27.2.2《相似三角形的性质》导学案
人教版数学九年级下册27.2.2《相似三角形的性质》教案
人教版数学九年级下册27.2.2《相似三角形的性质》教案一. 教材分析人教版数学九年级下册27.2.2《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的一个深化和拓展。
本节内容主要让学生掌握相似三角形的性质,并能够运用这些性质解决一些实际问题。
教材通过生动的例题和丰富的练习,帮助学生理解和掌握相似三角形的性质,培养学生的几何思维和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了相似三角形的概念和性质,对相似三角形的知识有一定的了解。
但学生在运用相似三角形的性质解决实际问题时,往往会存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生更好地理解和运用相似三角形的性质。
三. 教学目标1.理解相似三角形的性质,并能够运用这些性质解决一些实际问题。
2.培养学生的几何思维和解决问题的能力。
3.提高学生的数学兴趣,使学生能够自主学习,提高学习效果。
四. 教学重难点1.掌握相似三角形的性质。
2.能够运用相似三角形的性质解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,从而激发学生的学习兴趣。
通过案例教学,让学生直观地理解和掌握相似三角形的性质。
通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过多媒体展示相似三角形的性质,让学生直观地理解和掌握。
同时,教师结合性质给出相应的例题,让学生进一步理解和运用。
3.操练(15分钟)教师给出一些练习题,让学生独立完成。
教师在过程中给予个别学生指导,确保学生能够正确地运用相似三角形的性质解决问题。
4.巩固(10分钟)教师学生进行小组讨论,让学生分享自己的解题心得,互相学习和交流。
人教版九年级下册数学27.2.2 相似三角形的性质导学案
原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!玉壶存冰心,朱笔写师魂。
——冰心《冰心》27.2 相似三角形27.2.2 相似三角形的性质学习目标:1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点)2. 理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点)一、知识链接1. 相似三角形的判定方法有哪几种?2. 三角形除了三个角,三条边外,还有哪些要素?一、要点探究探究点1:相似三角形对应线段的比思考如图,△ABC ∽△A′B′C′,相似比为 k,它们对应高、对应中线、对应角平分线的比各是多少?证明如图,△ABC ∽△A′B′C′,相似比为 k,求它们对应高的比.试一试仿照求高的比的过程,当△ABC ∽△A′B′C′,相似比为 k 时,求它们对应中线的比、对应角平分线的比.【要点归纳】相似三角形对应高的比等于相似比.类似地,可以证明相似三角形对应中线、角平分线的比也等于相似比.一般地,我们有:相似三角形对应线段的比等于相似比.【典例精析】已知△ABC∽△DEF,BG、EH 分别是△ABC和△DEF 的角平分线,BC = 6 cm,EF = 4 cm,BG= 4.8 cm. 求 EH 的长.【针对训练】1. 如果两个相似三角形的对应高的比为 2 : 3,那么对应角平分线的比是 ,对应边上的中线的比是 .2. 已知△ABC ∽ △A'B'C' ,相似比为3 : 4,若 BC 边上的高 AD =12 cm ,则 B'C' 边上的高 A'D' = .思考 如果 △ABC ∽△A'B'C',相似比为 k ,它们的周长比也等于相似比吗?为什么?【要点归纳】相似三角形周长的比等于相似比.探究点2:相似三角形面积的比思考 如图,△ABC ∽△A ′B ′C ′,相似比为 k ,它们的面积比是多少?证明 画出它们的高,由前面的结论,我们有k C B BC ='',k D A AD='',22121k k k D A AD C B BC D A C B AD BC S S C B A ABC =⋅=''⋅''=''⋅''⋅='''△△【要点归纳】由此得出:相似三角形面积的比等于相似比的平方.【针对训练】1. 已知两个三角形相似,请完成下列表格:2. 把一个三角形变成和它相似的三角形,(1) 如果边长扩大为原来的 5 倍,那么面积扩大为原来的_____倍;(2) 如果积扩大为原来的 100 倍,那么边长扩大为原来的_____倍.3. 两个相似三角形的一对对应边分别是 35 cm、14 cm,(1) 它们的周长差为60 cm,这两个三角形的周长分别是___ ___;(2) 它们的面积之和是 58 cm2,这两个三角形的面积分别是 .如图,在△ABC 和△DEF 中,AB = 2 DE ,AC = 2 DF,A = ∠D. 若△ABC 的边 BC 上的高为 6,面积为512求△DEF 的边 EF 上的高和面积. 【针对训练】如果两个相似三角形的面积之比为 2 : 7,较大三角形一边上的高为 7,则较小三角形对应边上的高为______.如图,D ,E 分别是 AC ,AB 上的点,已知△ABC 的面积100 cm2,且53==AB AD AC AE ,求四边形 BCDE 的面积.【针对训练】如图,△ABC 中,点 D 、E 、F 分别在 AB 、AC 、BC 上,且 DE ∥BC ,EF ∥AB. 当 D 点为 AB 中点时,求 S 四边形BFED : S △ABC 的值.二、课堂小结(1) 一个三角形的各边长扩为原来的 5 倍,这个三角形的周长也扩大为原来的5 倍( )(2) 一个四边形的各边长扩大为原来的 9 倍,这个四边形的面积也扩大为原来的 9 倍( )2. 在△ABC 和△DEF 中,AB=2 DE,AC=2 DF,∠A=∠D,AP,DQ 是中线,若 AP=2,则 DQ的值为 ( )A.2 B.4 C.1 D.213. 连接三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于______,面积比等于___________.4. 