26.3实际问题与二次函数练习题及答案

合集下载

26.3实际问题与二次函数(1)

26.3实际问题与二次函数(1)
做一做
= − 20 x + 100 x + 6000 (0≤x≤20)
2
当x = −
1 所以降价时,定价为 所以降价时 定价为 57 2 6125元. 元
b 5 5 5 = 时, y 最大 = − 20 × + 100 × + 6000 = 6125 2a 2 2 2
2
元,利润最大,最大利润为 利润最大,
S=- 2 +30l =-l =- 因此, 因此,当 l = −
( 0 < l < 30 )
b 30 时 =− = 15 , 2a 2× (−1)
4ac − b2 − 302 = = 225, S有最大值 有最大值 4a 4×(−1)
也就是说, 最大( = 也就是说, 当l是15m时,场地的面积 最大(S= 是 时 场地的面积S最大 225m2).
6 4 2 0
x 2
-4 -2
探究
用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边 的篱笆围成矩形场地,矩形面积 随矩形一边 用总长为 的篱笆围成矩形场地 的变化而变化, 是多少时,场地的面积S最大 最大? 长 l 的变化而变化,当 l 是多少时,场地的面积 最大?
分析: 的函数关系式, 分析:先写出S与l的函数关系式,再求出使S最大的l值. s 矩形场地的周长是60m,一边长为 , 矩形场地的周长是 ,一边长为l, 60 则另一边长为 − l m ,场地的面积 2 200 S=l ( 30-l ) = - 即 S=- +30l =-l =-
请大家带着以下几个问题读题
(1)题目中有几种调整价格的方法? )题目中有几种调整价格的方法? (2)题目涉及到哪些量之间的关系? )题目涉及到哪些量之间的关系? (3)哪一个量是自变量?哪些量随之发生 哪一个量是自变量? 哪一个量是自变量 了变化? 了变化?

26.3实际问题与一元二次方程

26.3实际问题与一元二次方程

y A
1.6
B
2.2
F
0.7
E
CO
0.4
xD
例题:
如图,一单杠高2.2米,两立柱 之间的距离为1.6米,将一根绳子的 两端栓于立柱与铁杠结合处,绳子 自然下垂呈抛物线状。一身高0.7米 的小孩站在离立柱0.4米处,其头部 刚好触上绳子,求绳子最低点到地 面的距离。
y
A O
1.6
B
x
2.2
F
0.7
E
直角坐标系,则 B(0.8, 2.2),F(- 0.4, 0.7)
设 y = ax2 + k ,从而有
0.64a + k = 2.2
解得:
a = 25
8
0.16a + k = 0.7
K = 0.2
所以,y = 25 x2 + 0.2
8
顶点 E(0, 0.2)
所以,绳子最低点到地面
的距离为 0.2米.
于y轴对称.
y 0.0225x 2 0.9x 10
桥面
Y(米)
10
0
⑴钢缆的最低点到桥面的距离是 1米 ⑵两条钢缆最低点之间的距离是 40米
例2.如图的抛物线形拱桥,当水面在L时,拱 桥顶离水面 2 m,水面宽 4 m,水面下降 1 m, 水面宽度增加多少?
问题2 一个涵洞成抛物线形,它的截面如图.
现测得,当水面宽AB=1.6 m时,涵洞
顶点与水面的距离为2.4 m.这时,离
开水面1.5 m处,涵洞宽ED是多少?
是否会超过1 m?
练习:如图是某公园一圆形喷水池,水流在各方向
沿形状相同的抛物线落下,如果喷头所在处A
(0,1.25),水流路线最高处B(1,2.25),

