数模答案

合集下载

数模与模数转换器 习题与参考答案

数模与模数转换器 习题与参考答案

第11章 数模与模数转换器 习题与参考答案【题11-1】 反相运算放大器如图题11-1所示,其输入电压为10mV ,试计算其输出电压V O 。

图题11-1解:输出电压为:mV mV V R R V IN F O 10010101=⨯=-=【题11-2】 同相运算放大器如图题11-2所示,其输入电压为10 mV ,试计算其输出电压V O 。

图题11-2 解:mV mV V R R V IN F O 110101111=⨯=+=)( 【题11-3】 图题11-3所示的是权电阻D/A 转换器与其输入数字信号列表,若数字1代表5V ,数字0代表0V ,试计算D/A 转换器输出电压V O 。

11-3【题11-4】 试计算图题11-4所示电路的输出电压V O 。

图题11-4解:由图可知,D 3~D 0=0101因此输出电压为:V V V V O 5625.151650101254===)(【题11-5】 8位输出电压型R/2R 电阻网络D/A 转换器的参考电压为5V ,若数字输入为,该转换器输出电压V O 是多少?解:V V V V O 988.2153256510011001258≈==)( 【题11-6】 试计算图题11-6所示电路的输出电压V O 。

图题11-6 解:V V V D D V V n n REF O 5625.15165010125~240==-=-=)()(【题11-7】 试分析图题11-7所示电路的工作原理。

若是输入电压V IN =,D 3~D 0是多少?图题11-7解:D3=1时,V V V O 6221234==,D3=0时,V O =0。

D2=1时,V V V O 3221224==,D2=0时,V O =0。

D1=1时,V V V O 5.1221214==,D1=0时,V O =0。

D0=1时,V V V O 75.0221204==,D0=0时,V O =0 由此可知:输入电压为,D3~D0=1101,这时V O =6V++=,大于输入电压V IN =,比较器输出低电平,使与非门74LS00封锁时钟脉冲CLK ,74LS293停止计数。

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

大学电子技术基础课后习题答案第9章-数模与模数转换器

大学电子技术基础课后习题答案第9章-数模与模数转换器

9 数模与模数转换器9.1 D/A 转换器9.1.1 10位倒T 形电阻网络D/A 转换器如图题9.1.1所示。

(1)试求出输出电压的取值范围。

(2)若要求电路输入数字量为200H 时输出电压v o =5V ,试问V REF 应取何值?解:(1)由式(9.1.6)可知,10位D/A 转换器输出电压O v 为910022f REFOii i R R v R D ==-⋅⋅∑当98D D …0D =00…0时 O v =0 V当98D D …0D =11…1时,REFO R v R=-,已知f R R =,所以O REF v R =-于是可得到输出电压的取值范围为:0REF V V -。

(2)根据式(1) 109212O REFifii R v V R D =⋅⋅=-⋅⋅∑将98D D …0D =1000000000代入上式,的REF V =﹣10V 。

9.1.2 在图9.1.8所示的4位权电流D/A 转换器中,已知REF V =6V ,1R =48k Ω,当输入3210D D D D =1100时,O v =1.5V ,试确定f R 的值。

解:n 位权电流D/A 转换器的输出电压为1122n fiREF O i n i R R v D R -==⋅⋅∑于是,有11022n O f n iREF i i R v R V D -=⋅⋅=⋅⋅∑依题意,已知n=4,REF V =6V ,1R =48k Ω,3210D D D D =1100,O v =1.5V,代入上式得f R =16k Ω。

9.1.5 可编程放大器(数控可变增益放大器)电路如图题9.1.5所示。

(1)推导电路电压放大倍数/V O I A v v =的表达式。

(2)当输入编码为(001H )和(3FFH )时,电压放大倍数V A 分别为多少? (3)试问当输入编码为(000H )时,运放1A 处于什么状态?解:(1)图题9.1.5中运放3A 组成电压增益为﹣1的反相比例放大器,O v =﹣REF V 。

数学模型课后答案姜启源

数学模型课后答案姜启源

数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。

安全渡河条件下的状态集合为允许状态集合,记作s。

以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。

允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。

模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。

把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。

如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。

二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。

数模(题2及答案)

数模(题2及答案)

数模(题2及答案)1. 用随机变量来描述掷一枚骰子的试验结果,并写出它的分布律。

解:令X 为掷一枚骰子的试验结果,则X 的取值为1,2,3,4,5,6。

并且X 取其中任2. 某试验成功的概率为p ,X 代表第二次成功之前试验失败的次数,写出X 的分布律。

答:X3答:不能,因为0.15+0.45+0.6 = 1.2 > 1。

4.产品有一、二、三等品和废品四种,一、二、三等品率和废品率分别为55%、25%、19%、1%,任取一件产品检验其质量等级,用随机变量X 表示检验结果,并写出其分布律和分布函数。