两个相似三角形对应的中线长分别是 6 cm 和 18 cm,若较大三角形的周长是 42 cm,面积是 12 cm2,则较小三角形的周长是__________cm,面积为__________cm2.5. △ABC 中,DE∥BC,EF∥AB,已知△ADE 和△EFC 的面积分别为 4 和 9,求△ABC 的面积.6. 如图,△ABC 中,DE∥BC,DE 分别交 AB、AC 于点 D、E,S△ADE=2 S△DCE,求 S△ADE ∶S△ABC.【分析】从题干分析可以得到△ADE∽△ABC,要证明它们面积的比,直接的就是先求出相似比,观察得到△ADE与△DCE是同高,得到AE与CE的比,进而求解.参考答案自主学习一、知识链接解:(1)定义:对应边成比例,对应角相等的两个三角形相似(2)平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似(3)三边成比例的两个三角形相似(4)两边成比例且夹角相等的两个三角形相似(5)两角分别相等的两个三角形相似(6)一组直角边和斜边成比例的两个直角三角形相似 解:还有高,中线,平分线等等 合作探究 一、要点探究探究点1:相似三角形对应线段的比证明 解:如图,分别作出 △ABC 和 △A' B' C' 的高 AD 和 A' D' . 则∠ADB =∠A' D' B'=90°.∵△ABC ∽△A ′B ′C ′,∴∠B =∠B' . ∴△ABD ∽△A' B' D' .∴k BA ABD A AD =''=''. 【典例精析】解:∵ △ABC ∽△DEF ,∴EFBCEH BG =(相似三角形对应角平分线的比等于相似比), ∴468.4=EH ,解得 EH = 3.2.∴ EH 的长为 3.2 cm. 【针对训练】1. 2 : 3 2 : 3 2. 16cm思考 解:等于,如果 △ABC ∽△A'B'C',相似比为 k ,那么k A C CAC B BC B A AB =''=''='', 因此AB =k A'B',BC =kB'C',CA =kC'A', 从而k A C C B B A A C k C B k B A k A C C B B A CA BC AB =''+''+''''+''+''=''+''+''++.探究点2:相似三角形面积的比 【针对训练】1.2. (1) 5 (2) 103. (1) 100cm ,40cm (2) 50cm2,8cm2解:在 △ABC 和 △DEF 中,∵ AB=2DE ,AC=2DF ,∴21==AC DF AB DE . 又 ∵∠D=∠A ,∴ △DEF ∽ △ABC ,相似比为21. ∵△ABC 的边 BC 上的高为 6,面积为512,∴△DEF 的边 EF 上的高为21×6 = 3,面积为53512212=⨯⎪⎭⎫⎝⎛.【针对训练】14解:∵ ∠BAC = ∠DAE ,且53==AB AD AC AE ,∴ △ADE ∽△ABC. ∵ 它们的相似比为 3 : 5,∴ 面积比为 9 : 25.又∵ △ABC 的面积为 100 cm2,∴ △ADE 的面积为 36 cm2 . ∴ 四边形 BCDE 的面积为100-36 = 64 (cm2).【针对训练】解:∵ DE ∥BC ,D 为 AB 中点,∴ △ADE ∽ △ABC ,∴21==AB AD AC AE ,即相似比为 1 : 2,面积比为 1 : 4. 又∵ EF ∥AB ,∴ △EFC ∽ △ABC ,相似比为21=AC CE ,∴面积比为 1 : 4.设 S △ABC = 4,则 S △ADE = 1,S △EFC = 1,S 四边形BFED = S △ABC -S △ADE -S △EFC = 4-1-1 = 2, ∴ S 四边形BFED : S △ABC = 2 : 4 =21. 当堂检测1. (1) √ (2) ×2. C3. 1:1 1:44. 14 345. 解:∵ DE ∥BC ,EF ∥AB ,∴ △ADE ∽△ABC ,∠ADE =∠EFC ,∠A =∠CEF , ∴△ADE ∽△EFC.又∵S △ADE : S △EFC = 4 : 9,∴ AE : EC=2:3,则 AE : AC =2 : 5, ∴ S △ADE : S △ABC = 4 : 25,∴ S △ABC = 25.6. 解:过点 D 作 AC 的垂线,垂足为 F ,则22121==⋅⋅=EC AE DF EC DF AE S S DCEADE △△, ∴32=AC AE . 又∵ DE ∥BC ,∴ △ADE ∽△ABC. ∴943222=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=AC AE S S ABC ADE △△,即 S △ADE : S △ABC =4 : 9.【素材积累】先讲一个我个人的经历。
九年级数学下册 27.2.2 相似三角形的性质导学案1(新版)新人教版
5、两个相似三角形的一组对应边的长分别是15和23,它们周长的差是40,则这两个三角形的周长分别为( )
A. 75,115 B. 60,100 C. 85,125 D. 45,85
6、将一个五边形 改成与它相似的五边形,如果面积扩大为原来的9倍,那么周长扩大为原来的( )
教学目标:掌握相似三角形的性质,并能应用它解决问题
教学过程
一、知识点1性质1
1性质:相似三角形的对应角,对应边
2、练习(1)、若△ABC与△A′B′C′相似,一组对应边的长为AB=3 cm,
A′B′=4 cm,那么△A′B′C′与△ABC的相似比是________。
(2)、已知△ABC∽△A′B′C′,A和A′,B和B′分别是对应点,若AB=5 cm,A′B′=8 cm,AC=4 cm,B′C′=6 cm,则△A′B′C′与△ABC的相似比为______,A′C′=______,BC=_____。
10、如图,蛋糕店制作两种圆形蛋糕,一种半径是15cm,一种半径是30cm,如果半径15cm的蛋糕够2个人吃,那么半径是30cm的蛋糕够多少人 吃?(假设两种蛋糕高度相同)
11、如图,Rt△ABC中,∠ ACB=90°,P为AB上一点, Q为BC上一点,且PQ⊥A B,若△ BPQ的面积等于四边形APQC面积的 ,AB=5 cm,PB=2 cm,求△ ABC的面积.
