河南省永城市实验高级中学2017_2018学年高一数学下学期期末考试试题201810090242

合集下载

【全国市级联考】河南省2017—2018学年高一下学期期末考试数学试题

【全国市级联考】河南省2017—2018学年高一下学期期末考试数学试题

2017-2018学年下期期末考试高一数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 的值为()A. B. C. D.2. 已知向量(),(),则与()A. 垂直B. 不垂直也不平行C. 平行且同向D. 平行且反向3. 下列各式中,值为的是()A. B. C. D.4. 某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为()学_科_网...学_科_网...A. 19,13B. 13,19C. 19,18D. 18,195. 从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是()A. B. C. D.6. 函数在一个周期内的图像是()A. B. C. D.7. 设单位向量,的夹角为60°,则向量与向量的夹角的余弦值是()A. B. C. D.8. 如果下面程序框图运行的结果,那么判断框中应填入()A. B. C. D.9. 甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是()A. B. C. D.10. 已知函数的图像关于直线对称,则可能取值是()A. B. C. D.11. 如图所示,点,,是圆上的三点,线段与线段交于圈内一点,若,,则()A. B. C. D.12. 已知平面上的两个向量和满足,,,,若向量,且,则的最大值是()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,,则__________.14. 已知样本7,8,9,,的平均数是8,标准差是,则__________.15. 已知的三边长,,,为边上的任意一点,则的最小值为__________.16. 将函数的图像向左平移个单位,再向下平移2个单位,得到的图像,若,且,,则的最大值为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知向量,.(I)求向量与向量夹角的余弦值(II)若,求实数的值.18. 某同学用“五点法”画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:(I)请将上表数据补充完整,并直接写出函数的解析式(II)将的图像上所有点向左平行移动个单位长度,得到的图像,求的图像离轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利(元)与该周每天销售这种商品数之间的一组数据关系如表:(I)画出散点图;(II)求纯利与每天销售件数之间的回归直线方程;(III)估计当每天销售的件数为12件时,每周内获得的纯利为多少?附注:,,,,,.20. 在矩形中,点是边上的中点,点在边上.(I)若点是上靠近的四等分点,设,求的值;(II)若,,当时,求的长.21. 某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(I)若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II)若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22. 已知函数(),的图象与直线相交,且两相邻交点之间的距离为.(I)求函数的解析式;(II)已知,求函数的值域;(III)求函数的单调区间并判断其单调性.。

河南省永城市实验高级中学高一化学下学期期末考试试题(2021年整理)

河南省永城市实验高级中学高一化学下学期期末考试试题(2021年整理)

河南省永城市实验高级中学2017-2018学年高一化学下学期期末考试试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河南省永城市实验高级中学2017-2018学年高一化学下学期期末考试试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河南省永城市实验高级中学2017-2018学年高一化学下学期期末考试试题的全部内容。

2017—2018学年度下期期末考试高一化学试题考试说明:1.本试卷共两大题,满分100分,考试时间90分钟。

2.第一大题为选择题,必须用2B铅笔将你选择的正确答案涂在答题卡上。

第二大题为非选择题。

第二大题的解答,必须在答题卷规定的区域内解答。

3.可能用到的相对原子质量:H 1, C 12, O 16,一、选择题:本题包括16小题,每小题只有一个符合题意的选项,请将符合题意的选项序号涂在答题卡相应位置。

每小题3分,共48分。

1、下列说法正确的是()A. 葡萄糖、果糖和蔗糖都能发生水解反应B。

糖类、油脂、蛋白质都是由C、H、O三种元素组成的C. 糖类、油脂、蛋白质都是高分子化合物D。

油脂有油和脂肪之分,但都属于酯2、氟、氯、溴、碘四种元素,下列有关它们的性质递变规律的说法,不正确的是()A.单质的密度依次增大 B.单质的熔点和沸点依次升高C.Cl2可以从KI溶液中置换出I2 D.Br2可以从NaCl溶液中置换出Cl23、原子序数为x的元素位于周期表中的第ⅡA族,则原子序数为x+1的元素不可能为()A. 第ⅢA族B. 第ⅠA族 C。

镧系元素 D。

第ⅢB族4、元素A原子最外层电子数是次层外的3倍,元素B原子有三个电子层,且最外层电子数等于其电子层数,则A、B两种元素组成的化合物的化学式为()A。

河南省永城市实验高级中学高一英语下学期期末考试试题

河南省永城市实验高级中学高一英语下学期期末考试试题

2017--2018学年度下期期末考试高一英语试题本试卷分试题卷和答题卷两部分,试题卷共8页,答题卷共2页。

请按要求把答案涂、写在答题卡规定的范围内,超出答题框或答在试题卷上的答案无效。

满分120分,考试时间100分钟。

考试结束只收答题卡。

第Ⅰ卷(选择题;共70分)第一部分听力(略)第二部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。

AWhen you are feeling unhappy or forget how great you are, these are six ways to make you feel good about yourself.◆Look in the mirror and say to yourself, “ I am a special person and there’sno one in the world like me.” I can do anything!” it may not sound so go od, but it really works!◆ Do something nice for someone. Helping others always makes you feel good.◆ Smile! Be friendly to people you meet. Look for the good things in your friends and family.◆ Learn something new! Have you always wanted to decorate yo ur own room or learn how to swim? Go for it! New challenges are fun and give you a sense of accomplishment when you have finished.◆ Read and start a diary. Turn off the TV and let your imagination fly! Write down your thoughts , dreams or anything you want! Writing always helps to express your feelings.◆ Stay with your family. We all need our family time. Talk with your Mum or Dad or maybe even your cousin.21. This passage may be taken fromA. a novelB. a magazineC. a science bookD. a story book22. What do the underlined words “a sense of accomplishment” in Paragraph 5 mean?A. 忧伤感B. 挫折感C. 成就感D. 信任感23. Which of the following should you say “NO” when you are unhappy?A. Stay alone at home as much as possible.B. Learn something new and go for it!C. Keep a diary to express your feeling.D. You should always look for the good things of others.24. The best title for the passage is .A. Do Your BestB. It’s Never Too Late t o LearnC. Seeing is Believing.D. Six Ways to Feel Good About Yourself.B25. How many parts does the book have?A. 8B. 4C. 18D. 2626. If you’re interested in sho pping, you can read________.A. Chapter 18B. Chapter 8C. Chapter 16D. Chapter 627. The book does NOT include ________.A. information about visasB. help with European languagesC. ideas about what to take on a tripD. a section about traveling withpetsCOne day Jack went with his family to eat in a restaurant. They were sitting ata table and waiting for their meal. Suddenly, everyone around them started to covertheir noses. Some of them even left their tables and went away.When Jack’s family turned around to see what had caused this, they saw two homeless boys. The boys looked dirty and smelled bad. But both boys were smiling andhad beautiful blue eyes. They were looking for someone kind. One of the boys went to the counter and he counted the coins he had. The other boy looked sick and he stood quietly.The young lady at the counter asked the boy what they wanted. He said, “We only want a cup of coffee. “ That was all they could afford. Th ey wanted to sit in the restaurant and warm up. It was really cold outside. But to sit inside the restaurant, they had to buy something.When Jack’s mother saw this, she wanted to help the boys. She ordered some more food. Then she went to the two boy’s ta ble. She put the food on the table. The boys looked up at her and said, “Thank you.” When Jack saw what his mother did, he understood what the unconditional(无条件的 ) love was. His mother treated those boys kindly. She did not expect anything in return. Now Jack saves his own pocket money and helps homeless people whenever he can.28. Which of the following caused some people to leave their table?A. They had finished their mealsB. They thought the food was terrible.C. There wasn’t enough food in the restaur ant.D. Two boys came in and they smelled bad.29. Why did two boys come to the restaurant?A. Because they were hungry.B. Because they knew Robin’s family.C. Because they wanted to warm up.D. Because they wanted to have some coffee.30. What did Jack’s mother do?A. She ordered some food for the two boys.B. She gave the two boys some money.C. She asked Jack to play with the two boys.D. She invited the two boys to eat with her family.31. What did Jack learn from the story?A. We should laugh at others.B. We should treat others kindly.C. We should save pocket money.D. We shouldn't receive others’ help.DHave you ever done something foolish that made you feel so embarrassed(尴尬的)?Well, that’s exactly how I felt. On a Saturday morning last autumn, I had gone to town to do some shopping and as I was on my way home, it suddenly began to rain.I ran into a nearby phone box at once because I didn’t have an umbrella. It was raining so heavily that I have to stay in the phone box until it stopped.A few moments later, I saw a young man walk up to the phone box, wearing a yellow raincoat and holding a box. I didn’t want to go out into the rain, so I picked up the phone and pretended(假装) I was talking to someone. I thought the man would go away, but he didn’t. He just waited in the rain, watching me. I had to wave my hands about and acted as if I was deep in conversation.Luckily, it began to stop after about ten minutes. “Okay, Mum,” I said loudly into the phone, “I’ll see you later, Bye!” I put the phone down, picked up my shopping bag and walked out of the phone box. “I’m sorry I took so long,” I said to the man.“Oh, I don’t want to use the phone,” he replied, smiling. “I’ve just come to repair it. It’s out of order, you see.” I felt myself go red in the face and I hurried away with my head down, feeling a complete fool. That was certainly one of the most embarrassing moments of my life!32. Why did the writer go to the phone box and stay there?A. Because she wanted to keep warm.B. Because she wanted to phone her mother.C. Because it rained heavily and she had no umbrella with her.D. Because she wanted to wait for her friend there.33. What did the writer think the young man wanted to do?A. To shake hands with her.B. To use the phone.C. To repair the phone.D. To listen to the phone box.34. How long did the young man wait for?A. About ten minutes.B. About five minutes.C. About fifteen minutes.D. About thirty minutes.35. Which of the following is TRUE?A. The writer thought the rain would last long.B. The story happened on a cold Saturday morning last summer.C. It suddenly rained when the writer was on her way home after shopping.D. The writer was telephoning to her mother when the it rained.第二节(共5小题,每小题2分,满分10分)根据短文内容,从短文后的选项中选出填入空白处的最佳选项并在答题卡上将该项涂黑。

河南省永城市实验高级中学2018-2019学年高一化学期末检测试题

河南省永城市实验高级中学2018-2019学年高一化学期末检测试题

河南省永城市实验高级中学2018-2019学年高一化学期末检测试题一、单选题1.分类法在化学学科的发展中起到了非常重要的作用。

下列物质分类不合理的是()A.酸性氧化物:CO2、SO2、SiO2 B.碱性氧化物:Na2O2、MgO、CaOC.电解质:BaSO4、KAl(SO4)2•12H2O、HCl D.胶体:烟水晶、硅酸溶胶、云雾2.下列物质分类的正确组合是3.下列化学反应,在从海中提取金属镁的过程中,不会涉及的是A.Mg2++2OH- =Mg(OH)2↓B.Mg(OH)2+2HCl=MgCl2+2H2OC.MgCl2(熔融)Mg+Cl2↑D.Mg(OH)2ΔMgO+H2O4.利用碳酸钠晶体(Na2CO3·10H2O,相对分子质量286)来配制0.1mol/L的碳酸钠溶液980mL,假如其他操作均准确无误,下列情况会引起配制溶液的浓度偏高的是()A.称取碳酸钠晶体28.6gB.溶解时进行加热,并将热溶液转移到容量瓶中至刻度线C.转移时,对用于溶解碳酸钠晶体的烧杯没有进行洗涤D.定容后,将容量瓶振荡摇匀,静置发现液面低于刻度线,又加入少量水至刻度线5.a mol Na2O2和b mol NaHCO3固体混合后,在密闭容器中加热到250℃,使其充分反应,当排出气体为两种气体时,a︰b不可能为A.3︰4B.3︰2C.2︰3D.4︰56.下列有关物质的性质与用途具有对应关系的是A.MgO具有高熔点,可用于制耐火材料B.NaHCO3受热易分解,可用于治疗胃酸过多C.金属铜具有金属光泽,可用作导电材料D.浓硫酸具有脱水性,可用作干燥剂7.下列除杂质的操作中正确的是A.铁粉中混有铝粉:加入过量氨水充分反应、过滤B.CO2中混有HCl:将其通入NaOH溶液C.NaHCO3溶液中混有少量Na2CO3:往该溶液中通入过量CO2气体D.FeCl3溶液中混有FeCl2:加入适量KMnO4将FeCl2氧化成FeCl38.下列各组数值或物理量中,都不随水的“物质的量”的变化而变化的是A.水的沸点;水分子的数目 B.水的质量;水的相对分子质量C.水的体积;水中所含原子的数目 D.水的密度;水的摩尔质量9.下列关于氯气的叙述中不正确的是A .氯气呈液态时称为液氯B .氯气的密度比空气大C .氯气的水溶液含有多种分子D .氯气在碱性溶液中漂白性会增强 10.化学与生活、社会发展息息相关,下列有关说法不正确...的是 A .“时气错逆,霾雾蔽日”,雾所形成的气溶胶能产生丁达尔效应B .“青蒿一握,以水二升渍,绞取汁”,屠呦呦提取青蒿素的过程中发生了化学变化C .“熬胆矾铁釜,久之亦化为铜”,北宋沈括用胆矾炼铜的过程属于置换反应D .“外观如雪,强烧之,紫青烟起”,南北朝陶弘景对硝酸钾的鉴定过程中利用了焰色反应 11.在酸性溶液中,能大量共存的离子组是 A .3Al +、3Fe +、Cl -、3NO -B .2Mg +、2Ba +、3NO -、24SO -C .2S -、Na +、K +、Cl -D .Na +、3Fe +、24SO -、I -12.下列有关化学用语的说法正确的是( ) A .氯原子的结构示意图:B .中子数为6、质子数为6的碳原子:66C C .1H 与2H 互称同位素D .230Th 和232Th 的化学性质不相同13.下列各组微粒,在溶液中能大量共存的是( ) A .Ca 2+、Cl ﹣、CO 32-、K + B .Cu 2+、Cl ﹣、SO 42-、OH ﹣ C .K +、Cl ﹣、NO 3-、H +D .H +、Cl ﹣、CO 32-、Na +14.下列仪器常用于物质分离的是①漏斗 ②试管 ③蒸馏烧瓶 ④天平⑤ 分液漏斗 ⑥研钵 A .①③④ B .①③⑤ C .①②⑥ D .①③⑥ 15.下列各离子组能大量共存的是( ) A .2+Fe 、+H 、+Na 、3-NO B .3+Fe 、-Br 、+Na 、-I C .3+Fe 、+4NH 、+H 、2-4SOD .2+Mg、-OH 、+4NH 、3-NO16.下列图示的四种实验操作名称从左到右依次是( )A .过滤、蒸馏、蒸发、分液B .过滤、蒸发、蒸馏、分液C .蒸发、蒸馏、过滤、分液D .分液、蒸馏、蒸发、过滤17.下列物质既能与盐酸反应,又能与烧碱溶液反应的是 ( )① Al 2O 3 ②SiO 2 ③ Al ④CaCO 3 ⑤ Fe(OH)3 ⑥NaHCO 3 ⑦ NaHSO 4 ⑧Al(OH)3 A .①.③.⑧ B .除⑤.⑥.⑦.⑧外 C .①.③.⑥.⑧ D .①.②.⑥.⑦ 18.下列叙述不正确的是( ) A .丁达尔效应可以区别溶液和胶体B .合金与各组分金属相比一般具有更大的硬度C .向醋酸溶液中加入Na 2CO 3固体,溶液的导电性明显增强D .配制一定物质的量浓度溶液,定容时仰视容量瓶刻度线,使所得溶液浓度偏大 19.关于粗盐提纯的下列说法正确的是A.溶解粗盐时,加水越多越好B.滤去不溶性杂质以后,将滤液移至坩埚内加热浓缩C.当蒸发到剩有少量液体时,停止加热,利用余热将液体蒸干D.将制得的晶体转移到过滤器中用大量水进行洗涤20.用N A表示阿伏加德罗常数的值。

