七年级下学期数学第二次月考试题
初一数学下册第二次月考试题
二、填空题(每空 3 分,共 24 分)
9.的算术平方根是 .
10. 已 知 ∠1 与 ∠2 是 对 顶 角 , ∠1 与 ∠3 是 邻 补 角 , 则 ∠2+∠3=_______.
11. 不等式 2+1<9 的正整数解是 _______
12.一个正数的两个平方根为 m+1 和 m-3,则=.
13.写出一个解为的二元一次方程 ______.
22、(12 分)23 、“校园手机”现象越来越受到社会的关注,“寒 假”期间,记者刘凯随机调查了某区若干学生和家长对中学生带手机 现象的看法,统计整理制作了如下的统计图:
(1)求这次调查的家长人数,并补全图 1;
(2)求图 2 中表示家长“赞成”的圆心角的度数;
( 3)针对随机调查的情况,估计全市 少名反对 .
)
(A) (- 3,- 2) .(B) (3,2 ) .(C)(3, - 2).(D) (2,- 3)
6. 为了了解某校七年级 800 名学生期中数学考试情况,从中抽取 了 200 名学生的数学成绩进行统计,下列判断:①这种调查方式是抽 样调查;② 800 名学生是总体;③每名学生的数学成绩是个体;④ 200
精心整理
名学生是总体的一个样本;⑤ 200 名学生是样本容量。其中判断正确 的是()
A.1 个 B.2 个 C.3 个 D.4 个
7. 以方程组的解为坐标的点( x,y)在平面直角坐标系中的位置 ()
A.第一象限 限
B.第二象限
C.第三象限
D.第四象
8.如右图,下列不能判定∥的条件是 ().
A. B.C. D..
精心整理
初一数学下册第二次月考试题
这篇《初一数学下册第二次月考试题》是由整理提供,请大家参考! 一、选择题(每小题 3 分,共 24 分)
河北省北京师范大学保定实验学校2022-2023学年七年级下学期第二次月考数学试题
河北省北京师范大学保定实验学校2022-2023学年七年级下学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题 1.2022年卡塔尔世界杯是第二十二届世界杯足球赛.下列四个图案是历届会徽图案上的一部分图形,其中轴对称图形的是( ) A . B . C . D .2.下列各式计算结果正确的是( )A .2352a a a +=B .660a a ÷=C .352()a a =D .235()a a a −⋅= 3.下列事件中,是随机事件的为( )A .一个三角形的内角和是180︒B .负数大于正数C .掷一枚骰子朝上一面的点数为5D .明天太阳从西方升起4.如图,下列条件中不能判定BC DE ∥的条件是( )A .1C ∠=∠B .23∠∠=C .ADE BCE ∠=∠D .180CBD BDE ∠+∠=︒5.一个等腰三角形的两边长分别是3cm 和7cm ,则它的周长是( )cm . A .17 B .13 C .14或17 D .13或17 6.如图,斑马线的作用是为了引导行人安全地通过马路,小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是( )A .垂线段最短B .过直线外一点有且只有一条直线与已知直线平行C .两点确定一条直线D .两点之间,线段最短下列说法错误的是( )A .弹簧的长度随所挂物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量B .物体的质量每增加1kg ,弹簧的长度增加0.5cmC .在弹簧能承受的范围内,当物体的质量为7kg 时,弹簧的长度为16cmD .在没挂物体时,弹簧的长度为12cm9.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:()223421126xy y x xy x y −−−=−++W ,W 的地方被钢笔水弄污了,你认为W 内应填写( )A .3xyB .3xy −C .1−D .110.如图是雨伞在开合过程中某时刻的截面图,伞骨AB AC =,点D ,E 分别是AB ,AC 的中点,DM ,EM 是连接弹簧和伞骨的支架,且=DM EM ,已知弹簧M 在向上滑动的过程中,总有ADM AEM △≌△,其判定依据是( )A .ASAB .AASC .SSSD .SSA11.有足够多张如图所示的A 类、B 类正方形卡片和C 类长方形卡片,若要拼一个长为()32a b +、宽为()a b +的大长方形,则需要C 类卡片的张数为( )A .3B .4C .5D .6A .12 B 13.如图,BD 是△ABC 的中线,点E ,F 分别为BD ,CE 的中点,若△ABC 的面积为8.则△AEF 的面积是( )A .2B .3C .4D .6A .5个B .4个C .3个D .2个15.如图,在ABC 中,90BAC ∠=︒,2AB AC =,点D 是线段AB 的中点,将一块锐角为45︒的直角三角板按如图()ADE 放置,使直角三角板斜边的两个端点分别与A 、D 重合,连接BE 、CE ,CE 与AB 交于点.F 下列判断正确的有( )①ACE △≌DBE ;②BE CE ⊥;③DE DF =;④DEF ACF S S =A .①②B .①②③C .①②④D .①②③④ 16.动点H 以每秒x 厘米的速度沿图1的边框(边框拐角处都互相垂直)按从A B C DEF −−−−−的路径匀速运动,相应的HAF △的面积()2cm S 与时间()s t 的关系图象如图2,已知8cm AF =,则说法正确的有几个( )①动点H 的速度是2cm/s ;②BC 的长度为3cm ;③当点H 到达D 点时HAF △的面积是28cm ;④b 的值为14;⑤在运动过程中,当HAF △的面积是230cm 时,点H 的运动时间是3.75s 和1025s ..A .2个B .3个C .4个D .5个二、填空题 17.春暖花开,科学兴趣小组发现一种花瓣的花粉颗粒的直径约为0.00065cm ,将数据0.00065用科学记数法表示为 .18.如图,ABC 中,A ∠比B ∠大70︒,点D 为AB 上一点,将ABC 沿直线CD 折叠,使点A 的对应点A '落在边BC 上,则ADC ∠= °.19.在ABC 中,点D 是BAC ∠的平分线上一点(不包括AD 与BC 的交点及点A ),过点D 作DE AB ∥交射线BC 于点E ,DEB ∠的平分线所在直线与射线AD 交于点F .(1)如图1,点D 在ABC 外部,若30BAC ∠=︒,70B ∠=︒,则AFE ∠= ︒; (2)如图2,点D 在ABC 内部,直线EF 交AB 于点M ,若C n ∠=,则AFE ∠= (用含n 的代数式表示).三、解答题域的优惠.(1)某顾客在该商场消费40元,是否可以获得转动转盘的机会?(2)某顾客在该商场正好消费66元,则他转动一次转盘,获得三种打折优惠的概率分别是多少?22.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;+最小.(2)在DE上画出点Q,使QA QC(3)四边形BCC1B1的面积为.四、填空题23.问题:你能很快算出19952吗?为了解决这个问题,我们考查个位上的数为5时自然数的平方, 任意一个个位数为5的自然数都可写成:10n+5,即求(10n+5)2的值(n为自然数).请你试分别n=1,n= 2,n=3…这些简单情况,从中探索其规律,并归纳,猜想得出结论.(1)通过计算,探索规律:152=225,可写成100×1(1+1)+25;252=625,可写成100×2(2+1)+25;352=1225,可写成100×3(3+1)+25;452=2025,可写成100×4(4+1)+25;752=5625,可写成;852=7225,可写成;五、解答题 24.端午节假期间,小亮一家到某度假村度假.小亮和他妈妈坐公交车先出发,他爸爸自驾车沿着相同的道路后出发.他爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村.如图是他们离家的距离()s km 与小明离家的时间()t h 的关系图.请根据图回答下列问题:(1)图中的自变量是______,因变量是______;(2)小亮家到该度假村的距离是______km ;(3)小亮出发______小时后爸爸驾车出发;当爸爸第一次到达度假村后,小亮离度假村的距离是______km ;(4)图中点A 表示______;(5)小亮从家到度假村期间,他离家的距离()s km 与离家的时间()t h 的关系式为______;(6)小亮从家到度假村的路途中,当他与他爸爸相遇时,离家的距离约是______km .25.【学习新知】射到平面镜上的光线(入射光线)和反射后的光线(反射光线)与平面镜所夹的角相等,如图1,AB 是平面镜,若入射光线与水平镜面夹角为1∠,反射光线与水平镜面夹角为2∠,则12∠=∠.(1)【初步应用】如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射,若被b 反射出的光线n 与光线m 平行,且150∠=︒,则2∠=_____,3∠=_____;(2)【猜想验证】由(1),请你猜想:当两平面镜a 、b 的夹角3∠=_____时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行,请说明理由;(3)【拓展探究】如图3,有三块平面镜AB ,BC ,CD ,入射光线EF 与镜面AB 的夹角1α∠=︒,镜面AB 、BC 的夹角120B ∠=︒,已知入射光线从镜面AB 开始反射,经过(n n 为正整数,3)n ≤次反射,当第n 次反射光线与入射光线EF 平行时,请直接写出BCD ∠的度数.(可用含有α的代数式表示)26.【发现问题】课外兴趣小组活动时,老师提出了如下问题:如图1,在ABC 中,若6AB =,4AC =,求BC 边上的中线AD 的取值范围.小华在组内经过合作交流,得到了如下解决方法:延长AD 到点E ,使DE AD =,得到ADC EDB ≌△△,他用到的判定定理是______(用字母表示).【解决问题】小明发现,解题时,条件中若出现“中点”,“中线”字样,可以考虑构造全等三角形,“问题是数学的心脏”,要学好数学一定要多思考,做到举一反三,于是他又提出了一个新的问题:如图2,在ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM DN ⊥,求证:MN CN BM −<.【拓展应用】如图3,在ABC 中,分别以AB ,AC 为边向外作ABE 和ACD ,使AE AB =,AD AC =,90EAB DAC ∠=∠=︒,点M 是BC 的中点,连接AM ,DE ,当11AM =时,求DE 的长.。
福建省福州市七年级下学期数学第二次月考试卷
福建省福州市七年级下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共26分)1. (2分) (2016七下·滨州期中) 下列各式正确的是()A . =3B . (﹣)2=16C . =±3D . =﹣42. (2分)下列各式中计算正确的是()A . =-9B .C .D .3. (2分)如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是()A . 点AB . 点BC . 点CD . 点D4. (2分) a和b是两个连续的整数,a˂˂b,那么a和b分别是()A . 3和4B . 2和3C . 1和2D . 不能确定5. (2分)化简:(a+1)2-(a-1)2=()A . 2B . 4C . 4aD . 2a2+26. (2分)设M=(x-3)(x-7),N=(x-2)(x-8),则M与N的关系为()A . M<NB . M>NC . M=ND . 不能确定7. (2分) (2019七下·武昌期中) 如果小华在小丽北偏东40°的位置上,那么小丽在小华的()A . 南偏西50°B . 北偏东50°C . 南偏西40°D . 北偏东40°8. (2分) (2017九上·南漳期末) △ABC绕点A按顺时针方向旋转了60°得△AEF,则下列结论错误的是()A . ∠BAE=60°B . AC=AFC . EF=BCD . ∠BAF=60°9. (2分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A . 70°B . 55°C . 50°D . 40°10. (2分)乘积等于m2-n2的式子是()A . (m-n)2B . (m-n)(-m-n)C . (n -m)(-m-n)D . (m+n)(-m+n)11. (2分)(2017·磴口模拟) 4的平方根是()A . 4B . 2C . ﹣2D . 2和﹣212. (2分)如果一个图形绕着一个点至少需要旋转72°才能与它本身重合,则下列说法正确的是()A . 这个图形一定是中心对称图形B . 这个图形可能是中心对称图形C . 这个图形旋转216°后能与它本身重合D . 以上都不对13. (2分)(2017·长春) 如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A . 3a+2bB . 3a+4bC . 6a+2bD . 6a+4b二、填空题 (共9题;共9分)14. (1分) (2015七下·无锡期中) 已知方程组的解满足x﹣y=2,则k的值是________.15. (1分) (2019八上·平川期中) 的算术平方根是________ ,的相反数是________,-的倒数是________.16. (1分) (2017七下·简阳期中) 若a>b,则 ________ (用“>“或“<“填空)17. (1分)计算am•a3•________=a3m+3 .18. (1分) (2017八上·滕州期末) 的平方根是________;的值是________.19. (1分) (2017八上·江阴开学考) 已知m>0,并且使得x2+2(m﹣2)x+16是完全平方式,则m的值为________.20. (1分)(2017·顺德模拟) 如图,等腰△ABC的周长是36cm,底边为10cm,则底角的正切值是________.21. (1分)如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则AD=________22. (1分)(2019·平谷模拟) 如图,从边长为a的大正方形中去掉一个边长为b的小正方形,然后将剩部分剪后拼成一个长方形,这个操作过程能验证的等式是________.三、解答题 (共4题;共67分)23. (40分) (2019七下·郑州开学考) 计算:(1)−14−(−2)2+(0. 125)100×(−8)101(2) (−1)2016÷(−3)−2−(−2)× +(−2)−2(3) [(2x+y)2−(2x+y)(2x−y)]÷2y(4)24. (10分) (2017八下·高阳期末) 计算(1)(2)25. (10分)小明准备用一段长40米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)求出a的取值范围.(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.26. (7分) (2020七上·温州期末) 如图1,将一副直角三角板的两顶点重合叠放于点O,其中一个三角板的顶点C落在另一个三角板的边OA上,已知∠ABO=∠DCO=90°,∠AOB=45°,∠COD=60°作∠AOD的平分线交边CD于点E。
北师大版七年级数学(下)第二次月考试卷(含解析)