中考数学总复习《实际问题与二次函数》专题训练-附带答案

中考数学总复习《实际问题与二次函数》专题训练-附带答案

中考数学总复习《实际问题与二次函数》专题训练-附带答案学校:___________班级:___________姓名:___________考号:___________ 1.如图所示,二次函数y=-mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B,C在x 轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内,且点A在点D的左侧.(1)求二次函数的解析式;(2)设点A的坐标为(x,y),试求矩形ABCD的周长p关于自变量x的函数解析式,并求出自变量x的取值范围;(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.2.如图1,平面直角坐标系中,△OAB的边OA在x轴的正半轴上,点B在第二象限,且∠AOB=135°,OA=2,OB=22,抛物线y=﹣14x2+bx+c经过点B,并与y轴交于点C(0,5),点P在抛物线的对称轴上.(1)求b、c的值,及抛物线的对称轴.(2)求证:以点M(2,5)为圆心,半径为25的圆与边AB相切.(3)若满足条件∠AOB+∠POD=180°与OB:OD=OA:OP的点D恰好在抛物线上,请求出此时点P 的坐标.3.已知:如图,在Rt ABC △中90C ∠=︒,4BC =和AC=8,P 是斜边AB 上的一个动点,PD AB ⊥,交边AC 于点D (点D 与点A C 、都不重合),E 是射线DC 上一点,且EPD A ∠=∠,设A P 、两点的距离为x ,BEP △的面积为y .(1)求证:2AE PE =;(2)求y 关于x 的函数解析式,并写出它的定义域;(3)当BEP △与ABC 相似时,求BEP △的面积.4.如图,抛物线2y ax bx =+经过点()4,0A ,()2,2B 连接OB ,AB .(1)求该抛物线的解析式;(2)求证:OAB ∆是等腰直角三角形;(3)将OAB ∆绕点O 按顺时针方向旋转135︒得到OA B ''∆,写出A B ''的中点P 的坐标,试判断点P 是否在此抛物线上,并说明理由.5.如图,在四边形ABCD 中//AB CD 和90A ∠=︒,AB=2,AD=5,P 是AD 边上一动点(点P 不与A 、D 重合)PE BP ⊥,PE 交DC 于点E .(1)求证:ABP DPE ∽;(2)请你探索在点P 运动的过程中,四边形ABED 能否构成矩形?如果能,求出AP 的长;如果不能,请说明理由.6.如图,点E ,F ,G ,H 分别在菱形ABCD 的四条边上BE BF DG DH ===,连接,,,EF FG GH HE ,得到四边形EFGH .(1)求证:四边形EFGH 是矩形.(2)设,60AB a A =∠=︒,当BE 为何值时,矩形EFGH 的面积最大?7.如图,在平面直角坐标系中,抛物线2(1)y x m x m =---(其中0m >),交x 轴于A 、B两点(点A在点B的左侧),交y轴负半轴于点C.(1)∠若3m=,分别求出A、B、C三点的坐标∠如图1,若抛物线上有一点D,ACO BCD∠=∠求点D的坐标;(2)如图2,平面上一点(,2)E m,过点E作任意一条直线交抛物线于P、Q两点,连接AP、AQ分别交y轴于M、N两点,求证:OM ON⋅是一个定值.8.综合与实践:如图,二次函数y=﹣14x2+32x+4的图象与x轴交于点B,点C(点B在点C的左边),与y轴交于点A,连接AC,AB.(1)求证:AO2=BO•CO;(2)若点N在线段BC上运动(不与点B,C重合),过点N作MN∠AC,交AB于点M,求当∠AMN的面积取得最大值时,直线AN的表达式.(3)连接OM,在(2)的结论下,试判断OM与AN的数量关系,并证明你的结论.9.如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、DQ,过P作PE∠DQ交AQ于E,作PF∠AQ交DQ于F.(1)求证:∠APE∠∠ADQ;(2)设AP的长为x,试求∠PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF 取得最大值?最大值为多少?(3)当Q在何处时,∠ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)10.ABC 是一块锐角三角形材料,边120BC cm =,高80AD cm =,要把它加工成矩形零件EFGH ,使矩形的一边GH 在BC 上,其余两个顶点E 、F 在AB ,AC 上()1求证:::EF BC AM AD =;()2设EF x =,EG y =用含x 的代数式表示y ;()3设矩形EFGH 的面积是S ,求当x 为何值时S 有最大值.11.如图,抛物线y =ax 2+bx 经过点A (4,0)、B (2,2),连接OB 、AB .(1)求抛物线的解析式;(2)求证:△OAB 是等腰直角三角形.12.已知抛物线22y ax ax c =-+与x 轴交于(1,0)A -和B 两点,与y 轴正半轴交于C 点,若ABC ∆的面积6ABC S ∆=(1)求抛物线的对称轴及解析式.(2)若(,)P m n 为对称轴上一点,且03n <<,以C 、P 为顶点作正方形CPDE (C 、P 和D 、E 顺时针排列),若正方形CPDE 有两个顶点在抛物线上,求n 的值.(3)如图,C 和D 两点关于对称轴对称,一次函数y kx b =+过D 点,且与抛物线只有唯一一个公共点,平移直线y kx b =+交抛物线于M 、N 两点(M 点在N 点上方),请你猜想MCD ∠与NCD ∠的数量关系并加以证明.13.如图,正方形ABCD 的边长为12,E 是BC 边上一点(与点B 、C 不重合),连接DE ,G 是CB 延长线上的点,过点E 作DE 的垂线交ABG ∠的角平分线于点F ,若FG CG ⊥.(1)求证:DCE EGF ∽△△.(2)若9EC =,求BEF △的面积.(3)当BE 为何值时,BEF △的面积最大,最大值是多少?14.如图,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在B 左边),与y 轴交于点C(1)若(1,0)A -,(3,0)B 两点,求抛物线的解析式;(2)在(1)中位于第四象限内的抛物线上是否存在点P ,使得PBC 的面积最大?若存在求出点P 的坐标及PBC 的面积最大值;若没有,请说明理由;(3)直线1y =与抛物线2y x bx c =++交于抛物线对称轴右侧的点为点D ,点E 与点D 关于x 轴对称,试判断直线DB 与直线AE 的位置关系,并证明你的结论15.如图,已知二次函数2y x bx c =-++的图象与x 轴交于()1,0A -、B 两点,与y 轴交于点第 11 页 共 12 页 ()0,3C ,P 为x 正半轴上一点,过点P 作垂直于x 轴的直线交抛物线于点D .(1)求二次函数的表达式;(2)如图1,若点P 在B 点右侧,过C 垂直于DP 的直线交抛物线于点H ,交DP 于点G ,求证:3PG DG CG GH ⋅=⋅;(3)如图2,若点P 在线段OB 上,DP 交直线BC 于点E ,当CDE 中有一个角与ABD ∠相等,求点P 的横坐标.参考答案:1.(1)2122y x =+;(2)p =-x 2-4x +4,其中-2<x <2;(3)不存在,. 2.(1)1,5,x=2;(2)(3)点P 的坐标为(2,﹣2+25)或(2,﹣2﹣25)或(2,﹣8)或(2,4).3.((2)214533y x x =-+ 16505x << (3)254或54.(1)2122y x x =-+;(2)见解;(3)点P 不在抛物线2122y x x =-+上 5.(1)(2)能;AP =1或4S取最大值为PBC第12页共12页。

中考数学高频考点《实际问题与二次函数》专项练习题-带答案

中考数学高频考点《实际问题与二次函数》专项练习题-带答案

中考数学高频考点《实际问题与二次函数》专项练习题-带答案一、单选题1.一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2,那么球从弹起后又回到地面所经过的总路程是()A.5米B.10米C.1米D.2米2.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即OB的长度)是1米.当喷射出的水流距离喷水头2米时,达到最大高度1.8米,水流喷射的最远水平距离OC是()A.6米B.5米C.4米D.1米3.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣ x2D.y= x24.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m 2A.45B.83C.4 D.565.如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y= √32x2B.y= √3x2C.y=2 √3x2D.y=3 √3x26.如图,四边形ABCD的两条对角线互相垂直,AC+BD=12,则四边形ABCD的面积最大值是().A.12 B.18 C.20 D.247.如图,正方形ABCD的顶点A(0,√22),B(√22,0),顶点C,D位于第一象限,直线x=t,(0≤t≤√2),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.8.从地面竖直向上抛出一小球,小球的高度 h (单位: m )与小球运动时间t(单位: s )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是 40m ;②小球运动的时间为 6s ;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④二、填空题9.飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s=60t-1.5t2,则飞机着陆后滑行直到停下来滑行了米.10.如图,在平面直角坐标系中,抛物线y=(x-2)2与x轴交于点A,与y轴交于点B,过点B作BC∥x轴,交抛物线于点C,过点A作AD∥y轴,交BC于点D,点P在BC下方的抛物线上(不与点B,C重合),连接PC,PD,设△PCD的面积为S,则S的取值范围是。

26.3.3实际问题与二次函数应用3

26.3.3实际问题与二次函数应用3

1、有一个抛物线形的立交桥拱,这个桥拱的最 大高度为16m,跨度为40m.现将它的图形放在坐标 系里(如图所示),若在离跨度中心M点5m处各垂直 竖立一铁柱支撑拱顶,这铁柱应取多长?
y
D A F
16 m
O C ME
O
40 m
B
x
2、 你知道吗,平时我们在跳大绳时,绳甩到 最高处的形状可以看为抛物线。如图所示,正在 甩绳的甲乙两名学生拿绳的手间距为4米,距地 面均为1米,学生丙丁分别站在距甲拿绳的手水 平距离1米2.5米处,绳子到最高处时刚好通过他 们的头顶。已知学生丙的身高是1.5米,求学生 丁的身高?
不知道并不可怕 和有害,任何人都不 可能什么都知道,可 怕的和有害的是不知 道而伪装知道.
跳水运动员进行10米跳台跳水 训练时,身体看成一点)在空中 的运动路线是一条抛物线。
在跳某个规定动作时,正常情况下,该运动员在 空中的最高处距水面32/3米,入水处距池边的距 离为4米,同时,运动员在距水面 (?,2/3) 高度为5米以前,必须完成规 (0,0) 定的翻腾动作,并调整好入 水姿势,否则就会出现失误。 (1)求这条抛物线的解析式; (2)在某次试跳中,测得 运动员在空中的运动路线是 (1)中的抛物线,且运动 员在空中调整好入水姿势时, (2,-10) 距池边的水平距离为18/5米, 问此次跳水会不会失误?并
26.3 实际问题与二 次函数的应用(三)
如图,是抛物线形拱桥,当水面在L时,拱顶离 水面2米,水面宽4米。水面下降1米,水面宽度 增加多少?
解函数应用题的步骤:
设自变量和函数(或建立坐标系); 列出函数关系式(或用待定系数法 求出解析式:①设②代③解④回代); 求自变量取值范围; 利用函数知识,解决问题; 写出结论。

