人教版八年级数学上册第12章 全等三角形 等腰三角形画图方案设计 研究课 教案
人教版八年级上册数学第12章全等三角形教案(2)
第十二章全等三角形12.1 全等三角形教学内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观养观察、操作、分析能力,体会全等三角形的应用价值.重点难点1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,•两条对应边所夹的角是对应角.教具准备四张大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点?2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.全等三角形对应角相等.二、随堂练习,巩固深化课本P4练习.【探研时空】1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.(AB=6)2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.•(∠AEC=30°,∠EAC=65°,∠ECA=85°)三、课堂总结,发展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?四、布置作业,专题突破课本P33习题12.1第1,2,3,4题.板书设计把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,右边部分板书学生的练习.疑难解析由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角).12.2三角形全等的判定(1)(SSS)教学内容本节课主要内容是探索三角形全等的条件(SSS),•及利用全等三角形进行证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重点难点1.重点:掌握“边边边”判定两个三角形全等的方法..难点:理解证明的基本过程,学会综合分析法.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC 上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.(教师板书)【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.证明:∵D是BC的中点,∴BD=CD在△ABD和△ACD中AB=ACAD=ADBD=CD∴△ABD≌△ACD(SSS).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明△ABC≌△FDE除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本P37练习1、2.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC ≌△DFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破课本P43习题12.2第1题.12.2 三角形全等判定(2)(SAS)教学目标1.知识与技能领会“边角边”判定两个三角形的方法.2.过程与方法经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.3.情感、态度与价值观培养合情推理能力,感悟三角形全等的应用价值.重点难点1.重点:会用“边角边”证明两个三角形全等.2.难点:应用结合法的格式表达问题.教具准备投影仪、直尺、圆规.教学方法采用“操作──实验”的教学方法,让学生有一个直观的感受.教学过程一、回顾交流,操作分析【动手画图】【投影】作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA•于点C,•交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD•长为半径画弧,交前面的弧于点D1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.【导入课题】教师叙述:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1•中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O1D1,OC=O1C1,∠COD=∠C1O1D1,△COD≌△C1O1D1.归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力.【媒体使用】投影显示作法.【教学形式】操作感知,互动交流,形成共识.二、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A、B的距离,可先在平地上取一个可以直接到达A和B 的点,连接AC并延长到D,使CD=CA,连接BC并延长到E,•使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC≌△DEC,就可以得出AB=DE.在△ABC和△DEC 中,CA=CD,CB=CE,如果能得出∠1=∠2,△ABC和△DEC•就全等了.证明:在△ABC和△DEC中AC=DC∠1=∠2BC=CE∴△ABC≌△DEC(SAS)∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写.【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.三、辨析理解,正确掌握【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC的端点B重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC与△ABD 满足两边及其中一边对角相等的条件,但△ABC与△ABD不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT;(2)以A为圆心,以适当长为半径,画弧,交BT于C、C′;(3)•连线AC,AC′,△ABC与△ABC′不全等.【形成共识】“边边角”不能作为判定两个三角形全等的条件.【教学形式】观察、操作、感知,互动交流.四、随堂练习,巩固深化课本P39练习第1、2题.五、课堂总结,发展潜能1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.六、布置作业,专题突破1.第2、3题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,其中右边部分板书“边角边”判定法,中间部分板书例题,右边部分板书练习题.12.2 三角形全等判定(3)(ASA)教学内容本节课主要内容是探索三角形全等的判定(ASA,AAS),•及利用全等三角形的证明.教学目标1.知识与技能理解“角边角”、“角角边”判定三角形全等的方法.2.过程与方法经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定法解决实际问题.3.情感、态度与价值观培养良好的几何推理意识,发展思维,感悟全等三角形的应用价值.重点难点1.重点:应用“角边角”、“角角边”判定三角形全等.2.难点:学会综合法解决几何推理问题.教具准备投影仪、幻灯片、直尺、圆规.教学方法采用“问题教学法”在情境问题中,激发学生的求知欲.教学过程一、回顾交流,巩固学习【知识回顾】(投影显示)情境思考:1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,•将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.(1) (2)[答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而EH=FH]2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=•DE(SSS)或∠BAC=∠DAE (SAS)].3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.【教师活动】操作投影仪,提出问题,组织学生思考和提问.【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.【教学形式】用问题牵引,辨析、巩固已学知识,在师生互动交流过程中,激发求知欲.二、实践操作,导入课题【动手动脑】(投影显示)问题探究:先任意画一个△ABC,再画出一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即使两角和它们的夹边对应相等),把画出的△A′B′C′剪下,•放到△ABC上,它们全等吗?【学生活动】动手操作,感知问题的规律,画图如下:画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B:1.画A′B′=AB;2.在A′B′的同旁画∠DA′B′=∠A,∠EBA′=∠B,A′D,B′E交于点C′。
人教版数学八年级上册第十二章全等三角形(教案)-构造全等三角形
2.增加典型例题的讲解,帮助学生掌握解题思路和方法;
3.引入更多实际例子,提高学生的兴趣和参与度;
4.加强课堂总结环节,巩固学生对知识点的掌握。
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指两个三角形在大小和形状上完全相同,能够通过翻折、旋转和平移等方式重合。全等三角形在几何学中具有重要作用,是解决许多几何问题的基本工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何利用SSS、SAS、ASA判定全等三角形,并说明全等三角形在解决实际问题中的应用。
3.重点难点解析:在讲授过程中。对于难点部分,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的尺规作图实验操作。这个操作将演示如何构造全等三角形。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“全等三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
4.激发学生的创新意识,鼓励他们在构造全等三角形的过程中发挥想象,探索多种解题方法,提高问题解决能力。
三、教学难点与重点
1.教学重点
(1)全等三角形的定义及性质:全等三角形的定义是两个三角形在大小和形状上完全相同,能够完全重合。性质包括对应角相等、对应边相等。
八年级数学上册第12章《全等三角形》全章教案(人教版)
第12章:全等三角形12.1全等三角形1.了解全等形、全等三角形的概念及全等三角形的对应元素.(重点)2.理解并掌握全等三角形的性质,能用符号正确地表示两个三角形全等.(重点)3.能熟练找出两个全等三角形的对应角和对应边.(难点)一、情境导入在我们的周围,经常可以看到形状、大小完全相同的图形,这类图形在几何学中具有特殊的意义.观察下列图案,指出这些图案中形状与大小相同的图形.你能再举出一些例子吗?二、合作探究探究点一:全等形和全等三角形的概念及对应元素【类型一】全等形的认识2013年第十二届全运会在辽宁举行,下图中的图形是全运会的会徽,其中是全等形的是()A.(1)(2)B.(2)(3)C.(1)(3)D.(1)(4)解析:根据能够完全重合的两个图形是全等形进行判断.由此可以判断选项D是正确的.方法总结:判断两个图形是不是全等形,可以通过平移、翻折、旋转等方法,将两个图形叠合起来观察,看其是否能完全重合,有时还可以借助网格背景来观察比较.【类型二】全等三角形的对应元素如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.解析:结合图形进行分析,分别写出对应边与对应角即可.C E;ADO与△AEO的对应解:BOD与△COE的对应边为:BO与CO,OD与OE,BD与△△角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.方法总结:找全等三角形的对应元素的关键是准确分析图形,另外记全等三角形时,对应顶点要写在对应的位置上,这样就可以比较容易地写出对应角和对应边了.探究点二:全等三角形的性质【类型一】应用全等三角形的性质求三角形的角或边如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.解析:根据全等三角形对应边、对应角相等求∠DEF的度数和CF的长.解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠D EF=∠B=50°,BC=EF=7,∴CF=BC-BF=7-4=3.方法总结:本题主要是考查运用全等三角形的性质求角的度数和线段的长,解决问题的关键是准确识别图形.【类型二】全等三角形的性质与三角形内角和的综合运用如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠ACB 的度数.解析:根据全等三角形的对应角相等可知∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD △+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠C AB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°,即∠ACB的度数是100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计全等三角形1.全等形与全等三角形的概念:能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应边相等.