APB = ∠. 所以P B 和平面PAD 所成的角的大小为45 . (Ⅱ)证明:在四棱锥P A B C D -中,因P A ⊥底面A B C D ,C D ⊂平面A B C D ,故C D P A ⊥. 由条件C D PC ⊥,PA AC A = ,C D ∴⊥面PAC . 又A E ⊂面PAC ,A E C D ∴⊥.由PA AB BC = ,60ABC =∠,可得A C P A =.E 是P C 的中点,A E P C ∴⊥,PC CD C ∴= .综上得A E ⊥平面PC D .(Ⅲ)解:过点E 作EM PD ⊥,垂足为M ,连结A M .由(Ⅱ)知,A E ⊥平面PC D ,A M 在平面PC D 内的射影是EM ,则AM PD ⊥. 因此AM E ∠是二面角A P D C --的平面角.由已知,可得30CAD =∠.设A C a =,可得P A a =,233AD a =,213PD a =,22AE a =.在R t AD P △中,AM PD ⊥ ,AM PD PA AD ∴= ,则ABCDPEM232737213a aPA AD AM a PD a == . 在R t A E M △中,14sin 4AE AM E AM==.所以二面角A P D C --的大小14arcsin 4.(20)本小题以数列的递推关系式为载体,主要考查等比数列的概念、等比数列的通项公式及前n 项和公式、不等式的证明等基础知识,考查运算能力和推理论证能力.满分12分. (Ⅰ)证明:由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n ∈*N .又111a -=,所以数列{}n a n -是首项为1,且公比为4的等比数列.(Ⅱ)解:由(Ⅰ)可知14n n a n --=,于是数列{}n a 的通项公式为14n n a n -=+.所以数列{}n a 的前n 项和41(1)32nn n n S -+=+.(Ⅲ)证明:对任意的n ∈*N , 1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤.所以不等式14n n S S +≤,对任意n ∈*N 皆成立.(21)本小题主要考查运用导数研究函数的性质、曲线的切线方程,函数的极值、解不等式等基础知识,考查综合分析和解决问题的能力及分类讨论的思想方法.满分14分.(Ⅰ)解:当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的切线方程是25(2)y x +=--,整理得580x y +-=.(Ⅱ)解:2322()()2f x x x a x ax a x =--=-+-22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3a x =或x a =.由于0a ≠,以下分两种情况讨论.(1)若0a >,当x 变化时,()f x '的正负如下表:x 3a ⎛⎫- ⎪⎝⎭∞,3a3a a ⎛⎫⎪⎝⎭, a ()a +,∞()f x '-0 + 0-因此,函数()f x 在3a x =处取得极小值3a f ⎛⎫⎪⎝⎭,且 34327a f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =.(2)若0a <,当x 变化时,()f x '的正负如下表:x()a -∞,a 3aa ⎛⎫ ⎪⎝⎭, 3a3a ⎛⎫+ ⎪⎝⎭,∞ ()f x '-0 + 0-因此,函数()f x 在x a =处取得极小值()f a ,且()0f a =;函数()f x 在3a x =处取得极大值3a f ⎛⎫⎪⎝⎭,且 34327a f a ⎛⎫=- ⎪⎝⎭.(Ⅲ)证明:由3a >,得13a >,当[]10k ∈-,时,cos 1k x -≤,22cos 1k x -≤.由(Ⅱ)知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R 只要22cos cos ()k x k x x --∈R ≤ 即22cos cos ()x x k k x --∈R ≤ ①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,则函数()g x 在R 上的最大值为2.要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.(22)本小题主要考查椭圆的标准方程和几何性质、直线方程、两条直线垂直、圆的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中 0y >,由于点A 在椭圆上,有22221c y ab+=,222221a b y ab-+=,解得2by a =,从而得到2b A c a ⎛⎫⎪⎝⎭,,直线2AF 的方程为2()2by x c ac=+,整理得2220b x acy b c -+=.由题设,原点O 到直线1A F 的距离为113O F ,即242234c b c b a c=+,将222c a b =-代入原式并化简得222a b =,即2a b =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,,过点O 作1O B AF ⊥,垂足为H ,易知112F BC F F A △∽△,故211B O F A O F F A=由椭圆定义得122AF AF a +=,又113B O O F =,所以2212132F A F A F Aa F A==-,解得22a F A =,而22bF A a=,得22ba a=,即2a b =.(Ⅱ)解法一:圆222x y t +=上的任意点00()M x y ,处的切线方程为200x x y y t +=. 当(0)t b ∈,时,圆222x y t +=上的任意点都在椭圆内,故此圆在点A 处的切线必交椭圆于两个不同的点1Q 和2Q ,因此点111()Q x y ,,222()Q x y ,的坐标是方程组20022222x x y y t x y b ⎧+=⎪⎨+=⎪⎩ ①②的解.当00y ≠时,由①式得 200t x x y y -=代入②式,得22220022t x x x b y ⎛⎫-+=⎪⎝⎭,即 22224220000(2)4220x y x t x x t b y +-+-=,于是201222042t x x x x y+=+,422012220222t b y x x x y-=+2201121201t x x t x x y y y y --=422012012201()t x t x x x x x y ⎡⎤=-++⎣⎦ 242242200002222200000422122t x t b y t x t x y x y x y ⎛⎫-=-+ ⎪++⎝⎭AO1F 2FHxy4220220022t b x x y -=+.若12OQ OQ ⊥,则42242242220000121222222200000022232()0222t b y t b x t b x y x x y y x y x y x y ---++=+==+++.所以,42220032()0t b x y -+=.由22200x y t +=,得422320t b t -=.在区间(0)b ,内此方程的解为63t b =.当00y =时,必有00x ≠,同理求得在区间(0)b ,内的解为63t b =. 另一方面,当63t b =时,可推出12120x x y y +=,从而12OQ OQ ⊥. 综上所述,6(0)3t b b =∈,使得所述命题成立.。

2007年普通高等学校招生全国统一考试理科综合试卷及答案-安徽卷

2007年普通高等学校招生全国统一考试理科综合试卷及答案-安徽卷

2007年普通高等学校招生全国统一考试理科综合能力测试本试卷共13页,满分300分,考试时间150分钟★祝考试顺利★注意事项:1.答卷前,考生必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮檫干净后,再选涂其它答案标号。

答在试题卷上无效。

3.非选择题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接在答题卡上每题对应的答题区域内,答在试题卷上无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

选择题(共21小题,每小题6分,共126分)以下数据可供答题时参考:相对原子质量(原子量):H 1 C 12 O 16 Ne 20Cu 64一、选择题(本题共13小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下图表示一段离体神经纤维的S点受到到刺激而兴奋时,局部电流和神经兴奋的传导方向(弯箭头表示膜内、外局部电流的流动方向,直箭头表示兴奋传导方向)。

其中正确的是2.某种病菌感染人体并侵入细胞内后,机体可以对该细胞产生免疫反应,其中有A.效应B细胞接触靶细胞裂解,从而病菌抗原白细胞介素消灭B.效应B细胞接触靶细胞,导致靶细胞裂解,从而使病菌抗原被抗体消灭C.效应T细胞接触靶细胞,导致靶细胞裂解,从而使病菌抗原被外毒素消灭D.效应T细胞接触靶细胞,导致靶细胞裂解,从而使病菌抗原被抗体消灭3.下列有关种群增长的S型曲线的叙述,错误的是A.通常自然界中的种群增长曲线最终呈S型B.达到k值时种群增长率为零C.种群增长受自身密度的影响D.种群的增长速度逐步降低4.通过发酵到大规模生产谷氨酸,生产中常用的菌种是溶氧的氨酸棒状杆菌。