26.3_实际问题与二次函数_(含答案)

26.3_实际问题与二次函数_(含答案)

实际问题与二次函数一、自主学习1.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t -4.9t 2(t 的单位:s ;h 的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( ) A.0.7l s B.0.70 s C.0.63 s D.0.36 s2.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s(m)与车速x(km/h)间有下述的函数关系式:s=0.01x 2+0.002x ,现该车在限速140km ∠h 的高速公路上出了交通事故,事后测得其刹车距离为46.5 m ,请推测刹车时汽车________(填“是”或“不是”)超速.3.有一座抛物线型拱桥(如图26-10所示),正常水位时桥下河面宽20 m ,河面距拱顶4 m(1)在如图26-10所示的平面直角坐标系中,求出抛物线解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在正常水位基础上涨多少米时,就会影响过往船只?图26-104.某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.(1)写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;(2)每件售价定为多少元,才能使一天的利润最大?二、基础巩固5.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?6.如图26-11所示,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8 m ,宽AB 为2 m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6 m.(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2 m ,宽2.4 m ,这辆货运卡车能否通过该隧道?通过计算说明你的结论.图26-117.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产出的产品全部售出,已知生产x 只玩具熊猫的成本为R(元),售价每只为P(元)且R 、P 与x 的关系式为R=500+30x ,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元;(2)当日产量为多少时,可获得最大利润?最大利润是多少?8.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表26-2所示.表26-2若日销售量y是销售价x的一次函数;(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?9.图26-12是某段河床横断面的示意图.查阅该河段的水文资料,得到表26-3中的数据.图26-12图26-13表26-3(1)请你以表26-3中的各对数据(x,y)作为点的坐标,尝试在图26-13所示的坐标系中画出y关于x的函数图象;(2)①填写表26-4.表26-4②根据所填表中数据呈现的规律,猜想出用x表示y的二次函数关系式:________.(3)当水面宽度为36 m时,一船吃水深度(船底部到水面的距离)为1.8 m的货船能否在这个河段安全通过?为什么?三、能力提高10.学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线距径落下.且在过OA的任意平面上的抛物线如图26-14所示,建立平面直角坐标系(如图26-15所示),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+2325x,请回答下列问题:图26-14 图26-15(1)花形柱子OA的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?11.《西游记》中的孙悟空对花果山的体制进行全面改革后,为了改善旅游环境,决定对水帘洞进行改造翻新,计划在水帘洞前建一个由喷泉组成的水帘门洞,让游客在进入水帘洞前先经过一段由鹅卵石铺就的小道,小道两旁布满喷水管,每个喷管喷出的水最高达4 m ,落在地上时距离喷水管4 m ,现在设如图26-16是喷泉所经过的路线,与喷头A 和喷泉落地点B 的连线为横轴,AB 垂直平分线为纵轴建立直角坐标系.问小道的边缘距离喷水管至少应为多少米,才能使身高不大于1.75 m 的游客进入水帘洞时不会被水淋湿?图26-112.我区某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,我区政府对该花木产品每投资x 万元,所获利润为P=501-(x -30)2+10万元.为了响应我国西部大开发的宏伟决策,我区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通.公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x 万元可获利润Q=308)50(5194)50(50492+-+--x x 万元.(1)若不进行开发,求10年所获利润的最大值是多少?(2)若按此规划进行开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法.13.在体育测试时,初三的一名高个子男同学在推铅球.已知铅球所经过的路线是某个二次函数图象的一部分,如图26-17所示,如果这个男同学的出手处A 点的坐标(0,2),铅球路线的最高处B 点的坐标为(6,5).(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01 m ,15=3.873)图26-17四、模拟链接1 14、设抛物线y=2x 2+kx+1-2k(k 为常数)与x 轴交于A 、B 两点,与y 轴交于C 点,且A 点在原点O 的左侧,B 点在原点O 的右侧,满足(OA+OB)2-OC=429(1)求抛物线的解析式;(2)在抛物线上是否存在D 、E 两点,使AO 恰为△ADE 的中线,若存在,求出△ADE 的面积,若不存在,说明理由.15.已知抛物线y=x 2+(2n -1)x+n 2-1(n 为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式; (2)如图26-18所示,设A 是(1)所确定的抛物线上位于x 轴下方且在对称轴左侧的一个动点,过A 作x 轴的平行线,交抛物线于另一点D ,再作AB ⊥x 轴于B ,DC ⊥x 轴于C.①当BC=1时,求矩形ABCD 的周长;②试问矩形ABCD 的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A 点的坐标;如果不存在,请说明理由.图26-1816.已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA=10,OC=6.(1)如图26-19甲所示,在OA 上选取一点D ,将△COD 沿CD 翻折,使点O 落在BC 边上,记为E.求折痕CD 所在直线的解析式;(2)如图26-19乙所示,在OC 上选取一点F ,将△AOF 沿AF 翻折,使点O 落在BC 边,记为G.①求折痕AF 所在直线的解析式;②再作GH ∥AB 交AF 于点H ,若抛物线y=121x 2+h 过点H ,求此抛物线的解析式,并判断它与直线AF 的公共点的个数.(3)如图26-19丙所示:一般地,在以OA 、OC 上选取适当的点I 、J ,使纸片沿IJ 翻折后,点O 落在BC 边上,记为K ,请你猜想:①折痕IJ 所在直线与第(2)题②中的抛物线会有几个公共点;②经过K 作KL ∥AB 与IJ 相交于L ,则点L 是否必定在抛物线上.将以上两项猜想在(1)的情形下分别进行验证.图26-19参考答案一、自主学习1.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t -4.9t 2(t 的单位:s ;h 的单位:m)可以描述他跳跃时重心高度的变化.