“首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后 总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例 熟悉运用全等三角形的性质解决一些简单的实际问题.12.2三角形全等的判定第 1 课时 “边边边”1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等.(重点)2.经历探索“边边边”判定全等三角形的过程,体会利用操作、归纳获得数学结论的 过程.(重点)3.在复杂的图形中进行三角形全等条件的分析和探索.(难点)一、情境导入问题提出:一块三角形的玻璃损坏后,只剩下如图①所示的残片,你对图中的残片作哪 些测量,就可以割取符合规格的三角形玻璃,与同伴交流.学生活动:观察,思考,回答教师的问题.方法如下:可以将图①的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块 完整的三角形.如图②,剪下模板就可去割玻璃了.如果△ABC ≌ △A ′B ′△C ′,那么它们的对应边相等,对应角相等.反之,如果 ABC 与 △A ′B ′C ′满足三条边对应相等,三个角对应相等,即 AB =A ′B ′,BC =B ′C ′,CA = C ′A ′,∠A =∠A ′,∠B =∠B ′,∠C =∠△C ′这六个条件,就能保证 ABC ≌ △A ′B ′C ′. 从刚才的实践我们可以发现:只要两个三角形三条对应边相等,就可以保证这两块三角形全 等.这种说法对吗?二、合作探究探究点:三角形全等的判定方法——“边边边”【类型一】 利用 SSS ”判定两个三角形全等 如图,AB =DE ,AC =DF ,点 E 、C 在直线 BF 上,且 BE =CF △.求证: ABC ≌△DEF .“解析:已知△ABC与△DEF有两边对应相等,通过BE=CF可得BC=EF,即可判定△ABC≌△DEF.⎧⎪BC=EF,证明:∵BE=CF,∴BE+EC=EC+CF,即BC=EF△.在ABC和△DEF中,∵⎨AB=DE,∴⎪⎩AC=DF,△ABC≌△DEF(SSS).方法总结:判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【类型二】SSS”与全等三角形的性质结合进行证明或计算如图所示,△ABC是一个风筝架,AB=AC,AD是连接点A与BC中点D的支架,求证:AD⊥BC.解析:要证AD⊥BC,根据垂直定义,需证∠1=∠2,∠1=∠2△可由ABD≌△ACD证得.⎧⎪AB=AC,证明:∵D是BC的中点,∴BD=CD△.在ABD和△ACD中,∵⎨BD=△C D,∴ABD≌△⎪⎩AD=AD,ACD(SSS),∴∠1=∠2(全等三角形的对应角相等).∵∠1+∠2=180°,∴∠1=∠2=90°,∴AD⊥BC(垂直定义).方法总结:将垂直关系转化为证两角相等,利用全等三角形证明两角相等是全等三角形的间接应用.【类型三】利用“边边边”进行尺规作图已知:如图,线段a、b、c△.求作:ABC,使得BC=a,AC=b,AB=c.(保留作图痕迹,不写作法)解析:首先画AB=c,再以B为圆心,a为半径画弧,以A为圆心,b为半径画弧,两弧交于一点C,连接BC,AC,即可得到△ABC.△解:如图所示, ABC 就是所求的三角形.方法总结:关键是掌握基本作图的方法,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.【类型四】 利用“SSS ”解决探究性问题如图,AD =CB ,E 、F 是 AC 上两动点,且有 DE =BF .(1)若 E 、F 运动至图①所示的位置,且有 AF =△C E ,求证: ADE ≌△CBF . (2)若 E 、F 运动至图②所示的位置,仍有 AF =△C E ,那么 ADE ≌△CBF 还成立吗?为什 么?(3)若 E 、F 不重合,AD 和 CB 平行吗?说明理由.解析:(1)因为 AF =CE ,可推出 AE =CF ,所以可利用 SSS 来证明三角形全等;(2)同样利用三边来证明三角形全等;(3)因为全等,所以对应角相等,可推出 AD ∥CB .⎧⎪AD =CB ,解:(1)∵AF =CE ,∴AF +EF =CE +EF ,∴AE =CF △.在 ADE 和△CBF 中,∵⎨DE =BF ,∴⎪⎩AE =CF ,△ADE ≌△CBF .⎧⎪AD =CB ,(2)成立.∵AF =CE ,∴AF -EF =CE -EF ,∴AE =CF △.在 ADE 和△CBF 中,∵⎨DE =BF ,⎪⎩AE =CF ,∴△ADE ≌△CBF .(3)平行.∵△ADE ≌△CBF ,∴∠A =∠C ,∴AD ∥BC .方法总结:解决本题要明确无论 E 、F 如何运动,总有两个三角形全等,这个在图形中 要分清.三、板书设计边边边1.三边分别相等的两个三角形全等.简记为“边边边”或“SSS ”. 2.“边边边”判定方法可用几何语言表示为:⎧⎪AB =A 1B 1,在△ABC 和 △A 1B 1C 1 中,∵⎨BC =B 1C 1,∴△ABC ≌ △A 1B 1C 1(SSS). ⎪⎩AC =A C ,1 1“A D F B本节课从操作探究活动入手,有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边边边”掌握较好,达到了教学的预期目的.存在的问题是少数学生在辅助线的构造上感到困难,不知道如何添加合理的辅助线,还需要在今后的教学中进一步加强巩固和训练.第2课时“边角边”1.理解并掌握三角形全等的判定方法——“边角边”.(重点)2.能运用“边角边”判定方法解决有关问题.(重点)3.“边角边”判定方法的探究以及适合“边角边”判定方法的条件的寻找.(难点)一、情境导入小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,他该怎么办?请你帮助小伟想一个办法,并说明你的理由.想一想:要画一个三角形与小伟画的三角形全等,需要几个与边或角的大小有关的条件?只知道一个条件(一角或一边)行吗?两个条件呢?三个条件呢?让我们一起来探索三角形全等的条件吧!二、合作探究探究点一:应用“边角边”判定两三角形全等【类型一】利用SAS”判定三角形全等如图,、、、在同一直线上,AD=BF,AE=BC,且AE∥BC△.求证:AEF≌△BCD.解析:由AE∥BC,根据平行线的性质,可得∠A=∠B,由AD=BF可得AF=BD,又AE =BC,根据SAS,即可证得△AEF≌△BCD.⎧⎪AE=BC,证明:∵AE∥BC,∴∠A=∠B.∵AD=BF,∴AF=BD△.在AEF和△BCD中,∵⎨∠A=∠B,⎪⎩AF=BD,∴△AEF≌△BCD(SAS).方法总结:判定两个三角形全等时,若有两边一角对应相等时,角必须是两边的夹角.【类型二】“边边角”不能证明三角形全等下列条件中,不能证明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,BC=EFB.AB=DE,∠A=∠D,AC=DFC.BC=EF,∠B=∠E,AC=DFD.BC=EF,∠C=∠F,AC=DF解析:要判断能不能使△ABC≌△DEF,应看所给出的条件是不是两边和这两边的夹角,只有选项C的条件不符合,故选C.方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA时是不能判定三角形全等的.探究点二:全等三角形判定与性质的综合运用【类型一】利用全等三角形进行证明或计算已知:如图,BC∥EF,BC=BE,AB=FB,∠1=∠2,若∠1=45°,求∠C的度数.解析:利用已知条定方法可证明件易证∠ABC=∠FBE,再根据全等三角形的判△ABC≌△FBE,由全等三角形的性质即可得到∠C=∠BEF.再根据平行,可得出∠BEF的度数,从而可知∠C的度数.⎧⎪BC=BE,解:∵∠1=∠2,∴∠ABC=∠FBE△.在ABC和△FBE中,∵⎨∠ABC=∠FBE,∴△ABC⎪⎩AB=FB,≌△FBE(SAS),∴∠C=∠BEF.又∵BC∥EF,∴∠C=∠BEF=∠1=45°.方法总结:全等三角形是证明线段和角相等的重要工具.【类型二】全等三角形与其他图形的综合如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证:(1)AE=CG;(2)AE⊥CG.解析:(1)因为已知条件中有两个正方形,所以AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,可得夹角相等,所以△ADE△和CDG全等;(2)再利用互余关系可以证明AE⊥CG.证明:(1)∵四边形ABCD、DEFG都是正方形,∴AD=CD,GD=ED.∵∠CDG=90°+∠ADG,⎧⎪AD =CD ,∠ADE =90°+∠ADG ,∴∠CDG =∠ADE △.在 ADE 和△CDG 中,∵⎨∠ADE =∠CDG ,∴△ADE⎪⎩DE =GD ,≌△CDG (SAS),∴AE =CG ;(2)设 AE 与 DG 相交于 M ,AE 与 CG 相交于 △N ,在 GMN 和△DME 中,由(1)得∠CGD =∠AED , 又∵∠GMN =∠DME ,∠DEM +∠DME =90°,∴∠CGD +∠GMN =90°,∴∠GNM =90°,∴AE ⊥CG .三、板书设计边角边1.两边及其夹角分别相等的两个三角形全等.简记为“边角边”或“SAS ”. 2.“边角边”判定方法可用几何语言表示为:⎧⎪AB =A 1B 1,在△ABC 和 △A 1B 1C 1 中,∵⎨∠B =∠B △1,∴ ABC ≌ △A 1B 1C 1(SAS). ⎪⎩BC =B C ,1 13.“SSA ”不能判定两个三角形全等.本节课从操作探究入手,具有较强的操作性和直观性,有利于学生从直观上积累感性认 识,从而有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生 对新知识的理解和掌握.第 3 课时 “角边角”“角角边”1.理解并掌握三角形全等的判定方法——“角边角”, 角角边”.(重点) 2.能运用“角边角”“角角边”判定方法解决有关问题.(重点)3.“角边角”和“角角边”判定方法的探究以及适合“角边角”判定方法的条件的寻 找.(难点)一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块 完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:应用“角边角”、“角角边”判定三角形全等【类型一】应用“ASA”判定两个三角形全等如图,AD∥BC,BE∥DF,AE=△C F,求证:ADF≌△CBE.解析:根据平行线的性质可得∠A=∠C,∠DFE=∠BEC,再根据等式的性质可得AF=CE,然后利用ASA可证明△ADF≌△CBE.证明:∵AD∥BC,BE∥DF,∴∠A=∠C,∠DFE=∠BEC.∵AE=CF,∴AE+EF=CF+EF,∠A=∠C,⎧⎪即AF=CE△.在ADF和△CBE中,∵⎨AF=CE,∴△ADF≌△CBE(ASA).⎪⎩∠DFA=∠BEC,方法总结:在“ASA”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA”中,“边”必须是“两角的夹边”.【类型二】应用“AAS”判定两个三角形全等如图,在△ABC中,AD⊥BC于点D,BE⊥AC于E.AD与BE交于F,若BF=AC,求证:△ADC≌△BDF.解析:先证明∠ADC=∠BDF,∠DAC=∠DBF,再由BF=AC,根据AAS即可得出两三角形全等.证明:∵AD⊥BC,BE⊥AC,∴∠ADC=∠BDF=∠BEA=90°.∵∠AFE=∠BFD,∠DAC+∠AEF+∠AFE=180°,∠BDF+∠BFD+∠DBF=180°,∴∠DAC=∠DBF△.在ADC和△BDF∠DAC=∠DBF,⎧⎪中,∵⎨∠ADC=∠BDF,∴△ADC≌△BDF(AAS).⎪⎩AC=BF,方法总结:在“AAS”中,“边”是“其中一个角的对边”.【类型三】灵活选用不同的方法证明三角形全等如图,已知AB=AE,∠BAD=∠CAE,要使△ABC≌△AED,还需添加一个条件,这个条件可以是______________.解析:由∠BAD=∠CAE得到∠BAC=∠EAD,加上AB=AE,所以当添加∠C=∠D时,根据“AAS”可判断△ABC≌△AED;当添加∠B=∠E时,根据“ASA”可判断△ABC≌△AED;当添加AC=AD时,根据“SAS”可判断△ABC≌△AED.方法总结:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.探究点二:运用全等三角形解决有关问题已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E△.求证:(1)BDA≌△AEC;(2)DE=BD+CE.解析:(1)由垂直的关系可以得到一对直角相等,利用同角的余角相等得到一对角相等,再由AB=AC,利用AAS即可得证;(2)△由BDA≌△AEC,可得BD=AE,AD=EC,根据DE=DA+AE等量代换即可得证.证明:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB⊥AC,∠ADB=∠CEA=90°,⎧⎪∴∠BAD+∠CAE=90°,∴∠ABD=∠CAE△.在BDA和△AEC中,∵⎨∠ABD=∠CAE,⎪⎩AB=AC,∴△BDA≌△AEC(AAS);(2)∵△BDA≌△AEC,∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.三、板书设计“角边角”“角角边”1.角边角:两角及其夹边分别相等的两个三角形全等.简记为“角边角”或“ASA”.2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等.简记为“角角边”或“AAS”.3.三角形全等是证明线段相等或角相等的常用方法.本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法.在寻找判定⎧⎪BF =CE ,⎩方法证明两个三角形全等的条件时,可先把容易找到的条件列出来,然后再根据判定方法去 寻找所缺少的条件.从课堂教学的情况来看,学生对“角边角”掌握较好,达到了教学的预 期目的.