北师大版七年级数学(下)数学第二次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y62.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4 4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°(5题)(6题)(7题)6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS 7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.368.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()(8题)(10题)A.6B.5C.4D.39.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为米.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m =.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.14题15题16题15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为cm.16.(3分)如图,在△ABC中,AB=AC ,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF=.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y=.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD=;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC=8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y6【分析】分别根据合并同类项法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.a10÷a5=a5,故本选项不合题意;D.(xy2)3=x3y6,正确.故选:D.【点评】本题主要考查了合并同类项、同底数幂的除法,幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.2.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油【分析】根据轴对称图形的概念求解.【解答】解:A、“中”可以看作是轴对称图形,故本选项符合题意;B、“国”不是轴对称图形,故本选项不合题意;C、“加”不是轴对称图形,故本选项不合题意;D、“油”不是轴对称图形,故本选项不合题意.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、3+1<5,不能构成三角形,故A错误;B、2+2=4,不能构成三角形,故B错误;C、3+3<7,不能构成三角形,故C错误;D、2+3>4,能构成三角形,故D正确,故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等【分析】根据平行线的性质、有理数的乘方、对顶角相等、全等三角形的判定定理判断即可.【解答】解:A、两直线平行,同位角相等,∴同位角相等,是随机事件;B、如果a2=b2,那么a=b,是随机事件;C、对顶角相等,是必然事件;D、两边及其一角分别相等的两个三角形全等,是随机事件;故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:A、∠1和∠4是AD、BC被BD所截得到的一对内错角,∴当∠1=∠4时,可得AD∥BC,故A不正确;B、∠2和∠3是AB、CD被BD所截得到的一对内错角,∴当∠2=∠3时,可得AB∥CD,故B正确;C、∠C和∠CDE是AD、BC被CD所截得到的一对内错角,∴当∠C=∠CDE时,可得AD∥BC,故C不正确;D、∠C和∠ADC是AD、BC被CD所截得到的一对同旁内角,∴当∠C+∠ADC=180°时,可得AD∥BC,故D不正确;故选:B.【点评】本题主要考查平行线的判定,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据题目所给条件可利用SSS定理判定△ADC≌△ABC,进而得到∠DAC =∠BAC.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.36【分析】易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.【解答】解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选:C.【点评】考查动点问题的函数的有关计算;根据所给图形得到矩形的边长是解决本题的关键.8.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.3【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC =×4×2+AC×2=7,解得AC=3.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.9.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=9﹣8=1,则a﹣b=±1,故选:B.【点评】此题考查了平方根,以及完全平方公式,熟练掌握平方根定义及公式是解本题的关键.10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个【分析】由“SAS”可证△ACD≌△BCE,可得AD=BE,∠ADC=∠BEC,可判断①,由等腰直角三角形的性质可得∠CDE=∠CED=45°.CM⊥AE,可判断②,由全等三角形的性质可求∠AEB=∠CME=90°,可判断④,由线段和差关系可判断③,即可求解.【解答】解:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,故①错误,∵△DCE为等腰直角三角形,CM平分∠DCE,∴∠CDE=∠CED=45°,CM⊥AE,故②正确,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°,∴∠AEB=∠CME=90°,∴CM∥BE,故④正确,∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故③正确,故选:C.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△ACD≌△BCE是本题的关键.二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为1×10﹣7米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm可以表示为100×10﹣9=1×10﹣7米.故答案为:1×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于40°或100°.【分析】分两种情况:当40°的内角为顶角时;当40°的角为底角时,利用三角形的内角和结合等腰三角形的性质可计算求解.【解答】解:当40°的内角为顶角时,这个等腰三角形的顶角为40°;当40°的角为底角时,则该等腰三角形的另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,故答案为40°或100°.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,注意分类讨论.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=3或﹣1.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m﹣1)x+4是完全平方式,∴m﹣1=±2,m=3或﹣1故答案为:3或﹣1【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.【分析】直接利用轴对称图形的性质结合概率公式得出答案.【解答】解:只有将②③④中的一个小正方形涂黑,图中的阴影部分才构成轴对称图形,故图中的阴影部分构成轴对称图形的概率为:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案以及概率公式,正确掌握轴对称图形的性质是解题关键.15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为34cm.【分析】根据线段垂直平分线的性质结合△ABD的周长可求AB+BC=24,进而可求解△ABC的周长.【解答】解:∵DE是边AC的垂直平分线,AE=5cm,∴AD=CD,AC=2AE=10,∵△ABD的周长为24cm,∴AB+BD+AD=AB+BD+CD=AB+BC=24(cm),∴C△ABC=AB+BC+AC=24+10=34(cm).故答案为34.【点评】本题主要考查线段垂直平分线的性质,灵活运用线段垂直平分线的性质是解题的关键.16.(3分)如图,在△ABC中,AB=AC,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF =104°.【分析】连接OB、OC,根据线段垂直平分线上的点到两端点的距离相等可得OA =OB,再由角平分线条件与等腰三角形的条件证明△OAB≌△OAC,得OA=OB =OC,得∠OBA=∠OAB=∠OAC=∠OCA,根据折叠性质得OF=CF,进而求得∠OCF,再由三角形内角和定理,求得∠OBC+∠OCB,进而由等腰三角形的性质求得∠OCB ,再由折叠性质求得结果.【解答】解:连接OB、OC,∵OD垂直平分AB,∴OA=OB,∴∠OAB=∠OBA,∵AO平分∠BAC,∴∠BAO=∠CAO,∵AB=AC,AO=AO,∴△OAB≌△OAC(SAS),∴OB=OC,∠ABO=∠ACO,∴OA=OB=OC,∴∠OBA=∠OAB=∠OAC=∠OCA,∵∠AFO=52°,∴∠OFC=180°﹣∠AFO=128°,由折叠知,OF=CF,∴∠OCF=∠COF=,∴∠OBA=∠OAB=∠OAC=∠OCA=26°,∴∠OBC+∠OCB=180°﹣4×26°=76°,∵OB=OC,∴∠OBC=∠OCB=38°,由折叠知,OE=CE,∠OEF=∠CEF,∴∠COE=∠OCE=38°,∴∠OEC=180°﹣2×38°=104°.故答案为:104°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,作辅助线,构造出等腰三角形是解题的关键.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y =.【分析】(1)先算积的乘方、再算乘法,最后算除法即可求解;(2)先根据负整数指数幂、零指数幂,平方差公式计算,再算加减法即可求解;(3)原式中括号中第一项利用完全平方公式展开,第二项利用单项式乘多项式法则化简,第二项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2)=4x4y2z2•3x2y÷(﹣15x2y2)=12x6y3z2÷(﹣15x2y2)=﹣x4yz2;(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202)=9+1﹣[(2020﹣1)×(2020+1)﹣20202]=9+1﹣(20202﹣1﹣20202)=9+1+1=11;(3)[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y=(x2+6xy+9y2﹣2x2+4xy+x2﹣y2)÷2y=(10xy+8y2)÷2y=5x+4y,当x=﹣l,y =时,原式=﹣5+2=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).【分析】作线段AB的垂直平分线交AB于点P,点P即为所求.【解答】解:如图,点P即为所求.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.【分析】本题主要考查平行线的性质与判定,根据同旁内角互补两直线平行可判断DF∥AC,进而可得∠EDF=∠BFD,再利用平行线的判定可求解.【解答】解:DE∥BC.理由如下:∵∠EGF+∠BEC=180°,∴DF∥AC,∴∠BFD=∠C,∵∠EDF=∠C,∴∠EDF=∠BFD,∴DE∥BC.【点评】本题主要考查平行线的性质与判定,掌握平行线的性质与判定定理是解题的关键.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.【分析】用列表法列举出所有可能出现的结果,从中找出“两人抽取的牌面数字之和为3的倍数”的结果数,进而求出概率.【解答】解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中“两人抽取的牌面数字之和为3的倍数”的有5种,∴P(两人抽取的牌面数字之和为3的倍数)=,即小颖获胜的概率为.【点评】本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.【分析】(1)由剩余油量=55升﹣耗油量,可求解析式;(2)先求出55升油能行驶的路程,与往返的总路程比较,可求解.【解答】解:(1)由题意可得:y=55﹣0.6x;(2)当y=0时,0=55﹣0.6x,∴x =,∵<48×2,∴往返途中不加油,他们不能回到家.【点评】本题考查了一次函数关系式,根据数量关系列出函数关系式是解题的关键.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?【分析】(1)大正方形的面积减去4个小正方形的面积的差,即为无盖纸盒的表面展开图的面积S1;(2)利用矩形的面积公式即可计算该长方形的面积S2;(3)根据(1)(2)表示的面积相等即可得到结论.【解答】解:(1)无盖纸盒的表面展开图的面积S1=32﹣4n2=9﹣4n2;(2)长方形的长是:3+2n,宽是:3﹣2n,∴长方形的面积S2=(3+2n)(3﹣2n);(3)由题可得,9﹣4n2=(3+2n)(3﹣2n).【点评】本题主要考查了平方差公式的几何背景,表示出图形阴影部分面积是解题的关键.立体图形的侧面展开图体现了平面图形与立体图形的联系,立体图形问题可以转化为平面图形问题解决.23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD =63°;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC =8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.【分析】(1)依据三角形内角和定理以及折叠的性质,即可得到∠BAE的度数,进而得出∠DAE的度数;(2)依据平行线的性质以及折叠的性质,即可得到△CB'E≌△AD'F,依据全等三角形的性质即可得出D'F=B'E;(3)连接BB',依据折叠的性质以及三角形内角和定理,即可得到BB'⊥AC,N 是BC的中点,进而得出S四边形BMB'N=S△BCE,求得△BCE的面积,即可得出结论.【解答】解:(1)∵∠B=90°,∠ACB=36°,∴Rt△ABC中,∠BAC=54°,由折叠可得,∠BAE=∠BAC=27°,∵∠BAD=90°,∴∠DAE=90°﹣27°=63°,故答案为:63°;(2)证明:∵AD∥BC,∴∠ECB'=∠F AD',由折叠可得,∠B=∠AB'E=90°,∠D=∠CD'F=90°,AB=AB'=CD=CD',∴∠CB'E=∠AD'F=90°,CB'=AD',在△CB'E和△AD'F中,,∴△CB'E≌△AD'F(ASA),∴D'F=B'E;(3)如图3,连接BB',由折叠可得,BM=B'M,∴∠MBB'=∠MB'B,∵M是BE的中点,∴BM=ME,∴ME=MB',∴∠MEB'=∠MB'E,又∵∠MEB'+∠MB'E+∠MB'B+∠MBB'=180°,∴∠MB'E+∠MB'B=90°,即BB'⊥AC,∴∠BB'C=90°,∴∠BB'N+∠CB'N=90°,∠B'BN+∠B'CN=90°,由折叠可得,BN=B'N,∴∠BB'N=∠B'BN,∴∠CB'N=∠B'CN,∴NC=NB',∴BN=CN,即N是BC的中点,∴S△BB'N =S△BB'C,∵M是BE的中点,∴S△BB'M =S△BB'E,∴S四边形BMB'N =S△BCE,∵长方形ABCD中,AB=6,BC=8,对角线AC=10,∴AB×BC =AC×BB',即BB'===4.8,又∵CE=CB=8,BB'⊥AC,∴S△BCE =CE×BB'=×8×4.8=19.2,∴S四边形BMB'N =×19.2=9.6.【点评】本题主要考查了折叠问题,平行线的性质以及三角形内角和定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。