相似三角形性质
讲学案内容应包括:1.完整的教案内容;2.预习环节①预习内容,②预习指导;3.课前准备①出示学习目标,②出时间、方法策略,②成果展示,展示的内容、过程指导和组织策略,③纠正、补充的组织指导 ,④自学检测;5.后教环节①重点突破的内容及策略,②根据检测获取的难点及突破方法,③原则是教学生不会的知识和不会的学生;6.当堂训练①训练内容、题组,②训练方法,③当堂检测题,④课外训练题等内容;
人教版9年级下册数学27.2.2 相似三角形的性质(导学案)
27.2.2 相似三角形的性质上信中学陈道锋一、新课导入1.课题导入问题1:相似三角形有什么性质?问题2:三角形中有各种各样的几何量,除了三条边的长度、三个内角的度数外,还有高、中线、角平分线的长度,以及周长、面积等.如果两个三角形相似,那么除边、角外的其他几何量之间有什么关系呢?这节课我们研究相似三角形的性质(板书课题) .2.学习目标(1)知道三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.(2)知道相似三角形对应线段的比等于相似比.(3)知道相似三角形面积的比等于相似比的平方.3.学习重、难点重点:相似三角形性质.难点:相似三角形的周长比、面积比与相似比的关系的应用.二、分层学习1.自学指导(1)自学内容:教材P37.(2)自学时间:6分钟.(3)自学要求:完成探究提纲.(4)探究提纲:②求对应中线的比. AD AB k A D A B ==''''③求对应角平分线的比.AD AB k A D A B ==''''④相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比.⑤相似三角形对应线段的比等于相似比.⑥相似三角形的周长比等于相似比.2.自学:学生参照自学指导进行自学.3.助学 (1)师助生:①明了学情:关注学生能否理清证明思路.②差异指导:根据学情分类指导.(2)生助生:小组内相互交流、研讨.4.强化:相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比、对应线段的比都等于相似比.1.自学指导(1)内容:教材P38.(2)自学时间:8分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①探索相似三角形的面积比与相似比之间的关系.设△ABC 与△A ′B ′C ′的相似比为k ,分别作△ABC 和△A ′B ′C ′的对应高AD,A ′D ′.则AD= k A ′D ′,BC= k B ′C ′. ∴S △ABC=12BC ·AD=12× k B ′C ′· k A ′D ′= k2 S △A ′B ′C ′, ∴2ABC A B C S k S ∆∆'''= . 似三角形的面积比等于 相似比的平方 .②教材P38例3,如图,在△ABC 和△DEF 中,AB=2DE,AC=2DF,∠A=∠D.若△ABC 的边BC 上的高为6,面积为125,求△DEF 的边EF 上的高和面积.先证△ABC ∽△DEF ,并求得相似比.再运用相似三角形对应高的比等于相似比,求边EF 上的高;运用相似三角形的面积比等于相似比的平方求面积.③你的解答是:∵AB AC DE DF==2,∠A=∠D, ∴△ABC ∽△DEF,∴边EF 上的高为3,S △DEF=14S △ABC=35. ④判断题(正确的画“√”,错误的画“×”).a.一个三角形的各边长扩大为原来的5倍,这个三角形的角平分线也扩大为原来的5倍.(√)b.一个三角形的各边长扩大为原来的9倍,这个三角形的面积也扩大为原来的9倍.(×)⑤在一张复印出来的纸上,一个三角形的一条边由原图中的 cm 变成了6 cm,放缩比例是多少?这个三角形的面积发生了怎样的变化?放缩比例3∶1;面积是原来的9倍.2.学:学生参照自学指导进行自学.3.助学(1)师助生:① 明了学情:了解学生自学提纲中四个题目的完成情况.②差异指导:根据学情进行针对性指导.(2)生助生:小组交流、研讨.4.强化(1)相似三角形面积的比等于相似比的平方.(2)点3名学生口答自学考提纲中第④、⑤题,点评.三、评价1.学生学习的自我评价:这节课你学到了哪些知识?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学生课堂的注意力,小组协作和回答问题的情况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时的教学过程中,首先提出问题让学生回答,这有助于学生回顾有关知识,接着老师提出问题并让学生自主探形成初步认识,最后师生共同归纳,得出结论:相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比、对应线段的比都等于相似比,面积比等于相似比的平方.在上述教学过程中,教师要充分调动学生的积极性,自主探究,体会发现和解决问题的乐趣.一、基础巩固(70分)1.(10分)如果两个相似三角形对应边的比为3∶5 ,那么它们的周长的比3∶5 ,面积的比为 9∶25 .2.(10分)如果两个相似三角形面积的比为1∶9 ,那么它们的对应高的比为1∶3 .3.(10分)两个相似三角形对应边上的中线长分别是6 cm和18 cm,若较大三角形的周长是42 cm ,面积是12 cm2,则较小三角形的周长为 14 cm,面积为43cm2.4.(10分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则AD AB =22.5.(10分)△ABC中的三条中位线围成的三角形周长是15 cm,则△ABC的周长为(C)A.60 cmB.45 cmC.30cm D.152cm6.(20分)如图,△ABC与△A′B′C′相似,AD,BE是△ABC的高,A′D′,B′E′是△A′B′C′的高,求证:AD BEA DB E=''''.证明:∵△ABC∽△A′B′C′,∴AD ABA D A B='''',BE ABB E A B='''',∴AD BEA DB E=''''.二、综合应用(20分)7.(20分)如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80 mm,要把它加工成正方形零件,使正方形的一边QP落在BC边上,另两个顶点E,F分别在AC,AB边上,求这个正方形零件的边长.解:设高AD与EF交于N点,正方形零件边长为x mm.∵EF∥BC,∴△AFE∽△ABC.∴8012080,EF AN x x CB AD-==即.解得x=48.∴正方形零件的边长为48 mm.三、拓展延伸(10分)8.(10分)如图,△ABC中,AB=8,AC=6,BC=9.如果动点D以每秒2个单位长度的速度从点B出发沿边BA向点A运动,此时直线DE∥BC,交AC于点E.记x 秒时DE的长度为y,写出y关于x的解析式,并画出它的图象.解:经过x秒后,BD=2x,AD=8-2x. ∵DE∥BC,∴△ADE∽△ABC.∴AD DE AB BC=,即8289x y-=,即y=-94x+9(0≤x≤4).【素材积累】1、一个房产经纪人死后和上帝的对话一个房产经纪人死后,和上帝喝茶。
九年级数学下册27.2.2相似三角形的性质导学案
相似三角形的性质一、新课导入1.什么叫做相似比?2.已知:△ABC ∽△A′B′C′,根据相似的定义,我们有哪些结论?(从对应边上看;从对应角上看。
)二、学习目标1.理解相似三角形对应高的比,对应角平分线的比及对应中线的比都等于相似比.2.理解并初步掌握相似三角形面积的比等于相似比的平方.三、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
研读一、认真阅读课本探究相似三角形周长的比。
一边阅读一边完成检测一。
检测练习一、1、如果把一个三角形各边同时扩大为原来的5倍,那么它的周长也扩大为原来的____倍。
2、如图,点D、E分别是△ABC边AB、AC上的点,且DE∥BC,BD=2AD,那么△ADE的周长︰△ABC的周长=_______。
研读二、认真阅读课本探究相似三角形对应高的比,对应角平分线的比及对应中线的比都等于相似比.一边阅读一边完成检测二检测练习二、1、已知△ABC∽△A´B´C´,AD、A ´D ´分别是对应边BC、B ´C ´上的高,若BC=8cm,B ´C ´=6cm,AD=4cm,则A ´D ´等于()A 16cmB 12 cmC 3 cmD 6 cm2、两个相似三角形对应高的比为3∶7,它们的对应角平分线的比为()A 7∶3B 49∶9C 9∶49D 3∶7研读三、认真阅读课本探究相似三角形面积的比。
一边阅读一边完成检测三。
检测练习三、在一张复印出来的纸上,一个多边形的一条边由原图中的2cm 变成了6cm ,这次复印的放缩比例是多少?这个多边形的面积发生了怎样的变化?研读四、认真阅读课本完成例题。
研读五、问题探究:如图,△ABC 是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?解:设正方形PQMN 是符合要求的△ABC 的高AD 与PN 相交于点E 。
(导学案)27.2.2相似三角形的性质
(导学案)27.2.2相似三角形的性质
两个三角形相似的判断方法:
1、定义:两个三角形的,,这个两个三角形相似。
2、预备定理:于三角形一边的直线和其
他两边(或)相
交,所构成的三角形与原三角
形。
3、判定定理
1:。
4、判定定理2:。
5、判定定理3:。
【情景导入】
1、三角形除了三个角,三条边外,还有哪些要素?