存在的问题是少数学生在方法“AAS”和“ASA ”的选择上混淆不清,还需要在今后 的教学中进一步加强巩固和训练.第 4 课时 “斜边、直角边”1.理解并掌握三角形全等的判定方法——“斜边、直角边”.(重点)2.经历探究“斜边、直角边”判定方法的过程,能运用“斜边、直角边”判定方法解 决有关问题.(难点)一、情境导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每 个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是 他就肯定“两个直角三角形是全等的”,你相信他的结论吗?二、合作探究探究点一:应用“斜边、直角边”判定三角形全等如图,已知∠A =∠D =90°,E 、F 在线段 BC 上,DE 与 AF 交于点 O ,且 AB =CD ,BE =CF .求证:△R t ABF ≌△R t DCE .解析:由题意可得△ABF △与 DCE 都为直角三角形,由 BE =CF 可得 BF =CE ,然后运用“HL ”即可判定 △R t ABF 与 △R t DCE 全等.证明:∵BE =CF ,∴BE +EF =CF +EF ,即 BF =CE .∵∠A =∠D =△90°,∴ ABF 与△DCE都为直角三角形.在 △R tABF 和 Rt △DCE 中,∵⎨⎪AB =CD ,∴△R t ABF ≌△R t DCE (HL).方法总结:利用“HL ”判定三角形全等,首先要判定这两个三角形是直角三角形,然后 找出对应的斜边和直角边相等即可.⎧⎪AB=AD,AC=AC,⎩探究点二:“斜边、直角边”判定三角形全等的运用【类型一】利用“HL”判定线段相等如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.解析:根据“HL”证△R t ADC≌△R t AFE,得CD=EF,再根据“HL”证△R t ABD≌△R t ABF,得BD=BF,最后证明BC=BE.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴△R t ADC ≌△R t AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴△R t ABD≌Rt△ABF(HL).∴BD=BF.∴BD -CD=BF-EF.即BC=BE.方法总结:证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.【类型二】利用“HL”判定角相等或线段平行如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证△R t ABC≌△R t ADC,进而得出角相等.证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=△90°,∴ABC与△ACD为直角三角形.在Rt△ABC和△R t ADC中,∵⎨∴△R t ABC≌△R t ADC(HL),∴∠1=∠2.⎪方法总结:证明角相等可通过证明三角形全等解决.【类型三】利用“HL”解决动点问题如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?解析:本题要分情况讨论:(1)Rt△APQ≌△R t CBA,此时AP=BC=5cm,可据此求出P点的⎪⎩PQ=AB,∴Rt△ABC≌△Rt QPA(HL),∴AP=BC=5cm;⎧⎪AP=AC,⎧⎪⎩“位置.(2)Rt△QAP≌△R t BCA,此时AP=AC,P、C重合.解:根据三角形全等的判定方法HL可知:(1)当P运动到AP=BC时,∵∠C=∠QAP=90°.在△R t ABC与△R t QPA中,∵⎨AP=BC,(2)当P运动到与C点重合时,AP=AC.在△R t ABC与△R t QPA中,∵⎨∴△R t QAP⎪PQ=AB,≌△R t BCA(HL),∴AP=AC=10cm,∴当AP=5cm或10cm时,△ABC才能和△APQ全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.【类型四】综合运用全等三角形的判定方法判定直角三角形全等如图,CD⊥AB于D点,BE⊥AC于E点,BE,CD交于O点,且AO平分∠BAC.求证:OB=OC.解析:已知BE⊥AC,CD⊥AB可推出∠ADC=∠BDC=∠AEB=∠CEB=90°,由AO平分∠BAC 可知∠1=∠2,然后根据AAS△证得AOD≌△AOE,根据ASA△证得BOD≌△COE,即可证得OB=OC.证明:∵BE⊥AC,CD⊥AB,∴∠ADC=∠BDC=∠AEB=∠CEB=90°.∵AO平分∠BAC,⎧⎪∠ADC=∠AEB,∴∠△1=∠2.在AOD和△AOE中,∵⎨∠1=∠2,⎪⎩OA=OA,⎧⎪∠BDC=∠CEB,∴△AOD≌△AOE(AAS).∴OD=OE△.在BOD和△COE中,∵⎨OD=OE,∴△BOD≌⎪⎩∠BOD=∠COE,△COE(ASA).∴OB=OC.方法总结:判定直角三角形全等的方法除“HL”外,还有:SSS、SAS、ASA、AAS.三、板书设计“斜边、直角边”1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL”.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL”,除此之外,还可以选用“SAS”ASA”.两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD “AAS”以及“SSS”(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边”时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习巩固所学的新知识.12.3角的平分线的性质第1课时角平分线的性质1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.(重点)2.能运用角的平分线性质定理解决简单的几何问题.(难点)一、情境导入问题:在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短?问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线的作法如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F12于点M.若∠ACD=120°,求∠MAB的度数.知,AM是∠CAB的平分线,∴∠MAB=∠CAB=30°.⎧⎪DF=BD,⎧⎪CD=DE,⎩DE⎩解析:根据AB∥CD,∠ACD=120°,得出∠CAB=60°,再根据AM是∠CAB的平分线,即可得出∠MAB的度数.解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=120°,∴∠CAB=60°,由作法12方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM是∠BAC的角平分线是解题的关键.探究点二:角平分线的性质【类型一】利用角平分线的性质证明线段相等如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.解析:(1)根据角平分线的性质,可得点D到AB的距离等于点D到AC的距离,即CD=DE.再根据Rt△CDF≌△R t EDB,得CF=EB;(2)利用角平分线的性质证明△ADC△和ADE全等得到AC=AE,然后通过线段之间的相互转化进行证明.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC.∵在△R t DCF和△R tDEB中,∵⎨∴△R t CDF≌△R t EDB(HL).∴CF=EB;⎪DC=DE,(2)∵AD是∠BAC的平分线,⊥AB,DC⊥AC,∴CD=DE△.在ADC与△ADE中,∵⎨⎪AD=AD,∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.方法总结:角平分线的性质是判定线段相等的一个重要依据,在运用时一定要注意是两条“垂线段”相等.【类型二】角平分线的性质与三角形面积的综合运用如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,△SABC=7,DE=2,AB=4,则AC的长是()A.6B.5C.4D.3解析:过点D作DF⊥AC于F,∵AD△是ABC的角平分线,DE⊥AB,∴DF=DE=2,∴△S ABC=×4×2+AC×2=7,解得AC=3.故选D.⎧⎪CD=CD,DE=DF,“⎩1122方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.【类型三】角平分线的性质与全等三角形综合如图所示,D是△ABC外角∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.解析:由角平分线的性质可得DE=DF,再利用HL”证明Rt△CDE和△R t CDF全等,根据全等三角形对应边相等证明即可.证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,∴DE=DF.在Rt△CDE和△R t CDF中,∵⎨∴△R t CDE≌△R t CDF(HL),∴CE=CF.⎪方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.三、板书设计角平分线的性质1.角平分线的作法;2.角平分线的性质;3.角平分线性质的应用.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.第2课时角平分线的判定1.掌握角平分线的判定定理.(重点)2.会用角平分线的判定定理解决简单的实际问题.(难点)一、情境导入⎧⎪中新网和田2015年2月25日电,新疆考古团队近日在斯皮尔古城及周边发现迄今为止最早的园林之城.如图,某考古队为进行研究,寻找一座古城遗址.根据资料记载,该城在森林附近,到两条河岸的距离相等,到古塔的距离是3000m.根据这些资料,考古队很快找到了这座古城的遗址.你能运用学过的知识在图中合理地标出古城遗址的位置吗?请你试一试.(比例尺为1∶100000)二、合作探究探究点一:角平分线的判定定理【类型一】角平分线的判定如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.解析:先判定△R t BDE和△R t CDF全等,得出DE=DF,再由角平分线的判定可知AD是∠BAC的平分线.证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDF 是直角三角形.在△R t BDE和△R t CDF中,∵⎨BE=CF,⎪⎩BD=CD,∴△R t BDE≌△R t CDF,∴DE=DF,∴AD是∠BAC的平分线.方法总结:证明一条射线是角平分线的方法有两种:一是利用三角形全等证明两角相等;二是角的内部到角两边距离相等的点在角平分线上.【类型二】角平分线性质和判定的综合如图所示,△ABC中,AB=AC,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,下面给出四个结论,①AD平分∠EDF;②AE=AF;③AD上的点到B、C两点的距离相等;④到AE、AF距离相等的点,到DE、DF的距离也相等.其中正确的结论有() A.1个B.2个C.3个D.4个解析:由AD平分∠BAC,DE⊥AB,DF⊥AC可得DE=DF,由此易得△ADE≌△ADF,故∠ADE =∠ADF,即①AD平分∠EDF正确;②AE=AF正确;角平分线上的点到角的两边的距离相等,AO ,BO ,CO 都是角平分线,所以有∠CBO =∠ABO = ∠ABC ,∠BCO =∠ACO = ∠ACB ,∠ABC +故③正确;∴④到 AE 、AF 距离相等的点,到 DE 、DF 的距离也相等正确;①②③④都正确.故选 D.方法总结:运用角平分线的性质或判定时,可以省去证明三角形全等的过程,可以直接 得到线段或角相等.【类型三】 添加辅助线解决角平分线的问题如图,已知:△ABC 的∠ABC 和∠ACB 的外角平分线交于点 D .求证:AD 是∠BAC 的平分线.解析:分别过点 D 作 DE 、DF 、DG 垂直于 AB 、BC 、AC ,垂足分别为 E 、F 、G ,然后利用角平分线上的点到角两边的距离相等可知 DE =DG ,再利用到角两边距离相等的点在角平分线上证明.证明:分别过 D 作 DE 、DF 、DG 垂直于 AB 、BC 、AC ,垂足分别为 E 、F 、G ,∵BD 平分∠CBE , DE ⊥BE ,DF ⊥BC ,∴DE =DF .同理 DG =DF ,∴DE =DG ,∴点 D 在∠EAG 的平分线上,∴AD 是 ∠BAC 的平分线.方法总结:在遇到角平分线的问题时,往往过角平分线上的一点作角两边的垂线段,利 用角平分线的判定或性质解决问题.探究点二:三角形的内角平分线【类型一】 利用角平分线的判定求角的度数在△ABC 中,点 O 是△ABC 内一点,且点 O 到△ABC 三边的距离相等.若∠A =40°,则∠BOC 的度数为( )A .110°B .120°C .130°D .140°解析:由已知,O 到三角形三边的距离相等,所以 O 是内心,即三条角平分线的交点,1 12 2∠ACB =180°-40°=140°,∠OBC +∠OCB =70°,∠BOC =180°-70°=110°,故选 A.。
八年级数学上册 第12章 全等三角形 教案新人教版