山东省滨州市某校2023-2024学年七年级下学期第二次月考数学试题
山东省滨州市某校2023-2024学年七年级下学期第二次月考数学试题一、单选题1.若m n >,则下列不等式一定成立的是( ) A .2121m n -+>-+ B .1144m n ++> C .m a n b +>+D .am an -<-2.为了解我校八年级2100名学生对“创建全国文明校园”知识的了解情况,学校组织了相关知识测试,并从中随机抽取了100名学生的成绩进行统计分析( ) A .2100名学生是总体B .我校八年级每名学生的测试成绩是个体C .样本容量是2100D .被抽取的100名学生是样本3.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为( )A .55︒B .65︒C .70︒D .75︒4.已知点(26,4)P x x +-在第四象限,则实数x 的取值范围在数轴上表示正确的为( ) A . B . C .D .5.下列命题中,是真命题的是( )A 0.1414B .过一点有且只有一条直线与已知直线垂直C .点P 在第四象限,且点P 到x 轴的距离为2,点P 到y 轴的距离为3,则点P 的坐标为(3,-2)D .立方根等于它本身的数为1±6.如图,利用两块相同的长方体木块(阴影部分)测量一件长方体物品的高度,首先按左图方式放置,再按右图方式放置,测量的数据如图,则长方体物品的高度是( )A .73cmB .74cmC .75cmD .76cm7.如果关于y 的方程()123a y y --=-有非负整数解,且关于x 的不等式组()22432x ax x -⎧≥⎪⎨⎪-≤-⎩的解集为1x ≥,则所有符合条件的整数a 的和为( ) A .5-B .8-C .9-D .12-8.在平面直角坐标系中,对于点(),P x y ,把点11,1P y x ⎛⎫ ⎪-⎝⎭叫做点P 的友好点.已知点1A 的友好点为点2A ,点2A 的友好点为点3A ⋅⋅⋅这样依次得到点1A ,2A ,3A ,4A ⋅⋅⋅x A ,若点1A 的坐标为1,22⎛⎫⎪⎝⎭,则根据友好点的定义,点2024A 的坐标为( )A .1,22⎛⎫ ⎪⎝⎭B .()2,2C .()1,1--D .11,2⎛⎫- ⎪⎝⎭二、填空题9.在π21.010010001-⋅⋅⋅,2276个实数中,无理数有个.10.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共只11.把2个面积为3的正方形纸片沿着对角线剪开,拼成如图所示的一个大正方形纸片,那么大正方形纸片的边长在 和 两个整数之间.12.如图是一款长臂折叠LED 护眼灯示意图,EF 与桌面MN 垂直,当发光的灯管AB 恰好与桌面MN 平行时,120DEF ∠=︒,110BCD ∠=︒,则CDE ∠的度数为︒.13.如图,线段AB 两端点的坐标分别为A (﹣1,0),B (1,1),把线段AB 平移到CD 位置,若线段CD 两端点的坐标分别为C (1,a ),D (b ,4),则a +b 的值为14.若不等式组11322x xx m+⎧-⎪⎨⎪⎩<<无解,则m 的取值范围为.15.已知方程组222x y kx y +=⎧⎨+=⎩的解满足2x y +=,则k 的算术平方根为.16.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为.三、解答题17()202231-18.解方程组或解不等式组: (1)43143222x y x y +=⎧⎨+=⎩(2)()1322111x y x y +⎧=⎪⎨⎪+-=⎩(3)()()3286121123x x x x ⎧-≤-+⎪⎨+-<+⎪⎩,并把解集在数轴上表示出来.19.完成下面证明过程如图,点P 在CD 上,已知180BAP APD ∠+∠=︒,12∠=∠.求证:E F ∠=∠.证明:180BAP APD ∠+∠=︒Q (已知), ∴ ∥ ,( ),BAP ∴∠= ,( ).又12∠=∠Q (已知),BAP ∴∠- = 2-∠,即34(∠=∠ ), (AE PF ∴∥ ),(E F ∴∠=∠ ).20.促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如表格和统计图:请结合上述信息完成下列问题: (1)a = ,b = ; (2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是 ;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.21.已知关于x 、y 的方程组24233x y m x y m +=-⎧⎨-=+⎩的解满足0x <,0y ≤.(1)求m 的取值范围;(2)是否存在整数m ,使不等式326mt m t -<-的解集为2t >.若不存在,请说明理由;若存在,请求出整数m 的值. 22.阅读材料,回答以下问题:我们知道,二元一次方程有无数个解,在平面直角坐标系中,我们标出以这个方程的解为坐标的点,就会发现这些点在同一条直线上.例如13x y =⎧⎨=⎩是方程2x y -=-的一个解,对应点(1,3)P ,如图所示,我们在平面直角坐标系中将其标出,另外方程的解还有对应点(2,4),(3,5),(4,6),⋯,将这些点连起来正是一条直线,反过来,在这条直线上任取一点,这个点的坐标也是方程2x y -=-的解.所以,我们就把这条直线就叫做方程2x y -=-的图象.一般的,以任意二元一次方程解为坐标的对应点连成的直线就叫这个方程的图象.请问:(1)已知(1,1)A -、(2,1)B -、(2,1)C --,则点 (填“A 或B 或C ”)在方程23x y +=-的图象上.(2)求方程231x y +=和方程328x y -=图象的交点坐标.(3)已知以关于x 、y 的方程组459x y k x y k +=⎧⎨-=-⎩的解为坐标的点M 在方程23x y +=的图象上,求k 的值.23.我县在创建全国文明城市过程中,决定购买A ,B 两种树苗对某路段道路进行绿化改造,已知购买A 种树苗8棵,B 种树苗3棵,要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元.(1)求购买A ,B 两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A 种树苗要多于B 种树苗,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案? (3)在(2)的条件下,哪种方案最省钱?最少费用是多少?24.如图,在平面直角坐标系中,点A ,B 的坐标分别为()3,5,()3,0.将线段AB 向下平移2个单位长度再向左平移4个单位长度,得到线段CD ,连接AC ,BD .(1)直接写出坐标:点C (______),点D (______);(2)M ,N 分别是线段AB ,CD 上的动点,点M 从点A 出发向点B 运动,速度为每秒1个单位长度,点N 从点D 出发向点C 运动,速度为每秒0.5个单位长度,点N 的运动时间为t 秒.①若两点同时出发,当t 取何值时,MN x ∥轴?②连接NO NB ,,当t 取何值时,三角形NOB 的面积为32?(3)点P 是直线BD 上一个动点,连接PC PA 、,当点P 在直线BD 上运动时,请直接写出CPA ∠与PCD ∠,∠PAB 的数量关系.。
陕西省西安市灞桥区滨河学校2023-2024学年七年级下学期第二次月考数学试题
陕西省西安市灞桥区滨河学校2023-2024学年七年级下学期第二次月考数学试题一、单选题1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是( )A .B .C .D .2.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为( )A .9710-⨯B .8710-⨯C .90.710-⨯D .80.710-⨯ 3.正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是( )A .13B .29C .23D .494.如图,Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,点E 为AB 的中点,连接DE ,若24AB =,6CD =,则DBE V 的面积为( )A .18B .24C .36D .725.下列对△ABC 的判断,错误的是( )A .若123ABC ∠∠∠=::::,则ABC V 是直角三角形B .若30A ∠=︒,50B ∠=︒,则ABC V 是锐角三角形C .若AB AC =,40B ∠=︒,则ABC V 是钝角三角形D .若22A B C ∠=∠=∠,则ABC V 是等腰直角三角形6.点P 在AOB ∠的平分线上,点P 到OA 边的距离等于7,点Q 是OB 边上的任意一点,下列选项正确的是( )A .7PQ <B .7PQ >C .7PQ ≥D .7PQ ≤7.如图,在Rt V ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB ,若∠BDE =56°,则∠DAE 的度数为( )度.A .23B .28C .52D .568.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度()h cm 与注水时间()t min 的函数图象大致是( )A .B .C .D .9.如图,已知CAE BAD ∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠;④B E ∠=∠.其中能使ABC AED ≌△△的条件有( )A .1个B .2个C .3个D .4个10.如图,已知在四边形ABCD 内,DB DC =,60DCA ∠=︒,78DAC ∠=︒,24CAB ∠=︒,则ACB =∠( )A .15︒B .18︒C .20︒D .12︒二、填空题11.若35A ∠=︒,则A ∠的余角等于度.12.“任意买一张电影票座位号是偶数”,此事件是(填“不可能事件”或“必然事件”或“随机事件”).13.如图,△ABC 中,∠BAC =90°,AC =8cm ,DE 是BC 边上的垂直平分线,△ABD 的周长为14cm ,则△ABC 的面积是cm 2.14.已知三角形的三边长为410x 、、,化简:|5||15|x x -+-=.15.如图,在ABC V 中,点D ,E ,F 分别为BC AD CE ,,的中点,且12ABC S =△,则阴影部分AEF △的面积为.16.如图,在四边形ABCD 中,90B D ∠=∠=︒,在B C C D ,上分别找一点M ,N ,使A M N V 周长最小,此时80MAN ∠=︒,则BAD ∠的度数为.三、解答题17.计算:(1)202401(π 3.14)|2|---+-; (2)()()23422132m n m n mn ⎛⎫-⋅÷- ⎪⎝⎭; (3)()()()223352x y x y x y +---;(4)用简便方法计算:2202320202026-⨯.18.先化简,再求值:()()()()2254226x y y y x x y y x x ⎡⎤+----+÷⎣⎦,其中2x =,1y =. 19.尺规作图:已知△ABC ,在△ABC 内求作一点P ,使P 到∠A 的两边AB 、AC 的距离相等,且PB =P A .20.如图,在ABC V 中,40B ∠=︒,30C ∠=︒.边AB 的垂直平分线分别交BC AB 、于点D 和点F ,连接AD ,作CAD ∠的平分线交BC 于点E ,求DAE ∠的度数.21.在一个不透明的袋子中装有9个红球和6个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后.(1)求摸出的球是红球的概率;(2)为了使摸出两种球的概率相同,再放进去同样的红球和黄球共7个,求再放入的红球的个数.22.如图,在ABC V 中,D 是AB 边上的点,BE 平分ABC ∠交CD 于点E ,EF AC ∥交AB 于点F ,已知A BCD ∠=∠.(1)试说明:EF EC =;(2)若110BEF ∠=︒,求ACD ∠的度数.23.科学家一直以来都在不断探索地球奥秘的路途中,经过大量的模拟实验,发现地表以下岩层的温度()C y ︒与所处深度()km x 的关系如表所示.(1)表中,自变量为______,因变量为______;(2)请求出地表以下岩层的温度与所处深度()km x 的关系式;(3)当岩层的温度为1280℃时,求所处深度.24.【数学思考】(1)在数学活动课上.老师让同学们就三角形的中线进行进一步的探究:如图1,AD 是ABC V 的中线,过点B 作AC 的平行线,交AD 的长线于点E ,发现DE 的长恰好等于中线AD 的长,请验证这一结论;【深入探究】(2)如图2,ABC V 中,点D ,E 在BC 边上,CD DE =,过点E 作EF AB ∥,交BAC ∠的角平分线AD 于点F ,试判断EF 与AC 的数量关系,并说明理由.【拓展延伸】(3)如图3,在ABC V 中,90BAC ∠=︒,AD 平分BAC ∠,点E 为BC 边的中点,过点E 作EF AD ∥,交AC 于点F ,交BA 的延长线于点G ,若16ABC S =V ,6CF =,则AG 的长度.。
2019-2020年七年级下学期第二次月考数学试题含答案解析
P 2P 1POCB AD 11题2019-2020年七年级下学期第二次月考数学试题含答案解析6.若不等式组⎩⎨⎧<≥b x ax 无解,则有( )A 、a b >B 、a b <C 、a b =D 、b ≤a 7.已知a>b>c>0,则以a 、b 、c 为三边组成三角形的条件是( ) A.b+c>a B.a+c>b C.a+b>c D.以上都不对 8.下列正多边形的组合中,能够铺满地面不留缝隙的是( ) A.正八边形和正三角形 B.正五边形和正八边形 C.正六边形和正三角形 D.正六边形和正五边形9.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形10.现用甲.乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( ) A.4辆 B.5辆 C.6辆 D.7辆 11.已知,如图,点P 关于OA 、OB 的对称点分别是P 1,P 2, 分别交OA 、OB 于C,D,P 1P 2=6cm,则△PCD 的周长为( ) A.3cm B.6cm C.12cm D.无法确定二、填空题(每题3分,7题共21分)12.把方程2x-3y+5=0写成用含有y 的代数式表示x 的形式为__________________;13.已知方程组{2x+y=7x+2y=8,则x -y = ,x +y = 。