答: 分布函数为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<≤<≤<=xx x x x x F 4,143,99.032,8.021,55.01,0)(5.设某种试验成功的概率为0.7,现独立地进行10次这样的试验。

问是否可以用一个服从二项分布的随机变量来描述这10次试验中成功的次数?如何描述?请写出它的分布以及分布的数学期望和标准差。

答: 本题中实验的结果只有两种,成功,不成功,符合Bernoulli 实验的特征。

令X 为10次实验中成功的次数,显然X 的取值范围就是0,1,2 …,10,而且X 取k 的概率为:其中k 为0-10间的自然数。

显然可以用服从二项分布的随机变量来描述这10次实验中成功次数。

具体分布就是kn kk n p p C k X P --==)1()(数学期望 E(X) = n*p = 10*0.7 = 7 标准差 45.11.2)7.01(7.010)1(==-⨯⨯=-=p np σ6.如果你是一个投资咨询公司的雇员,你告诉你的客户,根据历史数据分析结果,企业A的平均投资回报比企业B 的高,但是其标准差也比企业 B 的大。

你应该如何回答客户提出的如下问题:(1) 是否意味着企业A 的投资回报肯定会比企业B 的高?为什么? (2) 是否意味着客户应该为企业A 而不是企业B 投资?为什么?答: (1) 平均投资回报反映的是长期的平均结果。

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 : (1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