如图26-9所示,则他起跳后到重心最高时所用的时间是( )A.0.7l sB.0.70 sC.0.63 sD.0.36 s图26-9答案:D2.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s(m)与车速x(km/h)间有下述的函数关系式:s=0.01x 2+0.002x ,现该车在限速140km ∠h 的高速公路上出了交通事故,事后测得其刹车距离为46.5 m ,请推测刹车时汽车________(填“是”或“不是”)超速. 答案:是3.有一座抛物线型拱桥(如图26-10所示),正常水位时桥下河面宽20 m ,河面距拱顶4 m(1)在如图26-10所示的平面直角坐标系中,求出抛物线解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在正常水位基础上涨多少米时,就会影响过往船只?图26-10答案:(1)y=251-x+4; (2)0.76 m 4.某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.(1)写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;(2)每件售价定为多少元,才能使一天的利润最大? 答案:(1)y=-10x+280x -1600;(2)14y=(x -8)×[l00-(x -10)×10]=(x -8)(100-10x+100) =(x -8)(-l0x+200)=-10x+280x -1600 当x=)10(22802-⨯-=-a b =14,因为y=-10x+280x -1600中的a <0,故此时y 有最大值.二、基础巩固5.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?答案:(1)y=-4x+64x+30720;(2)增加8台机器,最大生产总量是30976件 y=(80+x)(384-4x)=4x+64x+30720因为y=-4x+64x+30720=-4(x -8)2+30976 所以x=8时,y 最大值=30976.6.如图26-11所示,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8 m ,宽AB 为2 m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6 m.图26-11(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2 m ,宽2.4 m ,这辆货运卡车能否通过该隧道?通过计算说明你的结论. 答案:(1)y=41-x+6;(2)这辆货运卡车能通过隧道. 由图可设抛物线解析式为y=ax+c ,由题可知A(-4,2),E(0,6),c=6,代入,得2=(41-)2a+6,a=41-,故解析式为y=41-x+6;当x=2.4时,y=41-×2.42+6=4.56>4.2,所以这辆货运卡车能通过隧道.7.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产出的产品全部售出,已知生产x 只玩具熊猫的成本为R(元),售价每只为P(元)且R 、P 与x 的关系式为R=500+30x ,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元; (2)当日产量为多少时,可获得最大利润?最大利润是多少? 答案:(1)日产量为25只;(2)当日产量为35只时,可获得最大利润,最大利润是1950元.设生产x 只玩具熊猫的利润为y 元,依题意得y=px --2x)x -(500+30x)=-2x+140x -500,令y=1750,即--500=1750,解得x 1=25,x=45,但x=45>40去,所以当日产量为25只时,每日获得的利润为1750元. 对于y=-2x+140x -500,a=-2<0,x=)2(21402-⨯-=-a b =35时,y 最大值=)2(4140)500()2(44422-⨯--⨯-⨯=-ab ac =1950. 8.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表26-2所示.表26-2若日销售量y 是销售价x 的一次函数;(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?答案:(1)9=-x+40; (2)应定为25元,此时每日获得最大销售利润为225元.9.图26-12是某段河床横断面的示意图.查阅该河段的水文资料,得到表26-3中的数据.图26-12 表26-3(1)请你以表26-3中的各对数据(x ,y)作为点的坐标,尝试在图26-13所示的坐标系中画出y 关于x 的函数图象;图26-13(2)①填写表26-4.表26-4②根据所填表中数据呈现的规律,猜想出用x 表示y 的二次函数关系式:________.(3)当水面宽度为36 m 时,一船吃水深度(船底部到水面的距离)为1.8 m 的货船能否在这个河段安全通过?为什么? 答案:(1)略; (2)表略, y=2001x ; (3)这货船不能通过这河段.三、能力提高10.学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线距径落下.且在过OA 的任意平面上的抛物线如图26-14所示,建立平面直角坐标系(如图26-15所示),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x 2+2325+x ,请回答下列问题:图26-14 图26-15 (1)花形柱子OA 的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?答案:(1)1.5m ;(2)半径至少是3m ,一段由鹅卵石铺就的小道,小道两旁布满喷水管,每个喷管喷出的水最高达4 m ,落在地上时距离喷水管4 m ,现在设如图26-16是喷泉所经过的路线,与喷头A 和喷泉落地点B 的连线为横轴,AB 垂直平分线为纵轴建立直角坐标系.问小道的边缘距离喷水管至少应为多少米,才能使身高不大于1.75 m 的游客进入水帘洞时不会被水淋湿?图26-1答案:小道边缘距离喷水管至少应为1 m.由已知,得A(-4,0),B(4,0),抛物线的顶点C(0,4). 设抛物线的关系式为y=ax+4,把x=4,y=0代入,得16a+4=0,解得a=41-,故抛物线的关系式为y=41-x+4;为了让身高1.75m 的游客不会被喷泉淋湿,抛物线上的点到小道的边缘的距离应不小于1.75 m 设E 是抛物线上纵坐标为1.75的点,当y=1.75时,41-x+4=1.75,解得x=±3,所以E 点的坐标为(-3,1.75).作ED ⊥x 轴,则D(-3,0),从而AD=1.12.我区某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,我区政府对该花木产品每投资x 万元,所获利润为P=501-(x -30)2+10万元.为了响应我国西部大开发的宏伟决策,我区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通.公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=308)50(5194)50(50492+-+--x x 万元. (1)若不进行开发,求10年所获利润的最大值是多少? (2)若按此规划进行开发,求10年所获利润的最大值是多少? (3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法. 答案:(1)10年所获利润的最大值是100万元;(2)3547.5万元; (3)该项目有极大的开发价值.若不开发此产品,按照原来的投资方式,由P=501-(x -30)2+10知,只需从50万元专款中拿出30万元投资,每年即可获得最大利润10万元,则10年的最大利润M 1=10×10=100万元.若对产品开发,在前5年中,当x=25时,每年最大利润是P=501-(25-30)2+10=9.5万元,则前5年的最大利润M 2=9.5×5=47.5万元.