14.一个两位数,两个数位上的数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是 .15..若不等式()327m x -<的解集为13x >-,则m 的值为 .16.、过m 边形的顶点能作7条对角线,n 边形没有对角线,k 边形有k 条对角线,则 (m-k )n =___.17.一个多边形的每一个外角都等于36°,则该多边形的内角和等于 .18.一个多边形的每一个内角都相等,并且它的一个外角与一个内角之比为2:3,则这个多边形是 边形. 三、作图题题目 一 二 三 四 总分 得分19.(6分)如图,直线a ⊥b,请你设计两个不同的轴对称图形,使a 、b 都是它的对称轴.abba20.(3分)将上图中的小船向左平移5格,画出平移后的小船.21.(3分)如图,A 、B 、C 三点表示三个镇的地理位置,随着乡镇工业的发展需要, 现三镇联合建造一所变电站,要求变电站到三镇的距离相等 ,请画出变电站的位置(用P 点表示),并简单说明理由.四、解答题22.解方程(组)(每题6分,共12分) (1)142312-+=-y y (2)5615.2320.4x y x y +=⎧⎨-=-⎩23.(6分)解不等式组⎪⎩⎪⎨⎧≤--<+2123932x x ,并把解集在数轴上表示出来24.(8分)已知正多边形的内角和与其外角和的和为900°,求边数及每个内角的度数CBA13题25.(8分)如图,在⊿ABC中,∠B=75º,∠C=45º,AD是高,AE是∠BAC的平分线,求∠DAE的度数.26.(8分)《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的三分之一,若从树上飞下去一只,则树上、树下的鸽子就一样多了。
人教版七年级数学下学期第二次数学月考试卷【含答题卡】
人教版七年级数学下学期第二次数学月考试卷(总分:150分,考试时间:120分钟)一、精心选一选(每小题4分,共40分)1.下列方程中,是二元一次方程的是( )A. B.C. D . 02=-y x 21=-y x 12=-y x 01=-xy 2.“与3的和不大于6”用不等式表示为( )a A. B. C. D .63<+a 63≤+a 63>+a 63≥+a 3.若,则下列不等式不成立的是( )b a <A . B . C . D .11+<+b a b a 22<b a -<-33b a <4.已知单项式 与是同类项,那么的值分别是( )322y xm -m n y x -,m n A . B . C . D .⎩⎨⎧-==13n m ⎩⎨⎧==13n m ⎩⎨⎧=-=13n m ⎩⎨⎧-=-=13n m 5.若,则的值分别为( )0)3(12=--+-+y x y x y x ,A . B . C . D .⎩⎨⎧-==12y x ⎩⎨⎧==12y x ⎩⎨⎧==21y x ⎩⎨⎧==03y x 6.二元一次方程的正整数解有( )个72=+y x A .1 B .2 C .3 D .47.若关于的不等式的解集是,则的取值范围是( )x 1)1(->-a x a 1>x a A . B . C . D .0<a 0>a 1<a 1>a 8.不等式的非负整数解有( )个x x -≤-5)1(3A .1 B .2 C .3 D .49.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )支笔A .3B .4C .5D .610.已知三年前,A 的年龄是B 的年龄的5倍,现在A 的年龄是B 的年龄的4倍,则A 现在的年龄是( ) 岁.A .48B .45C .12D .9二、认真填一填(每小题4分,共24分)11.把方程化为用含的代数式来表示:= .42=-y x x y y 12.写出一个解为的二元一次方程组: .⎩⎨⎧=-=21y x13.若关于的方程的解为负数,则的取值范围是 .x 23+=+x mx m 14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对 道题.15.在实数范围内定义新运算“△”,其规则是:△=a b ba -2已知不等式△的解集为,则 .x 1≥m 1-≥x =m 16.已知为整数且关于、的二元一次方程组有整数解,m x y ⎩⎨⎧=+=-7422y x my x 则= .m 三、耐心做一做(共86分)17.(12分)解方程组:(1) (2)⎩⎨⎧=--=533y x x y 233511x y x y +=⎧⎨-=⎩18.(8分)解不等式并在数轴上表示出其解集:63)2(2<-+x x 19.(8分)已知:且当时,;当时,;b kx y +=1-=x 2=y 2=x 7-=y 求:当时,的值;2-=x y 20.(8分)甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?21.(8分)当为何正整数时代数式的值不小于的值?x 41+x 1312--x 22.(8分)某物流公司要将300吨货物运往某地,现有A 、B 两种型号的车可供调用,已知A型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨货物一次性装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?23.(10分)若关于、的二元一次方程组的解满足,x y ⎩⎨⎧=++=-my x m x y 52322>+y x 求的取值范围m 24.(10分)若关于、的二元一次方程组与有相同的解,x y ⎩⎨⎧=+=+822by ax y x ⎩⎨⎧-=-=-41023ay bx y x 求的值2017)2(b a +25.(14分)某商场销售A、B两种型号的计算器,A型的计算器进价为30元/台,B型的计算器进价为40元/台,商场销售3台A型的计算器和2台B型的计算器,可获利润68元;销售2台A型的计算器和3台B型的计算器,可获利润72元;(1)求A、B两种型号的计算器在该商场的售价分别是多少元/台?(2)某天商场只有2120元的进货资金,王经理又想购进这两种型号的计算器共70台,请问:①王经理有哪几种进货方案?②王经理怎样进货可使商场销售完这70台计算器获得的利润最大?最大利润为多少?并说明理由。
广东省佛山市南海实验学校2022-2023学年七年级下学期第二次月考数学试题
广东省佛山市南海实验学校2022-2023 学年七年级下学期第二次月考数学试题一、单选题1.下列各组长度的线段为边,能构成三角形的是( ) A .8cm 、5cm 、13cm B .6cm 、8cm 、15cm C .8cm 、4cm 、3cm D .4cm 、6cm 、5cm2.下列运算中不正确的是( )A .()22325xy x xy xy x --=-B .()()2111b b b ---=-C .()22523110151mn m n m n mn +-=+- D .()()22342222ab ab c a b a b c -=-3.下列各式中,不能用平方差公式计算的是( ) A .(4x ﹣3y )(﹣3y ﹣4x ) B .(2x 2﹣y 2)(2x 2+y 2)C .(a +b ﹣c )(﹣c ﹣b +a )D .(﹣x +y )(x ﹣y )4.等腰三角形的底边长为10 cm ,一腰上的中线把三角形周长分成两部分的差为4 cm ,则这个三角形的腰长是( ) A .6cmB .14cmC .4cm 或14cmD .6cm 或14cm5.下列图形中,由12∠=∠,能得到//AB CD 的是( )A .B .C .D .6.一个角的补角与这个角的余角的度数比是31∶,则这个角是( ). A .35︒B .45︒C .65︒D .85︒7.把一副直角三角板ABC (含30︒、60︒角)和CDE (含4545︒︒、角)如图放置,使直角顶点C 重合,若DE BC ∥,则1∠的度数是( ).A.75︒B.105︒C.110︒D.120︒8.一辆汽车和一辆摩托车分别从A、B两地去同一城市,它们离A地的距离随时间变化的图像如图所示.则下列结论错误..的是()A.摩托车比汽车晚到1h B.A、B两地的距离为20kmC.摩托车的速度为45 km/h D.汽车的速度为60 km/h9.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫作这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个10.如图a是长方形纸带,28∠=︒,将纸带沿EF折叠成图b,再沿BF折叠成图c,则DEF∠=()°.图c中的CFEA.96 B.108 C.118 D.128二、填空题11.计算:231()2a b -=;546400000吨,用科学记数法表示为: 吨;12.已知等腰三角形的一个内角是80°,则它的底角是°. 13.(1)若1139273m m ⨯⨯=,则m 的值为;(2)已知214x kx -+是一个完全平方式,则 k 的值为.14.学校多功能报告厅的一部分为扇形,观众席的座位设置如下表:则每排的座位数m 与排数n 的关系式为.15.(1)若要使22(3)(21)ax x x x ---的展开式中不含3x 项,则=a ; (2)已知:2()7a b -=,2()13a b +=则22a b +=16.如图是由边长1的正方形按照某种规律排列而成的.由此推测第n 个图形中,正方形有个,周长为.(都用含n 的代数式表示).三、解答题 17.计算:()()220163131 3.1423π--⎛⎫-+-⨯---+ ⎪⎝⎭18.先化简再求值:()()()222a b ab b b a b a b -+-÷++-,其中112a b ==-,.19.如图,在ABC V 中,AB AC =,D 是BA 延长线上的一点,点E 是AC 的中点.实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法); (1)过A 作射线AM BC ∥;(2)连接BE 并延长交AM 于点F ,判断AM 与BC 的数量关系,说明理由. 20.如图,D 、E 、F 分别在ABC V 的三条边上,DE AB ∥,12180∠+∠=︒.(1)试说明:DF AC ∥;(2)若1110DF ∠=︒,平分BDE ∠,求C ∠的度数.21.如图,已知12AB AC AE AD AE AD ==∠=∠,,,、分别交BD CE 、于点M 、N .试说明(1)ABD ACE ≌△△ (2)AM AN =22.小红的爸爸将一块长为322455a b ⎛⎫+ ⎪⎝⎭分米、宽55a 分米的长方形铁皮的四个角都剪去一个边长为412a 分米的小正方形,然后沿虚线折成一个无盖的盒子.(1)用含a ,b 的整式表示盒子的外表面积;(2)若1a =,0.2b =,现往盒子的外表面上喷漆,每平方分米喷漆价格为15元,求喷漆共需要多少元?23.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值. 解:2222690a ab b b ++-+=Q ∴22226+9=0a ab b b b +++- ∴()()223=0a b b ++- ∴=03=0a b b +-, ∴3=3a b =-,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值; (2)已知2254210a b ab b +--+=,求a b 、的值; (3)若24,8200m n mn t t =++-+=,求2m t n -的值.24.如图:E 在线段CD 上,EA 、EB 分别平分∠DAB 和∠CBA ,∠AEB=90°,设AD=x ,BC=y ,且(x ﹣3)2+|y ﹣4|=0. (1)求AD 和BC 的长;(2)你认为AD 和BC 还有什么关系?并验证你的结论;(3)你能求出AB 的长度吗?若能,请写出推理过程;若不能,请说明理由.25.如图,已知ABC V 中,12AB AC ==厘米,(即B C ∠=∠),8BC =厘米,点M 为AB 的中点,(1)如果点P 在线段BC 上以2厘米/秒的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点C 向点A 运动.①若点Q 的运动速度与点P 的运动速度相等,经过1.5秒后,BPM △与CQP V 是否全等?请说明理由.②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPM △与CQP V 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC V 三边运动,求经过多长时间点P 与点Q 第一次在ABC V 的哪条边上相遇?。
广东省佛山市南海实验学校2023-2024学年七年级下学期第二次月考数学试题
广东省佛山市南海实验学校2023-2024学年七年级下学期第二次月考数学试题一、单选题1.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为( )A .9710-⨯B .8710-⨯C .90.710-⨯D .80.710-⨯ 2.下列计算正确的是( )A .22(1)1a a -=-B .()2236a b a b -=-C .632a a a ÷=D .()326a a = 3.意大利面根根筋道,看起来极易折断,棉花糖柔软、容易固定.利用意大利面做架子,棉花榶做连接,能搭建出“又高又稳”的建筑.在如图所示的模型中三角形架子是其主要结构,这种设计的原理是( )A .三角形具有稳定性B .两点之间,线段最短C .两点确定一条直线D .垂线段最短4.如图,在ABC V 和DEF V 中,点B ,F ,C ,E 在同一条直线上,ACB DFE ∠=∠,BF EC =,添加下列一个条件,不能判定ABC DEF ≌△△的是( )A .AB DE = B .AC DF = C .AD ∠=∠ D .BE ∠=∠ 5.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .6.如图,四边形ABCD 为长方形纸带,点E F 、分别在边AB CD 、上,将纸带沿EF 折叠,点A D 、的对应点分别为A ''、D ,若140∠=︒,则CFD '∠的度数为( )A .30︒B .35︒C .40︒D .50︒7.如图,已知AB ⊥BC ,垂足为B ,AB =3,点P 是射线BC 上的动点,则线段AP 长不可能是( )A .2.5B .3C .4D .58.在△ABC 中,AB =10,BC =1,并且AC 的长为偶数,则△ABC 的周长为( ) A .20 B .21 C .22 D .239.如图①,在长方形ABCD 中,动点P 从点B 出发,沿B C D A ---方向匀速运动至点A停止,已知点P 的运动速度为2cm/s ,设点P 的运动时间为()s t ,PAB V 的面积为()2cm y ,若y 关于t 的函数图象如图②所示,则长方形ABCD 的面积为( )A .2108cmB .254cmC .248cmD .236cm10.如图,在ABC V 中,D ,E 分别是BC AD ,的中点,点F 在BE 上,且2EF BF =,若22cm BCF S =V ,则ABC S =V ( )A .3B .6C .8D .12二、填空题11.计算:()2024202340.25⨯-=.12.正方形是轴对称图形,它共有条对称轴.13.如图所示的计算程序中,y 与x 之间的关系式是.14.如图,AB ∥CD ,则∠B+∠D+∠P =.15.如图,在ABC V 中,9068ACB AC BC ∠=︒==,,.点P 从点A 出发,沿折线AC CB -以每秒1个单位长度的速度向终点B 运动,点Q 从点B 出发沿折线BC CA -以每秒3个单位长度的速度向终点A 运动,P 、Q 两点同时出发,分别过P 、Q 两点作PE l ⊥于E ,QF l ⊥于F ,当PEC V 与QFC V 全等时,CQ 的长为.三、解答题16.计算:(1)()()()3121x x x x ----;(2)()()22021011 3.143π-⎛⎫-+-- ⎪⎝⎭. 17.尺规作图:已知∠α,求作:∠A 使∠A=∠α( 不写作法,保留痕迹 )18.化简,求值:()()()()2223x y x y x y x x y -+-+-+,其中1x =-,2y =.19.