数模第三版习题答案解读

数模第三版习题答案解读

《数学模型》作业解答第一章(2008年9月9日)4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有()()0=θθg f ,且()()()()0,0,00,00==ππf g f g ,则[]πθ2,00∈∃,使()()000==θθg f .模型求解:令)()()(θθθg f h -= .就有,0)0( h 0)(0)()()( ππππg g f h -=-=.再由()()θθg f ,的连续性,得到()θh 是一个连续函数. 从而()θh 是[]π,0上的连续函数.由连续函数的介值定理:()πθ,00∈∃,使()00=θh .即()πθ,00∈∃,使()()000=-θθg f .又因为[]πθ2,0∈∀,有()()0=θθg f .故()()000==θθg f .8. 假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,单位时间内人口的增量与)(t x x m -成正比(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果比较.解:现考察某地区的人口数,记时刻t 的人口数为()t x (一般()t x 是很大的整数),且设()t x 为连续可微函数.又设()00|x t x t ==.任给时刻t 及时间增量t ∆,因为单位时间内人口增长量与)(t x x m -成正比, 假设其比例系数为常数r .则t 到t t ∆+内人口的增量为:()()()t t x x r t x t t x m ∆-=-∆+)(. 两边除以t ∆,并令0→∆t ,得到⎪⎩⎪⎨⎧=-=0)0()(x x x x r dtdxm 解为rtm m e x x x t x ---=)()(0如图实线所示,当t 充分大时 m x 它与Logistic 模型相近.0x t9.为了培养想象力、洞察力和判断力,考察对象时除了从正面分析外,还常常需要从侧面 或反面思考.试尽可能迅速回答下面问题:(1) 某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿. 次日早8:00沿同一路径下山,下午5:00回到旅店.某乙说,甲必在两天中的同一时刻经 过路径中的同一地点.为什么?(2) 37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者 进入下一轮,直至比赛结束.问共需进行多少场比赛,共需进行多少轮比赛.如果是n 支球队比赛呢?(3) 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻 不一定相同.甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,仅约10天到达乙站.问开往甲乙两站的电车经过丙站的时刻表是如何安排的?(4) 某人家住T 市在他乡工作,每天下班后乘火车于6:00抵达T 市车站,他的 妻子驾车准时到车站接他回家,一日他提前下班搭早一班火车于5:30抵T 市车站,随即步行回家,他的妻子象往常一样驾车前来,在半路上遇到他,即接他回家,此时发现比往常 提前了10分钟.问他步行了多长时间?(5) 一男孩和一女孩分别在离家2 km 和1 km 且方向相反的两所学校上学,每天 同时放学后分别以4 km/h 和2 km/h 的速度步行回家.一小狗以6 km/h 的速度由男孩处奔向女孩,又从女孩处奔向男孩,如此往返直至回到家中,问小狗奔波了多少路程?如果男孩和女孩上学时小狗也往返奔波在他们之间,问当他们到达学校时小狗在何处?解:(1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标, 第一天的行程)(t x 可用曲线(I )表示 ,第二天的行程)(t x 可用曲线(I I )表示,(I )(I I )是连续曲线必有交点),(000d t p ,两天都在0t 时刻经过0d 地点.方法二:设想有两个人, 一人上山,一人下山,同一天同 时出发,沿同一路径,必定相遇. 0d t早8 0t 晚5方法三:我们以山下旅店为始点记路程,设从山下旅店到山顶的路程函数为)(t f (即t 时刻走的路程为)(t f ),同样设从山顶到山下旅店的路函数为)(t g ,并设山下旅店到山顶的距离为a (a >0).由题意知:,0)8(=f a f =)17(,a g =)8(,0)17(=g .令)()()(t g t f t h -=,则有0)8()8()8(<-=-=a g f h ,0)17()17()17(>=-=a g f h ,由于)(t f ,)(t g 都是时间t 的连续函数,因此)(t h 也是时间t 的连续函数,由连续函数的介值定理,]17,8[0∈∃t ,使0)(0=t h ,即)()(00t g t f =.(2)36场比赛,因为除冠军队外,每队都负一场;6轮比赛,因为2队赛1轮,4队赛2轮,32队赛5轮. n 队需赛1-n 场,若k k n 221≤- ,则需赛k 轮.(3)不妨设从甲到乙经过丙站的时刻表是8:00,8:10,8:20,…… 那么从乙到甲经过丙站的时刻表应该是8:09,8:19,8:29……(4)步行了25分钟.设想他的妻子驾车遇到他后,先带他前往车站,再回家,汽车多行驶了10分钟,于是带他去车站这段路程汽车多跑了5分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻应该是5:55.(5)放学时小狗奔跑了3 km .孩子上学到学校时小狗的位置不定(可在任何位置),因为设想放学时小狗在任何位置开始跑,都会与孩子同时到家.之所以出现位置不定的结果,是由于上学时小狗初始跑动的那一瞬间,方向无法确定.10*. 某人第一天上午9:00从甲地出发,于下午6:00到达乙地.第二天上午9:00他又从乙地出发按原路返回,下午6:00回到甲地.试说明途中存在一点,此人在两天中同一时间到达该处.若第二天此人是下午4:00回到甲地,结论将如何?答:(方法一)我们以甲地为始点记路程,设从甲地到乙地的路程函数为)(t f (即t 时刻走的路程为)(t f ),同样设从乙地到甲地的路函数为)(t g ,并设甲地到乙地的距离为a (a >0).由题意知:,0)9(=f a f =)18(,a g =)9(,0)18(=g . 令)()()(t g t f t h -=,则有0)9()9()9(<-=-=a g f h ,0)18()18()18(>=-=a g f h 由于)(t f ,)(t g 都是时间t 的连续函数,因此)(t h 也是时间t 的连续函数,由连续函数的介值定理,]18,9[0∈∃t ,使0)(0=t h ,即)()(00t g t f =. 若第二天此人是下午4:00回到甲地,则结论仍然正确,这是因为0)9()9()9(<-=-=a g f h ,0)16()16()16()16(>=-=f g f h .(方法二)此题可以不用建模的方法,而变换角度考虑:设想有两个人,一人从甲地到乙地,另一人从乙地到甲地,同一天同时出发,沿同一路径,必定相遇.若第二天此人是下午4:00回到甲地,则结论仍然正确.《数学模型》作业解答第二章(1)(2008年9月16日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-TML , [v ]=1-LT,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++030032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(21010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1g m l k g l t '''='ϕ 当无量纲量l l mm '='时, 就有 ll l g g l tt '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rTc T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 rc c T 21*2= ⎩⎨⎧==---22/112/112/12/1ππk g m l g tl由rT Q = , 得212c rc rT Q ==** 与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q CTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆ni Ti i t TT r k c dt t g c t g c 1022022)()()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TT t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β )(2)8322(22022bp a TT t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(m ax 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 925002+-=TdT dC又k T C 10035095025003)(*+⨯+⨯==300+100k k T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l以及x=0,y=0组成的凸四边形区域. 直线l :20x+30y=c 在可行域内 平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值. 由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物 体积(立方米/箱)重量 (百斤/箱)利润 (百元/箱)甲 5 2 20 乙4510已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 m ax x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l 2的交点时,z 取最大值 由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和32ll1x1l2x个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明:(1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0 .01,1单调减少时当t i dtdis s ∴-σσ.0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s ,1,10 dtdit s s σσσ从而则若()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te VkD k k e e k k V D k t C kt t k kt3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β ()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h即 )1(max Nxrx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2N x >,且尽量接近2N ,但不能等于2N . 2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h Ex()x f由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定; ③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max Nx rx h -=,易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 2 12,1<⇔<∴αβλ即平衡稳定的条件为2<αβ与207P 的结果一致. (2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23=+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-=则,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y k k k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3)(1)代入(3),可得)2(0102x x x x x k k k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4)上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为 48)(22,1αβαβαβλ-±-= ---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.。