2017-2018学年第二学期期末高一教学质量监测含答案

2017-2018学年第二学期期末高一教学质量监测含答案

2017学年第二学期教学质量监测试卷高一数学本试卷共4页,22小题,全卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 本次考试不允许使用计算器。

5.考生必须保持答题卡的整洁.考试结束后,将答题卡交回。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一个是正确的. 1.5sin 3π的值是(﹡).A. 12-B.2 C. 12 D. 2- 2. 不等式220x x --+>的解集是(﹡).A. (1,)+∞B. (,2)-∞-C. (2,1)-D. (,2)(1,)-∞-⋃+∞ 3. 已知角θ的终边经过点(4,3)P - ,则()cos πθ-的值是(﹡).A.45 B.45- C.35 D.35- 4. 在等差数列{}n a 中,22a =,34,a =则10a =(﹡).A. 18B. 16C. 14D. 12 5. 若0,2πα⎛⎫∈ ⎪⎝⎭,且21sin cos 24αα+=,则tan α的值等于(﹡).A.2B. C.D.6. 对任意向量,a b ,下列关系式中不恒成立....的是(﹡). A .||||||a b a b ⋅≤B .22()||a b a b +=+C .||||||a b a b -≤-D .()()22a b a b a b+⋅-=-7. 设123,,A A A 是平面上给定的3个不同点, 则使123MA MA MA ++=0成立的点M 的个数为(﹡).A. 0B. 1C. 2D. 3 8. 要得到函数2sin 2y x =的图象,只要将函数2sin(21)y x =+的图象(﹡).A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位 D .向右平移12个单位 9. 函数23sin 23y x π⎛⎫=- ⎪⎝⎭(﹡).A .在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增B .在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减C .在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减D .在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增10. 已知等比数列{}n a 满足22463,21a a a a +=+=,则468a a a ++=(﹡).A .21B .42C .63D .8411. 要制作一个容积为34m ,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是(﹡).A. 80元B. 120元C. 160元D. 240元12. 在ABC ∆中,角A B C 、、所对边的长分别为a b c 、、,若222sin sin 2sin A B C +=,则cos C 的最小值为(﹡). A. 12-B. 12C. 2D.二、填空题:本大题共4小题,每小题5分,满分20分.把答案填在答题卡上. 13. 若向量=a 与(k =b 共线,则k 的值为 * .14. 已知关于x 的不等式220x ax a -+>在R 上恒成立,则实数a 的取值范围是 * .15. 设实数,x y 满足2,1,2x y x +⎧⎪⎨⎪⎩≥≤≤y 则z x y =-+的最大值是 * .16. 函数()sin 1f x x x =-在区间[0,2]π上所有零点的和等于 * .三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知平面向量a ,b 满足||1=a ,||=b a 与b 的夹角为θ.(Ⅰ)若a ∥b ,求⋅a b ; (Ⅱ)若a -b 与a 垂直,求θ.18. (本小题满分12分)在等差数列{}n a 中,已知35a =,6919a a +=.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设23n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.19. (本小题满分12分)用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡表中相应位置上.............,并直接写出函数()f x 的解 析式;(Ⅱ)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.20. (本小题满分12分)ABC ∆的内角,,A B C 所对的边分别为a ,b ,c,sin cos a B A =. (Ⅰ)求A ;(Ⅱ)若2b =,ABC ∆的面积为2,求a .21. (本小题满分12分)如图,在ABC ∆中,已知0135,6,BAC AB AC ∠=== (Ⅰ)求cos B ;(Ⅱ)若点D 在BC 边上,且ABD BAD ∠=∠,求CD 的长.BDAC22. (本小题满分12分)数列{}n a 满足111,(1)(1),N n n a na n a n n n *+==+++∈. (Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)设2n nb =,求数列{}n b 的前n 项和n S .2017-2018学年第二学期期末教学质量监测高一数学参考答案与评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分. 一、选择题二、填空题13. 1 14. (0,1) 15. 2 16.73π 三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 解:(1)∵a ∥b ,∴θ=0°或180°, ………………………2分 ∴cos 1θ=±, ……………………………………………3分 ∴|||cos 1cos θθ==a b =|a b ……………5分(Ⅱ)∵a -b 与a 垂直,∴(a -b )·a =0, ………………7分 即2||10θ-⋅-=a a b =, ……………………8分∴cos θ=22. ………………………………………………9分 又0°≤θ≤180°,∴θ=45°. ………………………………10分 18. (本小题满分12分)解:(Ⅰ)设等差数列{}n a 的公差为d ,………………………1分由已知得()()11125,5819.a d a d a d +=⎧⎪⎨+++=⎪⎩ ……………………3分解得13,1.a d =⎧⎨=⎩…………………………………………………4分所以()112na a n d n =+-=+. ……………………………5分(Ⅱ)由(I )可得3nn b n =+, ………………………………6分所以12310b b b b ++++……2310(31)(32)(33)(310)=++++++++…… …………7分()2310(3333)12310=+++⋅⋅⋅⋅⋅⋅+++++⋅⋅⋅⋅⋅⋅+………9分103(13)(110)10132-+⨯=+- …………………………………11分111335522=⨯+-. …………………………………………12分 19. (本小题满分12分)解:(Ⅰ)根据表中已知数据,可得,sin 325362=32A ππωφππωφπ⎧⋅+=⎪⎪⎪⋅+=⎨⎪⎪⎪⎩…………………2分 (没有列以上方程组,但能正确写出π3,2,6A ωϕ===-不扣分.)解得π3,2,6A ωϕ===-. ………………………………………………3分函数表达式为π()3sin(2)6f x x =-.………………………………………3分数据补全如下表:(填对表中 (Ⅱ)02x π≤≤,52666x πππ∴-≤-≤.…………………………8分 由正弦函数的性质, 当262x ππ-=,即3x π=时,()f x 取得最大值3. …………………9分当266x ππ-=-,即0x =时,3(0)2f =-,………………………10分当5266x ππ-=,即2x π=时,3()22f π=, ………………………11分()f x ∴的最小值为32-. ………………………………………………12分因此,()f x 在02π⎡⎤⎢⎥⎣⎦, 上最大值是3,最小值是32-.………………12分 20.(本小题满分12分)解:(Ⅰ)因为sin cos a B A =,所以由正弦定理,得sin sin cos A B B A =,………………………………2分又sin 0B ≠,从而tan A =……………………………4分由于0A π<<,所以3A π=.…………………………………6分(Ⅱ)因为2b =,ABC ∆所以12sin 232c π⨯⋅=, …………………………………8分 所以3c =. ……………………………………………………9分由余弦定理,得2222cos 7a b c bc A =+-=,……………11分所以a =…………………………………………………12分21. (本小题满分12分)解:由余弦定理得,中2222cos BC AC AB AC AB BAC =+-⋅∠, ……………1分220626cos1351836(36)90,=+-⨯⨯=+--= ………………2分所以BC =……………………………………………………………………3分又由正弦定理得,sin sin10AC BAC B BC ∠=== ………………………5分由题设知00045,B <<cos 10B ∴=== ……………7分 解法一:在ABD ∆中,ABD BAD ∠=∠,01802ADB B ∴∠=-, …………8分 由正弦定理得,sin sin sin =sin sin(2)sin 2AB B AB B AB BAD ADB B Bπ==∠-……………………10分6sin 32sin cos cos B B B B=== ……………………………………………………11分所以CD BC BD BC AD =-=-== ………………………12分 解法二:在ACD ∆中,ABD BAD ∠=∠,2ADC B ∴∠=,…………………8分 由正弦定理得,()0sin 45sin =sin sin 2AC B AC ACD AD ADC B-∠=∠ ……………………10分 ()00sin 45cos cos 45sin sin 2AC B B B-=……………………………………………11分22+==12分22.(本小题满分12分)解:(Ⅰ) 解法一:由已知得()111,n n n a a n n N n*++=++∈⋅⋅⋅⋅⋅⋅* 把2n =代入()*式,得2122a a =+,而11,a =所以24a =,………1分 把3n =代入()*式,得39a =,…………………………………………2分 把4n =代入()*式,得416a =, ………………………………………3分……………猜想:()211n a n -=-. ……………………………………………………4分把1n a -代入()*式,得2n a n =. …………………………………………6分(本题猜想之后应用数学归纳法证明.把()211n a n -=-代入()*式,得2n a n =这一步等价于数学归纳法证明中的“递推”,没有“递推”这一步,第(Ⅰ)问最多给4分) 解法二:由已知可得111n na a n n+=++, …………………………………2分 即111+-=+n na a n n,………………………………………………………3分 所以⎧⎫⎨⎬⎩⎭n a n 是以111=a 为首项,1为公差的等差数列.…………………4分(Ⅱ)由(Ⅰ)得,()111=+-⋅=na n n n,………………………………5分所以2=n a n , …………………………………………………………6分 从而2nn b n =⋅. ………………………………………………………7分1231222322n n S n =⋅+⋅+⋅++⋅ ①………8分()23412122232122n n n S n n +=⋅+⋅+⋅++-+⋅. ②………9分①—②得,2341222222n n n S n +-=+++++-⋅………………10分()111212222212n n n n n n +++-=-⋅=-⋅--. …………………………11分所以()111222122n n n nS n n +++=⋅-+=-+. ……………………12分。

精选2017-2018学年高一数学下学期期末考试试题(1)

精选2017-2018学年高一数学下学期期末考试试题(1)