下面在有关谷氨酸发酵过程的叙述,正确的是A.溶氧充足时,发酵液中有乳酸的累积B.发酵液中碳源和氮源比例的变化不影响谷氨酸的产量C.菌体中谷氨酸的排出,有利于谷氨酸的合成和产量的提高D.发酵液pH呈碱性时,有利于谷氨酸棒状杆菌生成乙酰谷氨酰胺5.下图表示用3H-亮氨酸标记细胞内的分泌蛋白,追踪不同时间具有放射性的分泌蛋白颗粒在细胞内分布情况和运输过程。

2007年(全国卷II)(含答案)高考理科数学

2007年(全国卷II)(含答案)高考理科数学

2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题一、选择题 ( 本大题 共 12 题, 共计 60 分) 1.sin 210= ( ) A .32B .32-C .12D .12-2.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( ) A .2(ln 2)B .ln(ln 2)C .ln 2D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-6.不等式2104x x ->-的解集是( ) A .(21)-, B .(2)+∞, C .(21)(2)-+∞ ,, D .(2)(1)-∞-+∞ ,,7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( ) A .64B .104C .22D .328.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .129.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e 2x -+B .3e 2x +-C .2e 3x -+D .2e 3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种B .60种C .100种D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠= 且123AF AF =,则双曲线的离心率为( ) A .52B .102C .152D .512.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++= ( )A .9B .6C .4D .3二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2. 16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC△中,已知内角Aπ=3,边23BC=.设内角B x=,周长为y.(1)求函数()y f x=的解析式和定义域;(2)求y的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD-中,底面A B C D为正方形,侧棱SD⊥底面A B C D E F,,分别为AB SC,的中点.(1)证明EF∥平面SAD;(2)设2SD DC=,求二面角A EF D--的大小.A EB CF SD20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线34x y -=相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设32n n n b a a =-,证明1n n b b +<,其中n 为正整数.22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题答案解析: 一、选择题 1.答案:D解析:sin2100 =1sin 302-︒=-,选D 。