第十二章全等三角形12.1全等三角形【知识与技能】(1)了解全等形及全等三角形的概念.(2)理解全等三角形的性质.【过程与方法】在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直观.【情感态度与价值观】(1)让学生观察、发现生活中的全等三角形并体验在实际操作中获得全等三角形的喜悦.(2)在运用全等三角形的性质的过程中感受数学活动的乐趣.全等三角形的概念及性质.掌握两个全等三角形的对应边、对应角的寻找规律,能迅速、正确地指出两个全等三角形的对应元素.多媒体课件、剪刀教师引入:一位哲学家曾经说过“世界上没有完全相同的两片叶子”,但是在我们的周围,却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?学生口答,教师点评并引入本节新课.探究1:全等形及全等三角形的相关概念教师让学生完成以下活动:1.动手做.(1)和同桌一起将两本数学课本叠放在一起,观察它们能够重合吗?(2)把手中的直角三角尺按在纸上,画出三角形,并裁下来,把直角三角尺和纸三角形叠放在一起,观察它们能够重合吗?然后学生得出全等形的概念,进而得出全等三角形的概念:能够完全重合的两个图形叫作全等形,能够完全重合的两个三角形叫作全等三角形.(教师板书)2.观察.观察图12-1-1中△ABC与△A′B′C′重合的情况.师生共同总结对应顶点、对应边、对应角的概念:把两个全等的三角形重合到一起,重合的顶点叫作对应顶点,重合的边叫作对应边,重合的角叫作对应角.然后教师指出:全等的符号“≌”,读作“全等于”.教师强调:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.例如,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF 是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.接着教师出示例题:例1如图12-1-2,已知△ABN≌△ACM,∠B和∠C是对应角,AB和AC是对应边.写出其他的对应边及对应角.师生共同分析:对应边和对应角只能从两个三角形中找,所以需将△ABN和△ACM从复杂的图形中分离出来.根据元素位置来找对应元素,再依据已知的对应元素找出其余的对应元素.然后学生自主完成.解:对应角为∠BAN与∠CAM,∠ANB与∠AMC.对应边为AM与AN,BN与CM.探究2:全等三角形的性质教师让学生把△ABC沿直线BC分别进行平移、翻折、绕定点旋转,然后观察图形的大小、形状是否发生变化(如图12-1-3).师生共同得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.教师追问:那么在全等三角形中,有没有相等的角、相等的边呢?学生先思考,再小组交流,得出:全等三角形的对应边相等,对应角相等.(教师板书) 接着教师出示例题:例2已知△DEF≌△ABC,AB=AC,且△ABC的周长为23 cm,BC=4 cm,求DE的长.教师引导学生先画出图形,再进行分析,然后师生共同完成,教师板书:解:因为△ABC的周长为23 cm,BC=4 cm,AB=AC,所以AB=AC=(23-4)÷2=9.5(cm).因为△DEF≌△ABC,∴DE=AB=9.5 cm.教师强调:运用全等三角形的定义和性质时,要注意规范书写格式.1.能够完全重合的两个图形叫作全等形.能够完全重合的两个三角形叫作全等三角形.重合的顶点叫作对应顶点,重合的边叫作对应边,重合的角叫作对应角.全等三角形的对应边相等,对应角相等.2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等.第十二章全等三角形12.2全等三角形的判定课时1 “边边边(SSS)”【知识与技能】(1)明确判定两个三角形全等至少需要三个条件.(2)掌握“边边边(SSS)”条件的内容.(3)能初步运用“边边边(SSS)”条件判定两个三角形全等.(4)会作一个角等于已知角.【过程与方法】使学生经历探索三角形全等的过程,体验用操作、归纳得出数学结论的过程.【情感态度与价值观】探究三角形全等条件的判定过程,以观察思考,动手画图,合作交流等多种形式让学生共同探讨,培养学生的合作精神.三角形全等的“边边边(SSS)”判定方法.运用“边边边(SSS)”判定方法进行简单的证明.多媒体课件.教师引入:如图12-2-1,教师在黑板上画两个三角形,请仔细观察,△ABC与△A′B′C′全等吗?你们是如何判断的?学生各抒己见,如动手用纸剪下一个三角形,将剪下的三角形叠到另一个三角形上,观察这两个三角形是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等.探究1:三角形全等的条件教师提出:(1)只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?(2)如果给出两个条件呢?给出两个条件画三角形时,有几种可能的情况,每种情况下画出的三角形一定全等吗?学生讨论有几种可能的情况,然后按照下面的条件画一画:①三角形的一个内角是30°,一条边是3 cm;②三角形的两个内角分别是30°和50°;③三角形的两条边长分别是 4 cm和6 cm.学生分组讨论、画图、探索、归纳,最后以组为单位展示结果.结果展示:(1)只给定一条边时,如图12-2-2.只给定一个角时,如图12-2-3.(2)给出的两个条件:一边一内角、两内角、两边,如图12-2-4.可以发现按这些条件画出的三角形都不能保证一定全等.教师提出:如果给出三个条件画三角形,你能说出有几种情况吗?(三条边,两条边和一个角,一条边和两个角,三个角)在刚才的探索过程中,我们已经发现,已知三个内角不能保证两个三角形全等.下面我们就来逐一探索其余的三种情况.(这节课只讨论第一种情况) 探究2:“边边边(SSS)”教师让学生完成以下活动:1.任意画一个△ABC,再画一个△A′B′C′,使得A′B′=AB,B′C′=BC,A′C′=AC.教师先让学生思考三角形的画法,再师生共同总结:(1)画B′C′=BC;(2)分别以点B′,C′为圆心,线段AB,AC的长为半径画弧,两弧相交于点A′;(3)连接A′B′,A′C′,如图12-2-5.2.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗?)3.学生拿出直尺和圆规,按上面的要求作图并验证.教师在此过程中巡视、指导.进一步提出问题:作图的结果反映了什么规律?学生在思考、实践的基础上,归纳出判定三角形全等的方法.教师板演:三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).教师出示教材P36例1:在如图12-2-6的三角形钢架中,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.师生共同分析:要证明△ABD≌△ACD,只需看这两个三角形的三条边是否分别相等.注意:题目中的隐含条件是AD是公共边(AD既是△ABD的边又是△ACD的边,我们称它为这两个三角形的公共边).分析完之后,师生共同证明,教师板书过程:教师总结证明三角形全等的书写格式可分为三部分:一是全等条件的证明;二是罗列两个三角形全等的条件;三是写三角形全等的结论.这里要求注明判定方法.(注意强调书写过程的严谨性).探究3:作一个角等于已知角教师:由三边分别相等判定三角形全等的结论还可以得到用直尺和圆规作一个角等于已知角的方法.师生共同展示:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图12-2-7,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与(2)中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.完成之后,教师让学生进行练习:教材P37练习第1,2题(学生首先独立思考,然后让两名学生板演,最后教师点评).1.三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).利用两个三角形全等可进行一些相关的计算和证明.2.尺规作图:作一个角等于已知角.第十二章全等三角形12.2全等三角形的判定课时2 “边角边(SAS)”【知识与技能】(1)掌握“边角边(SAS)”条件的内容.(2)能初步运用“边角边(SAS)”条件判定两个三角形全等.(3)知道两个三角形具备两边和一对角相等时,不一定全等.【过程与方法】使学生经历探索三角形全等的过程,培养学生观察图形、分析图形以及动手操作的能力.【情感态度与价值观】通过探究三角形全等条件的活动,培养学生合作交流的意识和大胆猜想、乐于探索的良好品质及发现问题的能力.对“边角边(SAS)”条件的理解和应用.运用“边角边(SAS)”判定方法进行简单的证明.多媒体课件.教师出示投影,让学生认识卡钳:如图12-2-8,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),在图中,利用这个工具就可以测量工件内的槽宽,你们能解释其中的道理吗?学生思考之后进行简单的回答,教师点评并引入本节课题.(板书)教师:上节课我们学习了三边分别相等的两个三角形全等,如果已知两个三角形的两条边及一个角对应相等,那么能判定这两个三角形全等吗?探究1:两边及其夹角分别相等〔“边角边(SAS)”〕教师让学生完成以下活动:图12-2-91.先任意画一个△ABC,再画一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A(即两边和它们的夹角相等).师生共同分析:要画一个三角形,首先要确定这个三角形的三个顶点.然后教师出示作法,学生独立完成:如图12-2-9,(1)画∠DA′E=∠A;(2)在射线A′D上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′.2.引导学生剪下三角形,看是不是与原三角形全等.师生共同得出结论:两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).教师补充:也就是说,如果三角形的两条边的长度和它们的夹角的大小确定,那么这个三角形的形状、大小就能确定.用符号语言表示为(教师板书):教师强调:“SAS”中的“A”必须是两个“S”所夹的角.教师从而解决情境导入中的问题,卡钳测量工件内的槽宽的原理是利用全等三角形的对应边相等,把不能直接测量的物体“移”到可以直接测量的位置进行测量.接着教师出示投影,让学生完成这道练习题(学生口答):图12-2-10中全等的三角形有(D).探究2:两边及其邻角分别相等(边边角)教师提出:如果把“两边及其夹角分别相等”改为“两边及其邻角分别相等”,即“两边及其中一边的对角相等”,那么这两个三角形还全等吗?学生分小组进行讨论,教师在此过程中及时点拨,画出反例图形,如图12-2-11.学生通过反例说明“已知两边及其中一边的对角分别相等的两个三角形全等”不一定成立(即SSA不一定成立).教师出示教材P38例2:如图12-2-12,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?教师引导学生把实际问题转化为数学问题,然后师生共同分析:如果能证明△ABC≌△DEC,那么就可以得出AB=DE.由题意可知,△ABC和△DEC具备“边角边”的条件.师生共同解答,教师板书过程:最后教师总结:因为全等三角形的对应边相等,对应角相等,所以在证明线段相等或角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决.教师让学生完成:教材P39练习第1,2题.让学生在黑板上板演,教师点评,并强调证明过程的规范书写.1.运用“边角边(SAS)”判定两个三角形全等,注意“边边角”不能判定两个三角形全等.2.判定两个三角形全等时,要注意使用公共边和公共角.第十二章全等三角形12.2全等三角形的判定课时3 “角边角(ASA)”“角角边(AAS)”【知识与技能】(1)掌握“角边角(ASA)”及“角角边(AAS)”条件的内容.(2)能初步运用“角边角(ASA)”及“角角边(AAS)”条件判定两个三角形全等.【过程与方法】使学生经历作图、证明等探究过程,从而提高学生分析、作图、归纳、推理等能力.【情感态度与价值观】通过探索和动手操作的过程,体会数学思维的乐趣,激发应用数学的意识,通过合作交流,培养合作意识,体验成功的喜悦.掌握三角形全等的“角边角”“角角边”判定方法.运用“角边角”“角角边”的判定方法进行简单的证明.多媒体课件.1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?(2)到目前为止,可以作为判定两三角形全等的方法有几种?分别是什么?学生举手回答,教师点评并表扬.2.教师引入:在三角形中,已知三个元素的四种情况中,我们研究了三种,接着探究已知两角一边是否可以判定两三角形全等.(板书课题)教师:已知两角和一边对应相等有两种情况,首先我们研究第一种情况,即两角及这两角的夹边对应相等.探究1:“角边角(ASA)”教师提出问题:如果“两角及一边”条件中的边是两角所夹的边,那么这两个三角形全等吗?学生完成以下活动:1.先任意画一个△ABC,再画一个△A′B′C′,使得∠A′=∠A,∠B′=∠B,A′B′=AB.教师指导△A′B′C′的作法:如图12-2-14,(1)作线段A′B′,使A′B′=AB;(2)分别以A′,B′为顶点,A′B′为一边在A′B′的同旁画∠DA′B′,∠EB′A′,使∠DA′B′=∠CAB,∠EB′A′=∠CBA;(3)射线A′D与B′E相交于一点,记为点C′,即可得到△A′B′C′.2.将画好的△A′B′C′剪下来,放到△ABC上,发现两个三角形全等.3.教师让学生模仿上一节所学的“边角边”定理,用一句话来总结一下:两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”).教师补充:也就是说,三角形的两个角的大小和它们的夹边的长度确定了,这个三角形的形状、大小就确定了.教师出示教材P40例3:如图12-2-15,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:AD=AE.师生共同分析:证明△ACD≌△ABE,就可以得出AD=AE.学生写出证明过程,教师点评.探究2:“角角边(AAS)”教师提出问题:如果把“两角和它们的夹边分别相等”改为“两角及邻边分别相等”,即“两角分别相等且其中一组等角的对边相等”,两个三角形还全等吗?教师出示教材P40例4:如图12-2-16,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.教师引导学生分析题目中的已知条件,让学生思考解题思路:如果能证明∠C=∠F,就可以利用“角边角”证明△ABC和△DEF全等,由三角形的内角和定理可以证明∠C=∠F.