深圳杯数模比赛A题最新答案

深圳杯数模比赛A题最新答案

深圳人口与医疗需求预测摘要问题一中,由于深圳市不同于常规一线城市,从结构来看,深圳人口的显著特点是流动人口远远超过户籍人口,影响人口数量增长的因素较多,人口年龄结构变化大,常用人口预测模型误差较大,本文通过Mathematica 二次曲线拟合预测产生未来十年产业从业人员比例,并建立多元线性回归拟合模型来预测深圳市非常住人口数量,其次用Markov 链预测未来人口年龄结构比例,利用Matlab 程序预测未来具有就医需求的总人口数并得出深圳市床位需求,以及各区床位需求。

问题二中,选取两种疾病,利用灰色GM (1,1) 模型预测小儿肺炎和老年性白内障未来十年的入院率,利用Excel 处理得出对各类医疗机构床位需求权重,得到未来十年的小儿肺炎的床位需求和老年性白内障对各类医疗机构的床位需求。

关键词:关键词:二次曲线拟合预测Markov 链多元线性回归灰色GM (1,1) 预测模型-1-一、问题重述深圳市我国人口增长最快的地方,从1980年到2010年,深圳每年都以30多万的人口增幅增长,到2010年深圳市总人口已达到1037万人。

从结构来看,深圳人口的显著特点是流动人口远远超过户籍人口,且年轻人口占绝对优势。

深圳流动人口主要是从事第二、三产业的企业一线工人和商业服务业人员。

年轻人身体强壮,发病较少,因此深圳目前人均医疗设施虽然低于全国类似城市平均水平,但仍能满足现有人口的就医需求。

然而,随着时间推移和政策的调整,深圳老年人口比例会逐渐增加,产业结构的变化也会影响外来务工人员的数量。

这些都可能导致深圳市未来的医疗需求与现在有较大的差异。

就深圳市的相关情况,建立数学模型分析研究下面的问题:问题一:分析深圳近十年常住人口、非常住人口变化特征,预测未来十年深圳市人口数量和结构的发展趋势,以此为基础预测未来全市和各区医疗床位需求。

问题二:根据深圳市人口的年龄结构和患病情况及所收集的数据,选择预测几种病(如:肺癌及其他恶性肿瘤、心肌梗塞、脑血管病、高血压、糖尿病、小儿肺炎、分娩等)在不同类型的医疗机构就医的床位需求。

数模模糊数学作业题目答案

数模模糊数学作业题目答案

数模模糊数学作业题目答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、(模糊聚类)已知我国31个省农业生产条件的5大指标数据。

五大指标的数据(1)作聚类图。

并告知分5类时,每一类包含的省份名称(列表显示)。

(2)若分为3类,问相似水平(就是阈值)不能低于多少?解:新建data.txt,将全部数据存入该data.txt,打开MATLAB,在命令窗口输入:>>datastruct=importdata('data.txt')检查一下数据是否导入正确:>> datastruct.data %这里是31*5的数值矩阵>> datastruct. textdata%这里是31*1的省名称文本矩阵>> fuzzy_jlfx(3,5,datastruct.data) %调用网站所给的模糊数学聚类程序包根据编号代表意义,可知分5类时的省份编号为:第一类:9、上海第二类:1、北京 2、天津第三类:3、河北第四类:4、山西第五类:其余省市自治区都属于第五类(2)若分成3类,由聚类图可知阈值应在(0.74,0.76)内。

2、(模糊评价)对某水源地进行综合评价,取U为各污染物单项指标的集合,取V为水体分级的集合。

可取U(矿化度,总硬度,NO3-,NO2-,SO42-),V(I级水,Ⅱ级水,Ⅲ级水,Ⅳ级水,V级水)。

现得到该水源地的每个指标实测值x,计算得到对于I~ V级水的隶属度:?可以根据水质对污染的影响计算权重为A=(0.28,0.22,0.06,0.22,0.22),试判断该地水源是几级水?解:在matlab 命令窗口内输入数据: >> V=[0 0.35 0.65 0 0;0.51 0.49 0 0 0; 0.83 0.17 0 0 0; 0 0 0.925 0.075 0; 0.21 0.79 0 0 0];>> A=[0.28,0.22,0.06,0.22,0.22];>> fuzzy_zhpj(2,A,V) % 调用网站所给的模糊综合评判程序包 ans =0.1122 0.1738 0.2035 0.0165 0所以可以判断该地水源是Ⅲ级水。