宁夏育才中学2017-2018学年高一数学下学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.212sin3π-=( ) A .12 B .12- C .23 D .13- 2.()()AB MB BC OB OM ++-+=( )A .AB B .AC C .AMD .BC3.下列关于函数()tan f x x =的结论正确的是( )A .是偶函数B .关于直线2x π=对称 C .最小正周期为 D .3044f f ππ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭ 4.已知1sin cos 3αα-=,则sin cos αα=( )A .89-B .23 C.49 D .95.已知向量()2,1a =--,()2,2b =-,则()()2a b a b -⋅+等于( )A .B . C.10- D .13-6.要得到函数2sin 2y x =的图象,只需将函数2sin 23y x π⎛⎫=+⎪⎝⎭的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度 D .向右平移6π个单位长度 7.下列区间为函数2sin 4y x π⎛⎫=+ ⎪⎝⎭的增区间的是( ) A .,22ππ⎡⎤-⎢⎥⎣⎦ B .3,44ππ⎡⎤-⎢⎥⎣⎦ C.[],0π- D .3,44ππ⎡⎤-⎢⎥⎣⎦8.已知角()0360αα≤<终边上一点的坐标为()sin150,cos150,则α=( )A .300B .150 C.135 D .9.定义在上的函数()f x 既是偶函数又是周期函数,若()f x 的最小正周期是,且当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin f x x =,则53f π⎛⎫ ⎪⎝⎭的值为( )A .12-B .2 C.2-.1210.已知,为锐角,且1tan 7α=,()cos αβ+=,则cos 2β=( )A .35B .23 C.45 D11.若0,2πα⎛⎫∈ ⎪⎝⎭,cos 24παα⎛⎫-= ⎪⎝⎭,则sin 2α等于( )A .1516B .78 C.16D .1532 12.已知,,都是单位向量,且,不共线,若a b +与共线,b c -与共线,则向量,的夹角为( )A .B . C. D .120第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知0,2πα⎛⎫∈ ⎪⎝⎭,4cos 5α=,则()sin πα-=. 14.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是.15.已知3a =,5b =,且12a b ⋅=,则向量在向量的方向上的投影为.16.已知函数()()cos 2cos 23f x x x x R π⎛⎫=-+∈ ⎪⎝⎭,给出下列四个结论: ①函数()f x 是最小正周期为的奇函数;②直线3x π=-是函数()f x 图象的一条对称轴; ③点,012π⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心; ④函数()f x 的递减区间为(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.其中正确的结论是.(填序号) 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知4sin 5θ=,且是第二象限角. (1)求tan θ的值;(2)求()()sin 2sin 22tan ππθθπθ⎛⎫++- ⎪⎝⎭-的值. 18. 已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x R ∈. (1)求6f π⎛⎫- ⎪⎝⎭的值; (2)若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求3f πθ⎛⎫+ ⎪⎝⎭. 19. 已知平面向量,,若1a =,2b =,且7a b -=.(1)求与的夹角;(2)若c ta b =+,且a c ⊥,求的值及c .20. 如图所示,在平面直角坐标系中,锐角和钝角的顶点都在坐标原点,始边都与轴的正半轴重合,终边分别与单位圆交于,两点.(1)若,两点的纵坐标分别为35,1213,求()cos βα-的值; (2)已知点是单位圆上的一点,且OC OA OB =+,求和OB 的夹角的值.21. 已知函数()()22cos sin sin cos 2f x x x x x π⎛⎫=--- ⎪⎝⎭. (1)求函数()f x 的单调递增区间;(2)把()y f x =的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再把得到的图象向左平移4π个单位,得到函数()y g x =的图象,求函数()y g x =的图象的对称中心坐标. 22. 已知向量()cos ,sin a αα=,()cos ,sin b ββ=,0βαπ<<<.(1)若2a b -=,求证:a b ⊥;(2)设()0,1c =,若a b c +=,求,的值.试卷答案一、选择题1-5:BBDCD 6-10:DBABC 11、12:AB二、填空题13.35 14. 15.12516.②③ 三、解答题17.解:(1)∵是第二象限角,∴cos 0θ<,∴3cos 5θ==-.∴sin 4tan cos 3θθθ==-. (2)由(1)知3cos 5θ=-,4tan 3θ=-.∴原式46sin 2cos 3552tan 43θθθ---+===--. 18.解:(1)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)cos sin 33124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭, 所以4sin 5θ=-. 所以347cos sin 3555f πθθθ⎛⎫⎛⎫+=-=--= ⎪ ⎪⎝⎭⎝⎭. 19.解:(1)由7a b -=,得2227a a b b -⋅+=,∴1212cos 47θ-⨯⨯⨯+=,∴1cos 2θ=-,又[]0,θπ∈,∴23πθ=. (2)∵a c ⊥,∴()0a ta b ⋅+=,∴20ta a b +⋅=,∴11202t ⎛⎫+⨯⨯-= ⎪⎝⎭. ∴1t =. ∴c a b =+,222121212432c a a b b ⎛⎫=+⋅+=+⨯⨯⨯-+= ⎪⎝⎭. ∴3c =.20.解:由题意,得3sin 5α=,4cos 5α=,∴02πα<<,2πβπ<<,∴12sin 13β=,5cos 13β=-, ∴()5412316cos cos cos sin sin 13513565βαβαβα⎛⎫-=+=-⨯+⨯= ⎪⎝⎭. (2)∵OC OA OB =+,∴()22OC OA OB=+, 即2222OC OA OA OB OB =+⋅+,∴1121OA OB =+⋅+,∴12OA OB ⋅=-.。

2017-2018年高一下学期期末考试数学试题及答案

2017-2018年高一下学期期末考试数学试题及答案

,-
1 7
,1 9
,������






式an

A.(-1)n 2n1+1
B.(-1)n+12n1-1
C.(-1)n 2n1-3
4.已知向量a,b 满足|a|=1,a⊥(2a+b),则a������b=
D.(-1)n+12n1+3
A.2
B.0
C.-2
D.-4
5.在等差数列{an}中,a1+2a3+a5=12,则3a4-a6 的值为
算 步 骤 .)
19.(本 小 题 满 分 13 分 )
已 知 向 量a= (3,-1),b= (1 2 ,23).
(Ⅰ)求‹a,b›;
(Ⅱ)求(a+b)������b 的值;
(Ⅲ )求|2a+3b|的 值 .
20.(本 小 题 满 分 13 分 )
在△ABC 中,角 A,B,C 的对边分别为a,b,c,且满足2caos-Bb=cocsC.
2 分 ,有 选 错 的 得 0 分 .)
1.在平行四边形 ABCD 中,A→B+D→A-C→B等于
A.B→C
B.D→C
C.B→A
D.A→C
2.设 0<a<b<1,c∈R,则 下 列 不 等 式 成 立 的 是
A.a3>b3
B.a1 <b1
C.ac>bc
D.(a-b)c2≤0
3.数

1,-
1 3
,1 5
(Ⅰ)求角 C 的值;
(Ⅱ)若
sin(θ+C)=
4(π 56
<θ<23π),求
cosθ
的值

高 一 数 学 试 题 第 3 页 (共 4 页 )