2007年高考数学卷(福建.文)含答案

2007年高考数学卷(福建.文)含答案

2007年普通高等学校招生全国统一考试(福建文)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}12345U =,,,,,且{}234A =,,,{}12B =,,则()U A B 等于( )A.{}2B.{}5C.{}34,D.{}2345,,,2.等比数列{}n a 中,44a =,则26a a 等于( ) A.4B.8C.16D.323.sin15cos75cos15sin105+等于( ) A.0B.12C.2D.14.“2x <”是“260x x --<”的( ) A.充分而不必要条件B.必要而不充分条件 C.充要条件D.既不充分也不必要条件5.函数πsin 23y x ⎛⎫=+⎪⎝⎭的图象( ) A.关于点π03⎛⎫ ⎪⎝⎭,对称B.关于直线π4x =对称 C.关于点π04⎛⎫ ⎪⎝⎭,对称D.关于直线π3x =对称 6.如图,在正方体1111ABCD A B C D -中,E F G H ,,,分别为1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于( ) A.45B.60C.90D.1207.已知()f x 为R 上的减函数,则满足1(1)f f x ⎛⎫>⎪⎝⎭的实数x 的取值范围是( ) A.(1)-∞, B.(1)+∞, C.(0)(01)-∞,, D.(0)(1)-∞+∞,,8.对于向量a ,b ,c 和实数λ,下列命题中真命题是( )A FDBGE 1BH1C1D1AA.若0=a b ,则0=a 或0=b B.若0λ=a ,则0λ=或0=a C.若22=a b ,则=a b 或=-a bD.若=a b a c ,则=b c9.已知m n ,为两条不同的直线,αβ,为两个不同的平面,则下列命题中正确的是( ) A.m α⊂,n α⊂,m β∥,n βαβ⇒∥∥ B.αβ∥,m α⊂,n m n β⊂⇒∥ C.m α⊥,m n n α⇒⊥∥ D.n m ∥,n m αα⇒⊥⊥10.以双曲线222x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( ) A.22430x y x +--= B.22430x y x +-+= C.22450x y x ++-=D.22450x y x +++=11.已知对任意实数x ,有()()f x f x -=-,()()g x g x -=,且0x >时,()0f x '>,()0g x '>,则0x <时( )A.()0f x '>,()0g x '> B.()0f x '>,()0g x '< C.()0f x '<,()0g x '>D.()0f x '<,()0g x '<12.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“0000⨯⨯⨯⨯⨯⨯⨯”到“9999⨯⨯⨯⨯⨯⨯⨯”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( ) A.2000 B.4096 C.5904 D.8320第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.621x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是_____.(用数字作答)14.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的取值范围是________.15.已知长方形ABCD ,4AB =,3BC =,则以A B ,为焦点,且过C D ,两点的椭圆的离心率为______.16.中学数学中存在许多关系,比如“相等关系”、“平行关系”等等.如果集合A 中元素之间的一个关系“~”满足以下三个条件: (1)自反性:对于任意a A ∈,都有a ~a ;(2)对称性:对于a b A ∈,,若a ~b ,则有b ~a ;(3)传递性:对于a b c A ∈,,,若a ~b ,b ~c ,则有a ~c . 则称“~”是集合A 的一个等价关系.例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立).请你再列出两个等价关系:______.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小;(Ⅱ)若AB,求BC 边的长. 18.(本小题满分12分)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:(Ⅰ)甲试跳三次,第三次才成功的概率;(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率;(Ⅲ)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率. 19.(本小题满分12分) 如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B--的大小. 20.(本小题满分12分)设函数22()21(0)f x tx t x t x t =++-∈>R ,. (Ⅰ)求()f x 的最小值()h t ;(Ⅱ)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围. 21.(本小题满分12分)数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .(Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求数列{}n na 的前n 项和n T . 22.(本小题满分14分)如图,已知(10)F ,,直线:1l x =-,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ =. (Ⅰ)求动点P 的轨迹C 的方程;A BD1A1C1BC(Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . (1)已知1MA AF λ=,2MB BF λ=,求12λλ+的值; (2)求MA MB 的最小值.2007年普通高等学校招生全国统一考试(福建文)参考答案一、选择题:本大题考查基本概念和基本运算,每小题5分,满分60分. 1.C 2.C 3.D 4.A 5.A 6.B 7.D 8.B 9.D 10.B 11.B 12.C二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分. 13.1514.[]57-,15.1216.答案不唯一,如“图形的全等”、“图形的相似”、“非零向量的共线”、“命题的充要条件”等等.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.本小题主要考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及推理和运算能力.满分12分. 解:(Ⅰ)π()C A B =-+,1345tan tan()113145C A B +∴=-+=-=--. 又0πC <<,3π4C ∴=.(Ⅱ)由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得sin A =sin sin AB BC C A =,sin 2sin ABC AB C∴==18.本小题主要考查概率的基础知识,运用数学知识解决问题的能力,以及推理与运算能力.满分12分.解:记“甲第i 次试跳成功”为事件i A ,“乙第i 次试跳成功”为事件i B ,依题意得()0.7i P A =,()0.6i P B =,且i A ,i B (123i =,,)相互独立.(Ⅰ)“甲第三次试跳才成功”为事件123A A A ,且三次试跳相互独立,123123()()()()0.30.30.70.063P A A A P A P A P A ∴==⨯⨯=.答:甲第三次试跳才成功的概率为0.063. (Ⅱ)“甲、乙两人在第一次试跳中至少有一人成功”为事件C . 解法一:111111C A B A B A B =++,且11A B ,11A B ,11A B 彼此互斥,111111()()()()P C P A B P A B P A B ∴=++ 111111()()()()()()P A P B P A P B P A P B =++ 0.70.40.30.60.70.6=⨯+⨯+⨯ 0.88=.解法二:11()1()()10.30.40.88P C P A P B =-=-⨯=. 答:甲、乙两人在第一次试跳中至少有一人成功的概率为0.88.(Ⅲ)设“甲在两次试跳中成功i 次”为事件(012)i M i =,,, “乙在两次试跳中成功i 次”为事件(012)i N i =,,, 事件“甲、乙各试跳两次,甲比乙的成功次数恰好多一次”可表示为1021M N M N +,且10M N ,21M N 为互斥事件,∴所求的概率为10211021()()()P M N M N P M N P M N +=+1021()()()()P M P N P M P N =+1221220.70.30.40.70.60.4C C =⨯⨯⨯+⨯⨯⨯0.06720.2352=+ 0.3024=答:甲、乙每人试跳两次,甲比乙的成功次数恰好多一次的概率为0.3024.19.本小题主要考查直线与平面的位置关系,二面角的大小等知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分. 解法一:(Ⅰ)取BC 中点O ,连结AO . ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B . 连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥,AC1A FG1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥,1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥,AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF =又112AG AB ==sin 4AG AFG AF ∴===∠. 