2、如果三角形相似,那么,三角形的这些要素有一些怎样的性质呢?
【新知探究】
探究一、
已知:△ABC∽△A1B1C1相似,相似比为k,AF,A1F1为角平分线
AE,A1E1为中线
定理:相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比
探究二、
已知:△ABC∽△A1B1C1相似,相似比为k,求它们的面积比。
探究三、
例 1 如图,在△ABC 和△DEF 中,AB=2DE,AC=2DF, ∠A=∠D ,BC边上的高为6,面积是5
12,求△DEF的边EF上的高和面积。
【知识梳理】
本节课你学习了什么知识?
【随堂练习】
1、如果把一个三角形按照下面的条件改成和它相似的三角形:
(1)把边长扩大为原来的100倍,那么面积扩大为原来的多少倍?
(2)把面积扩大为原来的100倍,那么边
长扩大为原来的多少倍?
2、求三角形的三条中位线所围成的三角形与原三角形的面积的比.
3、如果两个相似三角形的面积之比为1:9,则它们对应边的比为对应高的比为。
周长的比为
4、如果两个相似三角形的面积之比为2:7,较大三角形一边上的高为,则较小三角形对应边上的高为。
27.2.2《相似三角形的性质》导学案
27.2.2 相似三角形的性质1.知道相似三角形对应线段(中线、高线、角平分线)的比与相似比之间的关系.2.知道相似三角形的周长比和面积比与相似比之间的关系.3.能灵活运用相似三角形的判定和性质解决简单的问题,提高分析、推理能力.4.重点:相似三角形的性质.知识点一相似三角形对应线段(高、角平分线、中线)的比阅读教材本课时第一页的内容,完成下列问题.1.如右图,△ABC∽△A'B'C',相似比为k.(1)分别作△ABC和△A'B'C'的对应中线AE、A'E'.求AE∶A'E'.如图,∵△ABC∽△A'B'C',∴∠B=∠B',=,又∵BE=BC,B'E'=B'C',∴=,∴△ABE∽△A'B'E',∴==k.(2)分别作△ABC和△A'B'C'的对应角平分线AF,A'F'.求AF∶A'F'.如图,∵△ABC∽△A'B'C',∴∠B=∠B',∠BAC=∠B'A'C',又∵∠BAF=∠BAC,∠B'A'F'=∠B'A'C',∴∠BAF=∠B'A'F',∴△ABF∽△A'B'F',∴==k.【归纳总结】相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.【讨论】对于上面的问题,△ABC与△A'B'C'的周长比等于多少?如何证明你的结论?周长比等于k.证明:∵△ABC∽△A'B'C',相似比为k,∴===k,∴AB=kA'B',BC=kB'C',AC=kA'C',∴==k.【预习自测】如果两个相似三角形对应边之比是1∶2,那么它们的对应中线之比是1∶2,对应高之比是1∶2,对应角平分线之比是1∶2.知识点二相似三角形的面积比。
《27.2.2 相似三角形的性质》教案、导学案
27.2.2 相似三角形的性质【教学目标】1.理解相似三角形的性质;(重点)2.会利用相似三角形的性质解决简单的问题.(难点)【教学过程】一、情境导入两个三角形相似,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.例如,在图中,△ABC和△A′B′C′是两个相似三角形,相似比为k,其中AD、A′D′分别为BC、B′C′边上的高,那么AD、A′D′之间有什么关系?二、合作探究探究点一:相似三角形的性质【类型一】利用相似比求三角形的周长和面积如图所示,平行四边形ABCD中,E是BC边上一点,且BE=EC,BD、AE 相交于F点.(1)求△BEF与△AFD的周长之比;(2)若S△BEF=6cm2,求S△AFD.解析:利用相似三角形的对应边的比可以得到周长和面积之比,然后再进一步求解.解:(1)∵在平行四边形ABCD中,AD∥BC,且AD=BC,∴△BEF∽△AFD.又∵BE=12BC,∴BEAD=BFDF=EFAF=12,∴△BEF与△AFD的周长之比为BE+BF+EFAD+DF+AF=12;(2)由(1)可知△BEF∽△DAF,且相似比为12,∴S△BEFS△AFD=(12)2,∴S△AFD=4S△BEF=4×6=24cm2.方法总结:理解相似三角形的周长比等于相似比,面积比等于相似比的平方是解决问题的关键.【类型二】利用相似三角形的周长或面积比求相似比若△ABC∽△A′B′C′,其面积比为1∶2,则△ABC与△A′B′C′的相似比为( )A.1∶2 B.2∶2C.1∶4 D.2∶1解析:∵△ABC∽△A′B′C′,其面积比为1∶2,∴△ABC与△A′B′C′的相似比为1∶2=2∶2.故选B.方法总结:解决问题的关键是掌握相似三角形的面积比等于相似比的平方.【类型三】利用相似三角形的性质和判定进行计算如图所示,在锐角三角形ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别为18和8,DE=3,求AC边上的高.解析:求AC边上的高,先将高线作出,由△ABC的面积为18,求出AC的长,即可求出AC边上的高.解:过点B作BF⊥AC,垂足为点F.∵AD⊥BC, CE⊥AB,∴Rt△ADB∽Rt△CEB,∴BDBE=ABCB,即BDAB=BECB,且∠ABC=∠DBE,∴△EBD∽△CBA, ∴S△BEDS△BCA=(DEAC)2=818.又∵DE=3,∴AC=4.5.∵S△ABC=12AC·BF=18, ∴BF=8.方法总结:解决此类问题,可利用相似三角形周长的比等于相似比、面积比等于相似比的平方来解答.【类型四】利用相似三角形线段的比等于相似比解决问题如图所示,PN∥BC,AD⊥BC交PN于E,交BC于D.(1)若AP∶PB=1∶2,S△ABC=18,求S△APN;(2)若S △APN ∶S 四边形PBCN =1∶2,求AEAD的值.解析:(1)由相似三角形面积比等于对应边的平方比即可求解;(2)由△APN 与四边形PBCN 的面积比可得△APN 与△ABC 的面积比,进而可得其对应边的比.解:(1)因为PN ∥BC ,所以∠APN =∠B ,∠ANP =∠C ,△APN ∽△ABC ,所以S △APN S △ABC =(AP AB )2.因为AP ∶PB =1∶2,所以AP ∶AB =1∶3.又因为S △ABC =18,所以S △APNS △ABC =(13)2=19,所以S △APN =2; (2)因为PN ∥BC ,所以∠APE =∠B ,∠AEP =∠ADB ,所以△APE ∽△ABD ,所以AP AB =AE AD ,S △APN S △ABC =(AP AB )2=(AE AD )2.因为S △APN ∶S 四边形PBCN =1∶2,所以S △APN S △ABC =13=(AE AD)2,所以AE AD =13=33.方法总结:利用相似三角形对应线段的比等于相似比可以推出相似三角形面积的比等于相似比的平方.