2017-2018学年高一(下)期末数学试卷(文科)带答案

2017-2018学年高一(下)期末数学试卷(文科)带答案

2017-2018学年高一(下)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}2.(5分)下列说法正确的是()A.零向量没有方向 B.单位向量都相等C.任何向量的模都是正实数D.共线向量又叫平行向量3.(5分)若a,b,c为实数,则下列结论正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>abC.若a<b,则D.若a>b>0,则4.(5分)若两平行直线l1:x﹣2y+m=0(m>0)与l2:2x+ny﹣6=0之间的距离是,则m+n=()A.0 B.1 C.﹣2 D.﹣15.(5分)已知{a n}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,S n 为{a n}的前n项和,n∈N*,则S10的值为()A.﹣110 B.﹣90 C.90 D.1106.(5分)如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.100米B.50(+1)米C.米D.200米7.(5分)设变量x,y满足约束条件目标函数z=x+2y的最大值是()A.4 B.2 C.D.8.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为()A.尺B.尺C.尺D.尺9.(5分)函数f(x)=Asin(ωx+φ)(其中A>0,)的图象如图所示,为了得到g(x)=2sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位10.(5分)若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同的点,到直线l:y=x+b 的距离为2,则b取值范围为()A.(﹣2,2)B.[﹣2,2]C.[0,2]D.[﹣2,2)11.(5分)若偶函数f(x)在区间(﹣∞,0]上单调递减,且f(3)=0,则不等式(x﹣1)f(x)>0的解集是()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣3,1)∪(3,+∞) C.(﹣∞,﹣3)∪(3,+∞) D.(﹣3,1]∪(3,+∞)12.(5分)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,c<0且a,b,c这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则﹣2c的最小值等于()A.9 B.10 C.3 D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)sin(﹣300°)=.14.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=.15.(5分)两圆相交于点A(1,3)、B(m,﹣1),两圆的圆心均在直线x﹣y+c=0上,则m+c=.16.(5分)若不等式x2<|x﹣1|+a在区间(﹣3,3)上恒成立,则实数a的取值范围为.三、解答题(共6小题,满分70分)17.(10分)已知公差不为零的等差数列{a n}中,a1=1,且a1,a3,a9成等比数列.(1)求数列{a n}的通项公式;(2)设b n=2+n,求数列{b n}的前n项和S n.18.(12分)已知函数f(x)=,其中=(2cosx,sin2x),=(cosx,1),x∈R(1)求函数y=f(x)的最小正周期和单调递增区间:(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=且sinB=2sinC,求△ABC的面积.19.(12分)已知直线l:ax﹣y+1=0与x轴,y轴分别交于点A,B.(1)若a>0,点M(1,﹣1),点N(1,4),且以MN为直径的圆过点A,求以AN为直径的圆的方程;(2)以线段AB为边在第一象限作等边三角形ABC,若a=﹣,且点P(m,)(m>0)满足△ABC与△ABP的面积相等,求m的值.20.(12分)某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?21.(12分)已知圆C的圆心在直线3x+y﹣1=0上,且x轴,y轴被圆C截得的弦长分别为2,4,若圆心C位于第四象限(1)求圆C的方程;(2)设x轴被圆C截得的弦AB的中心为N,动点P在圆C内且P的坐标满足关系式(x﹣1)2﹣y2=,求的取值范围.22.(12分)已知数列{a n}满足a n=n2+n,设b n=++…+.(1)求{b n}的通项公式;(2)若对任意的正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>b n恒成立,求实数t的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)下列说法正确的是()A.零向量没有方向 B.单位向量都相等C.任何向量的模都是正实数D.共线向量又叫平行向量【分析】根据零向量,单位向量、共线向量、平行向量的定义即可判断出结论.【解答】解:零向量的方向是任意的;单位向量的模为1,但是不一定相等;零向量的模是0;共线向量又叫平行向量.因此只有D正确.故选:D.【点评】本题考查了零向量,单位向量、共线向量、平行向量的定义,考查了推理能力与计算能力,属于基础题.3.(5分)若a,b,c为实数,则下列结论正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>abC.若a<b,则D.若a>b>0,则【分析】根据特殊值法判断A,C、D,根据不等式的性质判断B.【解答】解:对于A,若c=0,不成立,对于B,若a<b<0,两边同乘以a,得a2>ab,故B正确,对于C,令a=﹣1,b=1,显然不成立,对于D,令a=2,b=1,显然不成立,故选:B.【点评】本题考查了不等式的性质,考查特殊值法的应用,是一道基础题.4.(5分)若两平行直线l1:x﹣2y+m=0(m>0)与l2:2x+ny﹣6=0之间的距离是,则m+n=()A.0 B.1 C.﹣2 D.﹣1【分析】化简直线l2,利用两直线之间的距离为d=,求出m,即可得出结论.【解答】解:由题意,解得n=﹣4,即直线l2:x﹣2y﹣3=0,所以两直线之间的距离为d=,解得m=2,所以m+n=﹣2,故选C.【点评】本题考查两条平行线间的距离,考查学生的计算能力,属于中档题.5.(5分)已知{a n}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,S n 为{a n}的前n项和,n∈N*,则S10的值为()A.﹣110 B.﹣90 C.90 D.110【分析】通过a7是a3与a9的等比中项,公差为﹣2,求出【解答】解:a7是a3与a9的等比中项,公差为﹣2,所以a72=a3•a9,∵{a n}公差为﹣2,∴a3=a7﹣4d=a7+8,a9=a7+2d=a7﹣4,所以a72=(a7+8)(a7﹣4),所以a7=8,所以a1=20,所以S10==110故选D【点评】本题是基础题,考查等差数列的前n项和,等比数列的应用,考查计算能力,常考题型.6.(5分)如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.100米B.50(+1)米C.米D.200米【分析】直角△ABC与直角△ABD有公共边AB,若设AB=x,则在直角△ABC与直角△ABD就满足解直角三角形的条件,可以用x表示出BC与BD的长,根据BD﹣BC=CD,即可列方程求解.【解答】解:设AB=x米,在直角△ACB中,∠ACB=45°,∴BC=AB=x米.在直角△ABD中,∠D=30°,BD=x,∵BD﹣BC=CD,∴x﹣x=200,解得:x=100(+1).故选C.【点评】本题主要考查了解直角三角形的方法,解决的关键是注意到两个直角三角形有公共的边,利用公共边表示其它的量,从而把问题转化为方程问题.7.(5分)设变量x,y满足约束条件目标函数z=x+2y的最大值是()A.4 B.2 C.D.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图:化目标函数z=x+2y为,由图可知,当直线过点A时,直线在y轴上的截距最大,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.8.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为()A.尺B.尺C.尺D.尺【分析】设该女子每天比前一天多织d尺布,利用等差数列前n项和公式列出方程,能出结果.【解答】解:设该女子每天比前一天多织d尺布,由题意得:,解得d=.故选:C.【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.9.(5分)函数f(x)=Asin(ωx+φ)(其中A>0,)的图象如图所示,为了得到g(x)=2sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【分析】求出函数的解析式,利用坐标变换求解即可.【解答】解:由函数的图象可知:T=4×=π.ω==2.x=时,函数的最大值为:2.A=2,2=2sin(+φ),由函数的图象可得φ=.为了得到g(x)=2sin2x的图象,则只需将f(x)=2sin[2(x+)]的图象向右平移个长度单位.故选:B.【点评】本题考查三角函数的解析式的求法,函数的图象的平移,考查计算能力.10.(5分)若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同的点,到直线l:y=x+b的距离为2,则b取值范围为()A.(﹣2,2)B.[﹣2,2]C.[0,2]D.[﹣2,2)【分析】先求出圆心和半径,比较半径和2,要求圆上至少有三个不同的点到直线l:y=x+b的距离为2,则圆心到直线的距离应小于等于,用圆心到直线的距离公式,可求得结果.【解答】解:圆x2+y2﹣4x﹣4y﹣10=0整理为(x﹣2)2+(y﹣2)2=18,∴圆心坐标为(2,2),半径为3,要求圆上至少有三个不同的点到直线l:y=x+b的距离为2则圆心到直线的距离d=≤,∴﹣2≤c≤2故选:B.【点评】本题考查直线和圆的位置关系,圆心到直线的距离等知识,是中档题.11.(5分)若偶函数f(x)在区间(﹣∞,0]上单调递减,且f(3)=0,则不等式(x﹣1)f(x)>0的解集是()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣3,1)∪(3,+∞) C.(﹣∞,﹣3)∪(3,+∞) D.(﹣3,1]∪(3,+∞)【分析】根据题意,由函数的奇偶性与单调性分析可得当x<﹣3或x>3时,f (x)>0;当﹣3<x<3时,f(x)<0,则分x<﹣3或x>3与﹣3<x<3两种情况讨论(x﹣1)f(x)>0的解集,综合即可得答案.【解答】解:根据题意,偶函数f(x)在区间(﹣∞,0]上单调递减,则其在[0,+∞)上为增函数,又由f(3)=0,则f(﹣3)=0,则有当x<﹣3或x>3时,f(x)>0;当﹣3<x<3时,f(x)<0,当x<﹣3或x>3时,若(x﹣1)f(x)>0,必有x﹣1>0,解可得x>3,当﹣3<x<3时,若(x﹣1)f(x)>0,必有x﹣1<0,解可得﹣3<x<1,综合可得:不等式(x﹣1)f(x)>0的解集是(﹣3,1)∪(3,+∞);故选:B.【点评】本题考查函数的奇偶性与单调性的综合应用,注意结合函数的奇偶性、单调性,对不等式进行分类讨论.12.(5分)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,c<0且a,b,c这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则﹣2c的最小值等于()A.9 B.10 C.3 D.【分析】由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,c这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b的关系,代入化简,再由基本不等式得答案.【解答】解:∵a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,即a,b是一元二次方程x2﹣px+q=0(p>0,q>0)的两个根,∴根据一元二次方程的韦达定理可得a+b=p,ab=q,(a>0,b>0,a≠b),由题意可得ab=c2,b+c=2a,消去c可得ab=(2a﹣b)2=4a2﹣4ab+b2,即为(a﹣b)(4a﹣b)=0,解得b=4a(b=a舍去),则﹣2c=+﹣2(2a﹣b)=8a+≥2=,当且仅当8a=,即a=时,取得等号.则所求的最小值为.故选:D.【点评】本题考查基本不等式的运用:求最值,考查韦达定理和等差数列、等比数列中项的性质,考查化简整理的运算能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)sin(﹣300°)=.【分析】由sin(α+2π)=sinα及特殊角三角函数值解之.【解答】解:sin(﹣300°)=sin(360°﹣300°)=sin60°=,故答案为.【点评】本题考查诱导公式及特殊角三角函数值.14.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=2.【分析】根据平面向量数量积的定义,求出•的值,再求向量的模长即可.【解答】解:由题意得,||=2,||=1,向量与的夹角为60°,∴•=2×1×cos60°=1,∴|+2|===2.故答案为:2.【点评】本题考查了平面向量数量积的定义以及向量模长的计算问题,是基础题目.15.(5分)两圆相交于点A(1,3)、B(m,﹣1),两圆的圆心均在直线x﹣y+c=0上,则m+c=3.【分析】由已知中两圆相交于点A(1,3)、B(m,﹣1),两圆的圆心均在直线x﹣y+c=0上,我们易得到直线x﹣y+c=0为线段AB的垂直平分线,即直线AB与直线x﹣y+c=0的斜率乘积为﹣1,且AB的中点落在直线x﹣y+c=0上,求出m,c后,即可得到答案.【解答】解:∵两圆的圆心均在直线x﹣y+c=0上,则直线x﹣y+c=0为线段AB的垂直平分线即K AB=﹣1=解得m=5则AB的中点(3,1)在直线x﹣y+c=0上,即3﹣1+c=0解得c=﹣2∴m+c=3故答案为:3【点评】本题考查的知识点圆与圆的位置关系,直线与直线垂直的斜率关系,其中根据已知判断出直线x﹣y+c=0为线段AB的垂直平分线,是解答本题的关键.16.(5分)若不等式x2<|x﹣1|+a在区间(﹣3,3)上恒成立,则实数a的取值范围为[7,+∞).【分析】分离参数得a>x2﹣|x﹣1|,求出右侧分段函数在(﹣3,3)上的最值即可得出a的范围.【解答】解:由x2<|x﹣1|+a得a>x2﹣|x﹣1|,令f(x)=x2﹣|x﹣1|=,∴f(x)在(﹣3,﹣]上单调递减,在(﹣,3)上单调递增,∵f(﹣3)=5,f(3)=7,∴f(x)<7,∴a的取值范围是[7,+∞).故答案为[7,+∞).【点评】本题考查了函数的单调性与最值的计算,属于中档题.三、解答题(共6小题,满分70分)17.(10分)已知公差不为零的等差数列{a n}中,a1=1,且a1,a3,a9成等比数列.(1)求数列{a n}的通项公式;(2)设b n=2+n,求数列{b n}的前n项和S n.【分析】(1)利用等差数列与等比数列的通项公式即可得出.(2)利用等差数列与等比数列的求和公式即可得出.【解答】解:(1)设数列{a n}公差为d,∵a1,a3,a9成等比数列,∴,∴(1+2d)2=1×(1+8d).∴d=0(舍)或d=1,∴a n=n.(2)令;S n=b1+b2+b3+…+b n=(21+1)+(22+2)+(23+3)+…+(2n+n)=(21+22+…+2n)+(1+2+3+…+n)==,.【点评】本题考査了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.18.(12分)已知函数f(x)=,其中=(2cosx,sin2x),=(cosx,1),x∈R(1)求函数y=f(x)的最小正周期和单调递增区间:(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=且sinB=2sinC,求△ABC的面积.【分析】(1)求出f(x)=2sin(2x+)+1,由此能求出函数y=f(x)的最小正周期和函数y=f(x)的单调增区间.(2)由f(A)=2,求出A=,由,利用余弦定理得b=2c.由此能求出△ABC的面积.【解答】解:(1)∵=(2cosx,sin2x),=(cosx,1),x∈R,∴f(x)====2sin(2x+)+1,∴函数y=f(x)的最小正周期为T=π,单调递增区间满足﹣+2kπ+2kπ,k∈Z.解得﹣+kπ≤x≤+kπ,k∈Z.∴函数y=f(x)的单调增区间是[﹣+kπ,],k∈Z.(2)∵f(A)=2,∴2sin(2A+)+1=2,即sin(2A+)=,又∵0<A<π,∴A=,∵,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7,①∵sinB=2sinC,∴b=2c.②由①②得c2=,∴.【点评】本题考查三角函数的最小正周期、单调递增区间的求法,考查三角形面积的求法,考查同角三角函数、三角函数的最小正周期、三角函数的增区间、作弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.19.(12分)已知直线l:ax﹣y+1=0与x轴,y轴分别交于点A,B.(1)若a>0,点M(1,﹣1),点N(1,4),且以MN为直径的圆过点A,求以AN为直径的圆的方程;(2)以线段AB为边在第一象限作等边三角形ABC,若a=﹣,且点P(m,)(m>0)满足△ABC与△ABP的面积相等,求m的值.【分析】(1)求出A的坐标,即可求以AN为直径的圆的方程;(2)根据题意画出图形,令直线方程中x与y分别为0,求出相应的y与x的值,确定出点A与B的坐标,进而求出AB的长即为等边三角形的边长,求出等边三角形的高即为点C到直线AB的距离,由△ABP和△ABC的面积相等,得到点C 与点P到直线AB的距离相等,利用点到直线的距离公式表示出点P到直线AB 的距离d,让d等于求出的高列出关于m的方程,求出方程的解即可得到m的值.【解答】解:(1)由题意A(﹣,0),AM⊥AN,∴=﹣1,∵a>0,∴a=1,∴A(﹣1,0),∵N(1,4),∴AN的中点坐标为D(0,2),|AD|=,∴以AN为直径的圆的方程是x2+(y﹣2)2=5;(2)根据题意画出图形,如图所示:由直线y=﹣x+1,令x=0,解得y=1,故点B(0,1),令y=0,解得x=,故点A(,0),∵△ABC为等边三角形,且OA=,OB=1,根据勾股定理得:AB=2,即等边三角形的边长为2,故过C作AB边上的高为,即点C到直线AB的距离为,由题意△ABP和△ABC的面积相等,则P到直线AB的距离d=|﹣m+|=,∵m>0,∴m=.【点评】此题考查圆的方程,考查了一次函数的性质,等边三角形的性质以及点到直线的距离公式.20.(12分)某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【分析】(1)依题意,每天生产的伞兵的个数为100﹣x﹣y,根据题意即可得出每天的利润;(2)先根据题意列出约束条件,再根据约束条件画出可行域,设W=2x+3y+300,再利用T的几何意义求最值,只需求出直线0=2x+3y过可行域内的点A时,从而得到W值即可.【解答】解:(1)依题意每天生产的伞兵个数为100﹣x﹣y,所以利润W=5x+6y+3(100﹣x﹣y)=2x+3y+300(x,y∈N).(2)约束条件为整理得目标函数为W=2x+3y+300,如图所示,作出可行域.初始直线l0:2x+3y=0,平移初始直线经过点A时,W有最大值.由得最优解为A(50,50),所以W max=550(元).答:每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550(元)【点评】本题考查简单线性规划的应用,在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件,②由约束条件画出可行域,③分析目标函数Z与直线截距之间的关系,④使用平移直线法求出最优解,⑤还原到现实问题中.21.(12分)已知圆C的圆心在直线3x+y﹣1=0上,且x轴,y轴被圆C截得的弦长分别为2,4,若圆心C位于第四象限(1)求圆C的方程;(2)设x轴被圆C截得的弦AB的中心为N,动点P在圆C内且P的坐标满足关系式(x﹣1)2﹣y2=,求的取值范围.【分析】(1)设圆C的方程为:(x﹣a)2+(y﹣b)2=r2,根据题意,有由①②③得a=1,⇒b=1﹣3a=﹣2,r2=9,即可得圆的方程;(2)在圆C的方程:(x﹣1)2+(y+2)2=9中令y=0,得A(1﹣,0),B(1+),N(1,0).将x﹣1)2+(y+2)2<9.(x﹣1)2﹣y2=代入=(1﹣﹣x,﹣y)(1+﹣x,﹣y)=(x﹣1)2+y2﹣5即可求解.【解答】解:(1)设圆C的方程为:(x﹣a)2+(y﹣b)2=r2,根据题意,有①﹣②得b2=a2+3,…④由③④得4a2﹣3a﹣1=0,∵a>0,解得a=1,⇒b=1﹣3a=﹣2,r2=9,∴圆C的方程为:(x﹣1)2+(y+2)2=9,(2)在圆C的方程:(x﹣1)2+(y+2)2=9中令y=0,得A(1﹣,0),B(1+),∴N(1,0).∵动点P(x,y)在圆C内,∴(x﹣1)2+(y+2)2<9…①将①代入(x﹣1)2﹣y2=得﹣,0=(1﹣﹣x,﹣y)(1+﹣x,﹣y)=(x﹣1)2+y2﹣5…②将(x﹣1)2﹣y2=代入②得=2y2﹣.【点评】本题考查圆的方程,与圆有关的最值问题,属于中档题.22.(12分)已知数列{a n}满足a n=n2+n,设b n=++…+.(1)求{b n}的通项公式;(2)若对任意的正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>b n恒成立,求实数t的取值范围.【分析】(1)b n=++…+=,由此利用裂项求和法能求出{b n}的通项公式.(2)由b n=,n∈N*,得到n=1时,b n取最大值,推导出当m∈[﹣1,1]时,t2﹣2mt>0恒成立,令g(m)=t2﹣2mt,由,能求出实数t的取值范围.【解答】解:(1)∵数列{a n}满足a n=n2+n,∴b n=++…+=====.(2)∵b n=,n∈N*,令f(n)=2n+,n∈N*,则,由f′(n)>0,得﹣<n<;由f′(n)<0,得n<﹣或n>,∵n∈N*,∴n=1时,b n取最大值,∵对任意的正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>b n恒成立,∴当m∈[﹣1,1]时,不等式>恒成立,即当m∈[﹣1,1]时,t2﹣2mt>0恒成立,令g(m)=t2﹣2mt,则,解得t>2或t<﹣2.∴实数t的取值范围是(﹣∞,﹣2)∪(2,+∞).【点评】本题考查数列的通项公式的求法,考查实数值的取值范围的求法,考查构造法、裂项求法、数列的单调性等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.。