所以二面角1A A DB --的大小为arcsin 4解法二:(Ⅰ)取BC 中点O ,连结AO . ABC △为正三角形,AO BC ∴⊥. 在正三棱柱111ABC A B C -中, 平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(02A ,(00A ,1(120)B ,,, 1(12AB ∴=,,(210)BD =-,,,1(12BA =-.12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =-,,,1(020)AA =,,.AD ⊥n ,1AA ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩,,nn 020x y y ⎧-+-=⎪∴⎨=⎪⎩,,0y x =⎧⎪∴⎨=⎪⎩,. 令1z =得(1)=,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD ,1AB ∴为平面1A BD 的法向量.cos <n,11133222AB AB AB -->===n n .∴二面角1A A D B --的大小为arccos420.本题主要考查函数的单调性、极值以及函数导数的应用,考查运用数学知识分析问题解决问题的能力.满分12分. 解:(Ⅰ)23()()1(0)f x t x t t t x t =+-+-∈>R ,,∴当x t =-时,()f x 取最小值3()1f t t t -=-+-,即3()1h t t t =-+-.(Ⅱ)令3()()(2)31g t h t t m t t m =--+=-+--, 由2()330g t t '=-+=得1t =,1t =-(不合题意,舍去). 当t 变化时()g t ',()g t 的变化情况如下表:()g t ∴在(02),内有最大值(1)1g m =-.()2h t t m <-+在(02),内恒成立等价于()0g t <在(02),内恒成立,即等价于10m -<,所以m 的取值范围为1m >.21.本小题考查数列的基本知识,考查等比数列的概念、通项公式及数列的求和,考查分类讨论及化归的数学思想方法,以及推理和运算能力.满分12分. 解:(Ⅰ)12n n a S +=,12n n n S S S +∴-=,13n nS S +∴=. 又111S a ==,∴数列{}n S 是首项为1,公比为3的等比数列,1*3()n n S n -=∈N .当2n ≥时,21223(2)n n n a S n --==≥,21132n n n a n -=⎧∴=⎨2⎩, ,,≥. (Ⅱ)12323n n T a a a na =++++,当1n =时,11T =;当2n ≥时,0121436323n n T n -=++++,…………①12133436323n n T n -=++++,………………………②-①②得:12212242(333)23n n n T n ---=-+++++-213(13)222313n n n ---=+--11(12)3n n -=-+-.1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥. 又111T a ==也满足上式,1*113()22n n T n n -⎛⎫∴=+-∈ ⎪⎝⎭N .22.本小题主要考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.满分14分. 解法一:(Ⅰ)设点()P x y ,,则(1)Q y -,,由QP QF FP FQ =得:(10)(2)(1)(2)x y x y y +-=--,,,,,化简得2:4C y x =.(Ⅱ)(1)设直线AB 的方程为:1(0)x my m =+≠.设11()A x y ,,22()B x y ,,又21M m ⎛⎫-- ⎪⎝⎭,, 联立方程组241y x x my ⎧=⎨=+⎩,,,消去x 得:2440y my --=,2(4)120m ∆=-+>,121244y y m y y +=⎧⎨=-⎩,.由1MA AF λ=,2MB BF λ=得:1112y y m λ+=-,2222y y mλ+=-1121my λ=--,2221my λ=--, 12122112m y y λλ⎛⎫∴+=--+ ⎪⎝⎭121222y y m y y +=--2424mm =---0=.解法二:(Ⅰ)由QP QF FP FQ =得:()0FQ PQ PF +=,()()0PQ PF PQ PF ∴-+=,220PQ PF ∴-=,PQ PF ∴=.所以点P 的轨迹C 是抛物线,由题意,轨迹C 的方程为:24y x =.(Ⅱ)(1)由已知1MA AF λ=,2MB BF λ=,得120λλ<. 则:12MA AF MBBFλλ=-.…………①过点A B ,分别作准线l 的垂线,垂足分别为1A ,1B , 则有:11MA AA AF MBBB BF==.…………②由①②得:12AF AF BF BFλλ-=,即120λλ+=. (Ⅱ)(2)解:由解法一,(2121M M MA MB y y y y =--221212(1)()M Mm y y y y y y =+-++ 2224(1)44m m m m=+-+⨯+ 224(1)4m m ⎛⎫=++ ⎪⎝⎭22214(2)4216m m m ⎛=+++= ⎪ ⎪⎝⎭≥. 当且仅当221m m =,即1m =±时等号成立,所以MA MB 最小值为16.。

普通高等学校招生全国统一考试卷及含答案) (1)

普通高等学校招生全国统一考试卷及含答案) (1)

普通高等学校招生全国统一考试数学(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.如右图, A 、B 、C 、D 是某煤矿的四个采煤点, l 是公路, 图中所标线段为道路, ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3, 运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站, 使四个采煤点的煤运到中转站的费用最少, 则地点应选在( ) A.P 点B.Q 点C.R 点D.S 点2.若(3a2 -312a ) n 展开式中含有常数项, 则正整数n 的最小值是 ( )A .4B .5C . 6D . 83. 从5名演员中选3人参加表演, 其中甲在乙前表演的概率为 ( ) A .B .C .D .4、等差数列中,已知,,使得的最小正整数n 为( )A .7B .8C .9D .105、为了解疾病A 是否与性别有关,在一医院随机的对入院50人进行了问卷调查得到了如下的列联表:患疾病A 不患疾病A 合计 男 20 5 25 女101525203103201101{}n a112a =-130S =0n a >EFDOC BA合计 3020 50请计算出统计量,你有多大的把握认为疾病A 与性别有关下面的临界值表供参考: ( )0.050.010 0.005 0.0013.841 6.635 7.879 10.828A. B. C. D.6.计算机是将信息转换成二进制进行处理的, 二进制即“逢2进1”如(1101)2表示二进制数, 将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-17.已知f(cosx)=cos3x,则f(sin30°)的值是( ) A.1B.23C.0D.-18.已知y=f(x)是偶函数, 当x>0时, f(x)=x+x 4,当x ∈[-3,-1]时, 记f(x)的最大值为m , 最小值为n , 则m -n 等于( ) A.2B.1C.3D.239.某村有旱地与水田若干, 现在需要估计平均亩产量, 用按5%比例分层抽样的方k 95%99%99.5%99.9%法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为()A.150,450B.300,900C.600,600D.75,22510.在同一直角坐标系中,函数y =1xa,y=loga(x+12)(a>0,且a≠1)的图象可能是( )11.设0<a<1,则随机变量X的分布列是( )则当a在(0,1)内增大时,A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大12.设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱V A上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则( )A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β二、填空题(共4小题,每小题5分;共计20分)1、已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为_________.2、不等式0)5(1<--x x )(的解集是______. (用集合表示) 3.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b a c B ===,则ABC △的面积为__________.4.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.三、大题:(满分70分)1、甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率. 2、已知f(x)=2x +3,g(x +2)=f(x),求g(x)3.已知点M 是离心率是上一点:过点M 作直线MA 、MB 交椭圆C 于A :B 两点:且斜率分别为 (1)若点A :B 关于原点对称:求的值:2222:1(0)3x y C a b a b +=>>12,.k k 12k k ⋅(2)若点M 的坐标为(0:1):且:求证:直线AB 过定点:并求直线AB 的斜的取值范围。