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的教学楼、图书馆、食堂依次在同一条直线上,图书馆离教学楼700m ,食堂离教学楼1000m .某日中午,小亮从教学楼出发,匀速走了7min (分钟)到图书馆;在图书馆停留16min 借书后,匀速走了5min 到食堂;在食堂停留30min 吃完饭后,匀速走了10min 返回教学楼.给出的图象反映了这个过程中小亮离教学楼的距离()m y 与离开教学楼的时间()min x 之间的对应关系.请根据相关信息,解答下列问题:(1)图中自变量是 ,因变量是 ;小亮从教学楼到图书馆的速度为 m /m i,小亮从图书馆到食堂的速度为 m /m i ;(2)填上表20.如图,点B ,F ,C ,E 在直线l 上,点A ,D 在l 的两侧,,,∥∠=∠=AB DE A D AB DE .(1)求证:ABC DEF ≌△△;(2)若10,3BE BF ==,求FC 的长.21.从边长为a 的正方形剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______(请选择正确的一个).A .()2222a ab b a b -+=-B .()()22a b a b a b -=+-C .()2a ab a a b +=+(2)若22912x y -=,34x y +=,求3x y -的值;(3)计算:22222111111111123420202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅-- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 22.已知:如图,在ABC V 、ADE V 中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,点C 、D 、E 三点在同一直线上,连接BD .(1)求证:BAD CAE V V ≌;(2)请判断BD 、CE 有何大小、位置关系,并证明.23.【初步探索】(1)如图1, 在四边形ABCD 中, 90AB AD B ADC ∠∠===︒,, E , F 分别是BC CD ,上的点, 且EF BE FD =+, 探究图中BAE FAD EAF ∠∠∠,,之间的数量关系. 小明同学探究此问题的方法是:延长FD 到点G ,使DG BE =. 连接AG , 先证明ABE ADG △≌△, 再证明AEF AGF V V ≌, 可得出结论, 则他的结论应是.【灵活运用】(2)如图2, 若在四边形ABCD 中, 180AB AD B D E F =∠+∠=︒,,,分别是BC CD ,上的点,且EF BE FD =+,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形 ABCD 中, 180ABC ADC AB AD ∠+∠=︒=,, 若点E 在CB 的延长线上,点F 在CD 的延长线上, 且仍然满足EF BE FD =+, 请写出EAF ∠ 与DAB ∠的数量关系,并给出证明过程.。
吉林省长春市九台区九郊中学2021-2022学年七年级下学期第二次月考数学试题(含答案)
吉林省长春市九台区九郊中学2021-2022学年七年级下学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,不是无理数的是( )A B .0.5 C .2π D2.计算63a a ÷,正确的结果是( ) A .3B .3aC .2aD .3a 【答案】B【分析】根据同底数幂的除法运算法则求解即可.【详解】解:63633a a a a -÷==.故选B .【点睛】本题考查了同底数幂的除法.解题的关键在于正确的计算.3.下列各数中,比3-小的数是( )A .π-B C . D .83-故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.4.若a b ,且a 与b 为连续整数,则a 与b 的值分别为( )A .1;2B .2;3C .3;4D .4;55,0,2270.1010010001⋯(每相邻两个1之间依次多1个0),2π中无理数有( ) A .0个B .1个C .2个D .3个 【详解】解:342,=0,227,30.125中无理数有:0.1010010001(每相邻两个【点睛】本题考查的是无理数的定义与识别,掌握6.下列计算正确的是( )A .236x x x ⋅=B .633x x x ÷=C .3362x x x +=D .()3326x x -= 【答案】B【分析】根据同底数幂的乘除法,积的乘方运算法则,合并同类项逐项分析判断即可求解.【详解】解:A 、235x x x ,则此项错误,不符题意;B、633÷=,则此项正确,符合题意;x x xC、333+=,则此项错误,不符题意;x x x2D、()33-=-,则此项错误,不符题意.x x28故选:B.【点睛】本题考查了同底数幂的乘除法、合并同类项、积的乘方,熟练掌握各运算法则是解题关键.7.若(-2x+a)(x-1)的展开式中不含x的一次项,则a的值是()A.-2B.2C.-1D.任意数【答案】A【分析】原式利用多项式乘多项式法则计算,再根据结果中不含x的一次项即可确定出a的值.【详解】(-2x+a)(x-1)=-2x2+(a+2)x-a,由结果中不含x的一次项,得到a+2=0,即a=-2.故选A.【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.x2+mx+16是一个完全平方式,则m的值为()A.4B.8C.4或﹣4D.8或﹣89.已知y(y-16)+a=(y-8)2,则a的值是()A.8B.16C.32D.64【答案】D【分析】根据完全平方公式,即可解答.【详解】解:∵ y(y−16)+a=(y−8)2,∵y2−16y+a=y2−16y+64∵a=64,故选D .【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.10.已知x ,y 满足3135x y x y +=-⎧⎨-=⎩,则229x y -的值为( ) A .—5B .4C .5D .25 【答案】A【分析】根据题意利用平方差公式将229x y -变形,进而整体代入条件即可求得答案.【详解】解:2222(59(3)(3))315x x y y x y x y ==+-=---⨯=-.故选:A.【点睛】本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.11.计算20212020(2)(2)-+-的值是( )A .2-B .20202-C .20202D .2 【答案】B【分析】直接找出公因式进而提取公因式,进行分解因式即可.【详解】解:()20212020202202200200(2)(2212)(2)(2)=⨯-+=-=--+---. 故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 12.若定义表示3xyz ,表示2b d a c -,则运算的结果为( )A .3412m n -B .256m n -C .4312m nD .3412m n【答案】A 【分析】根据新定义列出算式进行计算,即可得出答案.【详解】解:根据定义得:=3×m ×n ×2×(-2)×m 2×n 3=-12m 3n 4,故选:A .【点睛】本题考查了整式的混合运算,根据新定义列出算式是解决问题的关键. 13.x 为正整数,且满足11632326x x x x ++⋅-=,则x =( )A .2B .3C .6D .12 【答案】C【分析】先逆用同底数幂的乘法法则,将原式变形,再提取公因式,然后逆用积的乘方,即可得到x 的值.【详解】原式可化为63323226x x x x ⋅⋅-⋅=,提取公因式,得632(32)6x x ⋅-=,∵6(32)6x ⨯=,∵x =6.故选:C .【点睛】本题考查了幂的运算:同底数幂的法则的逆用、积的乘方的逆用,解题的关键是掌握幂的运算的法则.14.有一个数值转换器,原理如下,当输入的x 为81时,输出的y 是( )AB .9C .3D .15.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a 、b 的恒等式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()()224a b a b ab -=+-D .()2a ab a a b +=+ 【答案】C【分析】用两种方法正确的表示出阴影部分的面积,再根据图形阴影部分面积的关系,即可直观地得到一个关于a 、b 的恒等式.【详解】解:方法一:阴影部分的面积为:()2a b -,方法二:阴影部分的面积为:()24a b ab +-,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a 、b 的恒等式为()()224a b a b ab -=+-. 故选:C .【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是用两种方法正确的表示出阴影部分的面积.16.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和()na b +的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”计算()9a b +的展开式中第三项的系数为( )A .22B .28C .36D .56【答案】C【分析】根据图形中的规律不难发现()n a b +的第三项系数为()()12321n n +++⋯+-+-,据此即可求出()9a b +的展开式中第三项的系数.【详解】解:找规律发现()3a b +的第三项系数为312=+;()4a b +的第三项系数为6123=++; ()5a b +的第三项系数为101234=+++;…… ∵不难发现()na b +的第三项系数为()()12321n n +++⋯+-+-, ∵()9a b +第三项系数为1234567836+++++++=,故选:C .【点睛】本题主要考查了多项式乘多项式的规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题是解题的关键.二、填空题17.81的平方根是_____.【答案】±9【分析】直接根据平方根的定义填空即可.【详解】解:∵(±9)2=81,∵81的平方根是±9.故答案为:±9.【点睛】本题考查了平方根,理解平方根的定义是解题的关键.183______.0(填“>”、“=”或“<”).193=,则x =______.20.已知二次三项式223(25)()x x k x x a +-=-+,则=a _____,k =_____. 【答案】 4 20【分析】先将等式右边进行化解,再根据多项式的项、项数或次数的定义建立二元一次方程组,解方程组即可得到答案.【详解】解:由223(25)()x x k x x a +-=-+得22232(25)5x x k x a x a +-=+--,∵2535a a k -=⎧⎨-=⎩, 解得:420a k ==,,故答案为:4,20.【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意建立正确的方程组. 21.若2412x x k -+是完全平方式,则k 的值为______________.【答案】9【分析】根据完全平方公式求出k =32,再求出即可.【详解】解:∵多项式4x 2-12x +k 是一个完全平方式,∵(2x )2-2•2x •3+k 是一个完全平方式,∵k =32=9,故答案为:9.【点睛】本题考查了完全平方式,能熟记完全平方式是解此题的关键,完全平方式有a 2+2ab +b 2和a 2-2ab +b 2.22.现有甲、乙、丙三种不同的矩形纸片(边长如图).小亮要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片____块.【答案】4【分析】根据222(2)44a b a ab b +=++,即可得.【详解】解:∵222(2)44a b a ab b +=++∵甲纸片1块,再取乙纸片4块,取丙纸片4块,可以拼成一个边长为a+2b 的正方形, 故答案为:4.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式.三、解答题23.已知一个正数a 的两个平方根分别是x +3和2x -15,求x 和a 的值.【答案】x =4,a =49【分析】根据正数的平方根互为相反数列方程求解即可.【详解】解:由题意得,x +3=-(2x -15),解得x =4,a =(4+3)2=49,∵x =4,a =49.【点睛】本题主要考查平方根的知识,熟练根据正数的平方根互为相反数列方程求解是解题的关键.24.(1)已知2139273m m ⨯⨯=,求()()3232m m m -÷⋅的值. (2)已知1124273,x y y x ,求x y -的值. 【答案】(1)4-;(2)3【分析】(1)先将已知等式化为同底数幂乘积的形式,利用同底数幂相乘求出m ,再代入计算即可;(2)根据幂的乘方逆运算,将已知等式化为22312233x y y x +-==,,求出x ,y ,代入计算即可.【详解】解:(1)2139273m m ⨯⨯=,23213333m m ⨯⨯=()(),23213333m m ⨯⨯=,1232133m m ++=,12321m m ,解得:4m =,()()3232m m m -÷⋅65m mm =-, 当4m =时,原式4=-;(2)∵1124273,x y y x ,∵21312233x y y x +-==(),(),∵22312233x y y x +-==,,∵22,31x y y x =+=-,解得:4,1x y ==,∵413x y -=-=.【点睛】此题考查了幂的性质,熟记同底数幂乘法计算法则,幂的乘方计算法则是解题的关键.25.先化简,再求值:(1)()()()232x y x y x y ---+,其中12x =,1y =-. (2)()23325466x y x y x x -+÷,其中2x =-,2y =.26.(1)已知3x m =,5x n =,用含有m ,n 的代数式表示14x ;(2)定义新运算⊗:对于任意实数m ,n ,都有()m n m m n n ⊗=-+,若()()319x -⊗-=,求x 的值.【答案】(1)143x m n =;(2)x 的值为1【分析】(1)根据n m n m a a a +⨯=,把14x 化简为:95x x ⨯,即可;(2)根据定义新运算:()m n m m n n ⊗=-+的运算法则,即可求出x .【详解】(1)∵3x m =,5x n =,∵()31495353x x x x x m n =⨯=⨯=; (2)∵()m n m m n n ⊗=-+,∵()()31x -⊗-()()()()3311x x =----+-⎡⎤⎣⎦()()()3311x x =---++-()()()321x x =---+-631x x =++-54x =+,∵549x +=,∵1x =.【点睛】本题考查幂的运算,一元一次方程的知识,解题的关键掌握幂的运算法则,理解定义新运算的运算.27.小华和小明同时计算一道整式乘法题(2)(3)x a x b ++.小华抄错了第一个多项式中a 的符号,即把a +抄成了a -,得到结果为261110x x +-;小明把第二个多项式中的3x 抄成了x ,得到结果为22910x x -+.(1)你知道式子中a ,b 的值各是多少吗?(2)请你计算出这道题的正确结果. 【答案】(1)5a =-,2b =-(2)61910xx -+【分析】(1)根据题意可得(2)(3)x a x b -+261110x x =+-;(2)()x a x b ++22910x x =-+,从而得出231129b a a b -=⎧⎨+=-⎩,解二元一次方程组即可; (2)将,a b 的值代入,然后根据多项式乘以多项式运算法则进行计算即可.【详解】(1)解:根据题意得:(2)(3)x a x b -+26(23)x b a x ab =+--261110x x =+-;(2)()x a x b ++22(2)x a b x ab =+++22910x x =-+,∵231129b a a b -=⎧⎨+=-⎩, 解得:5a =-,2b =-;(2)正确的算式为2(25)(32)61910x x x x --=-+.【点睛】本题考查了多项式乘以多项式的运算法则以及解二元一次方程组,读懂题意,根据题意列出二元一次方程组求出,a b 的值是解本题的关键.28.如图,将长方形ABCD 与长方形CEFG 拼在一起,B C E ,,三点在同一直线上,且11=22AB BC a EF CE b ==,=连接BD BF ,.(1)请用a b ,表示图中阴影部分的面积;(2)若8,10a b ab +==求阴影部分的面积. BCD BEF CEFG S S S -长方形+即可列式求解;)根据完全平方公式变形代入即可求解.12a EF CEb ==,= BCD BEF CEFG S S S +-长方形()12222a b b b a b +⋅-+ 2ab b --。