2017-2018学年下学期高一期末考试试卷 数学

2017-2018学年下学期高一期末考试试卷 数学

2017-2018学年下学期高一期末考试试卷数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,只有一个选项正确,请把答案....写在答题卷上.......1.设集合{1,2,3}A =,集合{2,2}B =-,则A B = ()A .∅B .{2}C .{2,2}-D .{2,1,2,3}-2.=0750cos ()A.32B .12C .32-D .12-3.已知函数lg ,0()12,0x x f x x x >⎧=⎨+≤⎩,则((2))f f -=()A .3-B .0C .1D .1-4.设单位向量22(,sin )3α=a ,则cos 2α的值为()A .79B .12-C .79-D .325.设(0,)2πα∈,(0,)2πβ∈,且1tan 7α=,1tan 3β=,则2αβ+=()A .6πB .4πC .3πD .2π6.设m n 、是两条不同的直线,αβ、是两个不同的平面,下列命题中正确的命题是()A .,,m m n αβαβ⊥⊂⊥⇒⊥nB .,,m n m n αβαββ⊥=⊥⇒⊥IC .,,//m n m nαβαβ⊥⊥⇒⊥D .//,,//m n m nαβαβ⊥⇒⊥7.已知||2a = ,(2)a b a -⊥ ,则b 在a方向上的投影为()A .4-B .2-C .2D .48.设00sin14cos14a =+,00sin16cos16b =+,62c =,则,,a b c 的大小关系是()A .a b c<<B .a c b<<C .b c a <<D .b a c<<9.已知正实数n m ,满足222=+++n m n m ,则mn 的最大值为()A .236-B .2C .246-D .310.对于非零向量c b a ,,,下列命题正确的是()A .若),(02121R b a ∈=+λλλλ,则021==λλB .若b a //,则a 在b 上的投影为||a C .若b a ⊥,则⋅a 2)(b a b ⋅=D .若c b c a ⋅=⋅,则=a b 11.在△ABC 中,,P 是BN 上的一点,若,则实数m 的值为()A .3B .1C .D .12.已知.若恒成立,则实数的取值范围是()A .B .C .D .第Ⅱ卷二、填空题:本题共4小题,每题5分,满分20分,将答案填在答题纸上.13.23(log 9)(log 4)⋅=.此卷只装订不密封班级姓名准考证号考场号座位号14.若变量,x y 满足约束条件010210x y y x x -≤⎧⎪≤-⎨⎪-≥⎩,则2z x y =-的最小值为.15.过长方体的一个顶点的三条棱长分别是1、2、5,且它的八个顶点都在同一球面上,则这个球的表面积是.16.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,BC 边上的高与BC 边长相等,则bca b c c b 2++的最大值是.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知(,)2παπ∈,且4sin 5α=.(1)求tan()4πα-的值;(2)求2sin 2cos 1cos 2ααα-+的值.18.(12分)已知向量(cos ,sin )a αα= ,(cos ,sin )b ββ=,413||13a b -= .(1)求cos()αβ-的值;(2)若02πα<<,02πβ-<<,且4sin 5β=-,求sin α的值.19.(12分)已知等差数列}{n a 的前n 项和为n S ,且28,373==S a ,在等比数列}{n b 中,8,443==b b .(1)求n a 及n b ;(2)设数列}{n n b a 的前n 项和为n T ,求n T .20.(12分)已知函数()2sin()(0,)2f x x πωϕωϕ=+><的图像与直线2y =两相邻交点之间的距离为π,且图像关于3x π=对称.(1)求()y f x =的解析式;(2)先将函数()f x 的图象向左平移6π个单位,再将图像上所有横坐标伸长到原来的2倍,得到函数()g x 的图象.求()g x 的单调递增区间以及()3g x ≥的x 取值范围.21.(12分)如图1所示,在等腰梯形ABCD 中,,3,15,33BE AD BC AD BE ⊥===.把ABE ∆沿BE 折起,使得62AC =,得到四棱锥A BCDE -.如图2所示.(1)求证:面ACE ⊥面ABD ;(2)求平面ABE 与平面ACD所成锐二面角的余弦值.22.(12分)已知函数4()lg4xf x x-=+,其中(4,4)x ∈-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在(4,4)-上的单调性;(3)是否存在这样的负实数k ,使22(cos )(cos )0f k f k θθ-+-≥对一切R θ∈恒成立,若存在,试求出k 取值的集合;若不存在,说明理由.2017-2018学年下学期高一期末考试试卷数学答案一、选择题.1-5:BACAB6-10:DDBCC11-12:CD二、填空题.13.414.6-15.π1016.22三、解答题.17.解:(1)∵(,)2παπ∈,4sin 5α=,∴3cos 5α=-,则4tan 3α=-,∴41tan 13tan()7441tan 13πααα----===+-.(2)由222sin 2cos 2sin cos cos 1cos 22cos 11ααααααα--=+-+2sin cos 2cos ααα-=,2tan 11126α-==-.18.解:(1)由已知得()a 1,cos b a b αβ==⋅=-,又41313a b -= ,2216213a ab b ∴-⋅+= ,()135cos =-∴βα.(2)由πβαβππα<-<∴<<-<<002,20,又()54cos ,sin 135αββ-==-,()123sin ,cos 135αββ∴-==,()[]651654135531312sin sin =⎪⎪⎭⎫ ⎝⎛-⨯+⨯=+-=∴ββαα.19.解:(1)设}{n a 的公差为d ,则由题有12821732111==⇒⎩⎨⎧=+=+d a d a d a ,∴n a n =.∵在等比数列}{n b 中,8,443==b b ,∴}{n b 的公比为234==b b q ,∴1332--==n n n q b b ,即12-=n n b .(2)由(1)知n a n =,12-=n n b ,∴12-⋅=n n n n b a .∴132********-⨯++⨯+⨯+⨯+=n n n T ,n n n n n T 22)1(2322212132⨯+⨯-++⨯+⨯+⨯=- ,∴12)1(12122)2221(212+⋅-=---⨯=++++-⨯=-n n nn n n n n n T ,即12)1(+⋅-=n n n T .20.解:(1)由已知可得T π=,2ππω=,∴2ω=,又()f x 的图象关于3x π=对称,∴232k ππϕπ⋅+=+,∴6k πϕπ=-,k Z ∈,∵22ππϕ-<<,∴6πϕ=-,所以()2sin(2)6f x x π=-.(2)由(1)可得()2sin(2)6f x x π=-,∴()2sin()6g x x π=+,由22262k x k πππππ-≤+≤+得,22233k x k ππππ-≤≤+,()g x 的单调递增区间为2[2,2]33k k ππππ-+,k Z ∈.∵2sin()36x π+≥,∴3sin()62x π+≥,∴222363k x k πππππ+≤+≤+,∴22,62x k x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z .21.解:(1)证明:在等腰梯形ABCD 中3,15,BC AD BE AD ==⊥,可知6,9AE DE ==.因为3,33,BC BE BE AD ==⊥,可得6CE =.又因为6,62AE AC ==,即222AC CE AE =+,则AE EC ⊥.又,BE AE BE EC E ⊥⋂=,可得面BCDE ,故AE BD ⊥.又因为9tan 333DE DBE BE ∠===,则060DBE ∠=,33tan 333BC BEC BE ∠===,则030BEC ∠=,所以CE BD ⊥,又AE EC E ⋂=,所以BD ⊥面ACE ,又BD ⊂面ABD ,所以面ABD ⊥面ACE .(2)设EC BD O = ,过点O 作//OF AE 交AC 于点F,以点O 为原点,以,,OB OC OF 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系O BCF -.在BCE ∆中,∵030BEO ∠=,BO EO ⊥,∴9333,,222EO CO BO ===,则2339,0,0,0,,0,0,,0222B C E ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∵1//,,62FO AE FO AE AE ==,∴3FO =,则()90,0,3,0,,62F A ⎛⎫- ⎪⎝⎭,∵//,9DE BC DE =,∴3ED BC = ,∴93,0,02D ⎛⎫- ⎪ ⎪⎝⎭,∴()()339933,,0,0,0,6,0,6,6,,,02222BE AE CA CD ⎛⎫⎛⎫===-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ,设平面ABE 的法向量为()1111,,n x y z = ,由11·0{·0n AE n BE == ,得11160{339022z x y =+=,取13x =,可得平面ABE 的法向量为()13,1,0n =-,设平面ACD 的一个法向量为()2222,,n x y z =,由22·0{·0n CA n CD == ,得1111660{933022y z x y -+=--=,取11x =,可得平面ABE 的一个法向量为()21,33,33n =--.设平面ABE 与平面ACD 所成锐二面角为θ,则1212·432165cos 55255n n n n θ=== ,所以平面ABE 与平面ACD 所成锐二面角的余弦值为216555.22.解:(1)∵44()lglg ()44x xf x f x x x+--==-=--+,∴()f x 是奇函数.(2)()f x 在(4,4)-上为减函数.证明:任取12,(4,4)x x ∈-且12x x <,则12121244()()lglg 44x x f x f x x x ---=-++121244lg 44x x x x -+=⨯+-21121212164()lg 164()x x x x x x x x +--=+--,∵2112164()x x x x +--2112164()0x x x x >--->,∴21121212164()1164()x x x x x x x x +-->+--,得12()()0f x f x ->,得到12()()f x f x >,∴()f x 在(4,4)-上为减函数.(3)∵22(cos )(cos )f k f k θθ-≥--22(cos )f k θ=-,∵()f x 在(4,4)-上为减函数,∴222204cos 44cos 4cos cos k k k k k θθθθ<⎧⎪-<-<⎪⎨-<-<⎪⎪-≤-⎩对R θ∈恒成立,由22cos cos k k θθ-≤-对R θ∈恒成立得22cos cos k k θθ-≤-对R θ∈恒成立,令2211cos cos (cos )42y θθθ=-=--,∵cos [1,1]θ∈-,∴1[2,]4y ∈-,∴22k k -≤-,得1k ≤-,由4cos 4k θ-<-<对R θ∈恒成立得:33k -<<,由224cos 4k θ-<-<对R θ∈恒成立得:22k -<<,即综上所得:21k -<≤-,所以存在这样的k ,其范围为21k -<≤-.。

2017—2018学年郑州高一年级下期期末考试数学试卷(电子版)及参考答案

2017—2018学年郑州高一年级下期期末考试数学试卷(电子版)及参考答案

2017-2018学年下期期末考试高一数学试题卷注意事项:本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡 第I 卷(选择题,共60一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有是符合题目要求的 1.sin585°的值为( ) A .12 2 B .-12 2 C .-12 3 D .12 32.已知向量a=(-3,5),b=(5,3),则a 与b ( )A.垂直B.不垂直也不平行C.平行且同向D.平行且反向 3.下列各式中,值为的是( ) A.2sin15°cos15° B.cos 215°-sin 215° C.2sin 215°-1 D. sin 215 +cos 2154.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如右图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( ) A .19,13; B.13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个 球,则两个小球同色的概率是( )A .23B .25C .12D .136.函数y=[cos(x+π4)+ sin(x+π4)][cos(x+π4)-sin(x+π4)]在一个周期内的图象是( )7.设单位向量e 1,e 2的夹角为60°,则向量3e 1+4e 2与向量e 1的夹角的余弦值( ) A .34 B .537 C .25 37 37 D .5 37 378如果右面程序框图运行的结果s=1320,那么判断框应填入( ) A .k<10? B.k>10? C.k<11? D.k>11?9甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C .14 D .156410.已知函数∫(x)=sin(2x+φ)的图象关于直线x=π6对称,则φ可能取值是( )A .π2B .-112 πC .π6D .-π611.如图所示,点A,B,C 是圆O 上的三点,线段OC 与线段AB 于圆内一点P,若=m+3m,,则λ=( )A .56B .45C .34D .2512.已知平面上的两个向量和满足||=cosa,||=sina,a ∈[0, π2],·=0,若向量=λ+μ(λ, μ∈R),且(2λ-1)2cos 2a+(2μ-1)2sin 2a=4,则||的最大值是( )A .32B .34C .35D .37第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分把答案填在题中的横线上) 13. 已知tan α=4,tan(π-β)则tan(α+β)=14.已知样本7,8,9,x,y 的平均数是8,标准差是 2 ,则xy= 15.已知△ABC 的三边长AC=4,BC=3,AB=5,P 为AB 边上的任意一点,的最小值为16.将函数f(x)=2sin(2x+π6)的图像向左平移112 π个单位,再向下平移2个单位,得到g(x)的图像,若g(x 1)g(x 2)=16,且x 1,x 2∈[-2π,2π],则2x 1-x 2的最大值为三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分) 已知向量a=(1,2),b=(-3,4)(I)求向量a-b 与向量b 夹角的余弦 (Ⅱ)若a ⊥(a-λb),求实数λ的。

2017-2018学年高一数学下学期期末模拟试卷及答案(三)

2017-2018学年高一数学下学期期末模拟试卷及答案(三)