【类型五】 利用相似三角形的性质解决动点问题如图,已知△ABC 中,AB =5,BC =3,AC =4,PQ ∥AB ,P 点在AC 上(与A 、C 不重合),Q 点在BC 上.(1)当△PQC 的面积是四边形PABQ 面积的13时,求CP 的长;(2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长. 解析:(1)由于PQ ∥AB ,故△PQC ∽△ABC ,当△PQC 的面积是四边形PABQ面积的13时,△CPQ 与△CAB 的面积比为1∶4,根据相似三角形的面积比等于相似比的平方,可求出CP 的长;(2)由于△PQC ∽△ABC ,根据相似三角形的性质,可用CP 表示出PQ 和CQ 的长,进而可表示出AP 、BQ 的长.根据△CPQ 和四边形PABQ 的周长相等,可将相关的各边相加,即可求出CP 的长.解:(1)∵PQ ∥AB ,∴△PQC ∽△ABC ,∵S △PQC =13S 四边形PABQ ,∴S △PQC ∶S △ABC =1∶4,∵14=12,∴CP =12CA =2; (2)∵△PQC ∽△ABC ,∴CP CA =CQ CB =PQ AB ,∴CP 4=CQ 3,∴CQ =34CP .同理可知PQ =54CP ,∴C △PCQ =CP +PQ +CQ =CP +54CP +34CP =3CP ,C 四边形PABQ =PA +AB +BQ +PQ =(4-CP )+AB +(3-CQ )+PQ =4-CP +5+3-34CP +54CP =12-12CP ,∴12-12CP =3CP ,∴72CP =12,∴CP =247.方法总结:由相似三角形得出线段的比例关系,再根据线段的比例关系解决面积、线段的问题是解题的关键.三、板书设计1.相似三角形的对应角相等,对应边的比相等;2.相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;3.相似三角形的面积的比等于相似比的平方. 【教学反思】本节教学过程中,学生们都主动地参与了课堂活动,积极地交流探讨,发现的问题较多:相似三角形的周长比,面积比,相似比在书写时要注意对应关系,不对应时,计算结果正好相反;这两个性质使用的前提条件是相似三角形等等.同学们讨论非常激烈,本节课堂教学取得了明显的效果.27.2.2 相似三角形的性质教学目标:知识与技能1、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法。
27.2.2 相似三角形的性质导学案(教师版学生版)
27.2.2相似三角形的性质教学目标:理解并掌握相似三角形的对应线段(高、中线、角平分线)之间的关系,相似三角形周长的比等于相似比、面积比等于相似比的平方,并能用来解决简单的问题.提高分析和推理能力.在对性质定理的探究中,学生经历“观察—猜想—论证—归纳”的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度,并在其中体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质.经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度与价值观,体验解决问题策略的多样性.教学重点:理解并掌握相似三角形周长的比、三线的比等于相似比、面积比等于相似比的平方.教学难点:探索相似多边形周长的比、三线的比等于相似比、面积比等于相似比的平方.教学过程:一、新知引入1、相似三角形的判定方法有哪些?2、相似三角形有哪些性质?相似三角形的对应角相等,对应边成比例.3、三角形有哪些相关的线段?中线、高和角平分线.这些线段在相似三角形中具有怎样的特点?今天我们一起探索这些奥秘!二、新知讲解教师多媒体课件出示:已知:如图,△ABC∽△A′B′C′,它们的相似比为k,AD,A′D′是对应高.求证:ADA′D′=ABA′B′=k.探索1:这个题目中已知了哪些条件?△ABC和△A′B′C′相似,这两个三角形的相似比是k,AD,A′D′分别是它们的高.我们要证的是什么?它们的高的比等于它们对应边的比,等于这两个三角形的相似比.你是怎样证明的呢?证明△ABD和△A′B′D′相似,然后由相似三角形的对应边成比例得到ADA′D′=ABA′B′.你怎样证明△ABD和△A′B′D′相似呢?学生思考后回答:因为△ABC和△A′B′C′相似,由相似三角形的对应角相等,所以∠B=∠B′,∠ADB=∠A′D′B′=90°.根据两角对应相等的两个三角形相似得到△ABD和△A′B′D′相似.学生写出证明过程.活动1.已知:如图,△ABC∽△A′B′C′,它们的相似比为k,AD,A′D′是对应的中线.求证:AD A ′D ′=ABA ′B ′=k.证明:∵△ABC ∽△A ′B ′C ′, ∴∠B =∠B ′,AB A ′B ′=BCB ′C ′=k.又∵AD 和A ′D ′分别是△ABC 和△A ′B ′C ′的中线,∴BD =12BC ,B ′D ′=12B ′C ′,BD B ′D ′=12BC 12B ′C ′=BC B ′C ′=k ,∴△ABD ∽△A ′B ′D ′(两边对应成比例且夹角相等的两个三角形相似), ∴AD A ′D ′=ABA ′B ′=k. 活动2.已知:如图,△ABC ∽△A ′B ′C ′,它们的相似比为k ,AD ,A ′D ′分别是∠BAC 和∠B ′A ′C ′的平分线.求证:AD A ′D ′=ABA ′B ′=k.证明:∵△ABC ∽△A ′B ′C ′,∴∠B =∠B ′,∠BAC =∠B ′A ′C ′.又∵AD 和A ′D ′分别是∠BAC 和∠B ′A ′C ′的平分线, ∴∠BAD =12∠BAC ,∠B ′A ′D ′=12∠B ′A ′C ′,∠BAD =∠B ′A ′D ′,∴△BAD ∽△B ′A ′D ′(两角对应相等的两个三角形相似), ∴AD A ′D ′=ABA ′B ′=k. 于是我们就得到了相似三角形的一个性质定理. ●归纳:相似三角形的性质1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 例题讲解例:如图,△ABC 是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?解:设正方形PQMN 是符合要求的△ABC 的高AD 与PN 相交于点E 。
人教版九年级数学下册:27.2.2 《相似三角形的性质》教学设计3
人教版九年级数学下册:27.2.2 《相似三角形的性质》教学设计3一. 教材分析教材内容为人教版九年级数学下册第27章第2节第2部分《相似三角形的性质》。
本节课主要学习相似三角形的性质,包括相似三角形的对应边成比例、对应角相等以及相似三角形的面积比等于相似比的平方。
这些性质是进一步学习几何知识的基础,对于学生形成完整的几何体系具有重要意义。