学生分小组交流想法,教师点评.师生共同完成证明过程,教师板书:证明:在△ABC中,∠A+∠B+∠C=180°,∴∠C=180°-∠A-∠B.同理∠F=180°-∠D-∠E.又∠A=∠D,∠B=∠E,∴∠C=∠F.在△ABC和△DEF中,∠B=∠E,BC=EF,∠C=∠F,∴△ABC≌△DEF(ASA).教师:我们从这道例题可以得到两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”).也就是说,三角形的两个角的大小和其中一个角的对边的长度确定了,这个三角形的形状、大小就确定了.教师紧接着让学生完成P41练习第1,2题.学生板演,教师点评.教师最后总结:(1)已知两个三角形的两组角对应相等,要证明这两个三角形全等,应选择判定方法“ASA”或“AAS”.(2)在运用“ASA”或“AAS”判定三角形全等时,同样要注意题目中的隐含条件,如公共边、公共角、对顶角等.最后,教师提出:到此为止,在三角形中已知三个条件探索两个三角形全等的问题已全部结束.然后让学生把两个三角形全等的判定方法做一个小结.学生自我回忆总结,然后小组讨论、交流,补充:边边边(SSS),边角边(SAS),角边角(ASA),角角边(AAS).1.用“角边角”“角角边”判定两个三角形全等.2.用三角形全等来证明线段或角相等.3.到目前已经学习了四种判定两个三角形全等的方法.第十二章全等三角形12.2全等三角形的判定课时4 “斜边直角边(HL)”【知识与技能】(1)探索和了解直角三角形全等的条件——“斜边、直角边(HL)”.(2)会运用“斜边、直角边(HL)”判定两个直角三角形全等.【过程与方法】让学生在合作交流中获取知识,组织学生通过观察、发现、交流、体验、说理归纳等活动,感知并掌握直角三角形的判定方法.【情感态度与价值观】通过创设情境,激发学生的求知欲,通过动手操作等活动,让学生乐于探究,培养学生独立思考和合作交流的能力.探究直角三角形全等的条件.灵活运用直角三角形全等的条件进行证明.多媒体课件.教师出示投影:如图12-2-18,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量其长度.你们能帮他想个办法吗?学生思考之后,回答:方法一:测量斜边和一个对应的锐角(“AAS”);方法二:测量没遮住的一条直角边和一个对应的锐角(“ASA”或“AAS”).教师继续指出:工作人员只带了一把卷尺,他测量了两个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“这两个直角三角形是全等的”.你们相信他的结论吗?学生回答:这两个三角形都是直角三角形,也许是全等的.因为它还有直角这个特殊条件.教师点评:有道理,但科学是严谨的,今天我们就来探究“两个直角三角形全等的条件”.(板书课题)探究1:“斜边、直角边(HL)”教师:对于两个直角三角形,除了直角相等的条件外,还要满足几个条件,这两个直角三角形就全等了?教师出示教材P42探究5:师生共同按照下面的步骤做一做(如图12-2-19):画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.图12-2-19(1)画∠MC′N=90°;(2)在射线C′M上截取B′C′=BC;(3)以点B′为圆心,AB长为半径画弧,交射线C′N于点A′;(4)连接A′B′.教师提问:Rt△A′B′C′就是所求作的三角形吗?接着让学生把画好的Rt△A′B′C′剪下来放在Rt△ABC上,观察这两个三角形是否全等.学生由此可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).教师出示教材P42例5:如图12-2-20,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD.师生共同分析:要想证明BC=AD,首先应寻找和这两条线段有关的三角形,这里有△BAD 和△ABC,△ADO和△BCO,其中O为DB,AC的交点,经过对条件的分析,发现△ABD和△BAC 具备全等的条件.师生共同完成证明过程,教师板书:证明:∵AC⊥BC,BD⊥AD,∴∠C与∠D都是直角.教师接着提问:你能够用几种方法判定两个直角三角形全等?学生回答:直角三角形是特殊的三角形,所以不仅能用一般三角形判定全等的方法“SAS”“ASA”“AAS”“SSS”,还能用直角三角形独有的判定全等的方法——“HL”.最后教师总结:对于两个直角三角形,满足一边一锐角分别相等,或两条直角边分别相等,则这两个直角三角形全等.如果满足斜边和一条直角边分别相等,这两个直角三角形也全等.在判定三角形全等的各个条件中,一个必要的条件为至少有一条边对应相等.判定两个三角形全等时,要注意对应边、角的相对位置关系,然后按照以下思路寻求解题方法:(1)已知两边找夹角→SAS找直角→HL找第三边→SSS(2)已知两角找夹边→ASA找一角的对边→AAS(3)已知一边一角边为角的对边→找一角→AAS边为角的邻边找夹边的另一角→ASA 找边的对角→AAS找夹角的另一边→SAS紧接着,让学生完成:教材P43练习第1,2题.(学生板演,教师点评)1.斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它.同时,直角三角形又是特殊的三角形,有它的特殊性,“HL”定理是直角三角形全等独有的判定方法,所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.第十二章全等三角形12.3角的平分线的性质课时一角的平分线的性质【知识与技能】(1)掌握已知角的平分线的画法.(2)利用角的平分线的定义进行简单的证明与计算.(3)利用全等三角形证明角的平分线.(4)掌握角的平分线的性质.(5)了解角的平分线的性质在生活、生产中的应用.【过程与方法】经历角的平分线的画法和角的平分线的性质的探索过程,体会探索、研究问题的基本方法,培养学生的合作精神,体会转化的数学思想,感受数学来源于生活.【情感态度与价值观】在探究角的平分线的作法及性质的过程中,培养学生探究问题的兴趣,获得解决问题的成功体验,增强解决问题的信心.角的平分线的性质,能灵活运用角的平分线的性质解题.灵活运用角的平分线的性质解题.多媒体课件.复习引入教师提出问题:1.角的平分线的概念.2.点到直线(射线)的距离的概念.学生举手回答.探究1:角的平分线的画法教师引入:工人师傅常常用一种简易平分角的仪器(如图12-3-1),其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是∠DAB的平分线.你能说明它的道理吗?学生分组讨论,说明简易平分角仪器的原理,并写出证明过程.(教师提示:用全等三角形的知识)教师:其实这种平分角的方法告诉了我们作已知角的平分线的一种方法.然后教师引导学生用尺规作图:已知:∠AOB.求作:∠AOB的平分线.先让学生讨论作法,再由教师总结作法,师生共同作图:(1)以点O为圆心,适当长为半径画弧,分别交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求,如图12-3-2.教师紧接着提出问题:你们能说明OC为什么是∠AOB的平分线吗?学生进行交流,教师提示(可证明△MOC≌△NOC),然后让学生写出证明过程.教师巡示并指导.探究2:角的平分线的性质教师让学生完成以下活动:1.任意作一个∠AOB,作出∠AOB的平分线OC.在OC上任取一点P,过点P画出OA,OB 的垂线,分别记垂足为D,E,测量PD,PE并作比较,你得到什么结论?2.在OC上再取几个点试一试.3.通过以上测量,你发现了角的平分线的什么性质?学生动手操作,独立思考,然后举手回答自己的发现,学生互相补充,教师指导,一起概括出角的平分线的性质:角的平分线上的点到角的两边的距离相等.教师进一步提问:你们能通过严格的逻辑推理证明这个结论吗?教师首先引导学生分析命题的条件和结论.如果学生感到困难,可以让学生先将命题改写成“如果……那么……”的形式,再引导学生逐字分析结论,进而发现并找出结论中的隐含条件(垂直).最后让学生画出图形,用符号语言写出已知和求证,并独立完成证明过程.接着师生共同概括证明几何命题的一般步骤:一般情况下,我们要证明一个几何命题时,可以按照类似于以下的步骤进行,即1.明确命题中的已知和求证;2.根据题意,画出图形,并用符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.最后教师归纳:利用角的平分线的性质可直接推导出与角的平分线有关的两条线段相等,但在推导过程中,不要漏掉垂直关系的书写.以后涉及角的平分线上的点到角的两边的垂线段时,可直接得到其相等,不必再通过证两个三角形全等而走弯路.教师出示例题:例1如图12-3-3,在△ABC中,∠C=90°,AM平分∠CAB,BM=5.2 cm,点M到AB的距离为3 cm.求BC的长.师生共同分析:只需补出点M到AB的距离,利用角的平分线的性质得到CM=3 cm,从而求出BC的长.师生共同完成证明过程,教师板书:解:过点M作MN⊥AB于点N,∴MN=3 cm.∵AM平分∠CAB,∠C=90°,∴CM=MN=3 cm.又∵BM=5.2 cm,∴BC=CM+BM=3+5.2=8.2(cm).进而教师让学生独立完成:教材P50练习第2题(学生完成之后,教师点评).本节课我们学习了角的平分线的性质是由三个条件(一条角平分线,两条垂线段)得到一个结论(线段相等),角的平分线的性质可独立地作为证明两条线段相等的依据.。
八年级数学上册第12章《全等三角形》全章教案(人教版)
第12章:全等三角形12.1全等三角形1.了解全等形、全等三角形的概念及全等三角形的对应元素.(重点)2.理解并掌握全等三角形的性质,能用符号正确地表示两个三角形全等.(重点)3.能熟练找出两个全等三角形的对应角和对应边.(难点)一、情境导入在我们的周围,经常可以看到形状、大小完全相同的图形,这类图形在几何学中具有特殊的意义.观察下列图案,指出这些图案中形状与大小相同的图形.你能再举出一些例子吗?二、合作探究探究点一:全等形和全等三角形的概念及对应元素【类型一】全等形的认识2013年第十二届全运会在辽宁举行,下图中的图形是全运会的会徽,其中是全等形的是( )A.(1)(2) B.(2)(3)C.(1)(3) D.(1)(4)解析:根据能够完全重合的两个图形是全等形进行判断.由此可以判断选项D是正确的.方法总结:判断两个图形是不是全等形,可以通过平移、翻折、旋转等方法,将两个图形叠合起来观察,看其是否能完全重合,有时还可以借助网格背景来观察比较.【类型二】全等三角形的对应元素如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.解析:结合图形进行分析,分别写出对应边与对应角即可.解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.方法总结:找全等三角形的对应元素的关键是准确分析图形,另外记全等三角形时,对应顶点要写在对应的位置上,这样就可以比较容易地写出对应角和对应边了.探究点二:全等三角形的性质【类型一】应用全等三角形的性质求三角形的角或边如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.方法总结:本题主要是考查运用全等三角形的性质求角的度数和线段的长,解决问题的关键是准确识别图形.【类型二】全等三角形的性质与三角形内角和的综合运用如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠ACB的度数.解析:根据全等三角形的对应角相等可知∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD +∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°,即∠ACB的度数是100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计全等三角形1.全等形与全等三角形的概念:能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应边相等.首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题.12.2三角形全等的判定第1课时“边边边”1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等.(重点)2.经历探索“边边边”判定全等三角形的过程,体会利用操作、归纳获得数学结论的过程.(重点)3.在复杂的图形中进行三角形全等条件的分析和探索.(难点)一、情境导入问题提出:一块三角形的玻璃损坏后,只剩下如图①所示的残片,你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.学生活动:观察,思考,回答教师的问题.方法如下:可以将图①的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图②,剪下模板就可去割玻璃了.如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.反之,如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′这六个条件,就能保证△ABC≌△A′B′C′.从刚才的实践我们可以发现:只要两个三角形三条对应边相等,就可以保证这两块三角形全等.这种说法对吗?二、合作探究探究点:三角形全等的判定方法——“边边边”【类型一】利用“SSS”判定两个三角形全等如图,AB=DE,AC=DF,点E、C在直线BF上,且BE=CF.求证:△ABC≌△DEF.解析:已知△ABC 与△DEF 有两边对应相等,通过BE =CF 可得BC =EF ,即可判定△ABC ≌△DEF .证明:∵BE =CF ,∴BE +EC =EC +CF ,即BC =EF .在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧BC =EF ,AB =DE ,AC =DF ,∴△ABC ≌△DEF (SSS).