2017-2018学年高一数学下学期期末模拟试卷及答案(三)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数据5,7,7,8,10,11的标准差是()A.8 B.4 C.2 D.1A.29 B.30 C.31 D.323.若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.D.a|c|>b|c|4.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A.23与26 B.31与26 C.24与30 D.26与305.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.6.200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有()A.60辆B.80辆C.70辆D.140辆7.已知等差数列{a n}的前n项和为S n,且满足﹣=1,则数列{a n}的公差是()A.B.1 C.2 D.38.同时掷3枚硬币,至少有1枚正面向上的概率是()A.B.C.D.9.已知a1,4,a2,1成等差数列,b1,4,b2,1,b3成等比数列,则b2(a2﹣a1)=()A.±6 B.﹣6 C.3 D.±310.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A.i≤21 B.i≤11 C.i≥21 D.i≥1111.正数x、y满足,若x+2y>m2+2m恒成立,则实数m的取值范围是()A.m≤﹣2或m≥4 B.m≤﹣4或m≥2 C.﹣2<m<4 D.﹣4<m<212.△ABC中,∠B=60°,b=2,则△ABC周长的最大值为()A.2 B.2C.3D.6二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在横线上. 13.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为.14.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论中正确的是;(1)A与C互斥(2)B与C互斥(3)任两个均互斥(4)任两个均不互斥.15.若不等式ax2+5x﹣2>0的解集是,则不等式ax2﹣5x+(a2﹣1)>0的解集是.16.对于数列{a n},定义数列{a n﹣a n}为数列{a n}的“差数列”,若a1=1,{a n}的“差+1数列”的通项公式为3n,则数列{a n}的通项公式a n=.三、解答题:本大题共6小题,共70分,请写出各题的解答过程或演算步骤. 17.一个包装箱内有6件产品,其中4件正品,2件次品,随机抽出两件产品(1)求恰好有一件次品的概率(2)求都是正品的概率.(2)用最小二乘法计算利润额y对销售额x的回归直线方程;(3)当销售额为8(千万元)时,估计利润额的大小.(附:b=)19.已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a n log a n,求数列{b n}的前n项和S n.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.21.如图,正方形OABC的边长为2.(1)在其四边或内部取点P(x,y),且x,y∈Z,求事件“|OP|>1”的概率;(2)在其内部取点P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面积均大于”的概率是.22.设数列{a n}的前n项和为S n,其中a n≠0,a1为常数,且﹣2a1,S n,2a n成+1等差数列.(1)当a1=2时,求{a n}的通项公式;(2)当a1=2时,设b n=log2(a n2)﹣1,若对于n∈N*, +++…+<k恒成立,求实数k的取值范围;(3)设c n=S n+1,问:是否存在a1,使数列{c n}为等比数列?若存在,求出a1的值,若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数据5,7,7,8,10,11的标准差是()A.8 B.4 C.2 D.1【考点】极差、方差与标准差.【专题】计算题.【分析】先算出平均数,再根据方差公式计算方差,求出其算术平方根即为标准差.【解答】解:这组数据的平均数=(5+7+7+8+10+11)÷6=8,方差= [(5﹣8)2+(7﹣8)2+(7﹣8)2+(8﹣8)2+(10﹣8)2+(11﹣8)2]=4,标准差=2.故选C.【点评】本题考查了标准差的求法,计算标准差需要先算出方差,计算方差的步骤是:(1)计算数据的平均数;(2)再根据公式求出数据的方差.标准差即方差的算术平方根,注意标差和方差一样都是非负数.A.29 B.30 C.31 D.32【考点】归纳推理.【专题】综合题;方程思想;综合法;推理和证明.【分析】由表格可知,年份构成首项为1896、公差为4的等差数列,根据等差数列的通项公式求出n的值.【解答】解:由表格可知,年份构成首项为1896、公差为4的等差数列,则2016=1896+4(n﹣1),解得n=31,所以n的值是31,故选:C.【点评】本题考查归纳推理,以及等差数列的通项公式的应用,属于基础题.3.若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.D.a|c|>b|c|【考点】不等关系与不等式.【专题】计算题.【分析】本选择题利用取特殊值法解决,即取符合条件的特殊的a,b的值,可一一验证A,B,D不成立,而由不等式的基本性质知C成立,从而解决问题.【解答】解:对于A,取a=1,b=﹣1,即知不成立,故错;对于B,取a=1,b=﹣1,即知不成立,故错;对于D,取c=0,即知不成立,故错;对于C,由于c2+1>0,由不等式基本性质即知成立,故对;故选C.【点评】本小题主要考查不等关系与不等式、不等关系与不等式的应用、不等式的基本性质等基础知识,属于基础题.4.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A.23与26 B.31与26 C.24与30 D.26与30【考点】众数、中位数、平均数;茎叶图.【专题】图表型.【分析】由茎叶图写出所有的数据从小到大排起,找出出现次数最多的数即为众数;找出中间的数即为中位数.【解答】解:由茎叶图得到所有的数据从小到大排为:12,14,20,23,25,26,30,31,31,41,42∴众数和中位数分别为31,26故选B【点评】解决茎叶图问题,关键是将图中的数列出;求数据的中位数时,中间若是两个数时,要求其平均数.5.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.【考点】几何概型;一元二次不等式的解法.【专题】计算题.【分析】先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是0.3【解答】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键6.200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有()A.60辆B.80辆C.70辆D.140辆【考点】频率分布直方图.【专题】计算题.【分析】根据已知中的频率分布直方图,我们可以计算出时速在[50,70)的数据对应的矩形高之和,进而得到时速在[50,70)的数据的频率,结合样本容量为200,即可得到时速在[50,70)的数据的频数,即时速在[50,70)的汽车的辆数.【解答】解:由于时速在[50,70)的数据对应的矩形高之和为0.03+0.04=0.07 由于数据的组距为10故时速在[50,70)的数据的频率为:0.07×10=0.7故时速在[50,70)的数据的频数为:0.7×200=140故选D【点评】本题考查的知识点是频率分布直方图,其中频率=矩形高×组距=是解答此类问题的关键.7.已知等差数列{a n}的前n项和为S n,且满足﹣=1,则数列{a n}的公差是()A.B.1 C.2 D.3【考点】等差数列的性质.【专题】计算题.【分析】先用等差数列的求和公式表示出S3和S2,进而根据﹣=,求得d.【解答】解:S3=a1+a2+a3=3a1+3d,S2=a1+a2=2a1+d,∴﹣==1∴d=2【点评】本题主要考查了等差数列的性质.属基础题.8.同时掷3枚硬币,至少有1枚正面向上的概率是()A.B.C.D.【考点】等可能事件的概率;互斥事件与对立事件.【专题】计算题.【分析】本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次,共有23=8种结果,满足条件的事件的对立事件是三枚硬币都是正面,有1种结果,根据对立事件的概率公式得到结果.【解答】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次共有23=8种结果,满足条件的事件的对立事件是三枚硬币都是正面,有1种结果,∴至少一次正面向上的概率是1﹣=,故选A.【点评】本题考查等可能事件的概率,本题解题的关键是对于比较复杂的事件求概率时,可以先求对立事件的概率,这样使得运算简单.9.已知a1,4,a2,1成等差数列,b1,4,b2,1,b3成等比数列,则b2(a2﹣a1)=()A.±6 B.﹣6 C.3 D.±3【考点】等差数列与等比数列的综合.【专题】计算题;等差数列与等比数列.【分析】先由已知条件和等差数列以及等比数列的性质求得a2﹣a1=1﹣4=﹣3,b2=±2,再求b2(a2﹣a1).【解答】解:由题得,∵a1,4,a2,1成等差数列,∴a2﹣a1=1﹣4=﹣3,∵b1,4,b2,1,b3成等比数列,∴b22=4∴b2=±2,∴b2(a2﹣a1)=±6.故选:A.【点评】本题是对等差数列以及等比数列性质的综合考查.在做关于等差数列以及等比数列的题目时,其常用性质一定要熟练掌握.10.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A.i≤21 B.i≤11 C.i≥21 D.i≥11【考点】循环结构.【专题】图表型.【分析】由本程序的功能是计算的值,由S=S+,故我们知道最后一次进行循环时的条件为i=10,当i≥11应退出循环输出S的值,由此不难得到判断框中的条件.【解答】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,从中找出规律.11.正数x、y满足,若x+2y>m2+2m恒成立,则实数m的取值范围是()A.m≤﹣2或m≥4 B.m≤﹣4或m≥2 C.﹣2<m<4 D.﹣4<m<2 【考点】基本不等式;函数恒成立问题.【专题】不等式的解法及应用.【分析】利用基本不等式的性质可得x+2y的最小值,由x+2y>m2+2m恒成立⇔m2+2m<(x+2y)min.【解答】解:∵正数x、y满足,∴x+2y=(x+2y)=4+=8,当且仅当,即x=2y=4时取等号.∵x+2y>m2+2m恒成立,∴m2+2m<8,解得﹣4<m<2.故实数m的取值范围是﹣4<m<2.故选D.【点评】熟练掌握基本不等式的性质和正确转化恒成立问题是解题的关键.12.△ABC中,∠B=60°,b=2,则△ABC周长的最大值为()A.2 B.2C.3D.6【考点】正弦定理.【专题】计算题;转化思想;综合法;解三角形.【分析】由已知可得A+C=120°,结合正弦定理可表示a,c,利用三角函数恒等变换的应用可得△ABC周长l=2+4sin(A+30°),结合A的范围,利用正弦函数的性质可求△ABC周长的最大值.【解答】解:△ABC中,∵B=60°,b=2,∴A+C=120°由正弦定理可得a===4sinA,c===4sinC,则△ABC周长l=a+b+c=4sinA+4sinC+2=2+4sinA+4sin=2+4(sinA+cosA)=2+4sin(A+30°),∵0<A<120°,∴30°<A+30°<150°,∴<sin(A+30°)≤1,可得:2+4sin(A+30°)∈(4,6],∴l的最大值为6.故选:D.【点评】本题主要考查了正弦定理在求解三角形中的应用,而辅助角公式及正弦函数的性质的灵活应用是求解问题的关键,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在横线上. 13.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为15,10,20.【考点】分层抽样方法.【专题】概率与统计.【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在各年级中抽取的人数.【解答】解:根据题意得,用分层抽样在各层中的抽样比为=,则在高一年级抽取的人数是300×=15人,高二年级抽取的人数是200×=10人,高三年级抽取的人数是400×=20人,故答案为:15,10,20.【点评】本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.14.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论中正确的是(2);(1)A与C互斥(2)B与C互斥(3)任两个均互斥(4)任两个均不互斥.【考点】互斥事件与对立事件.【专题】计算题;转化思想;综合法;概率与统计.【分析】利用互斥事件、对立事件的定义直接求解.【解答】解:∵从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,∴事件A与事件C能同时发生,A与C不是互斥事件,∴(1)错误;(2)事件B与事件C不能同时发生,但能同时不发生,∴B与C是互斥事件,故(2)正确;(3)由A与C不是互斥事件,故(3)错误;(4)由B与C是互斥事件,知(4)错误.故答案为:(2).【点评】本考查命题真假的判断,是基础题,解题时要认真审题,注意互斥事件的概念的合理运用.15.若不等式ax2+5x﹣2>0的解集是,则不等式ax2﹣5x+(a2﹣1)>0的解集是.【考点】一元二次不等式的应用.【分析】先由二次不等式的解集形式,判断出,2是方程ax2+5x﹣2=0的两个根,利用韦达定理求出a的值,再代入不等式ax2﹣5x+a2﹣1>0易解出其解集.【解答】解:∵ax2+5x﹣2>0的解集是,∴a<0,且,2是方程ax2+5x﹣2=0的两根韦达定理×2=,解得a=﹣2;则不等式ax2﹣5x+a2﹣1>0即为﹣2x2﹣5x+3>0,解得故不等式ax2﹣5x+a2﹣1>0的解集.故答案为:【点评】本题考查的知识点是一元二次不等式的解法,及“三个二次”(三个二次指的是:二次函数,一元二次不等式,一元二次方程)之间的关系,“三个二次”之间的关系及应用是数形结合思想的典型代表.16.对于数列{a n},定义数列{a n+1﹣a n}为数列{a n}的“差数列”,若a1=1,{a n}的“差数列”的通项公式为3n,则数列{a n}的通项公式a n=.【考点】数列的函数特性;数列的概念及简单表示法.【专题】计算题;等差数列与等比数列.【分析】依题意,a1=1,a n+1﹣a n=3n,利用累加法与等比数列的求和公式即可求得答案.【解答】解:∵a1=1,a n+1﹣a n=3n,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=3n﹣1+3n﹣2+…+31+1==.故答案为:.【点评】本题考查数列的求和,着重考查累加法与等比数列的求和公式,属于中档题.三、解答题:本大题共6小题,共70分,请写出各题的解答过程或演算步骤. 17.一个包装箱内有6件产品,其中4件正品,2件次品,随机抽出两件产品(1)求恰好有一件次品的概率(2)求都是正品的概率.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】(1)所有的取法共有种,而恰好有一件次品的取法有2×4种,由此求得恰好有一件次品的概率.(2)所有的取法共有种,而取出的2件产品都是正品的取法有种,由此求得取出的2件产品都是正品的概率.【解答】解:(1)所有的取法共有=15种,而恰好有一件次品的取法有2×4=8种,故恰好有一件次品的概率为.(2)所有的取法共有=15种,而取出的2件产品都是正品的取法有=6种,故取出的2件产品都是正品的概率为.【点评】本题考查古典概型及其概率计算公式的应用,属于基础题.(2)用最小二乘法计算利润额y对销售额x的回归直线方程;(3)当销售额为8(千万元)时,估计利润额的大小.(附:b=)【考点】线性回归方程.【专题】函数思想;综合法;概率与统计.【分析】(1)画出散点图,两个变量具有线性相关关系;(2)由求出所给的这组数据的样本中心点,利用最小二乘法做出线性回归方程的系数,把所求的这些结果代入公式求出线性回归方程的系数,进而求出a的值,写出线性回归方程;(3)由利润额y对销售额x的回归直线方程,能求出当销售额为8(千万元)时的利润额.【解答】解:(1)画出散点图:∴两个变量具有线性相关关系.﹣﹣﹣﹣﹣(2)设线性回归方程为=x+,由=(3+5+6+7+9)=6,=(2+3+3+4+5)=3.4,∴===0.5,=﹣•=0.4,∴y对x的线性回归方程为y=0.5x+0.4﹣﹣﹣﹣﹣﹣﹣(3)当销售额为8(千万元)时,利润额约为y=0.5×8+0.4=4.4(百万元).﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查散点图的作法和相关关系的判断,考查回归直线方程的求法和应用,解题时要认真审题,仔细解答,注意最小二乘法的合理运用,属于中档题.19.已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a n log a n,求数列{b n}的前n项和S n.【考点】等差数列与等比数列的综合;数列的求和.【专题】计算题.【分析】(I)根据a3+2是a2,a4的等差中项和a2+a3+a4=28,求出a3、a2+a4的值,进而得出首项和a1,即可求得通项公式;(II)先求出数列{b n}的通项公式,然后求出﹣S n﹣(﹣2S n),即可求得的前n 项和S n.【解答】解:(I)设等比数列{a n}的首项为a1,公比为q∵a3+2是a2,a4的等差中项∴2(a3+2)=a2+a4代入a2+a3+a4=28,得a3=8∴a2+a4=20∴∴或∵数列{a n}单调递增∴a n=2n(II)∵a n=2n∴b n==﹣n•2n∴﹣s n=1×2+2×22+…+n×2n①∴﹣2s n=1×22+2×23+…+(n﹣1)×2n+n2n+1②∴①﹣②得,s n=2+22+23+…+2n﹣n•2n+1=2n+1﹣n•2n+1﹣2【点评】本题考查了等比数列的通项公式以及数列的前n项和,对于等差数列与等比数列乘积形式的数列,求前n项和一般采取错位相减的办法.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.【考点】等比数列的性质;三角函数中的恒等变换应用;解三角形.【专题】三角函数的求值;解三角形.【分析】(I)由已知,利用三角函数的切化弦的原则可得,sinB(sinAcosC+sinCcosA)=sinAsinC,利用两角和的正弦公式及三角形的内角和公式代入可得sin2B=sinAsinC,由正弦定理可证(II)由已知结合余弦定理可求cosB,利用同角平方关系可求sinB,代入三角形的面积公式S=可求.【解答】(I)证明:∵sinB(tanA+tanC)=tanAtanC∴sinB()=∴sinB•=∴sinB(sinAcosC+sinCcosA)=sinAsinc∴sinBsin(A+C)=sinAsinC,∵A+B+C=π∴sin(A+C)=sinB即sin2B=sinAsinC,由正弦定理可得:b2=ac,所以a,b,c成等比数列.(II)若a=1,c=2,则b2=ac=2,∴,∵0<B<π∴sinB=∴△ABC的面积.【点评】本题主要考查了三角形的切化弦及两角和的正弦公式、三角形的内角和定理的应用及余弦定理和三角形的面积公式的综合应用.21.如图,正方形OABC的边长为2.(1)在其四边或内部取点P(x,y),且x,y∈Z,求事件“|OP|>1”的概率;(2)在其内部取点P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面积均大于”的概率是.【考点】几何概型;列举法计算基本事件数及事件发生的概率.【专题】概率与统计.【分析】(1)分析出正方形的四边和内部取点P(x,y),且x,y∈Z的全部基本事件个数,及满足“|OP|>1”的基本事件个数,代入古典概型公式可得事件“|OP|>1”的概率;(2)求出满足条件的所有基本事件对应的平面区域Ω的面积,及满足条件“△POA,△PAB,△PBC,△PCO的面积均大于的平面区域面积,代入几何概型公式,可得事件“△POA,△PAB,△PBC,△PCO的面积均大于”的概率【解答】解:(1)在正方形的四边和内部取点P(x,y),且x,y∈Z,所有可能的事件是(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),其中满足|OP|>1的事件是(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),所以满足|OP|>1的概率为.(2)在正方形内部取点,其总的事件包含的区域面积为4,由于各边长为2,所以要使△POA,△PAB,△PBC,△PCO的面积均大于,应该三角形的高大于,所以这个区域为每个边长从两端各去掉后剩余的正方形,其面积为×=,所以满足条件的概率为.【点评】本题考查的知识点是几何概型,及古典概型,其中求出所有基本事件个数(对应区域面积)和满足条件的基本事件个数(对应区域面积)是解答的关键.22.设数列{a n}的前n项和为S n,其中a n≠0,a1为常数,且﹣2a1,S n,2a n+1成等差数列.(1)当a1=2时,求{a n}的通项公式;(2)当a1=2时,设b n=log2(a n2)﹣1,若对于n∈N*, +++…+<k恒成立,求实数k的取值范围;(3)设c n=S n+1,问:是否存在a1,使数列{c n}为等比数列?若存在,求出a1的值,若不存在,请说明理由.【考点】等差数列与等比数列的综合;数列的求和.【专题】等差数列与等比数列.【分析】(1)由已知中﹣2a1,S n,2a n+1成等差数列,可得S n=a n+1﹣a1,进而可得a n+1=2a n,结合a1=2时,可得{a n}的通项公式;(2)由(1)结合对数的运算性质,可得数列{b n}的通项公式,进而利用拆项法可求出+++…+的表达式,进而可得实数k的取值范围;(3)由c n=a1×2n﹣a1+1,结合等比数列的定义,可得当且仅当﹣a1+1=0时,数列{c n}为等比数列.【解答】解:(1)∵﹣2a1,S n,2a n+1成等差数列∴2S n=﹣2a1+2a n+1,∴S n=a n+1﹣a1,…①当n≥2时,S n﹣1=a n﹣a1,…②两式相减得:a n=a n+1﹣a n,即a n+1=2a n,﹣﹣﹣﹣﹣﹣当n=1时,S1=a2﹣a1,即a2=2a1,适合a n+1=2a n,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以数列{a n}是以a1=2为首项,以2为公比的等比数列,所以a n=2n﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)由(1)得a n=2n,所以b n=log2(a n2)﹣1=2n﹣1∴+++…+=+++…+=[(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1﹣)∵n∈N*,∴(1﹣)<若对于n∈N*, +++…+<k恒成立,∴k≥﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3)由(1)得数列{a n}是以a1为首项,以2为公比的等比数列所以c n=S n+1==a1×2n﹣a1+1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣要使{c n}为等比数列,当且仅当﹣a1+1=0即a1=1所以存在a1=1,使{c n}为等比数列﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是等差数列与等比数列的通项公式,数列求和,恒成立问题,是数列的综合应用,难度较大,属于难题.。