陕西省西安市爱知初级中学2022-2023学年七年级下学期第二次月考数学试题
陕西省西安市爱知初级中学2022-2023学年七年级下学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下面四个图形分别是绿色食品、低碳、节能和节水标志,是轴对称图形的是( ) A . B . C . D . 2.下列计算正确的是( )A .224x x x +=B .33(2)6x x =C .2(23)(23)94a a a ---=-D .222(2)42a b a ab b -=-+ 3.华为Mate 20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示是( )A .9710-⨯B .90.710-⨯C .10710-⨯D .110.710-⨯ 4.如图,为了测量池塘两岸相对的A ,B 两点之间的距离,小明同学在池塘外取AB 的垂线BF 上两点C ,D ,BC =CD ,再画出BF 的垂线DE ,使点E 与A ,C 在同一条直线上,可得△ABC ≌△EDC ,从而DE =AB .判定△ABC ≌△EDC 的依据是( )A .ASAB .SASC .AASD .SSS 5.如图,已知方格纸中是4个相同的小正方形,则12∠+∠的度数为( )A .30oB .45oC .60oD .90o 6.如图,点B 在线段AC 上,//AD BE ,AD BC =,再补充下列-一个条件,不能证明ADB BCE V V ≌的是( )A .ABD E ∠=∠B .DC ∠=∠ C .AB BE =D .BD EC = 7.如图,AD CD ⊥,且A B C D =.E ,F 是AD 上两点,CE AD ⊥,BF CD ⊥,若6CE =,3BF =,2EF =,则AD 的长为( )A .5B .6C .7D .88.如图,已知ABC V 和DCE △均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连接OC FG 、,则下列结论:①AE BD =;②AG BF =;③120BOE ∠=︒.其中结论正确的( )A .①B .①③C .②③D .①②③二、填空题9.在△ABC 中,若∠A :∠B :∠C =1:3:5,则∠C =________°10.等腰三角形的两边长分别是3cm 、7cm ,则它的周长为___________cm .11.如图,在ABC V 中,AD ,AE 分别是边CB 上的中线和高,6AE cm =,212ABD S cm =V ,则DC 的长是______cm .12.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,AD是∠BAC的平分线.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是_____.三、解答题一个动点,连接AD ,作=90DAE ∠︒,使得AE AD =,连接DE ,CE ,直线l 与CE 交于点G .求证:G 是CE 的中点.。
人教版七年级下学期第二次月考数学试卷(含答案解析)
人教版七年级下学期第二次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b22.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点。
夕佳山中学第二次月考数学
七年级下学期第二次月考试题(数学)(满分150分,时间120分钟)一、选择题(每小题3分,共30分) 1、下列方程是一元一次方程的是( ) A 、0122=-x B 、112=-x C 、9)2(3=+x D 、32-x2、下列方程组是二元一次方程组的是( )A 、⎩⎨⎧=+=21y x xyB 、⎪⎩⎪⎨⎧=+=-31325y x y xC 、⎪⎩⎪⎨⎧=+=7325y x x D 、⎪⎩⎪⎨⎧=-=+51302y x z x3、代数式532-m 和332-m 的值相等,则( ) A 、m=7 B 、m=9 C 、m=23- D 、m=2214、二元一次方程12=-y x 有无数多个解,下列四个值中不是该方程的解的是( )A 、⎪⎩⎪⎨⎧-==210y x B 、⎩⎨⎧==01y x C 、⎩⎨⎧==11y x D 、⎩⎨⎧-=-=11y x 5、方程1643=+y x 与下面( )方程所组成的方程组的解是⎩⎨⎧==14y xA 、7321=+y xB 、753=-y xC 、8741=-y x D 、y y x 3)(2=-6、某公司去年的总收入比总支出多50万元,今年比去年的总收入增加10%,总支出节约20%,今年的总收入比总支出多100万元。
如果设去年的总收入是x 万元,总支出是y 万元,那么可列方程组是( )A 、⎩⎨⎧=--++=100%)20(%)10(50y x y xB 、⎩⎨⎧=--++=100%)201(%)101(50y x y xC 、⎩⎨⎧=--++=100%)201(%)101(50x y x yD 、⎩⎨⎧=+--+=100%)101(%)201(50x y yx7、3.012.0233.01=+-+x x 去分母得( ) A 、3)23(3)1(2=+-+x x B 、2)23(3)1(2=+-+x x C 、31)23(3)1(2=+-+x x D 、以上都不对8、王老师要参加三天培训,这三天在同一个月内,这三天恰好在日历的竖排上,且三个数字相连,并且这三个日子的数字之和为36,王老师是几号开始培训的( ) A 、5号 B 、12号 C 、6号 D 、17号9、爸爸为小明存了一个x 年期的教育储蓄5000元,年利率为2.7%,到期后能得到5405元,则x 的值是( )A 、1B 、2C 、3D 、410、出租车收费标准:起步价7元(即路程不超过3km),超过3km ,每增加1km ,加收2.4元(不足1km 按1km 计),某人花费19元,则他乘出租车路程最大是( ) A 、11 B 、8 C 、7 D 、5 二、填空题(每小题3分,共18分) 11、如果342-=+a a ,那么=a 12、已知关于y x ,的方程8)1()62(82-=-+--aby b xa 是二元一次方程,则=a ,=b13、若032)12(2=-+++-y x y x ,则x= ,y=14、某班有50名同学去公园,购买甲、乙两种票共用去400元,其中甲种票价每张10元,乙种票价每张8元,设购买了甲种票x 张,乙种票y 张,可列方程组 15、某商品标价为2500元,进价为2000元,在商品打折的基础上再让利100元出售,仍能获利7.5%,问该商品打了几折?设商品打了x 折,则可列方程为 16、甲、乙两人做加法,甲将其中一个加数后面多加一个0,所得的和为2342,乙将同一个加数后面少写一个0,所得和为65,则原来的两个加数分别为数学答题卷(满分120分,时间120分钟)一、选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每小题3分,共18分)11、_________ 12、a=_______,b=________ 13、x=________,y=________ 14、_____________________ 15、_____________________ 16、_____________________ 三、简答题(共86分)17、解方程(5分) 18、解方程(5分) 7254-=+x x 131223=+--x x19、解下列方程组(5分) 20、解下列方程组(5分)⎩⎨⎧=+=+17431232y x y x ⎪⎩⎪⎨⎧=+--=--2322)1(3)1(4y x y y x21、(8分)已知⎩⎨⎧-==13y x 是方程104=+my x 和11=-ny mx 的公共解,求n m 22+的值。
最新2022-2022年七年级下第二次月考数学试卷含答案
七年级(下)第二次月考数学试卷一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个角不是(bù shi)对顶角,则这两个角不相等D.所有(suǒyǒu)的对顶角相等2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2 5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y27.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.8.(3分)计算(jì suàn)的结果(jiē guǒ)是()A.﹣B.C.﹣D.9.(3分)在同一平面内,有8条互不重合(chónghé)的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推(yǐ cǐ lèi tuī),则l1和l8的位置(wèi zhi)关系是()A.平行B.垂直C.平行或垂直D.无法确定10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为米(精确到米).12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP5cm(填写<或>或=或≤或≥)14.(3分)若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.15.(3分)若一个角是34°,则这个角的余角是°.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作(cāozuò),分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点(jiāodiǎn)为E n.若∠E n=1度,那∠BEC等于(děngyú)度三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数(jiā shù)起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择(xuǎnzé)若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到(dá dào)预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样(zhèyàng)的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.21.问题(wèntí)再现:数形结合是解决数学问题的一种(yī zhǒnɡ)重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形(túxíng)的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成(xíngchéng)两个矩形和两个正方形,如图1:这个图形的面积可以(kěyǐ)表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面(shàng miɑn)的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接(zhíjiē)写出结论即可,不必写出解题过程)22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.23.已知,AB∥CD,点E为射线(shèxiàn)FG上一点.(1)如图1,直接(zhíjiē)写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.参考答案与试题(shìtí)解析一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个(liǎnɡ ɡè)角不是对顶角,则这两个角不相等D.所有的对顶角相等【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∴选项A、C错误;根据对顶角的性质:对顶角相等;∴选项D错误;故选:B.2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选:D.3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【解答】解:A、∵a∥b,b∥c,∴a∥c,故本选项符合(fúhé)题意;B、在同一(tóngyī)平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合(fúhé)题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合(fúhé)题意;D、当a∥b,b∥c时,a∥c,故本选项不符合(fúhé)题意;故选:A.4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2【解答】解:∵(a4)3=a12,∴选项A不符合题意;∵a8÷a4=a4,∴选项B不符合题意;∵(ab)3=a3b3,∴选项C符合题意;∵(a+b)2=a2+b2+2ab,∴选项D不符合题意.故选:C.5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′【解答】解:∵∠α与∠β互为补角,∠α=120°30′,∴∠β=180°﹣120°30′=59°30′,∴∠β的余角=90°﹣59°30′=30°30′.故选:B.6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y2【解答(jiědá)】解:A、a2﹣4b2=(a+2b)(a﹣2b),故原题分解(fēnjiě)正确;B、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(x+3y)(x﹣3y)=x2﹣9y2,故原题计算错误;故选:A.7.(3分)下列图形中,线段(xiànduàn)AD的长表示点A到直线BC距离的是()A.B.C.D.【解答(jiědá)】解:线段AD的长表示点A到直线(zhíxiàn)BC距离的是图D,故选:D.8.(3分)计算的结果是()A.﹣B.C.﹣D.【解答】解:原式=(﹣×1.5)2021×(﹣1.5)=﹣1.5=﹣,故选:A.9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法(wúfǎ)确定【解答(jiědá)】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.10.