二. 学情分析九年级的学生已经学习了三角形的性质、角的度量等基础知识,对于图形的观察和分析能力有所提高。
但是,对于相似三角形的性质的理解和应用还需要进一步引导和培养。
此外,学生对于数学语言的严谨性和逻辑推理能力还需要加强训练。
三. 教学目标1.知识与技能:使学生掌握相似三角形的性质,包括对应边成比例、对应角相等以及面积比等于相似比的平方。
2.过程与方法:通过观察、分析、推理等方法,培养学生的逻辑思维能力和图形分析能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和严谨的学习态度。
四. 教学重难点1.重点:相似三角形的性质及其应用。
2.难点:对于相似三角形性质的深入理解和逻辑推理。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。
通过设置问题引导学生观察、分析和推理,培养学生的图形分析能力和逻辑思维能力。
同时,小组合作学习,增强学生的团队合作意识。
六. 教学准备1.准备相似三角形的图片和实例,用于引导学生观察和分析。
2.准备多媒体教学设备,用于展示和解释相似三角形的性质。
3.准备练习题和作业,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些相似三角形的图片,引导学生观察和思考:这些三角形有什么共同的特点?从而引出相似三角形的性质。
2.呈现(10分钟)讲解相似三角形的性质,包括对应边成比例、对应角相等以及面积比等于相似比的平方。
通过多媒体动画展示,使学生更直观地理解这些性质。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,运用相似三角形的性质进行分析和推理。
人教版九年级数学下册:27.2.2 《相似三角形的性质》教学设计2
人教版九年级数学下册:27.2.2 《相似三角形的性质》教学设计2一. 教材分析《人教版九年级数学下册》第27.2.2节《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的内容。
本节主要让学生掌握相似三角形的性质,并能够运用这些性质解决实际问题。
教材通过具体的例题和练习,引导学生探究相似三角形的性质,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的概念,并对相似三角形的性质有一定的了解。
但在实际运用中,对相似三角形的性质的理解和运用还存在一定的困难。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等活动,加深对相似三角形性质的理解,提高解决问题的能力。
三. 教学目标1.理解相似三角形的性质,并能够运用性质解决实际问题。
2.培养学生的观察能力、操作能力、逻辑思维能力和解决问题的能力。
3.激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.相似三角形的性质及其运用。
2.学生在实际问题中,如何运用相似三角形的性质解决问题。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考、交流等活动,发现相似三角形的性质。
2.使用案例分析法,让学生在具体的问题中,运用相似三角形的性质解决问题。
3.运用启发式教学法,引导学生主动探究,培养学生的创新精神和合作意识。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题和课后作业。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾相似三角形的概念和性质。
例如:在平面直角坐标系中,已知两个三角形的三个顶点坐标,如何判断这两个三角形是否相似?2.呈现(10分钟)呈现教材中的例题,引导学生观察、分析,发现相似三角形的性质。
通过小组讨论,让学生总结出相似三角形的性质。
3.操练(10分钟)让学生通过实际的例题,运用相似三角形的性质解决问题。
人教版九年级数学下册27.2.2:相似三角形的性质 导学案设计
人教版九年级数学下册第二十七章相似27.2.2相似三角形的性质导学案教学目标理解并掌握相似三角形的性质.预习反馈阅读教材P37~39,理解相似三角形的性质,并完成下列预习内容.(1)相似三角形对应中线的比、对应高的比、对应角平分线的比都等于相似比.(2)如图,△ABC∽△A′B′C′,相似比为k,AD⊥BC于点D,A′D′⊥B′C′于点D′.①你能发现图中还有其他的相似三角形吗?【解答】其他的相似三角形还有△ABD∽△A′B′D′,△ADC∽△A′D′C′.②△ABC与△A′B′C′中,C△ABCC△A′B′C′=k,S△ABCS△A′B′C′=k2.【点拨】在运用相似三角形的性质时,要注意周长的比与面积的比之间的区别,不要混为一谈,另外面积的比等于相似比的平方,反过来相似比等于面积比的算术平方根.例题及讲解例如图,在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D.若△ABC的边BC上的高为6,面积为125,求△DEF的边EF上的高和面积.【解答】在△ABC和△DEF中,∵AB=2DE,AC=2DF,∴DE AB =DF AC =12. 又∠D =∠A ,∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为12. ∵△ABC 的边BC 上的高为6,面积为125,∴△DEF 的边EF 上的高为12×6=3, 面积为(12)2×125=3 5. 【跟踪训练】 如图,在▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE.若△DEF 的面积为10,则▱ABCD 的面积为多少?解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AB ∥CE.∴△DEF ∽△CEB ,△DEF ∽△ABF.∴S △DEF S △CEB =(DE CE )2=(DE CD +DE)2=(DE 3DE )2=19,S △DEF S △ABF =(DE AB )2=(DE CD )2=(DE 2DE )2=14. ∴S △CEB =90,S △ABF =40.∴S ▱ABCD =S △ABF +S 四边形BCDF =S △ABF +S △CEB -S △DEF =40+90-10=120.巩固训练1.若两个相似三角形的相似比为1∶2,则它们面积的比为(C)A.2∶1B.1∶2C.1∶4D.1∶52.如图,在▱ABCD 中,点E 在边DC 上,DE ∶EC =3∶1,连接AE 交BD 于点F ,则△DEF的面积与△BAF 的面积之比为(B)A.3∶4B.9∶16C.9∶1D.3∶13.