方法总结:判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【类型二】 “SSS ”与全等三角形的性质结合进行证明或计算如图所示,△ABC 是一个风筝架,AB =AC ,AD 是连接点A 与BC 中点D 的支架,求证:AD ⊥BC .解析:要证AD ⊥BC ,根据垂直定义,需证∠1=∠2,∠1=∠2可由△ABD ≌△ACD 证得.证明:∵D 是BC 的中点,∴BD =CD .在△ABD 和△ACD 中,∵⎩⎪⎨⎪⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD (SSS),∴∠1=∠2(全等三角形的对应角相等).∵∠1+∠2=180°,∴∠1=∠2=90°,∴AD ⊥BC (垂直定义).方法总结:将垂直关系转化为证两角相等,利用全等三角形证明两角相等是全等三角形的间接应用.【类型三】 利用“边边边”进行尺规作图已知:如图,线段a 、b 、c .求作:△ABC ,使得BC =a ,AC =b ,AB =c .(保留作图痕迹,不写作法)解析:首先画AB =c ,再以B 为圆心,a 为半径画弧,以A 为圆心,b 为半径画弧,两弧交于一点C ,连接BC ,AC ,即可得到△ABC .解:如图所示,△ABC 就是所求的三角形.方法总结:关键是掌握基本作图的方法,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.【类型四】 利用“SSS ”解决探究性问题如图,AD =CB ,E 、F 是AC 上两动点,且有DE =BF .(1)若E 、F 运动至图①所示的位置,且有AF =CE ,求证:△ADE ≌△CBF .(2)若E 、F 运动至图②所示的位置,仍有AF =CE ,那么△ADE ≌△CBF 还成立吗?为什么?(3)若E 、F 不重合,AD 和CB 平行吗?说明理由.解析:(1)因为AF =CE ,可推出AE =CF ,所以可利用SSS 来证明三角形全等;(2)同样利用三边来证明三角形全等;(3)因为全等,所以对应角相等,可推出AD ∥CB .解:(1)∵AF =CE ,∴AF +EF =CE +EF ,∴AE =CF .在△ADE 和△CBF 中,∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF .(2)成立.∵AF =CE ,∴AF -EF =CE -EF ,∴AE =CF .在△ADE 和△CBF 中,∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF .(3)平行.∵△ADE ≌△CBF ,∴∠A =∠C ,∴AD ∥BC .方法总结:解决本题要明确无论E 、F 如何运动,总有两个三角形全等,这个在图形中要分清.三、板书设计边边边1.三边分别相等的两个三角形全等.简记为“边边边”或“SSS ”.2.“边边边”判定方法可用几何语言表示为:在△ABC 和△A 1B 1C 1中,∵⎩⎪⎨⎪⎧AB =A 1B 1,BC =B 1C 1,AC =A 1C 1,∴△ABC ≌△A 1B 1C 1(SSS).本节课从操作探究活动入手,有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边边边”掌握较好,达到了教学的预期目的.存在的问题是少数学生在辅助线的构造上感到困难,不知道如何添加合理的辅助线,还需要在今后的教学中进一步加强巩固和训练.第2课时 “边角边”1.理解并掌握三角形全等的判定方法——“边角边”.(重点)2.能运用“边角边”判定方法解决有关问题.(重点)3.“边角边”判定方法的探究以及适合“边角边”判定方法的条件的寻找.(难点)一、情境导入小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,他该怎么办?请你帮助小伟想一个办法,并说明你的理由.想一想:要画一个三角形与小伟画的三角形全等,需要几个与边或角的大小有关的条件?只知道一个条件(一角或一边)行吗?两个条件呢?三个条件呢?让我们一起来探索三角形全等的条件吧!二、合作探究探究点一:应用“边角边”判定两三角形全等【类型一】 利用“SAS ”判定三角形全等如图,A 、D 、F 、B 在同一直线上,AD =BF ,AE =BC ,且AE ∥BC .求证:△AEF ≌△BCD .解析:由AE ∥BC ,根据平行线的性质,可得∠A =∠B ,由AD =BF 可得AF =BD ,又AE=BC ,根据SAS ,即可证得△AEF ≌△BCD .证明:∵AE ∥BC ,∴∠A =∠B .∵AD =BF ,∴AF =BD .在△AEF 和△BCD 中,∵⎩⎪⎨⎪⎧AE =BC ,∠A =∠B ,AF =BD ,∴△AEF ≌△BCD (SAS).方法总结:判定两个三角形全等时,若有两边一角对应相等时,角必须是两边的夹角.【类型二】 “边边角”不能证明三角形全等下列条件中,不能证明△ABC ≌△DEF 的是( )A .AB =DE ,∠B =∠E ,BC =EFB .AB =DE ,∠A =∠D ,AC =DFC .BC =EF ,∠B =∠E ,AC =DFD .BC =EF ,∠C =∠F ,AC =DF解析:要判断能不能使△ABC ≌△DEF ,应看所给出的条件是不是两边和这两边的夹角,只有选项C 的条件不符合,故选C.方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA 时是不能判定三角形全等的. 探究点二:全等三角形判定与性质的综合运用 【类型一】 利用全等三角形进行证明或计算已知:如图,BC ∥EF ,BC =BE ,AB =FB ,∠1=∠2,若∠1=45°,求∠C 的度数.解析:利用已知条件易证∠ABC =∠FBE ,再根据全等三角形的判定方法可证明△ABC ≌△FBE ,由全等三角形的性质即可得到∠C =∠BEF .再根据平行,可得出∠BEF 的度数,从而可知∠C 的度数.解:∵∠1=∠2,∴∠ABC =∠FBE .在△ABC 和△FBE 中,∵⎩⎪⎨⎪⎧BC =BE ,∠ABC =∠FBE ,AB =FB ,∴△ABC≌△FBE (SAS),∴∠C =∠BEF .又∵BC ∥EF ,∴∠C =∠BEF =∠1=45°.方法总结:全等三角形是证明线段和角相等的重要工具. 【类型二】 全等三角形与其他图形的综合如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:(1)AE =CG ;(2)AE ⊥CG .解析:(1)因为已知条件中有两个正方形,所以AD =CD ,DE =DG ,它们的夹角都是∠ADG 加上直角,可得夹角相等,所以△ADE 和△CDG 全等;(2)再利用互余关系可以证明AE ⊥CG .证明:(1)∵四边形ABCD 、DEFG 都是正方形,∴AD =CD ,GD =ED .∵∠CDG =90°+∠ADG ,∠ADE =90°+∠ADG ,∴∠CDG =∠ADE .在△ADE 和△CDG 中,∵⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDG ,DE =GD ,∴△ADE≌△CDG (SAS),∴AE =CG ;(2)设AE 与DG 相交于M ,AE 与CG 相交于N ,在△GMN 和△DME 中,由(1)得∠CGD =∠AED ,又∵∠GMN =∠DME ,∠DEM +∠DME =90°,∴∠CGD +∠GMN =90°,∴∠GNM =90°,∴AE ⊥CG .三、板书设计边角边1.两边及其夹角分别相等的两个三角形全等.简记为“边角边”或“SAS ”.2.“边角边”判定方法可用几何语言表示为:在△ABC 和△A 1B 1C 1中,∵⎩⎪⎨⎪⎧AB =A 1B 1,∠B =∠B 1,BC =B 1C 1,∴△ABC ≌△A 1B 1C 1(SAS).3.“SSA ”不能判定两个三角形全等.本节课从操作探究入手,具有较强的操作性和直观性,有利于学生从直观上积累感性认识,从而有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.第3课时 “角边角”“角角边”1.理解并掌握三角形全等的判定方法——“角边角”,“角角边”.(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(重点)3.“角边角”和“角角边”判定方法的探究以及适合“角边角”判定方法的条件的寻找.(难点)一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:应用“角边角”、“角角边”判定三角形全等【类型一】 应用“ASA ”判定两个三角形全等如图,AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .解析:根据平行线的性质可得∠A =∠C ,∠DFE =∠BEC ,再根据等式的性质可得AF =CE ,然后利用ASA 可证明△ADF ≌△CBE .证明:∵AD ∥BC ,BE ∥DF ,∴∠A =∠C ,∠DFE =∠BEC .∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在△ADF 和△CBE 中,∵⎩⎪⎨⎪⎧∠A =∠C ,AF =CE ,∠DFA =∠BEC ,∴△ADF ≌△CBE (ASA).方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹边”.【类型二】 应用“AAS ”判定两个三角形全等如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC ,求证:△ADC ≌△BDF .解析:先证明∠ADC =∠BDF ,∠DAC =∠DBF ,再由BF =AC ,根据AAS 即可得出两三角形全等.证明:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF +∠AFE =180°,∠BDF +∠BFD +∠DBF =180°,∴∠DAC =∠DBF .在△ADC 和△BDF中,∵⎩⎪⎨⎪⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,∴△ADC ≌△BDF (AAS).方法总结:在“AAS ”中,“边”是“其中一个角的对边”.【类型三】 灵活选用不同的方法证明三角形全等如图,已知AB =AE ,∠BAD =∠CAE ,要使△ABC ≌△AED ,还需添加一个条件,这个条件可以是______________.解析:由∠BAD =∠CAE 得到∠BAC =∠EAD ,加上AB =AE ,所以当添加∠C =∠D 时,根据“AAS ”可判断△ABC ≌△AED ;当添加∠B =∠E 时,根据“ASA ”可判断△ABC ≌△AED ;当添加AC =AD 时,根据“SAS ”可判断△ABC ≌△AED .方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.探究点二:运用全等三角形解决有关问题已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .解析:(1)由垂直的关系可以得到一对直角相等,利用同角的余角相等得到一对角相等,再由AB =AC ,利用AAS 即可得证;(2)由△BDA ≌△AEC ,可得BD =AE ,AD =EC ,根据DE =DA +AE 等量代换即可得证.证明:(1)∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠ABD +∠BAD =90°.∵AB ⊥AC ,∴∠BAD +∠CAE =90°,∴∠ABD =∠CAE .在△BDA 和△AEC 中,∵⎩⎪⎨⎪⎧∠ADB =∠CEA =90°,∠ABD =∠CAE ,AB =AC ,∴△BDA ≌△AEC (AAS);(2)∵△BDA ≌△AEC ,∴BD =AE ,AD =CE ,∴DE =DA +AE =BD +CE .方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.三、板书设计“角边角”“角角边”1.角边角:两角及其夹边分别相等的两个三角形全等.简记为“角边角”或“ASA ”.2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等.简记为“角角边”或“AAS ”.3.三角形全等是证明线段相等或角相等的常用方法.本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法.在寻找判定方法证明两个三角形全等的条件时,可先把容易找到的条件列出来,然后再根据判定方法去寻找所缺少的条件.从课堂教学的情况来看,学生对“角边角”掌握较好,达到了教学的预期目的.存在的问题是少数学生在方法“AAS”和“ASA ”的选择上混淆不清,还需要在今后的教学中进一步加强巩固和训练.第4课时 “斜边、直角边”1.理解并掌握三角形全等的判定方法——“斜边、直角边”.(重点)2.经历探究“斜边、直角边”判定方法的过程,能运用“斜边、直角边”判定方法解决有关问题.(难点)一、情境导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?二、合作探究探究点一:应用“斜边、直角边”判定三角形全等如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .求证:Rt △ABF ≌Rt △DCE .解析:由题意可得△ABF 与△DCE 都为直角三角形,由BE =CF 可得BF =CE ,然后运用“HL ”即可判定Rt △ABF 与Rt △DCE 全等.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .∵∠A =∠D =90°,∴△ABF 与△DCE都为直角三角形.在Rt △ABF 和Rt △DCE 中,∵⎩⎪⎨⎪⎧BF =CE ,AB =CD , ∴Rt △ABF ≌Rt △DCE (HL).方法总结:利用“HL ”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.