2007年高考数学卷(四川.文)含详解

2007年高考数学卷(四川.文)含详解

2007年普通高等学校招生全国统一考试(四川卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一、选择题(1)设集合M ={4,5,6,8},集合N ={3,5,7,8}那么M ∪N = (A){3,4,5,6,7,8} (B){5,8} (C){3,5,7,8}(D){4,5,6,8}(2)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是 (A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克 (4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B)AC 1⊥BD(C)AC 1⊥平面CB 1D 1 (D)异面直线AD 与CB 所成的角为60°(5)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A)364 (B)362 (C)62 (D)32 (6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B-OA-C 的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是(A)67π (B)45π (C)34π (D)23π(7)等差数列{a n }中,a 1=1,a 3+a 5=14,其降n 项和S n =100,则n = (A)9 (B)10 (C)11 (D)12(8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=12 (9)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有 A.48个 B.36个 C.24个 D.18个(10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42(11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为A.36万元B.31.2万元C.30.4万元D.24万元(12)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2与l 3同的距离是2, 正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 A.23 B.364 C. 473- D.3212- 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上.(13).1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .三、解答题:本大题共6小题。

2007年普通高等学校招生全国统一考试 理科数学试题山东卷

2007年普通高等学校招生全国统一考试 理科数学试题山东卷

2007年普通高等学校招生全国统一考试理科数学试题山东卷第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分 在每小题给出的四个选项中,选择一个符合题目要求的选项(1)若cos isin z θθ=+(i 为虚数单位),则使21z =-的θ值可能是( ) A6π B4π C3π D2π (2)已知集合{}11M =-,,11242x N xx +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N = ( ) A{}11-,B{}1-C{}0D{}10-,(3)下列几何体各自的三视图中,有且仅有两个视图相同的是( )A ①②B ①③C ①④D ②④(4)设11132a ⎧⎫∈-⎨⎬⎩⎭,,,,则使函数ay x =的定义域为R 且为奇函数的所有a 值为( ) A 1,3B 1-,1C 1-,3D 1-,1,3(5)函数sin 2cos 263y x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期和最大值分别为( ) A π,1B π,2C 2π,1D 2π,2(6)给出下列三个等式:()()()f xy f x f y =+,()()()f x y f x f y +=,()()()1()()f x f y f x y f x f y ++=-,下列函数中不满足其中任何一个等式的是( )A ()3xf x =B ()sin f x x =C 2()log f x x =D①正方形 ②圆锥 ③三棱台 ④正四棱锥f x x =(7)命题“对任意的x ∈R ,3210x x -+≤”的否定是( ) A 不存在x ∈R ,3210x x -+≤B 存在x ∈R ,3210x x -+≤C 存在x ∈R ,3210x x -+>D 对任意的x ∈R ,3210x x -+>(8)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒 右图是按上述分组方法得到的频率分布直方图 设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A 0 9,35B 0 9,45C 0 1,35D 0 1,45(9)下列各小题中,p 是q 的充要条件的是( )①p :2m <-或6m >;q :23y x mx m =+++有两个不同的零点②():1()f x p f x -=;:()q y f x =是偶函数 ③:cos cos p αβ=;:tan tan q αβ=④:p A B A = ;:U Uq B A ⊆痧A ①②B ②③C ③④D ①④(10)阅读右边的程序框图,若输入的n 是100,则输出的变量S 和T 的值依次是( ) A 2500,2500 B 2550,2550 C 2500,2550 D 2550,2500`(11)在直角ABC △中,CD 是斜边AB 上的高,则下列等式不成立的是( )A 2AC AC AB =B 2BC BA BC =0 13 14 15 16 17 18 19秒频率/组距0 360 340 180 06 0 04 0 02开始 输入n22x <1n n =-T T n =+1n n =-结束输出S T , s s n =+否 00ST ==,2AB AC CD =D 22()()AC AB BA BC CD AB⨯=(12)位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位`于点(23),的概率是( )A 512⎛⎫ ⎪⎝⎭B 5251C 2⎛⎫ ⎪⎝⎭C 5351C 2⎛⎫ ⎪⎝⎭D 532531C C 2⎛⎫ ⎪⎝⎭第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分 答案须填在题中横线上(13)设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA与x 轴正向的夹角为60,则OA为(14)设D 是不等式组21023041x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤,≥,≤≤,≥表示的平面区域,则D 中的点()P x y ,到直线10x y +=距离的最大值是(15)与直线20x y +-=和曲线221212540x y x y +---=都相切的半径最小的圆的标准方程是(16)函数log (3)1a y x =+-(01)a a >≠且,的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 三、解答题:本大题共6小题,共74分 解答应写出文字说明、证明过程或演算步骤 (17)(本小题满分12分)设数列{}n a 满足211233333n n n a a a a -++++=…,a ∈*N (Ⅰ)求数列{}n a 的通项; (Ⅱ)设n nnb a =,求数列{}n b 的前n 项和n S (18)(本小题满分12分)设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计)Ⅰ)求方程20x bx c ++=有实根的概率; (Ⅱ)求ξ的分布列和数学期望;(Ⅲ)求在先后两次出现的点数中有5的条件下,方程20x bx c ++=有实根的概率(19)(本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,AB DC ∥(Ⅰ)设E 是DC 的中点,求证:1D E ∥平面11A BD ; (Ⅱ)求二面角11A BD C --的余弦值(20)(本小题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距102海里,问乙船每小时航行多少海里?(21)(本小题满分12分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标 (22)(本小题满分14分)设函数2()ln(1)f x x b x =++,其中0b ≠(Ⅰ)当12b >时,判断函数()f x 在定义域上的单调性; (Ⅱ)求函数()f x 的极值点;BCD A1A1D1C1BE北 1B2B 1A2A120 105 乙甲Ⅲ)证明对任意的正整数n ,不等式23111ln 1n n n⎛⎫+>-⎪⎝⎭都成立 2007年普通高等学校招生全国统一考试理科数学试题山东卷 参考答案 第Ⅰ卷一、选择题 (1)D (2)B (3)D(4)A (5)A (6)B (7)C (8)A(9)D(10)D(11)C(12)B第Ⅱ卷二、填空题 (13)212p(14)42 (15)22(2)(2)2x y -+-=(16)8三、解答题 (17)(本小题满分12分)解:(Ⅰ)211233333n n na a a a -++++=…, ① ∴当2n ≥时,22123113333n n n a a a a ---++++=… ② ①-②得1133n n a -=,13n n a =在①中,令1n =,得113a =13n n a ∴=(Ⅱ)n nn b a =, 3n n b n ∴=23323333n n S n ∴=+⨯+⨯++…, ③ 23413323333n n S n +∴=+⨯+⨯++… ④④-③得23(3333)n n n S n +∴=-++++…即13(13)2313n n n S n +-=--, 1(21)3344n n n S +-∴=+(18)(本小题满分12分)解:(Ⅰ)由题意知:设基本事件空间为Ω,记“方程20x bx c ++=没有实根”为事件A ,“方程20x bx c ++=有且仅有一个实根”为事件B ,“方程20x bx c ++=有两个相异实数”为事件C ,则{}()126b c b c Ω==,,,,…,, {}2()40126A b c b c b c =-<=,,,,,…,, {}2()40126B b c b c b c =-==,,,,,…,, {}2()40126C b c b c b c =->=,,,,,…,,所以Ω是的基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个 又因为B C ,是互斥事件,故所求概率21719()()363636P P B B C =+=+=(Ⅱ)由题意,ξ的可能取值为012,,,则{}17036P ξ==, {}1118P ξ==,{}17236P ξ==,故ξ的分布列为:ξ 0 1 2P17361181736所以ξ的数学期望171170121361836E