设5年中x 万元是用于本地销售的投资,则Q=5049-(50-x)2+5194(50-x)+308知,将余下的(50-x)万元全部用于外地销售的投资,才有可能获得最大利润,则后5年的利润是M 3=[501-(x -30)2+10]×5+(5049-x+5194x+308)×5 =-5(x -20)2+3500,故x=20时,M 3取得最大值为3500万元,所以10年的最大利润为M=M 2+M 3=47.5+3500=3547.5万元,因为3547.5>100,故该项目有极大的开发价值. 13.在体育测试时,初三的一名高个子男同学在推铅球.已知铅球所经过的路线是某个二次函数图象的一部分,如图26-17所示,如果这个男同学的出手处A 点的坐标(0,2),铅球路线的最高处B 点的坐标为(6,5). (1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01 m ,15=3.873)图26-17答案:(1)y=121-x+x+2;(2)13.75m 设二次函数的解析式为y=a(x -h)2+k ,顶点坐标为(6,5) ∴y=a(x -6)2+5, A(0,2)在抛物线上, ∴2=62·a+5∴a=121- ∴y=121-(x -6)2+5,y=121-x+x+2. 当y=0时,121-x+x+2=0, x=6±52(舍6-52).∴x=6+52≈13.75m四、模拟链接14.设抛物线y=2x 2+kx+1-2k(k 为常数)与x 轴交于A 、B 两点,与y 轴交于C 点,且A 点在原点O 的左侧,B 点在原点O 的右侧,满足(OA+OB)2-OC=429(1)求抛物线的解析式;(2)在抛物线上是否存在D 、E 两点,使AO 恰为△ADE 的中线,若存在,求出△ADE 的面积,若不存在,说明理由.答案:(1)y=2x+3x -5;(2)存在抛物线上的D 、E 两点,使AO恰为△ADE 的中线,S △ADE =41015.设x 1,x 是方程2x -kx+1-2k=0的两根. A(x 1,0),B(x ,0),x 1<0<x. ∴OA=-x 1,OB=x. ∴x 1+x=2k -①x 1·x=221k -<0②∴k >21在抛物线解析式中,令x=0,则y=1-2k.. ∴C(0,1-2k),∴OC=|1-2k|=2k -1,由(OA+OB)2-OC=429,则(-x+x)2-(2k -1)429∴(x 1+x)2-4x 1 x -(2k -1)=429①②代入得(2k -)2-4×221k --2k+1=429.∴k 2-8k -33=0 ∴k 1=3或k 2=-11. 但k >21, ∴k=-11不合题意,舍去,∴k=3. 则所求抛物线的解析式为y=2x+3x -5.设存在抛物线上的D 、E 两点,使AO 恰为△ADE 的中线. ∴O 是DE 的中点,即D 、E 关于原点对称. 设直线DE 的解析式为y=kx ,联⎩⎨⎧-+==5322x x y kxy∴2x+(3-k)x -5=0 ③设D(x 1,y 1),E(x ,y 2),x 1,x 是方程③的解, ∴x 1+x=23k--=0, ∴k=3代入方程③中. ∴2x -5=0,∴x=±210,∴y=±2103. 易求A(25-,0),B(1,0). ∴S △ADE =2S △AOE =2×21·AO·|y E |=2×21×25×2103=41015 15.已知抛物线y=x 2+(2n -1)x+n 2-1(n 为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;(2)如图26-18所示,设A 是(1)所确定的抛物线上位于x 轴下方且在对称轴左侧的一个动点,过A 作x 轴的平行线,交抛物线于另一点D ,再作AB ⊥x 轴于B ,DC ⊥x 轴于C. ①当BC=1时,求矩形ABCD 的周长;②试问矩形ABCD 的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A 点的坐标;如果不存在,请说明理由.图26-18答案:(1)y=x -3x ;(2)① 6 ②存在最大值,A(21,45-) 由已知条件,得n 2-1=0,解这个方程,得n 1=1,n 2=-1 当n=1时,得y=x+x ,此抛物线的顶点不在第四象限; 当n=-1时,得y=x -3x ,此抛物线的顶点在第四象限, ∴所求的函数关系为y=x -3x.由y=x -3x ,令y=0,得x -3x=0,解得x 1=0,x=3. ∴抛物与x 轴的另一个交点为(3,0), ∴它的顶点为(49,23-),对称轴为直线x=23.①∵BC=1,由抛物线和矩形的对称性易知OB=21×(3-1)=1, ∴B(1,0).∴点A 的横坐标x=1,又点A 在抛物线y=x -3x 上,∴点A 的纵坐标y=12-3×1=-2, ∴AB=|y|=|-2|=2,∴矩形ABCD 的周长为2(AB+BC)=2×(2+1)=6.②∵点A 在抛物线y=x -3x 上,故可设A 点的坐标为(x ,x -3x),∴B 点的坐标为(x ,0)·(0<x <23) ∴BC=3-2x ,A 在x 轴下方,∴x -3x <0, ∴AB=|x -3x|=3x -x.∴矩形ABCD 的周长P=2[(3x -x)+(3-2x)]=-2(x -21)2+213. ∵a=-2<0,∴当x=21时,矩形ABCD 的周长P 最大值为213,此时点A 的坐标为A(21,45-)16.已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA=10,OC=6. (1)如图26-19甲所示,在OA 上选取一点D ,将△COD 沿CD 翻折,使点O 落在BC 边上,记为E.求折痕CD 所在直线的解析式;(2)如图26-19乙所示,在OC 上选取一点F ,将△AOF 沿AF翻折,使点O 落在BC 边,记为G. ①求折痕AF 所在直线的解析式;②再作GH ∥AB 交AF 于点H ,若抛物线y=121-x 2+h 过点H ,求此抛物线的解析式,并判断它与直线AF 的公共点的个数.图26-19(3)如图26-19丙所示:一般地,在以OA 、OC 上选取适当的点I 、J ,使纸片沿IJ 翻折后,点O 落在BC 边上,记为K ,请你猜想:①折痕IJ 所在直线与第(2)题②中的抛物线会有几个公共点;②经过K 作KL ∥AB 与IJ 相交于L ,则点L 是否必定在抛物线上.将以上两项猜想在(1)的情形下分别进行验证. 答案:(1)CD 的解析式为y=-x+6 由折法知:四边形ODEC 是正方形, ∴OD=OC=6 ∴D(6,0),C(0,6).设直线CD 的解析式为y=kx+b ,则⎩⎨⎧=-=⎩⎨⎧+=+=610660b k b b k 解得∴直线CD 的解析式为y=-x+6. (2)①AF ∶y=31-x+310③AF 与抛物线只有一个公共点 在Rt △ABG 中.因AG=AO=10, 故BG=22610-=8,∴CG=2. 没OF=t ,则FG=t ,CF=6-t , 在Rt △CFG 中,t 2=(6-t)2+22,解得t=310, 则F(0,310) 设直线AF ∶y=k′x+310,将A(10,0)代入,得k′=31- ∴AF ∶y=31-x+310∵GH ∥AB ,且G(2,6),可设H(2,y F ), 由于H 在直线AF 上, ∴把H 代入直线AF ∶y F =31-×2+310=38,知H(2,38),又H 在抛物线上,38=121-×22+h ,得h=3. ∴抛物线的解析式为y=121-x+3,再将直线y=31-x+310,代入抛物线y=121-x+3, 得121-x+31x 31-=0∵△=(31)2-4×(121-)×(31-)=0,∴直线AF 与抛物线只有一个公共点. (3)可以猜想以下两个结论: ①折痕所在直线与抛物线y=121-x+3只有一个公共点; ②若作KL ∥AB 与IJ 相交于点L ,则L 一定在抛物线y=121-x+3上. 验证①,在图甲中,将折痕CD :y=-x+6代入y=121-x+3特殊情形I 即为D,J 即为C ,G 即为E ,K 也是E ,KL 即为ED.L就是D ,得121-x+x -3=0. ∵△=1-4×(-3)×(121-)=0,∴.折痕CD 所在直线的确与抛物线y=121-x+3 只有一个公共点.验证②,在图甲的特殊情况中,I 就是C,J 就是D , 那么L 就是D(6,0),当x=6时,y=21-×62+3=0. ∴点L 在这条抛物线上. 。