河南省永城市实验高级中学2017-2018学年高一物理下学期期末考试试题(含答案)

河南省永城市实验高级中学2017-2018学年高一物理下学期期末考试试题(含答案)

河南省永城市实验高级中学2017~2018学年下学期高一期末考试物理试题一、选择题(本题12小题,每小题4分,共48分。

其中1-8题为单选,9-12题多项正确。

全部选对的得4分,选不全的得2分,有错选或不选的得0分)1.物理学的发展丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了物质生产的繁荣与人类文明的进步,下列表述正确的是A.开普勒发现了万有引力定律B.相对论的创立表明经典力学已不再适用C.卡文迪许用扭称实验测出了万有引力常量D.牛顿发现了海王星和冥王星2. 某人站立于竖直加速上升的电梯里,下列说法正确的是 ( )A. 人受到的重力与电梯地板对人的支持力是一对平衡力B. 电梯对人的支持力和人对电梯的压力大小不相等C. 人处于超重状态,也就说人的重力增加了D. 人的机械能在不断增加3.将一个物体以10 m/s的初速度从10 m高处水平抛出,不计空气阻力,物体在水平方向上的位移多大?(g取10 m/s2) ( )A.10 m B.10 m C.5 m D.15 m4.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点。

一质量为m的小球。

始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动,重力加速度大小为g。

小球从a点开始运动到其他轨迹最高点时,机械能的增量为()A.2mgR B.3mgRC.4mgR D.5mgR5. . 一个质量m=150kg的雪橇,受到与水平方向成θ=37ο角斜向上方的拉力F=500N,在水平面上移动的距离l=5m,雪橇与地面间的滑动摩擦力F阻=100N,求拉力对雪橇做的总功(g取10 m/s2) ()A. 2500 J B。

2000 J C . 1000 J D .1500 J6.一台电动机工作时的输出功率是10kW,要用它匀速提升2.5×104kg货物,提升的速度将是多大?(g取10 m/s2) ( )A. 1 m/s B.2.5 m/sC.0.05 m/s D.0.04m/s7. A、B两个物体在同一直线上沿同一方向运动,A的质量是5 kg,速度是9 m/s,B的质量是2 kg,速度是6 m/s.A从后面追上B,它们相互作用一段时间后,B的速度增大为10 m/s,方向不变,这时A的速度是多大?方向如何?以上过程中除A、B两物体的相互作用力外,其他的力可以忽略.A.10 m/s与原方向相同 B.7.4 m/s,与原方向相同C.10m/s与原方向相反 D.7.4m/s与原方向相反8. 一个质量为0.1kg的钢球,以6m/s的速度水平向右运动,碰到坚硬的墙壁后弹回,沿着同一直线以6m/s的速度水平向左运动.碰撞前后钢球的动量变化了多少?()A.0 kg•m/s B.0.6 kg•m/sC.1.2 kg•m/s D.2.4 kg•m/s9. 神舟号载人飞船在发射至返回的过程中,以下哪些阶段返回舱的机械能是守恒的()A.飞船升空的阶段B.飞船在椭圆轨道上绕地球运行的阶段C.返回舱在大气层外向着地球做无动力飞行阶段D.降落伞张开后,返回舱下降的阶段10. 运动员将质量是500g的足球踢出后,足球上升的最大高度是10m,在最高点的速度是20m/s,重力加速度为10 m/s2,不计空气阻力,则()A.该运动员踢球时对足球做的功是150JB.球到最高点时重力对足球做功的瞬时功率为100WC.以球到最高点时为计时起点,t=1s时重力对足球做功的瞬时功率为50WD.以球到最高点时为计时起点,0~0.5s内重力的平均功率是0.5~1.0s内重力平均功率的3倍11.质量为m、速度为v的A球跟质量为3m的静止B球发生正碰。

【全国市级联考】河南省2017-2018学年高一下学期期末考试数学试题+答案

【全国市级联考】河南省2017-2018学年高一下学期期末考试数学试题+答案

2017-2018学年下期教学质量调研测试高一数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,且是第四象限角,则( )A. B. C. D.2. 进制数,则可能是( )A. 2B. 4C. 6D. 83. 已知向量,,若,则( )A. B. C. D.4. 中,若,,则等于( )A. B. C. D.5. 某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛,在下列选项中,互斥而不对立的两个事件是( )A. “至少有1名女生”与“都是女生”B. “至少有1名女生”与“至多有1名女生”C. “恰有1名女生”与“恰有2名女生”D. “至少有1名男生”与“都是女生”6. 用秦九韶算法求多项式当的函数值时,先算的是( )A. B. C. D.7. 已知,又,,则等于( )A. B. C. D. 或08. 元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的,则一开始输入的的值为( )A. B. C. D. 49. 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为,则应从一年级本科生中抽取( )名学生.A. 60B. 75C. 90D. 4510. 已知函数的部分图象如图所示,下面结论正确的个数是( )①函数的最小正周期是;②函数在区间上是增函数;③函数的图象关于直线对称;④函数的图象可由函数的图象向左平移个单位长度得到A. 3B. 2C. 1D. 011. 若向量,,满足,,若,则与的夹角为( )A. B. C. D.12. 已知函数,若对恒成立,则的单调递减区间是( )A. B.C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约__________石.14. 在上任取两数和组成有序数对,记事件为“”,则__________.15. 设的内角,已知,若向量与向量共线,则的内角__________.16. 下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形为长方形,,,为中点,在长方形内随机取一点,取得的点到的距离大于1的概率为;③把函数的图象向右平移个单位,可得到的图象;④已知回归直线的斜率的估计值为,样本点的中心为,则回归直线方程为. 其中正确的命题有__________.(填上所有正确命题的编号)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知平面内三个向量,,.(1)若,求实数的值;(2)设,且满足,,求.18. 某中学团委组织了“文明礼仪伴我行”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,,…,后画出如下部分频率分布直方图,观察图形给出的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.19. 如图,在平面直角坐标系中,锐角的终边分别与单位圆交于两点.(1)如果点的纵坐标为,点的横坐标为,求;(2)已知点,,求.20. 长时间用手机上网严重影响着学生的身体健康,某校为了解、两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时间作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(1)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;(2)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本中随机抽取一个不超过21的数据记为,求的概率.21. 已知函数的部分图象如图,是图象的最高点,为图象与轴的交点,为原点,且点坐标为,.(1)求函数的解析式;(2)将函数图象向右平移1个单位后得到函数的图象,当时,求函数的最大值.第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,且是第四象限角,则( )A. B. C. D.【答案】D【解析】∵sin a=,且a为第四象限角,∴,则,故选:D.2. 进制数,则可能是( )A. 2B. 4C. 6D. 8【答案】D【解析】因为k进制数3651(k)中出现的最大数字为6,可得:k>6,故选:D.3. 已知向量,,若,则( )A. B. C. D.【答案】A【解析】向量,,.故选A.4. 中,若,,则等于( )A. B. C. D.【答案】C【解析】∵,∴),∴3,∴,∴λ=故选C.5. 某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛,在下列选项中,互斥而不对立的两个事件是( )A. “至少有1名女生”与“都是女生”B. “至少有1名女生”与“至多有1名女生”C. “恰有1名女生”与“恰有2名女生”D. “至少有1名男生”与“都是女生”【答案】C【解析】试题分析:“至少有1名女生”包含“都是女生”,所以A错误;“至少有1名女生”包含“(男,女)”这种情况,所以与“至多有1名女生”不互斥,所以B错误;“恰有1名女生”与“恰有2名女生”互斥,但不对立,C正确;“至少有1名男生”与“都是女生”既互斥又对立,所以D错误。