ξ=⨯+⨯+⨯=(Ⅲ)记“先后两次出现的点数有中5”为事件D ,“方程20x bx c ++=有实数”为事件E ,11()36P D =,7()36P D E = , ()7()()11P D E P E D P D ∴==(19)(本小题满分12分) 解法一:(Ⅰ)连结BE ,则四边形DABE 为正方形,11BE AD A D ∴==,且11BE AD A D ∥∥,∴四边形11A D EB 为平行四边形11D E A B ∴∥又1D E ⊄平面1A BD ,1A B ⊂平面1A BD ,1D E ∴∥平面1A BD(Ⅱ)以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设1DA =,则(000)D ,,,(100)A ,,,(110)B ,,,(022)C ,,,1(102)A ,,, 1(102)DA ∴= ,,,(110)DB =,,,设()x y z =,,n 为平面1A BD 的一个法向量由1DA ⊥ n ,DB ⊥ n ,得200.x z x y +=⎧⎨+=⎩,取1z =,则(231)=-,,n又2(023)DC = ,,,(110)DB =,,, 设111()x y z =,,m 为平面1C BD 的一个法向量,由DC ⊥ m ,DB ⊥m ,得11112200.y z x y +=⎧⎨+=⎩,取11z =,则(111)=-,,m ,BCD A1A1D1C1BEG BCD A 1A1D1C1BEz yxF Mm 与n 的夹角为a ,二面角11A BD C --为θ,显然θ为锐角,33cos 393θ-∴===- m n m n 3cos 3θ∴=, 即所求二面角11A BD C --的余弦为33解法二:(Ⅰ)以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设DA a =,由题意知:(000)D ,,,(00)A a ,,,(0)B a a ,,,(020)C a ,,,1(022)C a a ,,,1(02)A a a ,,,1(002)D a ,,,(00)E a ,,1(02)D E a a ∴=- ,,,1(02)DA a a = ,,,(0)DB a a = ,,, 又(02)(0)(02)a a a a a a -=-,,,,,,,1D E DB DA ∴=-1DA DB ⊂ ,平面1A BD ,1D E ⊄平面1A BD ,1D E ∴∥平面1A BD(Ⅱ)取DB 的中点F ,1DC 的中点M ,连结1A F ,FM , 由(Ⅰ)及题意得知:022a a F ⎛⎫ ⎪⎝⎭,,,(0)M a a ,,, 1222a a FA a ⎛⎫∴=- ⎪⎝⎭ ,,,22a a FM a ⎛⎫=- ⎪⎝⎭ ,,,12(0)022a a FA DB a a a ⎛⎫=-= ⎪⎝⎭ ,,,,,(0)022a a FM DB a a a ⎛⎫+=-+= ⎪⎝⎭,,,,BCD A 1A1D1C1BExyzF MFA DB ∴⊥,FM DB ⊥, 1A FM ∴∠为所求二面角的平面角111cos FA FMA FM FA FM∴= ∠2222232622a a a a a a a a⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=,,,, 222223443332a a a a--+== 所以二面角11A BD C --的余弦值为33解法三:(Ⅰ)证明:如解法一图,连结1AD ,AE , 设11AD A D G = ,AE BD F = ,连结GF , 由题意知G 是1A D 的中点,又E 是CD 的中点,∴四边形ABED 是平行四边形,故F 是AE 的中点, ∴在1AED △中,1GF D E ∥,又GF ⊂平面1A BD ,1D E ⊄平面1A BD ,1D E ∴∥平面1A BD(Ⅱ)如图,在四边形ABCD 中,设AD a =, AB AD = ,AD DC ⊥,AB DC ∥,AD AB ∴⊥故2BD a =,由(Ⅰ)得2222222BC BE EC a a a =+=+=,2DC a =, 90DBC ∴= ∠,即BD BC ⊥又1BD BB ⊥,BCDA1A1D1C1BEF M H∴⊥平面11BCC B ,又1BC ⊂平面11BCC B ,1BD BC ∴⊥,取1DC 的中点M ,连结1A F ,FM , 由题意知:1FM BC ∴∥,FM BD ∴⊥又11A D A B =,1A F BD ∴⊥1A FM ∴∠为二面角11A BD C --的平面角连结1A M ,在1A FM △中, 由题意知:1322A F a =,2211116222FM BC BC CC a ==+=, 取11D C 的中点H ,连结1A H ,HM , 在1Rt A HM △中,12A H a = ,HM a =, 13A M a ∴=2221111cos 2A F FM A M A FM A F FM+-∴= ∠2229332236222a a a a a +-= 33= ∴二面角11A BD C --的余弦值为33(20)(本小题满分12分)解法一:如图,连结11A B ,由已知22102A B =,北1B2B1A2A120 105甲122030210260A A =⨯=, 1221A A A B ∴=,又12218012060A A B =-=∠,122A A B ∴△是等边三角形, 1212102A B A A ∴==,由已知,1120A B =,1121056045B A B =-= ∠,在121A B B △中,由余弦定理,22212111212122cos 45B B A B A B A B A B =+-22220(102)2201022=+-⨯⨯⨯200=12102B B ∴=因此,乙船的速度的大小为1026030220⨯=(海里/小时) 答:乙船每小时航行302海里解法二:如图,连结21A B ,由已知1220A B =,122030210260A A =⨯=,112105B A A = ∠, cos105cos(4560)=+cos 45cos60sin 45sin 60=- 2(13)4-=,sin105sin(4560)=+sin 45cos60cos 45sin 60=+2(13)4+=北1B2B1A2A120 105 乙甲211A A B △中,由余弦定理,22221221211122cos105A B A B A A A B A A =+-222(13)(102)202102204-=+-⨯⨯⨯100(423)=+1110(13)A B ∴=+由正弦定理1112111222202(13)2sin sin 4210(13)A B A A B B A A A B +===+ ∠∠, 12145A A B ∴= ∠,即121604515B A B =-= ∠,2(13)cos15sin1054+==在112B A B △中,由已知12102A B =,由余弦定理,22212112221222cos15B B A B A B A B A B =++2222(13)10(13)(102)210(13)1024+=++-⨯+⨯⨯200=12102B B ∴=,乙船的速度的大小为1026030220⨯=海里/小时 答:乙船每小时航行302海里(21)(本小题满分12分)解:(Ⅰ)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:3a c +=,1a c -=,2a ∴=,1c =,2223b a c ∴=-=椭圆的标准方程为22143x y +=(Ⅱ)设11()A x y ,,22()B x y ,,联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,得222(34)84(3)0k x mkx m +++-=,22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,则, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+, 因为以AB 为直径的圆过椭圆的右焦点(20)D ,,1AD BD k k ∴=-,即1212122y yx x =--- , 1212122()40y y x x x x ∴+-++=,2222223(4)4(3)1640343434m k m mk k k k --∴+++=+++,2291640m mk k ∴++=解得:12m k =-,227k m =-,且均满足22340k m +->, 当12m k =-时,l 的方程为(2)y k x =-,直线过定点(20),,与已知矛盾; 当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫⎪⎝⎭,所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,22)(本小题满分14分)解:(Ⅰ)由题意知,()f x 的定义域为(1)-+∞,,322()211b x x b f x x x x ++'=+=++ 设2()22g x x x b =-+,其图象的对称轴为1(1)2x =-∈-+∞,, max 11()22g x g b ⎛⎫∴=-=-+ ⎪⎝⎭当12b >时,max 1()02g x b =-+>, 即2()230g x x x b =+->在(1)-+∞,上恒成立,∴当(1)x ∈-+∞,时,()0f x '>, ∴当12b >时,函数()f x 在定义域(1)-+∞,上单调递增 (Ⅱ)①由(Ⅰ)得,当12b >时,函数()f x 无极值点②12b =时,3122()01x f x x ⎛⎫+ ⎪⎝⎭'==+有两个相同的解12x =-, 112x ⎛⎫∈-- ⎪⎝⎭ ,时,()0f x '>,12x ⎛⎫∈-+∞ ⎪⎝⎭,时,()0f x '>,12b ∴=时,函数()f x 在(1)-+∞,上无极值点 ③当12b <时,()0f x '=有两个不同解,11122b x ---=,21122b x -+-=,0b < 时,111212b x ---=<-,211202bx ---=>,即1(1)x ∈-+∞,,[)21x ∈-+∞, 0b ∴<时,()f x ',()f x 随x 的变化情况如下表:x1(1)x -, 1x 2()x +∞,f x '-+()f x极小值由此表可知:0b <时,()f x 有惟一极小值点11122bx ---=,当102b <<时,111212b x ---=>-,12(1)x x ∴∈-+∞,,此时,()f x ',()f x 随x 的变化情况如下表:x1(1)x -, 1x 12()x x , 1x 1()x -∞,()f x ' +-+()f x极大值极小值由此表可知:102b <<时,()f x 有一个极大值11122b x ---=和一个极小值点21122bx -+-=;综上所述:0b <时,()f x 有惟一最小值点1122bx -+-=;102b <<时,()f x 有一个极大值点1122b x ---=和一个极小值点112b x x -+-=;12b ≥时,()f x 无极值点(Ⅲ)当1b =-时,函数2()ln(1)f x x x =-+, 令函数222()()ln(1)h x x f x x x x =-=-++,则22213(1)()3211x x h x x x x x +-'=-+=++ ∴当[)0x ∈+∞,时,()0f x '>,所以函数()h x 在[)0+∞,上单调递增,(0)0h =(0)x ∴∈+∞,时,恒有()(0)0h x h >=,即23ln(1)x x x >-+恒成立故当(0)x ∈+∞,时,有23ln(1)x x x +>-对任意正整数n 取1(0)x n =∈+∞,,则有23111ln 1n n n⎛⎫+>- ⎪⎝⎭ 所以结论成立。