数模机械基础答案

数模机械基础答案

带传动一、简述平带、V带、圆带传动的区别。

答:平带的横截面为矩形,带的内侧面为工作面。

常用的有橡胶帆布带、皮革带、棉布带及化纤带等。

V带的横截面为梯形,两侧面为工作面。

(V带传动是把V带紧套在带轮上的梯形槽内,使V带的两侧面与带轮槽的两侧面压紧,从而产生摩擦力来传递运动和动力。

)在相同条件下,V带传动比平带传动的摩擦力大,V带的传动能力为平带的3倍。

(圆带常用皮革制成,也有圆绳带和圆锦纶带等,)它们的横截面均为圆形。

只适用于低速、轻载的机械,如缝纫机、真空吸尘器、磁带盘的传动机构等。

3、V带按结构特点和用途的不同可分为哪些种类?常用的是哪一种?答:V带按结构特点和用途的不同可分为普通V带、窄V带、宽V带、汽车V带和大楔角V带等,以普通V带传动的应用最广。

4、简述平带的结构和应用特点答:平带是截面呈扁平的带,用于平带轮间传递动力,两轴间距离以5~10 m为宜,传动线速度可高达25 m/s。

平带与平带轮面间的包角不得小于150°(若包角小于150°,则传动效果较差)。

选用平带时其厚度约为带轮直径的1/20~1/30,宽度以轮面宽的85%为宜。

2、V带张紧轮、平带张紧轮如何安装?为什么?答:V带传动的张紧轮一般安装在松边内侧,使带只受单弯曲,同时尽量靠近大带轮,以免减小小带轮的包角。

平带传动的张紧轮置于松边外侧并靠近小带轮,可以增大小带轮的包角。

带传动打滑时,打滑现象发生在那个带轮上?为什么?答:小带轮上,因为小带轮包角总是小于大带轮包角,而包角越小,接触弧长越短,接触面间所产生的摩擦力总和也就越小,因此,打滑现象都发生在小带轮上。

P21.答:内燃机功用是用于产生机械能,提供动力。

齿轮机构功用是用于传递运动。

凸轮机构是旋转运动转化为直线运动。

曲柄滑块机构是将活塞的直线运动转化为旋转运动P32.答:两构件之间只能绕某一轴线作相对转动的运动副称为转动副。

两构件之间只能作相对直线移动的运动副称为移动副。

(完整版)数模转换习题(含答案)

(完整版)数模转换习题(含答案)

数模转换器和模数转换器1 常见的数模转换器有那几种?其各自的特点是什么?解数模转换器可分为二进制权电阻网络数模转换器和T型电阻网络数模转换器(包括倒T型电阻网络数模转换器)两大类。

权电阻网络数模转换器的优点是电路结构简单,可适用于各种有权码,缺点是电阻阻值范围太宽,品种较多,要在很宽的阻值范围内保证每个电阻都有很高的精度是极其困难的,因此在集成数模转换器中很少采用权电阻网络。

T形电阻网络数模转换器的优点是它只需R和2R两种阻值的电阻,这对选用高精度电阻和提高转换器的精度都是有利的。

2 某个数模转换器,要求10位二进制数能代表0~50V,试问此二进制数的最低位代表几伏?分析数模转换器输入二进制数的最低位代表最小输出电压。

数模转换器最小输出电压(对应的输入二进制数只有最低位为1)与最大输出电压(对应的输入二进制数的所有位全为1)的比值为数模转换器的分辨率。

解由于该数模转换器是10位数模转换器,根据数模转换器分辨率的定义,最小输出电压u omin与最大输出电压u omax的比值为:由于V,所以此10位二进制数的最低位所代表的电压值为:(V)3 在如图1所示的电路中,若,,其最大输出电压u o是多少?图1 T型电阻网络数模转换器分析数模转换器的最大输出电压是输入二进制数的所有位全为1时所对应的输出电压。

解如图1所示电路是4位T型电阻网络数模转换器,当时,其输出电压u o为:显然,当d3、d2、d1、d0全为1时输出电压u o最大,为:(V)4 一个8位的T型电阻网络数模转换器,设,,试求d7~d分别为11111111、11000000、00000001时的输出电压u o。

分析当时,8位T型电阻网络数模转换器数的输出电压u o为:解当时有:(V)当时有:(V)当时有:(V)5 如图2所示电路是4位二进制数权电阻网络数模转换器的原理图,已知,kΩ,kΩ。

试推导输出电压u o与输入的数字量d3、d2、d、d0的关系式,并求当d3d2d1d0为0110时输出模拟电压u o的值。

数模转换习题(含答案)

数模转换习题(含答案)

数模转换器和模数转换器1 常见的数模转换器有那几种?其各自的特点是什么?解数模转换器可分为二进制权电阻网络数模转换器和T型电阻网络数模转换器(包括倒T型电阻网络数模转换器)两大类。

权电阻网络数模转换器的优点是电路结构简单,可适用于各种有权码,缺点是电阻阻值范围太宽,品种较多,要在很宽的阻值范围内保证每个电阻都有很高的精度是极其困难的,因此在集成数模转换器中很少采用权电阻网络。