河南省永城市实验高级中学2017-2018学年高一英语下学期期末考试试题

河南省永城市实验高级中学2017-2018学年高一英语下学期期末考试试题

2017--2018学年度下期期末考试高一英语试题本试卷分试题卷和答题卷两部分,试题卷共8页,答题卷共2页。

请按要求把答案涂、写在答题卡规定的范围内,超出答题框或答在试题卷上的答案无效。

满分120分,考试时间100分钟。

考试结束只收答题卡。

第Ⅰ卷(选择题;共70分)第一部分听力(略)第二部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。

AWhen you are feeling unhappy or forget how great you are, these are six ways to make you feel good about yourself.◆Look in the mirror and say to yourself, “ I am a special person and there’sno one in the world like me.” I can do anything!” it may not sound so go od, but it really works!◆ Do something nice for someone. Helping others always makes you feel good.◆ Smile! Be friendly to people you meet. Look for the good things in your friends and family.◆ Learn something new! Have you always wanted to decorate yo ur own room or learn how to swim? Go for it! New challenges are fun and give you a sense of accomplishment when you have finished.◆ Read and start a diary. Turn off the TV and let your imagination fly! Write down your thoughts , dreams or anything you want! Writing always helps to express your feelings.◆ Stay with your family. We all need our family time. Talk with your Mum or Dad or maybe even your cousin.21. This passage may be taken fromA. a novelB. a magazineC. a science bookD. a story book22. What do the underlined words “a sense of accomplishment” in Paragraph 5 mean?A. 忧伤感B. 挫折感C. 成就感D. 信任感23. Which of the following should you say “NO” when you are unhappy?A. Stay alone at home as much as possible.B. Learn something new and go for it!C. Keep a diary to express your feeling.D. You should always look for the good things of others.24. The best title for the passage is .A. Do Your BestB. It’s Never Too Late t o LearnC. Seeing is Believing.D. Six Ways to Feel Good About Yourself.B25. How many parts does the book have?A. 8B. 4C. 18D. 2626. If you’re interested in sho pping, you can read________.A. Chapter 18B. Chapter 8C. Chapter 16D. Chapter 627. The book does NOT include ________.A. information about visasB. help with European languagesC. ideas about what to take on a tripD. a section about traveling withpetsCOne day Jack went with his family to eat in a restaurant. They were sitting ata table and waiting for their meal. Suddenly, everyone around them started to covertheir noses. Some of them even left their tables and went away.When Jack’s family turned around to see what had caused this, they saw two homeless boys. The boys looked dirty and smelled bad. But both boys were smiling andhad beautiful blue eyes. They were looking for someone kind. One of the boys went to the counter and he counted the coins he had. The other boy looked sick and he stood quietly.The young lady at the counter asked the boy what they wanted. He said, “We only want a cup of coffee. “ That was all they could afford. Th ey wanted to sit in the restaurant and warm up. It was really cold outside. But to sit inside the restaurant, they had to buy something.When Jack’s mother saw this, she wanted to help the boys. She ordered some more food. Then she went to the two boy’s ta ble. She put the food on the table. The boys looked up at her and said, “Thank you.” When Jack saw what his mother did, he understood what the unconditional(无条件的 ) love was. His mother treated those boys kindly. She did not expect anything in return. Now Jack saves his own pocket money and helps homeless people whenever he can.28. Which of the following caused some people to leave their table?A. They had finished their mealsB. They thought the food was terrible.C. There wasn’t enough food in the restaur ant.D. Two boys came in and they smelled bad.29. Why did two boys come to the restaurant?A. Because they were hungry.B. Because they knew Robin’s family.C. Because they wanted to warm up.D. Because they wanted to have some coffee.30. What did Jack’s mother do?A. She ordered some food for the two boys.B. She gave the two boys some money.C. She asked Jack to play with the two boys.D. She invited the two boys to eat with her family.31. What did Jack learn from the story?A. We should laugh at others.B. We should treat others kindly.C. We should save pocket money.D. We shouldn't receive others’ help.DHave you ever done something foolish that made you feel so embarrassed(尴尬的)?Well, that’s exactly how I felt. On a Saturday morning last autumn, I had gone to town to do some shopping and as I was on my way home, it suddenly began to rain.I ran into a nearby phone box at once because I didn’t have an umbrella. It was raining so heavily that I have to stay in the phone box until it stopped.A few moments later, I saw a young man walk up to the phone box, wearing a yellow raincoat and holding a box. I didn’t want to go out into the rain, so I picked up the phone and pretended(假装) I was talking to someone. I thought the man would go away, but he didn’t. He just waited in the rain, watching me. I had to wave my hands about and acted as if I was deep in conversation.Luckily, it began to stop after about ten minutes. “Okay, Mum,” I said loudly into the phone, “I’ll see you later, Bye!” I put the phone down, picked up my shopping bag and walked out of the phone box. “I’m sorry I took so long,” I said to the man.“Oh, I don’t want to use the phone,” he replied, smiling. “I’ve just come to repair it. It’s out of order, you see.” I felt myself go red in the face and I hurried away with my head down, feeling a complete fool. That was certainly one of the most embarrassing moments of my life!32. Why did the writer go to the phone box and stay there?A. Because she wanted to keep warm.B. Because she wanted to phone her mother.C. Because it rained heavily and she had no umbrella with her.D. Because she wanted to wait for her friend there.33. What did the writer think the young man wanted to do?A. To shake hands with her.B. To use the phone.C. To repair the phone.D. To listen to the phone box.34. How long did the young man wait for?A. About ten minutes.B. About five minutes.C. About fifteen minutes.D. About thirty minutes.35. Which of the following is TRUE?A. The writer thought the rain would last long.B. The story happened on a cold Saturday morning last summer.C. It suddenly rained when the writer was on her way home after shopping.D. The writer was telephoning to her mother when the it rained.第二节(共5小题,每小题2分,满分10分)根据短文内容,从短文后的选项中选出填入空白处的最佳选项并在答题卡上将该项涂黑。

河南省永城市实验高级中学2017-2018学年高一英语下学期期末考试试题

河南省永城市实验高级中学2017-2018学年高一英语下学期期末考试试题

2017--2018学年度下期期末考试高一英语试题本试卷分试题卷和答题卷两部分,试题卷共8页,答题卷共2页。

请按要求把答案涂、写在答题卡规定的范围内,超出答题框或答在试题卷上的答案无效。

满分120分,考试时间100分钟。

考试结束只收答题卡。

第Ⅰ卷(选择题;共70分)第一部分听力(略)第二部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。

AWhen you are feeling unhappy or forget how great you are, these are six ways to make you feel good about yourself.◆Look in the mirror and say to yourself, “ I am a special person and there’sno one in the world like me.” I can do anything!” it may not sound so go od, but it really works!◆ Do something nice for someone. Helping others always makes you feel good.◆ Smile! Be friendly to people you meet. Look for the good things in your friends and family.◆ Learn something new! Have you always wanted to decorate yo ur own room or learn how to swim? Go for it! New challenges are fun and give you a sense of accomplishment when you have finished.◆ Read and start a diary. Turn off the TV and let your imagination fly! Write down your thoughts , dreams or anything you want! Writing always helps to express your feelings.◆ Stay with your family. We all need our family time. Talk with your Mum or Dad or maybe even your cousin.21. This passage may be taken fromA. a novelB. a magazineC. a science bookD. a story book22. What do the underlined words “a sense of accomplishment” in Paragraph 5 mean?A. 忧伤感B. 挫折感C. 成就感D. 信任感23. Which of the following should you say “NO” when you are unhappy?A. Stay alone at home as much as possible.B. Learn something new and go for it!C. Keep a diary to express your feeling.D. You should always look for the good things of others.24. The best title for the passage is .A. Do Your BestB. It’s Never Too Late t o LearnC. Seeing is Believing.D. Six Ways to Feel Good About Yourself.B25. How many parts does the book have?A. 8B. 4C. 18D. 2626. If you’re interested in sho pping, you can read________.A. Chapter 18B. Chapter 8C. Chapter 16D. Chapter 627. The book does NOT include ________.A. information about visasB. help with European languagesC. ideas about what to take on a tripD. a section about traveling withpetsCOne day Jack went with his family to eat in a restaurant. They were sitting ata table and waiting for their meal. Suddenly, everyone around them started to covertheir noses. Some of them even left their tables and went away.When Jack’s family turned around to see what had caused this, they saw two homeless boys. The boys looked dirty and smelled bad. But both boys were smiling andhad beautiful blue eyes. They were looking for someone kind. One of the boys went to the counter and he counted the coins he had. The other boy looked sick and he stood quietly.The young lady at the counter asked the boy what they wanted. He said, “We only want a cup of coffee. “ That was all they could afford. Th ey wanted to sit in the restaurant and warm up. It was really cold outside. But to sit inside the restaurant, they had to buy something.When Jack’s mother saw this, she wanted to help the boys. She ordered some more food. Then she went to the two boy’s ta ble. She put the food on the table. The boys looked up at her and said, “Thank you.” When Jack saw what his mother did, he understood what the unconditional(无条件的 ) love was. His mother treated those boys kindly. She did not expect anything in return. Now Jack saves his own pocket money and helps homeless people whenever he can.28. Which of the following caused some people to leave their table?A. They had finished their mealsB. They thought the food was terrible.C. There wasn’t enough food in the restaur ant.D. Two boys came in and they smelled bad.29. Why did two boys come to the restaurant?A. Because they were hungry.B. Because they knew Robin’s family.C. Because they wanted to warm up.D. Because they wanted to have some coffee.30. What did Jack’s mother do?A. She ordered some food for the two boys.B. She gave the two boys some money.C. She asked Jack to play with the two boys.D. She invited the two boys to eat with her family.31. What did Jack learn from the story?A. We should laugh at others.B. We should treat others kindly.C. We should save pocket money.D. We shouldn't receive others’ help.DHave you ever done something foolish that made you feel so embarrassed(尴尬的)?Well, that’s exactly how I felt. On a Saturday morning last autumn, I had gone to town to do some shopping and as I was on my way home, it suddenly began to rain.I ran into a nearby phone box at once because I didn’t have an umbrella. It was raining so heavily that I have to stay in the phone box until it stopped.A few moments later, I saw a young man walk up to the phone box, wearing a yellow raincoat and holding a box. I didn’t want to go out into the rain, so I picked up the phone and pretended(假装) I was talking to someone. I thought the man would go away, but he didn’t. He just waited in the rain, watching me. I had to wave my hands about and acted as if I was deep in conversation.Luckily, it began to stop after about ten minutes. “Okay, Mum,” I said loudly into the phone, “I’ll see you later, Bye!” I put the phone down, picked up my shopping bag and walked out of the phone box. “I’m sorry I took so long,” I said to the man.“Oh, I don’t want to use the phone,” he replied, smiling. “I’ve just come to repair it. It’s out of order, you see.” I felt myself go red in the face and I hurried away with my head down, feeling a complete fool. That was certainly one of the most embarrassing moments of my life!32. Why did the writer go to the phone box and stay there?A. Because she wanted to keep warm.B. Because she wanted to phone her mother.C. Because it rained heavily and she had no umbrella with her.D. Because she wanted to wait for her friend there.33. What did the writer think the young man wanted to do?A. To shake hands with her.B. To use the phone.C. To repair the phone.D. To listen to the phone box.34. How long did the young man wait for?A. About ten minutes.B. About five minutes.C. About fifteen minutes.D. About thirty minutes.35. Which of the following is TRUE?A. The writer thought the rain would last long.B. The story happened on a cold Saturday morning last summer.C. It suddenly rained when the writer was on her way home after shopping.D. The writer was telephoning to her mother when the it rained.第二节(共5小题,每小题2分,满分10分)根据短文内容,从短文后的选项中选出填入空白处的最佳选项并在答题卡上将该项涂黑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


, a b 的值。
2

18.(本小题满分 12 分) 某中学共有 1 000 名学生参加了该地区高三第一次质量检测的数学考试, 数学成绩如下表所示 : 数学成绩分组 人数 [0,30) 60 [30,60) 90 [60,90) 300 [90,120) [120,150] 160
B. 互斥但不对立事件
7.一次选拔运动员的测试中,测得 7 名选手中的身高(单位:cm)分布的茎叶图如图所示.记录 的平均身高为 177 cm,有一名候选人的身高记录不清楚,其末位数记为 x,则 x 等于( ) A.5 B.6 C.7 D.8
8.若向量 a , b , c 两两所成的角相等,且 a 1 , b 1 , c 3 ,则 a b c 等于( A.2 B. 5 C.2 或 5 D. 2 或 5 )
C.
3 7
D.
4 7
B. r 1 ,且 r 越接近于 1 ,相关
11.下列有关样本相关系数的说法不正确的是( ) A.相关系数用来衡量变量 x 与 y 之间的线性相关程度 程度越大 C. r 1 ,且 r 越接近 0 ,相关程度越小 程度越小 12.样本的平 ( x1 , x2 , … … , xn ) 均数为 x ,样本 ( y1 , y2 , … … ,ym ) 的平均数为 y ( x y ) .若样 本 ( x1 , x 2 , x n , y1 , y 2 , y m ) 的平均数 z x 1 y , 其中 0 系为( ) A. n m B. n m C. n m D.不能确定
2017—2018 学年度下期期末考试 高一数学试题
注意事项: 1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分,共 150 分,考试时间 120 分钟。 2. 严格按题号所指示的答题区域内作答, 选择题在答题卡内相应位置按要求用 2B 铅笔 把正确答案的代号字母涂黑,超出答题区域书写的答案无效。 第Ⅰ卷(选择题 共 60 分)
一、选择题 : (本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有 一项是符合题目要求的) 1.已知 sin 2 > 0 ,且 cos < 0 ,则角 的终边位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.下列说法错误的是( ) A.在统计里,把所需考察对象的全体叫做总体 B.一组数据的平均数一定大于这组数据中的每个数据 C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势 D.众数是一组数据中出现次数最多的数 3.总体由编号为 01,02,…,19,20 的 20 个个体组成.利用下面的随机数表选取 5 个个体, 选取方法从随机数表第 1 行的第 5 列和第 6 列数字开始由左到右一次选取两个数字, 则选出来 的第 5 个个体的编号为( ) 7816 3204 A.08 4.已知 A. C. , 和 和 6572 9234 0802 4935 B.07 6314 8200 0702 3623 C.02 4369 4869 9728 6938 D.01 ) 0198 7481
2376 化为十进位制数,结果为_______。
8
15.用辗转相除法或更相减损术求 228 与 1995 两数的最大公约数______。 16.如下图,在一个边长为 a、b(a>b>0)的矩形内画一个梯形,梯形上、
1 1 下底分别为 a 与 a,高为 b,向该矩形内随机投一点,则所投的点落在梯形 3 2
是平面向量的一组基底,则下列四组向量中,不能作为一组基底的是( , B. D. 和 和
5. 一支田径队有男运动员 56 人,女运动员 42 人,用分层抽样的方法从全体运动员中抽出一个 容量为 28 的样本,则从中抽取的男运动员的人数为( A. 8 B.12 C.16 D.32
-1-
)
6.把红、蓝、黑、白 4 张纸牌分给甲、乙、丙、丁 4 个人,每人分得一张,事件“甲分得红牌” 与事件“乙分得红牌”是( A. 对立事件 ) C.不可能事件 D. 以上都不对
1a 3
b 1a 2 a
内部的概率为 ________。
三.解答题(本大题共6小题,共70分。解答应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分 10 分) 已知 a 3 , b 4 ,且 a 与 b 的夹角 150 ,求 a b , a b






-3-
19.(本小题满分 12 分) 已知 cos cos sin + sin = ,且
1 3
3 , 2 ,求 cos 2 + 的值. 4 2
20.(本小题满分 12 分) 一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了 10 次试验,收集数 据如下: 零件数 x(个) 加工时间 y min (1)画出散点图; (2)求回归方程; (3)关于加工零件的个数与加工时间,你能得出什么结论? 10 20 30 40 50 60 70 80 90 100
x
(1)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽样 的方法抽取 100 名同学进行问卷调查,甲同学在本次测试中数学成绩为 95 分,求他被抽中的 概率; (2)已知本次数学成绩的优秀线为 110 分,试根据所提供数据估计该中学达到优秀线的人 数; (3)作出频率分布直方图,并估计该学校本次考试的数学平均分.

D. r 1 ,且 r 越接近于 1 ,相关


1 , 则 n, m 的大小关 2
第Ⅱ卷(非选择题
共 90 分)
二、填空题:本大题共4小题,每小题5分,共20分,把正确的答案填在题中横线上。
-2-
13.比较大小 sin 14.将八进位制
_______ sin 18 10



9.如右图所示,程序框图(算法流程图)的输出结果为(
A. C.
3 4 11 12
B. D.
1 6 25 24
10.在夏令营的 7 名成员中,有 3 名同学已经去过北京,从这 7 名同学中 选出 2 名同学,则选出的 2 名同学恰是已去过北京的概率是( A. )
1 7
B.
2 7
相关文档
最新文档