2022春九年级数学下册第26章二次函数26.3实践与探索1用二次函数解决实际中抛物线型的最值应用习

2022春九年级数学下册第26章二次函数26.3实践与探索1用二次函数解决实际中抛物线型的最值应用习

(1)求该抛物线对应的函数表达式,并计算出拱顶D到地
面OA的距离; 解:根据题意得 B(0,4),C3,127. 把 B(0,4),C3,127的坐标分别代入 y=-16x2+bx+c,得
c-=164×,32+3b+c=127.解得bc==42., 所以该抛物线对应的函数表达式为 y=-16x2+2x+4,
即 y=-16(x-6)2+10.所以 D(6,10). 所以拱顶 D 到地面 OA 的距离为 10 m.
(2)一辆货运汽车载一长方体集装箱后高为6 m,宽为4 m, 如果隧道内设双向行车道,那么这辆货运汽车能否安 全通过? 解:当 x=122-4=2 或 x=122+4=10 时,y=232>6, 所以这辆货运汽车能安全通过.
为( ) A.10 m B.15 m C.20 m D.22.5 m 【点拨】根据题意,可知抛物线 y=ax2+bx+c(a≠0)
经过点(0,54.0),(40,46.2),(20,57.9),则 c1=60504a.0+,40b+c=46.2, 400a+20b+c=57.9,
a=-0.019 5, 解得b=0.585,
(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分 别为a、b,要使两孔射出水的射程相同,求a、b之间 的关系式; 解:要使两孔射出水的射程相同,则有: 4a(20-a)=4b(20-b),∴20a-a2=20b-b2, ∴a2-b2=20a-20b,∴(a+b)(a-b)=20(a-b), ∴(a-b)(a+b-20)=0,∴a-b=0或a+b-20=0, ∴a=b或a+b=20.
HS版九年级下
第26章 二次函数
26.3 实践与探索
第1课时 用二次函数解决实际中
“抛物线”型的最值应用

九年级数学下册26.3实践与探索26.3.3二次函数的应用同步跟踪训练(含解析)华东师大版(new)

九年级数学下册26.3实践与探索26.3.3二次函数的应用同步跟踪训练(含解析)华东师大版(new)

26.3。

3二次函数的应用一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米B.3米C.5米D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )A.第9。

5秒B.第10秒C.第10.5秒D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y=(x+3)2B.y=(x+3)2C.y=(x﹣3)2D.y=(x﹣3)25.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.2s B.4s C.6s D.8s6一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A.2米B.5米C.6米D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t (s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=(x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40 m/s B.20 m/s C.10 m/s D.5 m/s二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________ 米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________ .11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________ 元.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P (x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P的坐标是_________ .13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________ 米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________ 件(用含x的代数式表示).三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y (千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?19.“丹棱冻粑"是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x (元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.22.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?26。

实际问题与二次函数解答题专题训练含答案

实际问题与二次函数解答题专题训练含答案

实际问题与二次函数解答题专题训练含答案姓名:__________ 班级:__________考号:__________一、解答题(共20题)1、如图,在平面直角坐标系中,正比例函数和二次函数的图像都经过点和点B ,过点A 作的垂线交x 轴于点C .D 是线段上一点(点D 与点A 、O 、B 不重合),E 是射线上一点,且,连接,过点D 作x 轴的垂线交抛物线于点F ,以、为邻边作.( 1 )填空:________ ,________ ;( 2 )设点D 的横坐标是,连接.若,求t 的值;( 3 )过点F 作的垂线交线段于点P .若,求的长.2、甲车在弯路作刹车试验,收集到的数据如下表所示:速度x(千米/小时)0 5 10 15 2025…刹车距离y(米)0 2 6 …(1)请用上表中的各对数据(x,y)作为点的坐标,(2)在图所示的坐标系中画出甲车刹车距离y(米)与速度x(千米/时)的函数图象,并求函数的解析式x(千米/时)(2)在一个限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了。

事后测得甲、乙两车的刹车距离分别为12米和10.5米,又知乙车的刹车距离y(米)与速度x(千米/时)满足函数,请你就两车的速度方面分析相撞的原因。

3、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?4、如图,八一广场要设计一个矩形花坛,花坛的长、宽分别为200 m、120 m,花坛中有一横两纵的通道,横、纵通道的宽度分别为3x m、2x m.(1)用代数式表示三条通道的总面积S;当通道总面积为花坛总面积的时,求横、纵通道的宽分别是多少?(2)如果花坛绿化造价为每平方米3元,通道总造价为3168 x元,那么横、纵通道的宽分别为多少米时,花坛总造价最低?并求出最低造价.(以下数据可供参考:852 = 7225,862 = 7396,872 = 7569)5、.张伯伯准备利用40m长的篱笆,在屋外的空地上围成三个相连且面积相等的矩形花圈.围成的花圈是如图所示的矩形ABCD、矩形CDEF、矩形EFGH.设AB边的长为x米.矩形ABCH 的面积为S平方米.’(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时.S有最大值?并求出最大值.6、某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?7、某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该超市销售这种水果每天获取的利润达到600元?【利润=销售量×(销售单价-进价)】(3)一段时间后,发现这种水果每天的销售量均不低于225千克.则此时该超市销售这种水果每天获取的利润最大是多少?8、某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告。

实际问题与二次函数练习题(含答案)

实际问题与二次函数练习题(含答案)

实际问题与二次函数练习题(含答案)基础导练1.如图所示,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( ) 5 m 12 m A B CDA.424 m B.6 m C.15 m D.25 m 2.二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,△ABC 的面积为( )A.1B.3C.4D.63.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( )A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5能力提升4.某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元)满足关系:m =140-2x .(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?5.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m ?比较(1)(2)的结果,你能得到什么结论? x参考答案1.D2.B3.C4.解:(1)y =-2x 2+180x -2800.(2)y =-2x 2+180x -2800=-2(x 2-90x )-2800=-2(x -45)2+1250.当x =45时,y 最大=1250.∴每件商品售价定为45元最合适,此销售利润最大,为1250元.5.解:(1)依题意得鸡场面积y =.350312x x +- ∵y =-31x 2+350x =31-(x 2-50x ) =-31(x -25)2+3625,∴当x =25时,y 最大=3625, 即鸡场的长度为25 m 时,其面积最大为3625m 2. (2)如中间有n 道隔墙,则隔墙长为502x n -+m.∴y =502x n -+·x =-12n +x 2+502n +x=-12n +(x 2-50x )=-12n +(x -25)2+6252n +,当x =25时,y 最大=6252n +,即鸡场的长度为25 m 时,鸡场面积为6252n + m 2. 结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25 m.。

【九年级】实际问题与二次函数同步练习题2套(附答案)

【九年级】实际问题与二次函数同步练习题2套(附答案)