如果△ABC ∽△DEF ,A ,B 分别对应D ,E ,且AB ∶DE =1∶2,那么下列等式一定成立的是(D)A.BC ∶DE =1∶2B.△ABC 的面积∶△DEF 的面积=1∶2C.∠A 的度数∶∠D 的度数=1∶2D.△ABC 的周长∶△DEF 的周长=1∶24.如果两个相似三角形的面积的比是4∶9,那么它们对应的角平分线的比是2∶3.5.已知△ABC ∽△A 1B 1C 1,△ABC 的周长与△A 1B 1C 1的周长的比值是32,BE ,B 1E 1分别是它们对应边上的中线,且BE =6,则B 1E 1=4.6.如图所示,Rt △ABC ∽Rt △DFE ,CM ,EN 分别是斜边AB ,DF 上的中线,已知AC =9 cm ,CB =12 cm ,DE =3 cm.(1)求CM 和EN 的长;(2)你发现CM NE的值与相似比有什么关系?得到什么结论?解:(1)在Rt △ABC 中,AB =AC 2+CB 2=92+122=15,∵CM 是斜边AB 的中线,∴CM =12AB =7.5. ∵Rt △ABC ∽Rt △DFE ,∴DE AC =DF AB ,即39=13=DF 15. ∴DF =5.∵EN 为斜边DF 上的中线,∴EN =12DF =2.5. (2)∵CM EN =7.52.5=31,相似比为AC DE =93=31, ∴相似三角形对应中线的比等于相似比.课堂小结本节课我们学习了哪些内容?。
人教版九年级数学下册第二十七章27.2.2《相似三角形的性质》教案设计
《相似三角形的性质》教案设计一、教学目标1. 知识目标能探索相似三角形一系列性质的证明过程,理解相似三角形的性质,并能运用相似三角形的性质计算有关角、边、周长和面积问题2. 能力目标经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度。
利用相似三角形的性质解决实际问题,培养学生的创新意识。
3. 情感目标掌握初步的逻辑推理及类比的思维方法,感受从一般到特殊的认知规律,通过主动探索,体验成功的喜悦。
通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题复杂问题转化为简单问题的思想方法。
二、教学重点、难点、疑点教学重点相似三角形性质定理的探索及应用。
教学难点相似三角形性质的归纳推理,特别是面积之间的关系,并且注意“相似比”与“相似比的平方”的区分。
三、教学过程一、复习引入(1)、相似三角形有哪些性质?用符号语言怎样表示?(2)、如图:ΔABC~ΔDEF,相似比为k,则 x=____ y=_____ k=_____ ∠B=___ 二、探究新知相似三角形除了对应角相等,对应边成比例之外,还有其他性质吗?探究一、如图:相似△ ABC与△ DEF的相似比是多少?周长的比为多少?并且你发现了什么?让学生分组讨论得出:相似三角形周长的比等于相似比。
我们应该怎样证明这个结论呢?让学生先独立思考证明过程,然后小组讨论得出证明的过程,让其中一个小组代表展示证明的过程,以利于查缺补漏,从而得出了:相似三角形周长的比等于相似比。
探究二、相似三角形对应高的比,对应中线的比,对应角平分线的比和相似比又有什么关系呢?学生分小组讨论,第一小组讨论对应高线的关系,第二小组讨论对应角平分线的关系,第三小组讨论对应中线的关系,然后,让三个小组选代表分别展示相似三角形的这三种线之间的对应关系,最后,老师在大屏幕上展示对应高与相似比之间的关系,这样,又得出了相似三角形的第二个性质:相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比。
《相似三角形的性质》导学案 最新word版
27.2.2 相似三角形的性质教学目标:知识与技能1、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法。
2、灵活运用相似三角形的判定和性质,提高分析,推理能力。
过程与方法:1、对性质定理的探究经历观察——猜测——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度。
2、通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。
3、通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜测、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。
情感与态度:在学习和探讨的过程中,体验特殊到一般的认知规律;通过学生之间的交流合作,在合作中体验成功的喜悦,树立学习的自信心;通过对生活问题的解决,体会数学知识在实际中的广泛应用。
教学重点:相似三角形性质定理的探索及应用教学难点:综合应用相似三角形的性质与判定探索三角形中面积之间的关系教学方法与手段:探究式教学、小组合作学习、多媒体教学教学过程:一、创设情境,引入新课1、我们已经学了相似三角形的哪些性质?2、问题情境:某施工队在道路拓宽施工时遇到这样一个问题,马路旁原有一个面积为100平方米、周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米。
现在的问题是:被削去的局部面积有多少?周长是多少?你能解决这个问题吗?二、实践交流,探索新知1、看一看:△ABC与△ADE有什么关系?为什么?2、算一算:△ABC与△ADE的相似比是多少?△ABC与△ADE的周长比是多少?面积比是多少?3、想一想:你发现上面两个相似三角形的周长比和相似比有什么关系?面积比与相似比又有什么关系?4、验一验:是不是任何两个相似三角形都有此关系呢?你能加以验证吗?5、在学生思考、讨论的根底上给出证题过程〔多媒体〕6、归纳小结;相似三角形性质定理:相似三角形的周长比等于相似比,面积比等于相似比的平方。
相似三角形的性质导学案
课题:27.2.2相似三角形的性质撰写:舒传江审核:_____ 授课日期:__月__日教学课时:第周第课时教学目标知识与技能目标掌握相似三角形对应高的比、对应中线的比、对应角平分线的比与相似比的关系。
过程与方法目标探究、归纳相似三角形周长的比、面积的比与相似比的关系。
情感、态度与价值观目标能够利用所学解决相关问题,培养学生学数学用数学的意识。
教学重点相似三角形的性质及应用教学难点能够利用相似三角形的性质解决相关问题教学过程环节教学内容调整意见知识回顾一、(1)相似三角形有哪些判定方法?平行判定,(SSS),(SAS),(AA),(HL)(2)相似三角形有什么性质?对应角相等,对应边成比例;(3)什么叫相似比?相似多边形对应边的比叫相似比练习:如图,DE∥BC,AD=3,DB=4,则△ADE与△ABC 的相似比为____________,△ABC与△ADE的相似比为____________,自学指导阅读课本课本第37—38面,认真思考以下问题:1.相似三角形对应高、对应中线、对应角平分线的比与相似比有什么关系?2.相似三角形的周长和面积比与相似比有什么关系?合作探究探究:如果两个三角形相似,它们的周长、面积之间有什么关系?两个相似多边形呢?(见课件)归纳:相似三角形的性质1.对应角相等、对应边成比例。