探究点二:“斜边、直角边”判定三角形全等的运用【类型一】 利用“HL ”判定线段相等如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:BC =BE .解析:根据“HL ”证Rt △ADC ≌Rt △AFE ,得CD =EF ,再根据“HL ”证Rt △ABD ≌Rt △ABF ,得BD =BF ,最后证明BC =BE .证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE ,∴Rt △ADC≌Rt △AFE (HL).∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL).∴BD =BF .∴BD-CD =BF -EF .即BC =BE .方法总结:证明线段相等可通过证明三角形全等解决,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.【类型二】 利用“HL ”判定角相等或线段平行如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等.证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt△ABC 和Rt △ADC 中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC (HL),∴∠1=∠2. 方法总结:证明角相等可通过证明三角形全等解决.【类型三】 利用“HL ”解决动点问题如图,有一直角三角形ABC ,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:本题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP ≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.【类型四】 综合运用全等三角形的判定方法判定直角三角形全等如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE (ASA).∴OB =OC .方法总结:判定直角三角形全等的方法除“HL ”外,还有:SSS 、SAS 、ASA 、AAS.三、板书设计“斜边、直角边”1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL ”.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL ”,除此之外,还可以选用“SAS ”“ASA ”“AAS ”以及“SSS”.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边”时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习巩固所学的新知识.12.3 角的平分线的性质第1课时 角平分线的性质1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.(重点)2.能运用角的平分线性质定理解决简单的几何问题.(难点)一、情境导入问题:在S 区有一个集贸市场P ,它建在公路与铁路所成角的平分线上,要从P 点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短?问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线的作法如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F两点,再分别以E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =120°,求∠MAB 的度数.解析:根据AB ∥CD ,∠ACD =120°,得出∠CAB =60°,再根据AM 是∠CAB 的平分线,即可得出∠MAB 的度数.解:∵AB ∥CD ,∴∠ACD +∠CAB =180°,又∵∠ACD =120°,∴∠CAB =60°,由作法知,AM 是∠CAB 的平分线,∴∠MAB =12∠CAB =30°. 方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM 是∠BAC 的角平分线是解题的关键.探究点二:角平分线的性质【类型一】 利用角平分线的性质证明线段相等如图:在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD =DF .求证:(1)CF =EB ;(2)AB =AF +2EB .解析:(1)根据角平分线的性质,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE .再根据Rt △CDF ≌Rt △EDB ,得CF =EB ;(2)利用角平分线的性质证明△ADC 和△ADE 全等得到AC =AE ,然后通过线段之间的相互转化进行证明.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .∵在Rt △DCF 和Rt △DEB 中,∵⎩⎪⎨⎪⎧DF =BD ,DC =DE ,∴Rt △CDF ≌Rt △EDB (HL).∴CF =EB ; (2)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴CD =DE .在△ADC 与△ADE 中,∵⎩⎪⎨⎪⎧CD =DE ,AD =AD , ∴△ADC ≌△ADE (HL),∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .方法总结:角平分线的性质是判定线段相等的一个重要依据,在运用时一定要注意是两条“垂线段”相等.【类型二】 角平分线的性质与三角形面积的综合运用如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 的长是( )A .6B .5C .4D .3解析:过点D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =2,∴S △ABC=12×4×2+12AC ×2=7,解得AC =3.故选D. 方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.【类型三】 角平分线的性质与全等三角形综合如图所示,D 是△ABC 外角∠ACG 的平分线上的一点.DE ⊥AC ,DF ⊥CG ,垂足分别为E ,F .求证:CE =CF .解析:由角平分线的性质可得DE =DF ,再利用“HL ”证明Rt △CDE 和Rt △CDF 全等,根据全等三角形对应边相等证明即可.证明:∵CD 是∠ACG 的平分线,DE ⊥AC ,DF ⊥CG ,∴DE =DF .在Rt △CDE 和Rt △CDF 中,∵⎩⎪⎨⎪⎧CD =CD ,DE =DF ,∴Rt △CDE ≌Rt △CDF (HL),∴CE =CF . 方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.三、板书设计角平分线的性质1.角平分线的作法;2.角平分线的性质; 3.角平分线性质的应用.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.第2课时 角平分线的判定1.掌握角平分线的判定定理.(重点)2.会用角平分线的判定定理解决简单的实际问题.(难点)一、情境导入中新网和田2015年2月25日电,新疆考古团队近日在斯皮尔古城及周边发现迄今为止最早的园林之城.如图,某考古队为进行研究,寻找一座古城遗址.根据资料记载,该城在森林附近,到两条河岸的距离相等,到古塔的距离是3000m.根据这些资料,考古队很快找到了这座古城的遗址.你能运用学过的知识在图中合理地标出古城遗址的位置吗?请你试一试.(比例尺为1∶100000)二、合作探究探究点一:角平分线的判定定理【类型一】 角平分线的判定如图,BE =CF ,DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC ,求证:AD 是∠BAC 的平分线.解析:先判定Rt △BDE 和Rt △CDF 全等,得出DE =DF ,再由角平分线的判定可知AD 是∠BAC 的平分线.证明:∵DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,∴∠BED =∠CFD ,∴△BDE 与△CDF 是直角三角形.在Rt △BDE 和Rt △CDF 中,∵⎩⎪⎨⎪⎧BE =CF ,BD =CD ,∴Rt △BDE ≌Rt △CDF ,∴DE =DF ,∴AD 是∠BAC 的平分线.方法总结:证明一条射线是角平分线的方法有两种:一是利用三角形全等证明两角相等;二是角的内部到角两边距离相等的点在角平分线上.【类型二】 角平分线性质和判定的综合如图所示,△ABC 中,AB =AC ,AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,下面给出四个结论,①AD 平分∠EDF ;②AE =AF ;③AD 上的点到B 、C 两点的距离相等;④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等.其中正确的结论有( )A .1个B .2个C .3个D .4个解析:由AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC 可得DE =DF ,由此易得△ADE ≌△ADF ,故∠ADE =∠ADF ,即①AD 平分∠EDF 正确;②AE =AF 正确;角平分线上的点到角的两边的距离相等,。
人教版八年级数学上册第十二章全等三角形12.1全等三角形教案新版
第十二章全等三角形12. 1全等三角形◇授课目标◇【知识与技术】1.掌握全等形、全等三角形的见解, 能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素, 理解全等三角形的性质, 并解决有关简单的问题 .【过程与方法】掌握全等三角形对应边相等, 对应角相等的性质, 并能进行简单的推理和计算, 解决一些实责问题 .【感情、态度与价值观】联系学生的生活环境 , 创立情况 , 使学生经过察看、操作、沟通和反省 , 获得必需的数学知识 , 激发学生的学习兴趣.◇授课重难点◇【授课重点】全等三角形的性质及其应用.【授课难点】能正确地鉴识全等三角形的对应元素.◇授课过程◇一、情境导入察看下面这些图形, 它们可以完好重合吗?二、合作研究研究点 1全等形的见解典例 1以下四组图形中, 是全等图形的一组是()[ 剖析]察看图形的特点可发现: , ,中的两个图形大小不相同,D则完好相同.A B C[ 答案]D变式训练全等形是指 ()A.形状相同的两个图形B.面积相同的两个图形C.两张中国地形图 , 两个等腰三角形都是全等形D.可以完好重合的两个平面图形[答案] D【概括总结】记住可以完好重合的两个图形叫做全等形, 完好重合指的是不只形状相同,大小也相同 ; 面积相等的图形不用然重合.研究点 2全等三角形的见解典例 2如图 , 若是△ABC≌△CDA,∠BAC=∠DCA,∠B=∠D, 关于以下结论 :①AB与 CD是对应边;②AC与 CA是对应边;③点 A 与点 A是对应极点;④点 C与点 C是对应极点; ⑤∠ACB与∠CAD是对应角. 其中正确的选项是()个个个个[ 剖析]AB与CD是对应边, ①正确 ; AC与CA是对应边, ②正确; 点 A 与点C是对应极点,③错误 ; 点C与点A是对应极点 , ④错误 ; ∠ACB与∠CAD是对应角 , ⑤正确.[答案]B研究点 3全等三角形的性质典例 3如图,△ ABC≌△ A'B'C,∠ ACB=90°,∠ A'CB=20° ,则∠ BCB'的度数为()A.20°B.40°C.70°D.90°[ 剖析 ]∵△ACB≌△A'CB',∴∠ACB=∠A'CB',∴∠BCB'=∠A'CB'-∠A'CB=70°.[答案] C全等三角形的性质 : 可以重合的边是对应边 , 重合的角是对应角 , 对应边所对的角是对应角 . 对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边;两个全等三角形最大的角是对应角 , 最小的角也是对应角.研究点 4利用全等三角形的性质解决问题典例 4以以下列图 , △ABD≌△ACD,∠BAC=90°.(1)求∠ B的大小;(2)判断 AD与 BC的地址关系,并说明原因 .[ 剖析 ](1) ∵△ABD≌△ACD,∴∠ B=∠ C,又∵∠ BAC=90°,∴∠B=∠ C=45° .(2)AD⊥ BC.原因 : ∵△ABD≌△ACD,∴∠BDA=∠CDA,∵∠ BDA+∠ CDA=180°,∴∠ BDA=∠ CDA=90°,∴AD⊥ BC.三、板书设计全等三角形全等三角形◇授课反省◇由于学生学习平面几何的时间不长, 识图能力还比较单薄, 学生的思想依靠于详细的直观形象 , 在授课时借助几何画板演示图形的形成与变换, 来帮助学生更好地发现理解图形的特点 , 特别关于较复杂的几何图形中的对应边、对应角, 方便学生快速地找出, 简化难点.。
初中数学八年级上册第十二章《等腰三角形》
求证:如果三角形一个外角的平分线平行于三角形的一边,
那么,这个三角形是等腰三角形。
已知:如图,∠CAE是△ABC的外角,∠1=∠2,AD∥BC
求证:AB=AC。
证明:∵AD∥BC,
∴∠1=∠B(两直线平行,同位角相等)
∠2=∠C(两直线平行,内错角相等)
∵∠1=∠2,
∴∠B=∠C
∴AB=AC(等角对等边)
新人教版初中数学八年级上册第十二章《等腰三角形》精品教案(1)
学校
郯城育才中学
主备人
刘华丽
时间
2010.7.21
教
学
目
标
1.使学生通过本节课的学习,初步掌握等腰三角形的性质定理及推论,掌握等腰三角形常用辅助线的作法。
2.运用现代化的教学手段,发展学生的思维能力、动手操作能力和数学语言表达(包括口头和书面)能力。
3.例题讲解
师:现在请看关于房屋梁架的一个数学问题,这个图形我们是否见过?