T形电阻网络数模转换器的优点是它只需R和2R两种阻值的电阻,这对选用高精度电阻和提高转换器的精度都是有利的。

2 某个数模转换器,要求10位二进制数能代表0〜50V,试问此二进制数的最低位代表几伏?分析数模转换器输入二进制数的最低位代表最小输出电压。

数模转换器最小输出电压(对应的输入二进制数只有最低位为1)与最大输出电压(对应的输入二进制数的所有位全为1)的比值为数模转换器的分辨率。

解由于该数模转换器是10位数模转换器,根据数模转换器分辨率的定义,最小输出电压U omin与最大输出电压U omax的比值为:—= —!—-0.001如迪210-1 1C23由于;二工:=V,所以此10位二进制数的最低位所代表的电压值为:丄 5 - ------ (V)3 在如图1所示的电路中,若i - " ,1 :,其最大输出电压u o是多少?4 一个8位的T型电阻网络数模转换器,设,;:1d o分别为11111111、11000000 00000001 时的输出电压u。

分析当- V时,8位T型电阻网络数模转换器数的输出电压u0=_ 冬仙-27"丽一¥ “ 一2s +- - 24a3 23+ 21图1 T型电阻网络数模转换器分析数模转换器的最大输出电压是输入二进制数的所有位全为应的输出电压。

解如图1所示电路是4位T型电阻网络数模转换器,当亠出电压U o为:1时所对时,其输= 一^"@3 -卩4令■ 2^ 4-dj ■ 21+ ■ 2°)显然,当d a> d2、d i、d o全为1时输出电压U o最大,为:+ 沪+ 2°J = -4.d875(V),试求d7〜U o为:儿2°)当」•-,」..A 时有:当 J _ ] - 1 1 1时有.当 1 .■■ ' ■"'I 1 111〔I 时有:5 如图2所示电路是4位二进制数权电阻网络数模转换器的原理图,已知% JIW , K = iDk Q,耳二5k Q 。

历年全国数学建模试题及解法

历年全国数学建模试题及解法

一、历年全国数学建模试题及解法赛题解法93A 非线性交调的频率设计拟合、规划93B 足球队排名图论、层次分析、整数规划94A 逢山开路图论、插值、动态规划94B 锁具装箱问题图论、组合数学95A 飞行管理问题非线性规划、线性规划95B 天车与冶炼炉的作业调度动态规划、排队论、图论96A 最优捕鱼策略微分方程、优化96B 节水洗衣机非线性规划97A 零件的参数设计非线性规划97B 截断切割的最优排列随机模拟、图论98A 一类投资组合问题多目标优化、非线性规划98B 灾情巡视的最灾情巡视的最佳佳路线图论、组合优化99A 自动化车动化车床床管理随机优化、计随机优化、计算算机模拟99B 钻井布局0-1规划、图论00A DNA 序列分类模式识别式识别、、Fisher 判别判别、、人工神经网络00B 钢管订购和运输组合优化、组合优化、运输运输运输问题问题01A 血管三维重建曲线拟合、线拟合、曲面重建曲面重建01B 工交车调度问题多目标规划02A 车灯线光源光源的优化的优化非线性规划02B 彩票彩票问题问题问题 单目标目标决决策 03A SARS 的传播传播 微分方程、微分方程、差差分方程分方程03B 露天矿生产矿生产的车的车的车辆安辆安辆安排排 整数规划、整数规划、运输运输运输问题问题问题 04A 奥运会临时超市网点奥运会临时超市网点设计设计设计 统计分析、数计分析、数据处据处据处理、优化理、优化理、优化 04B 电力市场电力市场的的输电阻塞输电阻塞管理管理管理 数据拟合、优化拟合、优化 05A 长江长江水水质的评价和预测评价和预测 预测评价预测评价、数、数、数据处据处据处理理 05B DVD 在线租赁租赁 随机规划、整数规划随机规划、整数规划二、赛题发展的特点1.对选手对选手的计的计的计算算机能力提出了更高能力提出了更高的的要求:要求:赛题的解赛题的解赛题的解决依赖决依赖决依赖计计算机,题目的数题目的数据较据较据较多多,手工,手工计计算不能完成,如03B ,某些,某些问题问题问题需要需要需要使用使用使用计计算机软件,01A 。

数学建模试题及答案

数学建模试题及答案

数学建模试题及答案1.设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。

解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ 2分9431+-=+-n n kp p即: kp k p n n 531+-=- 经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑6分0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。