2007年高考数学卷(安徽.理)含答案

2007年高考数学卷(安徽.理)含答案

2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致. 2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式(1)122n n n ++++=34π3V R =222(1)(21)126n n n n +++++=其中R 表示球的半径22333(1)124n n n ++++=第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,反函数是其自身的函数为( )A .2()[0)f x x x =∈+∞,,B .3()()f x x x =∈-∞+∞,,C .()e ()xf x x =∈-∞+∞,,D .1()(0)f x x x=∈+∞,, 2.设l m n ,,均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意x ∈R ,不等式x ax ≥恒成立,则实数a 的取值范围是( ) A .1a <-B .1a ≤C .1a <D .1a ≥4.若a=,则a 等于( )AB.C.D.-5.若22{228}{log 1}x A x B x x -=∈<=∈>Z R ≤,,则()A B R 的元素个数为( ) A .0B .1C .2D .36.函数()3sin 2f x x π⎛⎫=- ⎪3⎝⎭的图象为C , ①图象C 关于直线1112x =π对称; ②函数()f x 在区间5ππ⎛⎫-⎪1212⎝⎭,内是增函数; ③由3sin 2y x =的图象向右平移π3个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( ) A .0 B .1 C .2D .37.如果点P 在平面区域22021020x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( ) A1B1- C.1 D18.半径为1的球面上的四点A B C D ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( )A.arccos ⎛ ⎝⎭B.arccos ⎛ ⎝⎭C .1arccos 3⎛⎫- ⎪⎝⎭D .1arccos 4⎛⎫-⎪⎝⎭9.如图,1F 和2F 分别是双曲线22221(00)x ya b a b -=>>, 的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与 该双曲线左支的两个交点,且2F AB △是等边三角形,则双 曲线的离心率为( ) AB第9题图C .52D .13+10.以()x ∅表示标准正态总体在区间()x -∞,内取值的概率,若随机变量ξ服从正态分布2()N μσ,,则概率()P ξμσ-<等于( )A .()()μσμσ∅+-∅-B .(1)(1)∅-∅-C .1μσ-⎛⎫∅⎪⎝⎭D .2()μσ∅+11.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A .0B .1C .3D .52007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共95分)注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效. 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.12.若32nx x ⎛+ ⎪⎝⎭的展开式中含有常数项,则最小的正整数n 等于 .13.在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).14.如图,抛物线21y x =-+与x 轴的正半轴交于点A , 将线段OA 的n 等分点从左至右依次记为121n P P P -,,,, 过这些分点分别作x 轴的垂线,与抛物线的交点依次为121n Q Q Q -,,,,从而得到1n -个直角三角形11Q OP △, 212121n n n Q PP Q P P ---△,,△.当n →∞时,这些三角形 的面积之和的极限为 .yx1Q 2Q1n Q +21y x =+1P 2P2n P - 1n P - O第14题图15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 1(cos 2)4αβα⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,,,a b ,且a b m =.求22cos sin 2()cos sin ααβαα++-的值. 17.(本小题满分14分)如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为 2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面 1111A B C D ,1DD ⊥平面ABCD ,12DD =.(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示). 18.(本小题满分14分)设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.ABCD1A1B1C 1D第17题图19.(本小题满分12分)如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C .(Ⅰ)求点A 的横坐标a 与点C 的横坐标c 的关系式(Ⅱ)设曲线G 上点D 的横坐标为2a +求证:直线CD 的斜率为定值. 20.(本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子,6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇.....的只数.(Ⅰ)写出ξ的分布列(不要求写出计算过程); (Ⅱ)求数学期望E ξ; (Ⅲ)求概率()P E ξξ≥.21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+,.以n T 表示到第n 年末所累计的储备金总额.(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2x第19题图2007年普通高等学校招生全国统一考试(安徽卷)数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分55分. 1.D 2.A 3.B 4.B 5.C 6.C 7.A 8.C 9.D 10.B 11.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.713.111244++a b c 14.1315.①③④⑤三、解答题16.本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.本小题满分12分. 解:因为β为π()cos 28f x x ⎛⎫=+⎪⎝⎭的最小正周期,故πβ=. 因m =·a b ,又1cos tan 24ααβ⎛⎫=+- ⎪⎝⎭ab ··. 故1cos tan 24m ααβ⎛⎫+=+ ⎪⎝⎭·. 由于π04α<<,所以 222cos sin 2()2cos sin(22π)cos sin cos sin ααβαααααα++++=--22cos sin 22cos (cos sin )cos sin cos sin ααααααααα++==--1tan π2cos 2cos tan 2(2)1tan 4m ααααα+⎛⎫==+=+ ⎪-⎝⎭·.17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分.解法1(向量法):以D 为原点,以1DADC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,.(Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-==,,,,,,,,,,,∵. 111122AC AC DB D B ==,∴. AC ∴与11AC 平行,DB 与11DB 平行, 于是11AC 与AC 共面,11BD 与BD 共面. (Ⅱ)证明:1(002)(220)0DD AC =-=,,,,··, (220)(220)0DB AC =-=,,,,··,1DD AC ⊥∴,DB AC ⊥.1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=-,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+=n ·,111120BB x y z =--+=n ·.于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+=m ·,12220CC y z =-+=m ·.于是20x =,取21z =,则22y =,(021)=,,m . 1cos 5==,m n m n m n ·.∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DA DC ,的中点,连结11EF A E C F ,,,有111111A E D D C F D D DE DF ==,,,∥∥. 11A E C F ∴∥,于是11A C EF ∥.由1DE DF ==,得EF AC ∥, 故11AC AC ∥,11A C 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴.1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.ABCD1A1B1C 1DMOEF过点A 在平面11ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角.根据勾股定理,有111A A C C B B ==. 1OM B B ⊥∵,有11B O OB OM B B ==·,BM =AM =,CM =. 2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力.本小题满分14分. (Ⅰ)解:根据求导法则有2ln 2()10x af x x x x'=-+>,, 故()()2ln 20F x xf x x x a x '==-+>,, 于是22()10x F x x x x-'=-=>,, 列表如下:故知()F x 在(02),内是减函数,在(2)+,∞内是增函数,所以,在2x =处取得极小值(2)22ln 22F a =-+.(Ⅱ)证明:由0a ≥知,()F x 的极小值(2)22ln 220F a =-+>.于是由上表知,对一切(0)x ∈+,∞,恒有()()0F x xf x '=>. 从而当0x >时,恒有()0f x '>,故()f x 在(0)+,∞内单调增加. 所以当1x >时,()(1)0f x f >=,即21ln 2ln 0x x a x --+>.故当1x >时,恒有2ln 2ln 1x x a x >-+.19.本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力、综合分析问题的能力.本小题满分12分.解:(Ⅰ)由题意知,(A a . 因为OA t =,所以222a a t +=.由于0t >,故有t (1) 由点(0)(0)B t C c ,,,的坐标知, 直线BC 的方程为1x yc t+=. 又因点A 在直线BC上,故有1a c t+=, 将(1)代入上式,得1a c =,解得2c a =+(Ⅱ)因为(2D a +,所以直线CD 的斜率为1CD k ====-.所以直线CD 的斜率为定值.20.本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力.本小题满分13分. 解:(Ⅰ)ξ的分布列为:(Ⅱ)数学期望为2(162534)228E ξ=⨯+⨯+⨯=. (Ⅲ)所求的概率为5432115()(2)2828P E P ξξξ++++===≥≥.2x =梦想不会辜负一个努力的人all`试题 11 21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥.(Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++, ①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++ ②②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n dr r a r a r =+--++-. 即1122(1)n n a r d a r dd T r n r r r ++=+--. 如果记12(1)n n a r d A r r +=+,12n a r d dB n r r +=--,则n n n T A B =+.其中{}n A 是以12(1)a r dr r ++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,dr -为公差的等差数列.。

2007-2011年高考文科数学试卷汇编(安徽卷)

2007-2011年高考文科数学试卷汇编(安徽卷)