【九年级】实际问题与二次函数同步练习题2套(附答案)人教版九年级数学下册第二十六单元《实际问题与二次函数》同步练习1带答案1.已知函数y=x2-x-12。

当函数y随X的增大而减小时,X的取值范围为()a.x<1b.x>1c.x>-4d.-4<x<62.商店以20元的单价购买一批日用品。

如果单价是30元,半个月内可以卖出400件。

根据销售经验,增加销售单价会导致销量下降,即每增加1元的销售单价,销量就会减少20件。

如果销售价格提高,半个月内能获得最大利润吗?3.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子oa,o恰在水面中心,安置在柱子顶端a处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过oa的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系是.请回答下列问题:(1)柱子的高度是多少米?(2)喷出的水流距水平面的最大高度是多少米?(3)如果不考虑其他因素,游泳池的半径应至少为多少米,以便喷出的水不会落入游泳池外?4.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式i=2v2来表示,其中v(千米/分)表示汽车的速度.① 该列表表示I和V之间的关系;②当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?5.如图所示,正方形efgh的顶点位于边长为A的正方形ABCD的一侧。

如果AE=x,则正方形efgh的面积为y(1)求出y与x之间的函数关系式;(2)正方形efgh的面积最大吗?如果是,尝试确定点E的位置;如果没有,请给出原因答案:1、a2、售价为35元时,在半月内可获得最大利润3、(1)(2)(3) 4. ① 轻微地② 4乘以5,(1)y=2x2-2ax+A2(2)是当E点是AB的中点时,面积最大。

26.3(2)实际问题与二次函数

26.3(2)实际问题与二次函数
△PCQ △ABC
解:(1)∵P、Q分别从A、C两点同时出发, 速度相等 ∴AP=CQ=x 当P在线段AB上时 D
x C
S PCQ
A 1 1 2 S x(2 x) x x (0 x 2) 2 2
1 1 CQ PB AP PB 2 2
x P 2-x B
+ 4 -4)
C Q x
8-2x
= -(x-2)2 +4
B
所以,当P、Q同时运动2秒后Δ PBQ的面积y最大,
最大面积是 4cm2
例5:如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点
同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,
点Q沿边BC的延长线运动,PQ与直线相交于点D。 (1)设 AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式; Q (2)当AP的长为何值时,S = S
(2) S五边形APQCD S矩形ABCD SPBQ
1 解:( 1 )S PBQ (6 t ) 2t 8 解得:t1 2, t2 4. 2 72 (0 t 6)
1 S 6 12 2t (6 t ) 2
b 30 当l 15时, 2a 2 (1)
S最大值 152 30 15 225.
答:当l 15m时, 场地的面积最大(S最大值 225m ).
2
练习:已知直角三角形两条直角边的和等于8,两条直 角边各为多少时,这个直角三角形的面积最大, 最大值是多少?
∴ 花圃宽为(24-4x)米
∴ S=x(24-4x) =-4x2+24 x (0<x<6)
A
D
x
x

实际问题与二次函数(一)

实际问题与二次函数(一)

26.3 实际问题与二次函数(一)基础训练1.二次函数y=ax 2+bx+c(a ≠0)的最大值是0,那么代数式|a|+4ac-b 2的化简结果是( )A.aB.-aC.0D.12.抛物线y=-2x 2-8x+3的顶点关于y 轴对称的点的坐标为____________.3.两数之和为6,则之积最大为.____________强化训练1.抛物线y=x 2+2x+1的顶点是( )A.(0,1)B.(-1,0)C.(1,0)D.(-1,1)2.一名男同学推铅球时,铅球行进中离地的高度y(m)与水平距离x(m)之间的关系是y=35321212++-x x ,那么铅球推出后最大高度是______m ,落地时距出手地的距离是____m .3.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,求:(1)若商场平均每天要盈利1 200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,该商场平均每天盈利最多?4.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?巩固训练1.已知二次函数y=x 2-6x+m 的最小值为1,那么m=_____________.2.抛物线y=21x 2-6x+21,当x=_________,y 最大=____________. 3.对于物体,在不计空气阻力的情况下,有关系式h=v 0t-21gt 2,其中h 是上升高度,v 0(m/s )是初速度,g(m/s 2)是重力加速度,t(s)是物体抛出后经过的时间,图26311是上升高度h 与t 的函数图象.(1)求v 0,g ;(2)几秒后,物体在离抛出点25 m 高的地方?图26-3-1-14.某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价0.5元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润.5.随着海峡两岸交流日益增强,通过“零关税”进入我市的一种台湾水果,其成本是每吨0.5万元,这种水果市场上的销售量y(吨)是每吨销售价x (万元)的一次函数,且x=0.6时,y=2.4;x=1时,y=2.(1)求出销售量y(吨)与每吨销售价x (万元)之间的函数关系式;(2)若销售利润为W(万元),请写出W与x之间的函数关系式,并求出销售价为多少时的销售利润最高?6.某经营商购进一种商品原料7 000千克存在某货场,进价为每千克30元,物价部门最高限价为每千克70元.市场调查发现,单价为70元,日均售60千克,每降一元,日多售2千克.每天需向货场支付500元存货费(不足一天,按一天计).问:(1)日销售单价为多少时,日均获利最大?(2)如将该种原料全部售完,比较日均获利最大和单价最高这两种销售方式,哪种总获利多?多多少?7.(2010山东青岛模拟,22)在2010年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x…25242322…(元/千克)销售量y… 2 000 2 500 3 000 3 500…(千克)(1)在如图26-3-1-2的直角坐标系内,作出各组有序数对(x,y)所对应的点.连结各点并观察所得的图形,判断y与x之间的函数关系,并求出y与x之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P(元)与销售价x (元/千克)之间的函数关系式,并求出当x取何值时,P的值最大?图26-3-1-2。

实际问题与二次函数2

实际问题与二次函数2

一场篮球赛中,小明跳起投篮,已知球出手时离 地面高 20米,与篮圈中心的水平距离为8米,当球
9
出手后水平距离为4米时到达最大高度4米,设篮 球运行的轨迹为抛物线,篮圈中心距离地面3米。
• 问此球能否投中?
4米
3米
20
9
4米
8米
y
(4,4)
20 9
a 1 9
y 1 x 42 4 (0≤x≤8)
0 a ( 2 )2 2
a 0.5
∴这条抛物线所表示的二 次函数为:
y 0.5( x 2 )2 2
当水面下降1m时,水面的 纵坐标为y=-1,这时有:
1 0.5( x 2 )2 2
x1 2 6 , x2 2 6
∴这时水面的宽度为:
x2 x1 2 6m
∴当水面下降1m时,水面宽度 增加了 ( 2 6 4 )m
26.3 实际问题与二次函数(2)
探究3如图的抛物线形拱桥,当水面在 l 时,拱桥
顶离水面2m,水面宽4m.若水面下降1m,水面宽度增
加多少? 问:(1)对于此题你能联想 到用我们学过的什么数学 知识来解决?
(2)从题目本身的哪些 条件,你能联想到用二 次函数解决这一问题?
(3)求水面宽度增加
多少,就是求解什么
解:如图,以AB所在的直线为x轴, 以AB的垂直平分线为y轴,建立平面 直角坐标系.
∵AB=4 ∴A(-2,0) B(2,0)
∵OC=4.4 ∴C(0,4.4) 设抛物线所表示的二次函数为
y ax2 4.4
∵抛物线过A(-2,0)
4a 4.4 0 a 1.1
数学问题?
(4)要求线段CD的长,
2
Al
C
4