10分 2.某植物园的植物基因型为AA 、Aa 、aa ,人们计划用AA 型植物与每种基 因型植物相结合的方案培育后代(遗传方式为常染色体遗传),经过若干代后,这种植物后代的三种基因型分布将出现什么情形?总体趋势如何?依题意设未杂交时aa 、Aa 、AA 的分布分别为000,,a c b ,杂交n 代后分别为an bn cn (向为白分手) 由遗传学原理有:⎪⎪⎪⎩⎪⎪⎪⎨⎧++⋅=⋅++=⋅+⋅+⋅=---------111111111210021000n n n n n n n n n n n n c b a c c b a b c b a a 4分设向量T n n n n c b a x )..(=1-⋅=n n X M x式中 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=12100211000M 递推可得:0X M X n n ⋅=对M 矩阵进行相似对角化后可得:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ1000210000 其相似对角阵1111012001-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=p p 从而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⋅Λ=-111012001)21(111012001101n n n p p M ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=----1)21(1)21(10)21()21(0001111n n n n nM10101010))21(1())21(1(0)21()21(0b ac c b a b a n n n n n n n ⋅-+⋅-+=++==---- 8分 当∞→n 时,1,0,0→→→n n n c b a 。

数模产品工程师试题

数模产品工程师试题

数模产品工程师试题数模知识基本信息:[矩阵文本题] *1.线束与相对运动部件的布线要求:最大位移处(垂度或线束包络)距离该部件最少10mm。

[判断题] *对(正确答案)错2.在起动时,发动机抖动会带动部分连接发动机的部件产生共振,这些共振部件可能会与附件走线的线束发生干涉,这些走线部位需要用防震海绵胶带处理。

[判断题] *对(正确答案)错3.布置大电流用电器或PWM方式工作的电器不可临近于收音机线束或其它敏感的电子装置,大电流的电路尽可能离收音机线束或其它敏感的电子装置(ECM, TCM,多媒体系统)至少150mm以上,如果实际境况无法达到此要求,大电流的电路布线和敏感电子装置布线需相对垂直走线。

[判断题] *对(正确答案)错4.喇叭和冷却风扇的线束,要设计成不被散热器格栅间隙看到。

[判断题] *对(正确答案)错5.EPB中文全称为电子驻车制动系统 [判断题] *对(正确答案)错6.部分左右同时使用并是对称状态的护板,不需要防止用错。

[判断题] *对错(正确答案)7.发动机和车体的跨运动区域连接需要使用塑料护板进行线束防护 [判断题] *对错(正确答案)8.通常情况下塑料支架产品的耐低温在-40℃,经4h后不变形、不断裂、无裂纹[判断题] *对错(正确答案)9.描述塑料件阻燃性要求:火焰上直至燃烧,移开火焰后15秒内熄灭 [判断题] *对(正确答案)错10.EPB轮速线束通常安装在后轮扭力梁与轮毂附近,运动情况较为复杂,环境恶劣,因此在导线选型时需要选择铜丝根数较多,抗折弯能力较好规格的导线。

[判断题] *对(正确答案)错11.汽车用大端子为非护套连接部位供电或接地使用,一般情况会通过较大电流,需要大面积接触设计 [判断题] *对(正确答案)错12.在临近橡胶套部位的线束分支会导致漏水,因此分支点要与橡胶套维持50mm 以上的距离 [判断题] *对错(正确答案)13.在橡胶套的绑线部位直接使用波纹管可能会引发漏水问题,因此至少要隔离30mm以上再使用 [判断题] *对(正确答案)错14.装配起动机端子时为了防止因端子的旋转引起的短路,可在端子上增加限位结构 [判断题] *对(正确答案)错15.对于线束线径较大的位置,塑料支架需要增加相应的加强筋来提高结构的强度和刚性要求 [判断题] *对(正确答案)错16.孔式端子,弯折位置需要调整R角大小,不能出现小于1的R角,会产生应力集中,容易发生断裂,必须保证R角大于2 [判断题] *对(正确答案)错17.线束塑料支架主要作用:对线束起到固定和限位走向作用,避免线束磨损、烧蚀,有效的保证了线束的可靠性,从而提高线束的安全性和整车质量 [判断题] *对(正确答案)错18.安装橡胶件的板金面要从橡胶件通过孔的边缘维持3mm以上的有效安装平面[判断题] *对错(正确答案)19.PA66材料:具有优良的耐磨性、自润滑性,机械强度较高、尺寸稳定、抗冲击强度低 [判断题] *对错(正确答案)20.大端子设计无特殊要求的情况下,都需要做镀锡处理,保证表面耐腐蚀性能 [判断题] *对(正确答案)错21.橡胶件钣金开孔要满足线束上带的插接件和其它部件能够无损伤且易通过。