(3分)算式(suànshì)(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6【解答(jiědá)】解:原式=(2﹣1)(2+1)×(22+1)×(24+1)×…×(232+1)+1=(22﹣1)×(22+1)×(24+1)×…×(232+1)+1=(24﹣1)×(24+1)×…×(232+1)+1=(232﹣1)×(232+1)+1=264﹣1+1=264,因为(yīn wèi)21=2,22=4,23=8,24=16,25=32,所以底数为2的正整数次幂的个位数是2、4、8、6的循环,所以264的个位数是6.故选:D.二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为106米(精确到米).【解答】解:在图形上测量知B,C两楼之间的距离为106米.12.(3分)如图,已知AB∥CD,F为CD上一点(yī diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数(dù shu)为整数,则∠C的度数(dù shu)为36°或37°.【解答(jiědá)】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角(wài jiǎo),∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.13.(3分)直线a外有一定点A,A到直线a的距离(jùlí)是5cm,P是直线a 上的任意一点,则AP≥5cm(填写(tiánxiě)<或>或=或≤或≥)【解答(jiědá)】解:根据题意,得A到直线(zhíxiàn)a的垂线段的长是5cm,由垂线(chuí xiàn)段最短,得AP≥5cm.故填:≥.14.(3分)若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.15.(3分)若一个角是34°,则这个角的余角是56°.【解答】解:若一个角是34°,则这个角的余角是90°﹣34°=56°,故答案为:56.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于2n 度【解答(jiědá)】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点(jiāodiǎn)为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点(jiāodiǎn)为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点(jiāodiǎn)为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推(yǐ cǐ lèi tuī),∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现(fāxiàn):从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后(ránhòu)在①式的两边(liǎngbiān)都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.【解答(jiědá)】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093;(2)1+a+a2+a3+…+a2021(a≠0且a≠1)═[(1+a+a2+a3+…+a2021)×a﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=[(a+a2+a3+…+a2021+a2021)﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=(a2021﹣1)÷(a﹣1)=.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据两直线平行,同位角相等得∠1=∠A=67°所以,∠CBD=23°+67°=90°;根据(gēnjù)同旁内角(tónɡ pánɡ nèi jiǎo)互补,两直线平行当∠ECB+∠CBD=180°时,可得CE∥AB.所以(suǒyǐ)∠ECB=90°此时CE与BC的位置(wèi zhi)关系为垂直(chuízhí).【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.【解答(jiědá)】解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置(zhuāngzhì)安装在这4个小正方形对角线的交点处,此时(cǐ shí),每个小正方形的对角线长为,每个转发装置都能完全覆盖一个(yī ɡè)小正方形区域,故安装(ānzhuāng)4个这种装置可以达到预设的要求;(2)(画图正确给1分)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=OC.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段(xiànduàn)CB 上,OB平分∠AOF,OE平分(píngfēn)∠COF.(1)请在图中找出与∠AOC相等的角,并说明(shuōmíng)理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时(cǐ shí),∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合(chónghé),所以(suǒyǐ),不存在.21.问题(wèntí)再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数(dàishù)公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试(chángshì)解决:(2)请你类比上述推导(tuīdǎo)过程,利用图形的几何意义确定:13+23+33= 62.(要求写出结论(jiélùn)并构造图形写出推证过程).(3)问题(wèntí)拓广:请用上面的表示几何图形面积(miàn jī)的方法探究:13+23+33+…+n3=[n (n+1)]2.(直接写出结论即可,不必写出解题过程)【解答】解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案(dá àn)为:62;(3)由上面表示几何图形的面积(miàn jī)探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=n(n+1),∴13+23+33+…+n3=[n(n+1)]2.故答案(dá àn)为:[n(n+1)]2.22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.【解答(jiědá)】解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.23.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分(píngfēn)∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数(dù shu).【解答(jiědá)】解:(1)∠AED=∠EAF+∠EDG.理由(lǐyóu):如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明(zhèngmíng):如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分(píngfēn)∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°﹣20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角(wài jiǎo),∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.内容总结(1)+a2021(a≠0且a≠1)的值.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093。
七年级下第二次月考数学试题及答案
七年级第二次月水平测试数学试卷时间100分钟 满分120分一、选择题(每题3分,共30分)1.有下列长度的三条线段,能组成三角形的是( )A 、3cm 4cm 8cm 、、 B 、4cm 4cm 8cm 、、 C 、5cm 6cm 10cm 、、 D 、2cm 5cm 10cm 、、 2.已知有长为1、2、3的线段若干条,任取其中三条构造三角形,则最多能构成形状或大小不同的三角形个数是( )A 、5B 、6C 、7D 、83.下列说法①任意一个三角形的三条高至少有一条在此三角形内部;②一个多边形从一个顶点共引出三条对角线,此多边形一定是五边形;③一个三角形中,至少有一个角不小于060;④以a 为底的等腰三角形其腰长一定大于2a ;⑤以cb a ,,为边,且c b a >+能构成一个三角形 ;⑥一个多边形增加一条边,那么它的外角均增加0180.其中正确的是( )A 、①②③④B 、①③④⑤C 、③④⑤⑥D 、①②③⑥4.如图所示,下列图案是我国几家银行的标志,其中不是轴对称图形的有( )5.下列结论错误的是( )A 、等边三角形是轴对称图形B 、轴对称图形的对应边相等,对应角相等C 、成轴对称的两条线段必在对称轴同侧D 、成轴对称的两个图形的对应点的连线被对称轴垂直平分6.两个图形关于某直线对称,对称点一定是( )A 、这条直线的两旁B 、这条直线的同旁C 、这条直线上D 、这条直线两旁或这条直线上7.甲、乙、丙、丁四名同学在讨论数学问题时作了如下发言:甲:因为三角形中最多有一个钝角,因此三角形的外角之中最多只有一个锐角;乙:在求n 个角都相等的n 边形的一个内角的度数时,可用结论: 180°-n 1×360°; 丙:多边形的内角和总比外角和大;丁:n 边形的边数每增加一条,对角线就增加n 条.四位同学的说法正确的是( ).A 、甲、丙B 、乙、丁C 、甲、乙D 、乙、丙8.如果三角形的一个外角与它不相邻的两内角的和为180º,那么与这个外角相邻的内角等于( )A 、30ºB 、60ºC 、90ºD 、120º9.一个多边形的内角和比它的外角和的3倍少0180,这个多边形的边数是( )A 、5条B 、6条C 、 7条D 、8条10.下列正多边形的组合中,能够铺满地面的是( )A 、正八边形和正方形B 、正五边形和正八边形C 、正六边形和正三角形D 、正五边形和正六边形二、填空题(每题3分,共30分)11.把一张正方形纸沿两对角线对折两次,形成了四个同样大小的三角形.12.工人师傅在做完门框后.为防小变形常常像图1中所示的那样上两条斜拉的木条(即图1中的AB ,CD ),这样做根据的数学道理是 .13.如图2 ,⊿ABC 中,AD 是∠BAC 的平分线,AE 是BC 边上的高,已知∠B=47º∠C=73º,则∠DAE= .14.如图3,AD 是△ABC 的外角平分线,∠B=30º,∠DA E=55º,则∠ACD= .15.等腰三角形的周长为12,则腰长a 的取值范围是 .16.一个多边形减少一条边,它的内角和减少 度,如果一个多边形减少一条边后,内角和为1260度,那么原来的多边形的边数为 .17.n边形的内角和等于t边形的外角和的2倍,则n= .18.已知一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是,内角和是.19.一个多边形的每一个内角都相等,并且它的一个外角与一个内角之比为2:3,则这个多边形是边形.20.如图4三、解答题(7个小题,共60分)21.(10分)如图,四边形ABCD中,∠A=∠C=90°,B E平分∠ABC,DF平分∠ADC,试问BE与DF平行吗?为什么?22.(10分)如图,∠ACD是△ABC的一个外角,∠ABC和∠ACD的平分线BE、CE交于一点E,试说明∠A=2∠E.23.(9分)过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求n( 的值.pm)24.(8分)已知等腰三角形的周长为28厘米,①底边长和腰长之比为3:2,求各边长;②底边比腰小2厘米,求各边长.25、(6分)请用1个等腰三角形,2个长方形,3个圆设计一个轴对称图形,并用简炼的文字说明你的创意。
江西省赣州市七年级下学期数学第二次月考试卷
江西省赣州市七年级下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·武侯模拟) 新型冠状病毒平均直径为100纳米,即0.00001厘米.0.00001用科学记数法表示为()A . 1×105B . 10×10﹣6C . 1×10﹣5D . 0.1×10﹣42. (2分)下列计算正确的是()A . a4•a2=a8B . a+a2=a3C . (a3b)2=a6b2D . ﹣2(x﹣3y)=﹣2x﹣6y3. (2分) (2019八上·诸暨期末) 下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A . 1,2,3B . 1,2,4C . 2,3,4D . 2,2,44. (2分)如图,直线l1∥l2 ,∠1=40°,∠2=75°,则∠3等于()A . 55°B . 60°C . 65°D . 70°5. (2分) (2019八下·城区期末) 下列结论中正确的有()①若一个三角形中最大的角是80°,则这个三角形是锐角三角形②三角形的角平分线、中线和高都在三角形内部③一个三角形最少有一个角不小于60°④一个等腰三角形一定是钝角三角形A . 1个B . 2个C . 3个D . 4个6. (2分)(2017·贾汪模拟) 已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A . 4B . 8C . 12D . 167. (2分) (2019七下·商南期末) 如图,能判定AD平行于BC的条件是()A . ∠BAD=∠BCDB . ∠BAD=∠ABCC . ∠1=∠2D . ∠3=∠48. (2分)如图:BO、CO是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC的度数为()A . 80°B . 90°C . 120°D . 140°9. (2分) (2019八上·龙凤期中) 一杯开水凉了一段时间,那水温与时间的函数关系符合以下的图象中的()A .B .C .D .10. (2分)设某代数式为A ,若存在实数x0使得代数式A的值为负数,则代数式A可以是()A .B .C . (4-x)2D .二、填空题 (共6题;共6分)11. (1分)(2020·新乡模拟) 计算 ________.12. (1分) (2017八上·贵港期末) 已知等腰三角形的两边长分别为7和3,则第三边的长是________.13. (1分) (2019七下·玄武期中) 如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=22°,那么∠2的度数为________.14. (1分) (2020八上·额尔古纳期末) 已知等腰三角形的一个内角为70°,则它的顶角度数为________.15. (1分)(2020·平谷模拟) 如图,直线,点A、B是直线l上两点,点C、D是直线m上两点,连接.交于点O ,设的面积为,的面积为,则________ .(填“>”,“<”或“=”)16. (1分) (2019八上·南昌期中) 当三角形中一个内角是另一个内角的2倍时,则称此三角形为“倍角三角形”,其中角称为“倍角”.若“倍角三角形”中有一个内角为36°,则这个“倍角三角形”的“倍角”的度数可以是________.三、解答题 (共9题;共81分)17. (5分)(2017·全椒模拟) 计算:( +1)0﹣2﹣1+ ﹣6sin60°.18. (5分) (2019八上·莎车期末) 化简:x(4x+3y)-(2x+y)(2x-y)19. (5分) (2017七上·深圳期中) 先化简,再求值:当时,求.20. (10分) (2016八上·萧山月考) 已知线段b和,使用直尺和圆规作△ABC,使AB=AC=b,∠A=2 。