【新】人教版九年级数学下册实际问题与二次函数同步练习及答案

【新】人教版九年级数学下册实际问题与二次函数同步练习及答案

26.3 实际问题与二次函数第1课时二次函数与最大利润问题1. 出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x= 时,一天出售该种文具盒的总利润最大.2. 某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明:单价每上涨1元,该商品每月的销量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元/件)的函数关系式;(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?3. 某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个.(1)已知销售单价提高4元,那么销售每个篮球所获得的利润是元;这种篮球每月的销售量是个;销售这种篮球每月的总利润是元;(2)假设销售单价提高x元,那么销售每个篮球所获得的利润是元;这种篮球每月的销售量是个(用含x的代数式表示);(3)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?参考答案1.32.(1)y=-10x2+100x+6000(2)当单价定为85元时,每月销售该商品的利润最大,最大利润为6250元3.解:(1)14 460 6440 (2)(10+x)(500-10x)(3)设月销售利润为y元.由题意得:y=(10+x)( 500-10x),整理得:y=-10(x-20)2+9000,当x=20时,y有最大值9000.此时篮球的售价应定为20+50=70(元).答:8000元不是最大利润,最大利润是9000元,此时篮球的售价为70元.第2课时二次函数与图形面积问题1. 如图,已知:正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为S,AE为x,则S关于x的函数图象大致是()2. 用长度为2l的材料围成一个矩形场地,中间有2个隔墙,要使矩形的面积最大,则隔墙的长度为(A.14l B.13C.12l D.l3. ,则这个直角三角形的最大面积为 .4. 给你长8 m的铝合金条,请问:(1)你能用它制成一矩形窗框吗?(2)怎样设计,窗框的透光面积最大?(3)如何验证?参考答案1.B2.A3.50 cm24.解:(1)能.(2)设计成边长为2 m的正方形时,窗框的透光面积最大.(3)设矩形的一边长为x m,则另一边长为(4-x)m,设矩形窗框的面积为y m2,则y=x(4-x)=-x2+4x=-(x-2)2+4.所以当x=2时,y有最大值,y最大=4.所以当设计成边长为2 m的正方形时,窗框的透光面积最大,最大面积为4 m2.第3课时 建立适当的坐标系解决实际问题1. 如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y =-x 2+4x+2(单位:米),则水柱的最大高度是( )A .2米B .4米C .6米D . 米2. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x (单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米3. 廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数关系式为y =-140x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是___米.(精确到0.1米)4. 如图所示,有一座抛物线形拱桥,桥下面在正常水位AB 时,宽20 m ,水位上升3 m 就达到警戒线CD ,这时水面宽度为10 m .(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2 m 的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?参考答案1.C2.A3.17.94.解:(1)设所求抛物线的解析式为y =ax 2(a ≠0),由CD =10 m ,可设D(5,b ),由AB =20 m ,水位上升3 m 就达到警戒线CD ,则B (10,b -3),(26)把D、B的坐标分别代入y=ax2,得251003a ba b=⎧⎨=-⎩,,O到CD的距离为1 m,∴1÷0.2=5(小时).故再持续5小时到达拱桥顶.。

26.3.2实际问题与二次函数2

26.3.2实际问题与二次函数2

在上面的练习题中,若水池喷出抛物线形状不变, 水池的半径为3.5米,要使水流不落到池外,此时 水流最大高度应达多少米?(精确到0.1米) 解:依题意,A(0,1.25), C(3.5, 0) 设 y = - (x - h)2 + k,则有 y 2 - (0 - h) + k = 1.25 - (3.5 - h) 2+ K = 0 A 11 ,k ≈ 3.7. 解得 h = — 7 所以,此时水流最大高度 应达3.7米. 水 面 O
有信心的人,可以化渺小 为伟大,化平庸为神奇.
实际问题与二次函数(2)
1.已知二次函数y= ax2+bx+c的图象如图 所示,且OA=OC,由抛物线的特征请尽量多 地写出一些含有a、b、c三个字母的等式或 y 不等式:
o -1 A
C -1
1B
x
2.在平面直角坐标系中,有一个二次函数的 图象交 x 轴于(-4,0),(2,0)两点,现 将此二次函数图象向右移动 h 个单位,再向 上移动 k 个单位,发现新的二次函数图象与x 轴相交于(-1,0),(3,0)两点,则h的 值为( C )
6
y
(4,4) (5,4)
4
20 0, 2 9
(7,3) (8,3)

0
1
2
3
4
5 5
6
7
8
9
10
X
-2
如图所示,公园要建造圆形喷水池,在水池中央 垂直于水面处安装一个柱子OA,O恰在水面中, OA=1.25米,由柱子顶端A处的喷头向外喷水, 水流在各个方向沿形状相同的抛物线落下, 为使水流形状较为美观, y 要求设计成水流在离OA B 距离为1米处达到距水面 A 最大高度为2.25米, 如果 不计其他因素, 那么水池 的半径至少要多少米, C 才能使喷出的水流不致 水 面 O x 落到池外?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与二次函数
1. 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货
员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。

商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x ,y 和z (单位:万元,x 、y 、z 都是整数)。

(1)请用含x 的代数式分别表示y 和z ;(2)若商场预计每日的总利润为C (万元),且C 满足19≤C ≤19.7。

问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员?
2.某宾馆有50个房间供游客居住。

当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。

如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。

房价为多少时,宾馆利润最大?
3. 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y 随时间t 的变化规律有如下关系(04黄冈)
(1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目?
4.
有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去。

假设放养期内蟹的个体重量基本保持不变。

现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时的市场价为每千克30元。

据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。

(1)设x 天后每千克活蟹的市场价为P 元,写出P 关于x 的函数关系式;
(2)如果放养x 天后将活蟹一次性出售,并记1000千克蟹的销售总额为Q 元,写出Q 与x 的函数关系式;
(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用)?增大利润是多少?
224100(010)240(1020)
7380(2040)t t t y t t t ⎧-++<≤⎪⎪=<≤⎨⎪-+<≤⎪⎩
5.如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。

(1)设 AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式;
(2)当AP的长为何值时,S△PCQ= S△ABC
6.1在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。

如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,△PBQ的面积等于8cm2
(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;
t为何值时S最小?求出S的最小值。

Q。

相关文档
最新文档