数模电笔试题

数模电笔试题

1、在数字信号处理中,以下哪种滤波器最适合用于去除高频噪声?
A. 低通滤波器
B. 高通滤波器
C. 带通滤波器
D. 带阻滤波器
(答案)A
2、在模拟电路中,下列哪个元件通常用于存储电能?
A. 电阻
B. 电容
C. 电感
D. 二极管
(答案)B
3、逻辑电路中,与非门(NAND gate)的功能相当于下列哪种逻辑运算?
A. AND后接NOT
B. OR后接NOT
C. XOR后接NOT
D. NOT后接AND
(答案)A
4、在数字通信系统中,误码率(BER)主要受到哪种因素的影响?
A. 信号幅度
B. 信号频率
C. 噪声干扰
D. 传输介质长度
(答案)C
5、下列哪种电路能够实现电压的放大?
A. 共射放大电路
B. 共集放大电路
C. 共基放大电路
D. 桥式整流电路
(答案)A
6、在微控制器编程中,中断服务程序(ISR)的主要作用是什么?
A. 处理外部设备的请求
B. 执行数学运算
C. 控制显示器输出
D. 管理内存分配
(答案)A
7、在数模转换过程中,采样频率的选择应满足什么条件以避免失真?
A. 采样频率等于信号频率
B. 采样频率小于信号带宽的两倍
C. 采样频率大于或等于信号带宽的两倍
D. 采样频率是信号频率的任意倍数
(答案)C
8、以下哪种调制技术常用于无线通信以提高频谱效率?
A. 幅度调制(AM)
B. 频率调制(FM)
C. 相移键控(PSK)
D. 单边带调制(SSB)
(答案)C。

数模电面试基础知识

数模电面试基础知识

数模电面试基础知识1. 什么是数模电?数模电是指数值和模拟电路的简称。

数值电路是用数字信号进行操作和处理的电路,而模拟电路则是使用连续变化的模拟信号进行操作和处理的电路。

2. 数模电的重要性数模电在电子工程中起着重要的作用,它涉及到数字信号的生成、传输、处理和解析,以及模拟信号的采集、转换、滤波和放大等方面。

数模电的应用非常广泛,包括但不限于通信系统、计算机硬件、嵌入式系统、自动控制系统等领域。

3. 数模电面试常见问题在数模电面试中,面试官通常会问一些基础知识的问题,下面是一些常见的问题及其答案:3.1 数模电的基本原理是什么?数模电的基本原理是将模拟信号转换为数字信号,或将数字信号转换为模拟信号。

这通常通过使用模数转换器(ADC)和数模转换器(DAC)来实现。

3.2 数模转换器的工作原理是什么?数模转换器将连续变化的模拟信号转换为离散的数字信号。

它通过采样和量化两个过程来实现。

采样是将连续的模拟信号在一定时间间隔内进行离散采样,量化是将采样后的信号离散为一系列离散的数值。

3.3 模数转换器的工作原理是什么?模数转换器将离散的数字信号转换为连续变化的模拟信号。

它通过两个过程来实现,即数字信号的量化和信号重建。

量化是将离散的数字信号映射到一定范围内的连续模拟信号,信号重建是将量化后的数字信号恢复为连续变化的模拟信号。

3.4 数模电中常用的滤波器有哪些?数模电中常用的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

低通滤波器可以通过滤除高频信号来实现信号的平滑化;高通滤波器可以通过滤除低频信号来实现信号的高频增益;带通滤波器可以通过滤除低频和高频信号之外的信号来实现信号的频段选择;带阻滤波器可以通过滤除一定频段内的信号来实现信号的频段抑制。

3.5 数模电中的采样定理是什么?采样定理又称为奈奎斯特定理,它规定了信号的最高频率和采样频率之间的关系。

根据采样定理,为了能够准确地恢复原始信号,采样频率必须至少是信号最高频率的两倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验作业
对以下问题,编写M 文件:
(1)用起泡法对10个数由小到大排序. 即将相邻两个数比较,将小的调到前头.
(2)有一个4x5矩阵,编程求出其最大值及其所处的位置.
(3)编程求
(4)一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下. 求它在第10次落地时,共经过多少米?第10次反弹有多高?
(5)有一函数 ,写一程序,输入自变量的值,输出函数值. 解(1)
编写qipao.m 文件如下:
function qipao(x)
for j=1:10
for i=1:10-j
if x(i)>x(i+1)
t=x(i);
x(i)=x(i+1);
x(i+1)=t;
end
end
end
x
解(2)
编写maximum.m 文件如下:
function maximum(x)
t=max (max(x))
for i=1:4
for j=1:5
if t==x(i,j)
i
j
end
end
end
∑=20
1!n n y xy x y x f 2sin ),(2++=
解(3)
编写jiehe.m文件如下所示:
function jiehe(x)
s=1;
sum=0;
for i=1:x
s=s*i;
sum=sum+s;
end
sum
解(4):
编写high.m文件如下:function high(x)
sum=0;
high=100;
for i=1:10
sum=sum+high;
high=high/2;
end
high
high=50;
for i=1:9
sum=sum+high;
high=high/2;
end
sum
解(5)
编写fun.m文件如下:function f=fun(x,y)
f=x.^2+sin(x.*y)+2*y;。

相关文档
最新文档