2.对应高、对应中线、对应角平分线、周长的比等于相似比。
3.三角形相似的面积比等于相似比的平方例1、如图在ΔABC 和ΔDEF中,AB=2DE,AC=2DF,∠A=∠D,ΔABC的周长是24,面积是125,求ΔDEF的周长和面积。
解:在△ABC和△DEF中,∵AB=2DE,AC=2DF,∴12 DE DFAB AC==又∠D=∠A,∴△DEF∽△ABC,相似比为1 2∴△DEF的周长为124122⨯=,面积为2112535 2⎛⎫⨯=⎪⎝⎭例2、如图,在△ABC中,D是AB的中点, DE∥BC则:(1)S △ADE : S △ABC =1:4(2)S △ADE: S 梯形DBCE =1:3快乐晋级相信自己,成功就在前方!来吧!一起挑战! (见课件)课堂小结议一议:本节课你学到了什么?作业课本39页第1,2 题教学反思。
人教版数学九年级下册《27.2.2相似三角形的性质》教案
人教版数学九年级下册《27.2.2相似三角形的性质》教案一. 教材分析人教版数学九年级下册《27.2.2相似三角形的性质》这一节主要介绍了相似三角形的性质。
相似三角形是指有两个角对应相等,并且它们对应边的比例相等的两个三角形。
这部分内容是学生学习几何的重要基础,也是初中数学的重要知识点。
教材通过具体的例题和练习,帮助学生理解和掌握相似三角形的性质,并能够运用到实际问题中。
二. 学情分析学生在学习这一节内容时,已经掌握了三角形的基本概念和性质,具备了一定的几何知识基础。
但是,对于相似三角形的性质的理解和运用,还需要通过具体的例题和练习来进行巩固。
此外,学生可能对于一些概念和性质的理解还不够深入,需要通过教师的引导和讲解来进行深化。
三. 教学目标1.知识与技能:学生能够理解相似三角形的性质,并能够运用到实际问题中。
2.过程与方法:学生通过观察、操作、思考、交流等活动,培养自己的几何思维能力和解决问题的能力。
3.情感态度与价值观:学生能够积极参与学习,克服困难,体验成功,增强自信心,培养对数学的兴趣和探究精神。
四. 教学重难点1.重点:相似三角形的性质及其运用。
2.难点:对于相似三角形性质的深入理解和运用。
五. 教学方法1.情境教学法:通过具体的例题和实际问题,引导学生理解和运用相似三角形的性质。
2.引导发现法:教师引导学生观察、操作、思考、交流,发现相似三角形的性质。
3.练习法:通过大量的练习,巩固学生对相似三角形性质的理解和运用。
六. 教学准备1.教具准备:三角板、直尺、圆规等。
2.教学课件:制作相关的教学课件,帮助学生直观地理解和掌握相似三角形的性质。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过具体的例题和实际问题,引导学生观察和思考,呈现相似三角形的性质。
引导学生发现相似三角形的性质,并能够运用到实际问题中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.2 相似三角形的性质
1.知道相似三角形对应线段(中线、高线、角平分线)的比与相似比之间的关系.
2.知道相似三角形的周长比和面积比与相似比之间的关系.
3.能灵活运用相似三角形的判定和性质解决简单的问题,提高分析、推理能力.
4.重点:相似三角形的性质.
阅读教材本课时第一页的内容,完成下列问题.
1.如右图,△ABC∽△A'B'C',相似比为k.
(1)分别作△ABC和△A'B'C'的对应中线AE、A'E'.求AE∶A'E'.
如图,∵△ABC∽△A'B'C',∴∠B=∠B',=,又
∵BE=BC,B'E'=B'C',∴=,∴△ABE∽△A'B'E',∴==k.
(2)分别作△ABC和△A'B'C'的对应角平分线AF,A'F'.求AF∶A'F'.
如图,∵△ABC∽△A'B'C',∴∠B=∠B',∠BAC=∠B'A'C',又
∵∠BAF=∠BAC,∠B'A'F'=∠B'A'C',∴∠BAF=∠B'A'F',∴△ABF∽△A'B'F',∴==k.
【归纳总结】相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.
【讨论】对于上面的问题,△ABC与△A'B'C'的周长比等于多少?如何证明你的结论?
周长比等于k.证明:∵△ABC∽△A'B'C',相似比为
k,∴===k,∴AB=kA'B',BC=kB'C',AC=kA'C',∴==k.
【预习自测】如果两个相似三角形对应边之比是1∶2,那么它们的对应中线之比是
两个相似三角形的面积与相似比k有什么关系?请根据教材本课时“图27.2—13”加以证明.
==·=k2.
【归纳总结】相似三角形的面积比等于相似比的平方.
【预习自测】1.已知△ABC∽△DEF,若△ABC与△DEF的相似比为2∶3,则△ABC与△DEF的面积比为4∶9.
2.若△ABC∽△DEF,它们的面积比为4∶1,则△ABC与△DEF的相似比为2∶1.
互动探究1:已知两个相似三角形对应中线之比为1∶4,那么它们的对应高之比为(C)
A.1∶2
B.2∶3
C.1∶4
D.1∶5
[变式训练]1.已知△ABC∽△A'B'C',对应角平分线的比是1∶,且BC边上的高是3,则B'C'边上的高是9.
2.已知△ABC∽△A1B1C1,AD、A1D1分别是△ABC、△A1B1C1的角平分
线,BC=6,B1C1=4,AD=4.8,则A1D1的长为3.2.
互动探究2:如图,已知DE∥BC,且AD∶BD=1∶2,则△ADE与△ABC的周长比为.
[变式训练]两个相似三角形的相似比是1∶2,其中较小三角形的周长为6 cm,则较大三角形的周长为12 cm.
【方法归纳交流】相似三角形的周长比等于相似比.
互动探究3:两个相似三角形的相似比为2∶3,面积之差为25 cm2,则这两个三角形的面积分别是20 cm2和45 cm2.
[变式训练]1.如图,在△ABC中,点D、E分别在边AB、AC上,且==,则S△ADE∶S四边
的值为.
形BCED
2.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则= .
【方法归纳交流】相似三角形的面积比等于相似比的平方.如果两个图形不相似,需要进行转化.
互动探究4:如图,在Rt△ABC中,∠ACB=90°,P为AB上一点,Q为BC上一点,且PQ⊥AB,
若△BPQ的面积等于四边形APQC面积的,AB=5 cm,PB=2 cm,求△ABC的面积.
解:∵∠C=∠QPB,∠B=∠B,∴△BPQ∽△BCA.
又∵=,∴S△BPQ∶S△BCA=1∶5,∴=.
∵AB=5,∴QB=.∵PB=2,∴QP==1.
∴△BPQ的面积=×2×1=1,∴S△BCA=5.。