北师大版2021-2022学年七年级数学下册第二次月考测试题(附答案) (2)
2021-2022学年七年级数学下册第二次月考测试题(附答案)一、选择题(共42分)1.下列方程为一元一次方程的是()A.B.x2+3=x+2C.﹣x﹣3=4D.2y﹣3x=2 2.方程x﹣4=0的解为()A.x=4B.x=﹣4C.x=0D.3.下列方程组为二元一次方程组的是()A.B.C.D.4.不等式3x<6的解集在数轴上可表示为()A.B.C.D.5.已知x=3是关于x的方程x﹣a=2的解,则a的值是()A.1B.2C.3D.56.关于x、y的二元一次方程组,用代入法消去y后所得到的方程,正确的是()A.3x﹣x﹣5=8B.3x+x﹣5=8C.3x+x+5=8D.3x﹣x+5=8 7.若m<n,则下列不等式错误的是()A.m﹣6<n﹣6B.6m<6n C.D.﹣6m>﹣6n 8.下列各组数中,是方程x+y=5的解的是()A.B.C.D.9.在4,3,2,1,0,﹣,中,能使不等式3x﹣2>2x成立的数有()A.1个B.2个C.3个D.4个10.代数式x+1与x﹣5互为相反数,则x的值为()A.﹣1B.1C.2D.﹣211.用不等式表示“x的5倍大于﹣7”的数量关系是()A.5x<﹣7B.5x>﹣7C.x>7D.7x<512.解三元一次方程组,如果消掉未知数z,则应对方程组变形为()A.①+③,①×2﹣②B.①+③,③×2+②C.②﹣①,②﹣③D.①﹣②,①×2﹣③13.如图,七个相同的小长方形组成一个大长方形ABCD,若CD=21,则长方形ABCD的面积为()A.560B.490C.630D.70014.某超市推出如下优惠方案:(1)购物款不超过200元不享受优惠;(2)购物款超过200元但不超过600元一律享受九折优惠;(3)购物款超过600元一律享受八折优惠.小明的妈妈两次购物分别付款168元、423元.如果小明的妈妈在超市一次性购买与上两次价值相同的商品,则小明的妈妈应付款()元.A.522.80B.560.40C.510.40D.472.80二、填空题(共18分)15.不等式4x﹣4>0的解集为.16.请用等式表示“x的4倍与3的和等于1”:.17.已知方程(m﹣1)x|m|=0是关于x的一元一次方程,则m的值是.18.如图所示,敦煌莫高窟最大石窟的高为米.19.某城市下水管道工程由甲、乙两个工程队单独铺设分别需要10天和15天完成,如果两队从两端同时施工2天,然后由乙单独完成,还需天完成.20.根据图中给出的信息,现放入大球小球共10个,现在水位为26cm,要使水位上升到52cm,应放入个大球.三、解答题(满分60分)21.解下列方程(组)(1)2x+7=3(x+2)(2)(3)(4)22.解下列不等式,并将解集在数轴上表示出来.(1)﹣x+19≥2(x+5);(2).23.一套仪器由2个A部件和5个B部件构成.用1m3钢材可做40个A部件或200个B 部件,现要用6m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好能使这种仪器刚好配套?24.某公司购买了一批物资并安排两种货车运送.调查得知,2辆小货车与3辆大货车一次可以满载运输1900件;4辆小货车与2辆大货车一次可以满载运输2200件.(1)求1辆大货车和1辆小货车一次可以分别满载运输多少件物资?(2)若6辆小货车,5辆大货车均满载,共可运输多少件?25.我们知道x的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;即数轴上数x1,x2对应两点之间的距离为|x1﹣x2|;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解方程|x﹣1|=2.容易得出,在数轴上与1距离为2的点对应的数为3和﹣1,即该方程的x=3或x=﹣1;例3:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;例4:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2:同理,若x对应点在﹣2的左边可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)数轴上表示﹣2与5两点之间的距离为;(2)方程|x﹣3|=4的解为;|x+4|=7的解为;(3)不等式|x﹣3|>4的解集为;(4)方程|x﹣3|+|x+4|=9的解为;(5)不等式|x﹣3|+|x+4|≥9的解集为.参考答案一、选择题(共42分)1.解:A.是分式方程,故本选项不合题意;B.x2+3=x+2中含有未知数项的最高次数是2,所以不是一元一次方程,故本选项不合题意;C.﹣x﹣3=4符合一元一次方程的定义,故本选项符合题意;D.2y﹣3x=2中含有两个未知数,所以不是一元一次方程,故本选项不合题意.故选:C.2.解:方程x﹣4=0,解得:x=4.故选:A.3.解:A中x2﹣y=8是二次方程,所以A不合题意;B中含有两个未知数,最高次数是1的整式方程,所以B符合题意;C中不是整式,所以C不符合题意;D中含有三个未知数,所以D不合题意.故选:B.4.解:3x<6,x<2.不等式的解集在数轴上表示为:.故选:B.5.解:把x=3代入方程x﹣a=2得:3﹣a=2,解得a=1,故选:A.6.解:,把①代入②得:3x﹣(x+5)=8,整理得:3x﹣x﹣5=8,故选:A.7.解:A、若m<n,则m﹣6<n﹣6,原变形正确,故此选项不符合题意;B、若m<n,则6m<6n,原变形正确,故此选项不符合题意;C、若m<n,则<,原变形错误,故此选项符合题意;D、若m<n,则﹣6m>﹣6n,原变形正确,故此选项不符合题意.故选:C.8.解:A.当时,x+y=﹣2﹣3=﹣5≠5,选项A不符合题意;B.当时,x+y=﹣3+2=﹣1≠5,选项B不符合题意;C.当时,x+y=4+3=7≠5,选项C不符合题意;D.当时,x+y=3+2=5,选项D符合题意.故选:D.9.解:不等式3x﹣2>2x的解集为x>2,在4,3,2,1,0,﹣,中,大于2的有4,3,共2个,故选:B.10.解:根据题意得:x+1+x﹣5=0,移项得:x+x=﹣1+5,合并得:2x=4,解得:x=2.故选:C.11.解:根据题意可得,5x>﹣7.故选:B.12.解:解三元一次方程组,如果消掉未知数z,则应对方程组变形为②﹣①,②﹣③.故选:C.13.解:设小长方形的长为x,宽为y,由题意得:,解得:,∴长方形ABCD的长为5y=5×6=30,宽为21,∴长方形ABCD的面积=7xy=7×15×6=630,故选:C.14.解:(1)第一次购物显然没有超过200元,即在第二次消费168元的情况下,他的实质购物价值只能是168元.(2)第二次购物消费423元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过200元但不足600元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=423,解得:x=470.①第二种情况:他消费超过600元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=423,解得:x=528.75(舍去)即在第二次消费423元的情况下,他的实际购物价值可能是470元.综上所述,他两次购物的实质价值为168+470=638(元),超过了600元.因此均可以按照8折付款:638×0.8=510.4(元)综上所述,她应付款510.4元.故选:C.二、填空题(共18分)15.解:4x﹣4>0,4x>4,x>1.故不等式4x﹣4>0的解集为x>1.故答案为:x>1.16.解:∵x的4倍与3的和等于1,∴列等式表示为:4x+3=1.故答案为:4x+3=1.17.解:∵方程(m﹣1)x|m|=0是关于x的一元一次方程,∴m﹣1≠0且|m|=1,解得:m=﹣1,故答案为:﹣1.18.解:由题意得:x﹣x=30,解得:x=40,即石窟的高为40米.故答案为:40.19.解:由乙队单独施工,设还需x天完成,根据题意,得+=1,解得x=10.即:由乙队单独施工,还需10天完成.故答案是:10.20.解:设应放入x个大球,y个小球,根据题意得:,解得:,∴应放入6个大球.故答案为:6.三、解答题(满分60分)21.解:(1)去括号得:2x+7=3x+6,移项得:2x﹣3x=6﹣7,合并得:﹣x=﹣1,解得:x=1;(2),把①代入②得:x+x+1=3,解得:x=1,把x=1代入①得:y=2,则方程组的解为;(3)方程组整理得:,①+②得:5x=5,解得:x=1,把x=1代入②得:2﹣y=0,解得:y=2,则方程组的解为;(4)去分母得:3(5x﹣2)=2(2x+5)+6,去括号得:15x﹣6=4x+10+6,移项合并得:11x=22,解得:x=2.22.解:(1)﹣x+19≥2(x+5),去括号,得﹣x+19≥2x+10,移项,得﹣x﹣2x≥10﹣19,合并同类项,得﹣3x≥﹣9,系数化为1,得x≤3.将解集在数轴上表示为:(2),去分母,得3(x+4)﹣12<4(4x﹣13),去括号,得3x+12﹣12<16x﹣52,移项,得3x﹣16x<﹣52﹣12+12,合并同类项,得﹣13x<﹣52,系数化为1,得x>4.解集在数轴上表示为:23.解:设应用xm3钢材做A部件,ym3钢材做B部件,恰好能使这种仪器刚好配套,根据题意得:,解得:.答:应用4m3钢材做A部件,2m3钢材做B部件,恰好能使这种仪器刚好配套.24.解:(1)设1辆大货车一次可以满载运输x件物资,1辆小货车一次可以满载运输y件物资,根据题意得:,解得:.答:1辆大货车一次可以满载运输400件物资,1辆小货车一次可以满载运输350件物资.(2)400×5+350×6=2000+2100=4100(件).答:共可运输4100件物资.25.解:(1)数轴上表示﹣2与5两点之间的距离为|﹣2﹣5|=7,故答案为:7;(2)∵|x﹣3|=4,∴x﹣3=4或x﹣3=﹣4,解得x=7或x=﹣1,∵|x+4|=7,∴x+4=7或x+4=﹣7,解得x=3或x=﹣11,故答案为:x=7或x=﹣1;x=3或x=﹣11;(3)∵|x﹣3|>4,∴x﹣3>4或x﹣3<﹣4,解得x>7或x<﹣1,故答案为:x>7或x<﹣1;(4)|x﹣3|+|x+4|=9表示求在数轴上与﹣4和3的距离之和为9的点对应的x的值,∴﹣4和3之间的距离为7,当表示x的点在﹣4的左边时,x=﹣5,当表示x的点在3的右边时,x=4,∴方程的解为x=4或x=﹣5,故答案为:x=4或x=﹣5;(5)|x﹣3|+|x+4|≥9表示求在数轴上与﹣4和3的距离之和大于等于9的点对应的x的值,由(4)可得x≤﹣5或x≥4时,|x﹣3|+|x+4|≥9,故答案为:x≤﹣5或x≥4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间:100分钟满分:120分
一、选择题(每小题3分,共30分)
1.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下列我国四大银行的商标图案中不是轴对称图形的是()
2.图1所示的图案通过平移后可以得到的图案是:()
3.以下面长度的线段为边(单位:cm),可以作一个三角形的是( )
A、10,20,30
B、10,20,40
C、20,30,40
D、10,40,50
4.一个多边形截去一个角之后,形成另一个多边形的内角和为900°,那么原多边形的边数为()
A、5
B、6或7
C、7或8
D、6或7或8
5.下列组合不能够铺满地面的是( )
A、正六边形和正三角形
B、正八边形和正方形
C、正方形和正六边形
D、正三角形和正方形
6.下列图形中对称轴最多的是()
A.等腰三角形B.正方形C.圆D.线段7.如图2,等边ΔABC中,D是BC上一点,ΔABD经过旋转后至ΔACE的位置,若∠BAD=15°,那么旋转角是()
A.15°
B.45°
C.60°
D.30°
8.如图3所示,∠ABC的平分线与∠ACD的平分线交于点E,若∠A=40°,则∠E=()
A.10°
B. 20°
C.30°
D.80°
B A
D
9.如图4,木工师傅做好门框后,常用木条EF、EG来固定门框ABCD,使其不变形,这种做法的依据是( )
A、两点之间线段最短
B、矩形的对称性
C、矩形的四个角都是直角
D、三角形的稳定性
10.如图5,将三角尺ΔABC(其中∠ABC=60°,
∠C=90°)绕点B按顺时针转动一个角度到
ΔA
1BC
1
的位置,使得点A、B、C
1
在同一条直
线上,那么旋转角等于()
A.120°
B.90°
C.60°
D.30°
二、填空题(3分,共36分)
11.如果一个十二边形的各内角都相等,那么它的每个内角都等于________。
12.一个多边形的每个外角都是36°,则这个多边形是边形;一个多边形
的每个内角都是135°,则这个多边形是边形。
13.如图6,在△ABC中,DE是AC的垂直平分线,若BC=6,AC=4,△ADC的周长
为。
14.如图7,在等腰ΔABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成了9和6两部分,则此三角形的三边长为________________。
15.设A、B两点关于直线MN对称,则______垂直平分________。
16.如图7,四边形OACB绕点O旋转到四边形DOEF,在这个旋转过程中,旋转中
心是_________,旋转角是________,AO与DO的关系是_______,∠AOD与∠BOE的关系是__________。
17.如图8,已知△沿BD平移到了△FCE的位置,BE=10cm,CD=4cm,则平移的距离是。
B A
C D
三、解答题 18.(8分)如图10,正方形网格中,△ABC 为格点三角形(顶点都是格点), (1)将△ABC 绕点A 按逆时针方向旋转90°,得到△AB 1C 1.作出△AB 1C 1;(不要求写作法)
(2)将△ABC 先上平移3格,再向左平移4格,得到△A 2B 2C 2,作出△A 2B 2C 2。
(不要求写作法)
19.(6分)以AB 为对称轴,画出图形的对称图形
20.(8分)画出每个图的所有对称轴:
21. (6分)如图11,某工人加工如图所示的零件时,规定∠A=90°,∠B=32°,∠C=21°,在加工过程中,他量得∠BDC=148°,就断定该零件不合格,你能运用三角形的有关知识说明不合格的理由吗?
22. (6分)如图12, D是AC上一点,点E在BC的延长线上,试说明∠ADB>∠CDE
23. (6分)如果一个四边形的四个内角的度数比是2∶2∶3∶5,那么这个四边形的四个内角分别是多少?
24. (6分)阅读三角形的内角和定理的证明过程,并填空
如图13,已知△ABC,求证:∠BAC+∠B+∠C=180°
证明:过点A作DE//BC
∵DE//BC,(作图)
∴∠1=∠B,( )
∵DE//BC,(作图)
∴∠2= ,(两直线平行,内错角相等)
∵∠1+∠2+∠3=180°(平角的定义)
∴∠B+∠C+∠3=180°( )
∴∠B+∠C+∠BAC=180°
25.(8分)如图14,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.
(1)若要使自来水厂到两村的距离相等,请标出厂址位置P
1
(2)若要使自来水厂到两村的输水管用料之和最省,请标出厂址位置P
2
请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.。