2007年安徽省高考数学模拟试题(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

全卷满分150分,考试时间120分钟。

第Ⅰ卷选择题 共60分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数)(1x fy -=的图象过点)0,1(,则)121(-=x f y 的反函数的图象一定过点( )A .)2,1(B .)1,2(C .)2,0(D .)0,2(2.设集合},,{c b a M =,}1,0{=N ,映射N M f →:满足)()()(c f b f a f =+,则映射N M f →:的个数为( )A .1B .2C .3D .43.已知-7,1a ,2a ,-1四个实数成等差数列,-4,1b ,2b ,3b ,-1五个实数成等比数列,则212b a a -= ( ) A .1 B .-1C .2D .±14.若)2,0(πθ∈,则函数2)1(log sin >-=x y θ的解集是( ) A .)sin ,1(2θ-∈x B .)1,(cos 2θ∈xC .)21,(cos 2θ∈x D .)cos ,1(2θ-∈x5.已知数列||||||||,3,60}{3032111a a a a a a a a n n n +++++=-=+ 则中等于( )A .445B .765C .1080D .31056.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( )A .0B .1C .2D .37.不等式组.2233,0⎪⎩⎪⎨⎧+->+->xx x x x 的解集是( ) A.}20|{<<x x B. }5.20|{<<x xC.}60|{<<x xD. }30|{<<x x8.数列,83 ,42 ,21……的前n 项和为 ( ) A.1-n 21B.2-nn 22+ C.n(1-n 21) D.2-121-n +n n 2 9.等比数列{n a }中,若各项均为正,且公比q ≠1,则 ( ) A.1a +8a >4a +5a B.1a +8a <4a +5aC.1a +8a =4a +5aD.1a +8a 与4a +5a 的大小关系不确定10.等比数列{n a }的前n 项和是n S ,若30S =1310S , 10S +30S =140, 20S 的值是( )A.90B.70C.50D.4011.由奇数组成数组(3, 5), (7, 9, 11), (13, 15, 17, 19),……,第n 组的第一个数应是( )A.n(n -1)B.n(n +1)C.n(n +1)+1D.n(n-1)+112.数列{n a }的前n 项和是n S ,如果n S =3+2n a (n ∈N),则这个数列一定是 A.等比数列 B.等差数列C.除去第一项后是等比数列D.除去第一项后是等差数列第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第I 至第2页,第II 卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2.答第I 卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第II 卷时,必须用0.5毫米黑色黑水签字笔在答题卡上.....书写.在试题卷上作答无........效.. 4.考试结束,监考员将试题和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么球的体积公式(1)122n n n ++++=34π3V R =222(1)(21)126n n n n +++++=其中R 表示球的半径22333(1)124n n n ++++=第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{}21A x x ==,{}2230B x x x =--=,则A B = ( ) A.{}3B.{}1C.∅D.{}1-2.椭圆2241x y +=的离心率为( )B.34C.2D.233.等差数列{}n a 的前n 项和为n S ,若21a =,33a =,则4S =( ) A.12 B.10 C.8 D.64.下列函数中,反函数是其自身的函数为( )A.2()f x x =,[0)x ∈+∞,B.3()()f x x x =∈-∞+∞,,C.()e ()x f x x =∈-∞+∞,,D.1()f x x=,(0)x ∈+∞,5.若圆22240x y x y +--=的圆心到直线0x y a -+=,则a 的值为( ) A.2-或2B.12或32C.2或0 D.2-或0 6.设t ,m ,n 均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 7.图中的图象所表示的函数的解析式为( )A.312y x =- (02)x ≤≤B.33122y x =-- (02)x ≤≤C.312y x =--(02)x ≤≤ D.11y x =--(02)x ≤≤8.设1a >,且2log (1)a m a =+,log (1)a n a =-,log (2)a p a =,则m n p ,,的大小关系为( ) A.n m p >>B.m p n >>C.m n p >>D.p m n >>9.如果点P 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( ) A.321C.1110.把边长为ABCD 沿对角线AC 折成直二面角,折成直二面角后,在A B C D ,,,四点所在的球面上,B 与D 两点之间的球面距离为( )C.π B.π2 D.π311.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A.0B.1C.3D.5第7题图2007年普通高等学校招生全国统一考试(安微卷)数学(文科)第II 卷(非选择题共95分)注意事项:请用0.5毫米黑色墨水签字笔在答题卡...上书写作答,在试题卷上书写作答无效........... 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 12.已知52345012345(1)x a a x a x a x a x a x -=+++++,则024135()()a a a a a a ++++的值等于.13.在四面体O ABC -中,OA a = ,OB b = ,OC c =,D 为BC 的中点,E 为AD 的中点,则OE =(用a b c ,,表示)14.在正方体上任意选择两条棱,则这两条棱相互平行的概率为. 15.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,如下结论中正确的是(写出所有正确结论的编号..). ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫-⎪⎝⎭,内是增函数; ④由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C . 三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分) 解不等式(311)(sin 2)0x x --->.17.(本小题满分14分) 如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面1111A B C D ,1DD ⊥平面ABCD ,12DD =.(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示) 18.(本小题满分14分)设F 是抛物线2:4G x y =的焦点.ABCD1A1B1C 1D(I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =,延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 19.(本小题满分13分)在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔. (I )求笼内恰好剩下....1只果蝇的概率; (II )求笼内至少剩下....5只果蝇的概率. 20.(本小题满分14分) 设函数232()cos 4sincos 43422x xf x x t t t t =--++-+,x ∈R , 其中1t ≤,将()f x 的最小值记为()g t . (I )求()g t 的表达式;(II )讨论()g t 在区间(11)-,内的单调性并求极值. 21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+, .以n T 表示到第n 年末所累计的储备金总额.(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(文史)参考答案一、选择题:本题考查基本知识的基本运算.每小题5分,满分55分. 1.D 2.A 3.C 4.D 5.C 6.A7.B 8.B 9.A 10.C 11.D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.256-13.111244a b c ++ 14.31115.①②③三、解答题16.本小题主要考查三角函数的基本性质,含绝对值不等式的解法,考查基本运算能力.本小题满分10分.解:因为对任意x ∈R ,sin 20x -<,所以原不等式等价于3110x --<. 即311x -<,1311x -<-<,032x <<,故解为203x <<. 所以原不等式的解集为203x x ⎧⎫<<⎨⎬⎩⎭. 17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分. 解法1(向量法): 以D 为原点,以1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,.(Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-== ,,,,,,,,,,,∵. 111122AC AC DB D B == ,∴. AC ∴与11AC 平行,DB 与11DB 平行,于是11AC 与AC 共面,11B D 与BD 共面. (Ⅱ)证明:1(002)(220)0DD AC =-= ,,,,··,(220)(220)0DB AC =-=,,,,··, 1DD AC ⊥ ∴,DB AC ⊥.1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=- ,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+= ·n ,111120BB x y z =--+= n ·.于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+= m ·,12220CC y z =-+= m ·.于是20x =,取21z =,则22y =,(021)=,,m . 1cos 5==,m n m n m n ·. ∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DADC ,的中点,连结11EF A E C F ,,, 有111111A E D DC FD D DE DF ==,,,∥∥. ABCD1A1B1C 1DMOE F11A E C F ∴∥,于是11AC EF ∥.由1DE DF ==,得EF AC ∥,故11AC AC ∥,11AC 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴.1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD . (Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.过点A 在平面1ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角.根据勾股定理,有111A A C C B B =. 1OM B B ⊥∵,有11B O OB OM B B ==·BM =AM =CM =2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查抛物线的方程与性质,抛物线的切点与焦点,向量的数量积,直线与抛物线的位置关系,平均不等式等基础知识,考查综合分析问题、解决问题的能力.本小题满分14分.解:(I )设切点204x Q x ⎛⎫ ⎪⎝⎭,.由2xy '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为2000()42x xy x x -=-. 即20424x x y x =-. 因为点(0)P -4,在切线上. 所以2044x -=-,2016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,.由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.因直线AC 过焦点(01)F ,,所以直线AC 的方程为1y kx =+. 点A C ,的坐标满足方程组214y kx x y =+⎧⎨=⎩,,得2440x kx --=, 由根与系数的关系知121244.x x k x x +=⎧⎨=-⎩,24(1)AC k ===+.因为AC BD ⊥,所以BD 的斜率为1k -,从而BD 的方程为11y x k=-+. 同理可求得22214(1)41k BD k k ⎛⎫+⎛⎫=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭.2222218(1)18(2)322ABCDk S AC BD k k k +===++≥. 当1k =时,等号成立.所以,四边形ABCD 面积的最小值为32.19.本小题主要考查排列、组合知识与等可能事件、互斥事件概率的计算,运用概率知识分析问题及解决实际问题的能力.本小题满分13分. 解:以k A 表示恰剩下k 只果蝇的事件(016)k = ,,,. 以m B 表示至少剩下m 只果蝇的事件(016)m = ,,,. 可以有多种不同的计算()k P A 的方法.方法1(组合模式):当事件k A 发生时,第8k -只飞出的蝇子是苍蝇,且在前7k -只飞出的蝇子中有1只是苍蝇,所以17287()28kk C k P A C --==. 方法2(排列模式):当事件k A 发生时,共飞走8k -只蝇子,其中第8k -只飞出的蝇子是苍蝇,哪一只?有两种不同可能.在前7k -只飞出的蝇子中有6k -只是果蝇,有68kC -种不同的选择可能,还需考虑这7k -只蝇子的排列顺序.所以162688(7)!7()28kk kC C k kP A A ----== . 由上式立得163()2814P A ==; 356563()()()()28P B P A A P A P A =+=+=. 20.本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力.本小题满分14分. 解:(I )我们有232()cos 4sin cos 43422x xf x x t t t t =--++-+222sin 12sin 434x t t t t =--++-+ 223sin 2sin 433x t x t t t =-++-+23(sin )433x t t t =-+-+.由于2(sin )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+.(II )我们有2()1233(21)(21)1g t t t t t '=-=+--1<<,.由此可见,()g t 在区间112⎛⎫--⎪⎝⎭,和112⎛⎫ ⎪⎝⎭,单调增加,在区间1122⎛⎫- ⎪⎝⎭,单调减小,极小值为122g ⎛⎫= ⎪⎝⎭,极大值为42g 1⎛⎫-= ⎪⎝⎭. 21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥. (Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++ ,①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++②②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n dr r a r a r=+--++-. 即1122(1)nn a r d a r d d T r n r r r ++=+--.如果记12(1)nn a r d A r r +=+,12n a r d d B n r r+=--,则n n n T A B =+. 其中{}n A 是以12(1)a r dr r++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,d r -为公差的等差数列.。

相关文档
最新文档