已知:如图,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC。求顶架上∠B、∠C、∠BAD、∠CAD的度数。
(学次折叠说明“等腰三角形的两个底角相等”,启发学生添加辅助线,构造全等三角形。,一名学生作顶角的平分线,一名学生作底边上的中线,一名学生作底边上的高。让各种证法的学生说明己的证题思路,然后由学生任选一种方法在练习本上给出证明)
(2)每个角的平分线都与它对边上的高及中线重合,即有三组“三线合一”。
3.等腰三角形中一般作辅助线的方法及应用。
学生从不同的角度分析问题,并对解决问题的过程进行反思,对方法进行提炼.
课堂小结是课堂教学的重要环节,教师再次给学生提供展示自己的机会,充分体现了以学生的发展为本的素质教育观念。
初中数学人教版八年级上册《第十二章 全等三角形》教材教案
第十二章全等三角形教学设计1教学目标1、会运用三角形全等的知识研究“筝形”。
2、经过测量、折叠等活动,培养学生的思维逻辑性和发散性,经历“筝形”性质的探究过程,体会研究几何图形的基本思路和方法。
3、通过情境创设,激发学生的积极性,在学生合作交流解决问题的过程中,培养学生的合作精神,锻炼口头表达能力。
2学情分析学生在本章的前几节内容中已经学习了“全等三角形”的性质和判定相关知识。
具备了“运用三角形全等研究筝形”的理论基础。
通过在前几节内容中经历过解决实际问题的过程,具备了一定的分析问题和解决问题的活动经验。
这为学生对本节课的学习打下了重要的基础,也为提高学生的解决问题能力和探究能力创造了条件。
3重点难点1、教学重点:通过测量、折叠等活动探究筝形的性质。
2、教学难点:用全等三角形的知识证明“筝形”的性质,运用筝形的性质解决问题。
4教学过程4.1 第一学时教学目标学时重点学时难点教学活动活动1【导入】一、创设情境,激情引入。
同学们,首先我们来欣赏一组有图片(课件演示),同学们刚才从图片中看到的是我们生活中哪种物体?风筝在日常生活中是很常见的,老师这儿也制作了一个风筝(拿出风筝实物)。
大家仔细观察老师这个风筝,从数学角度看它的外部轮廓形状是哪个基本几何图形?(四边形),在数学中,我们把从四边形的风筝这个物体抽象出来的几何图形称为“筝形”。
本节课老师就带领同学们走进“筝形”的世界,学习有关“筝形”的数学知识。
(板书:筝形)。
活动2【活动】二、认识筝形,探究性质。
刚才同学们观察了筝形的形状是四边形,那四边形的图形是不是一定就是筝形?(例如:平行四边形)。
要具备什么特征的四边形是筝形呢?带着这个疑问,大家不妨先从筝形的边入手,动手探究一下筝形的边有什么特殊的性质。
1、探究活动一:探究“筝形”边的性质。
学生利用手中工具从测量或者折纸的方法去探究“筝形”。
2、小组汇报探究结果。
你们组探究结果是什么,怎样探究的?3、师生共同归纳“筝形”的定义:两组邻边分别相等的四边形叫做筝形.并指导学生用几何语言怎样表示?在四边形ABCD 中,如果AB =AD,BC =DC,那么四边形ABCD 是筝形4、学生练习。
2024秋八年级数学上册第十二章全等三角形12.1全等三角形教学设计(新版)新人教版
针对这些问题,我会在今后的教学中进行改进。首先,我会更加注重讲解的清晰度和深度,确保每个学生都能理解全等三角形的判定方法。其次,我会在实验前提供更加详细的指导,确保每个学生都能熟练操作。
- AAS(Angle-Angle-Side)判定法:如果两个三角形有两组对应角和其中一个角的对应边相等,那么这两个三角形全等。
4. 全等三角形的判定步骤:
- 确定已知信息和未知信息:在解题过程中,首先要明确已知条件和需要证明的全等关系。
- 选择合适的判定方法:根据已知信息,选择最合适的全等判定方法。
- SSS判定法:三边分别相等
- SAS判定法:两边和夹角分别相等
- ASA判定法:两角和夹边分别相等
- AAS判定法:两角和一边(非夹边)分别相等
3. 全等三角形的判定步骤
- 确定已知和未知
- 选择合适的判定方法
- 证明对应角和对应边相等
- 得出全等结论
4. 全等三角形的实际应用
- 几何作图
- 几何证明
4. 教室布置:
- 将教室划分为教师演示区、学生操作区和小组讨论区,以便于学生观看演示、进行实验和合作学习。
- 在教室墙壁上张贴全等三角形的性质和判定方法海报,为学生提供视觉参考。
- 设置多媒体展示区域,确保所有学生能够清晰地看到多媒体资源的展示。
- 布置小组讨论区时,考虑到学生之间的互动和交流,提供白板或挂图等工具,方便学生记录和分享讨论成果。
人教版八年级上册(新)第12章 全等三角形 12.2 全等三角形的判定—三角形的作图问题 研究课 教案
三角形的作图问题教学任务分析
教学过程设计
教学设计说明
作图是解决几何问题的基本技能之一,但学生在作图等操作上一直比较薄弱,所以在《全等三角形》一章的教学中,我一直将作图作为研究方法之一,贯穿始终,希望强化学生的动手意识,提高学生的作图能力,帮助他们在几何上奠定一定的学习基础。
在教学设计中,主要有以下几方面的考虑和设计:
1.将作图方法渗透在全章教学中。
比如,在研究“三角形全等的条件”时,带领学生逐一分析草图、设置条件进行作图,再归纳得到公理。
2.给学生提供自主研究的空间。
作图是研究几何问题的基本方法之一,讲解作图的最终目的不是作法本身,而是让学生学会借助这种方法研究问题。
因此在前面的教学中,针对三角形基本元素的作图,给学生提供了自设条件作图的空间,让他们敢于设计问题进行探究。
在本课中,三个活动中的问题都有一定的难度,所以在讲授时,采取“逐步放手”的方式,作业里让学生尝试自设条件,拓展他们的研究视角。
3.活动中作图的难度高于本章几个判定公理的作图,学生面对条件时容易理不清关系,因此我认为需要给他们提供解决问题的一般步骤,让他们了解画草图的必要性,学会从草图中整理思路。
4.活动1和活动2的作图结果不唯一,这也是判断几何命题时的难点,本课没有回避这一难点,希望通过操作和思考,让学生在作图时能够视野开阔,不受制于固有的思维。
人教版八年级上册第12章第二节三角形全等的判定教学设计
(五)总结归纳
1.通过提问、讨论等方式,引导学生回顾本节课所学内容,巩固知识点。
2.教师进行总结,强调全等三角形判定方法的要点,提醒学生注意证明过程中的逻辑性。
3.布置课后作业,要求学生在课后对所学知识进行巩固,提高解决问题的能力。
五、作业布置
2.判定方法的证明过程
-以SSS判定方法为例,引导学生通过观察、思考,得出结论:若两个三角形的三组对应边分别相等,则这两个三角形全等。
-通过实际操作,如折叠、拼接等,让学生感受判定方法的证明过程。
3.判定方法的运用
-分析例题,让学生学会运用判定方法解决实际问题。
-引导学生注意证明过程中的逻辑性,培养严谨的数学思维。
人教版八年级上册第12章第二节三角形全等的判定教学设计
一、教学目标
(一)知识与技能
1.理解三角形全等的定义,掌握三角形全等的判定方法,包括SSS(边边边)、SAS(边角边)、ASA(角边角)和AAS(角角边)。
2.能够运用三角形全等的判定方法解决实际问题,如几何图形的面积计算、角度求解等。
3.能够运用三角板、量角器等工具,通过实际操作验证三角形全等的关系。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论一种全等三角形的判定方法。
2.各小组汇报讨论成果,分享判定方法的证明过程及在实际问题中的应用。
3.教师点评,强调判定方法的要点及注意事项。
(四)课堂练习
1.设计具有层次性的练习题,让学生独立完成,巩固所学知识。
2.练习题包括基本概念题、实际应用题和拓展提高题,涵盖本节课的教学内容。
为了巩固学生对三角形全等判定方法的理解和应用,特布置以下作业:
最新人教版初中数学八年级上册第12章全等三角形教案
12.1 全等三角形图(1) 图(2) 图(3)问题1:你能从图中找出形状和大小都相同的图形如图,△EFG≌△NMH3.3cm.(1)试写出这两个三角形的对应边、对应角;12.2 三角形全等的判定第1课时三角形全等的判定思路点拨:教师引导学生根据“边边边”观察两个三角形已经具备哪些全等的条件,还缺少什么条件,缺少的条件可以由哪个已知条件得出12.2 三角形全等的判定第2课时三角形全等的判定(2)分析:(1)作∠MB(2)在射线B′M例2 是不是两条边和一个角对应相等,这样的两个三角形一定全等?你能举例说明吗?如图,△ABC1 图21,点C在线段AB上,△ACM,△三角形.求证:①△ACN≌△MCB;②如图12.2 三角形全等的判定第3课时三角形全等的判定(3)师:观察下列一组图片,同学们,今天先请大家帮个忙,小明踢球时不慎把一块三角形的玻璃打碎为两块,他要去玻璃店买一块大小相同的玻璃,那么:问题:(1)要不要两块都带去?学生交流、总结如下:根据三角形内角和定理,∠A′,∠C=180°-∠A-∠B,由于∠′,学生运用三角形内角和定理,≌△DEF.例题 如图,D 在求证:AD =AE.学生自主证明,教师引导12.2 三角形全等的判定第4课时三角形全等的判定(4)提问:两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?件中的两个直角三角形并思考回答分析:1.再满足一边一锐角对应相等,就可用“例题如图,AC⊥结合图形,先分析已知条件和求证12.3 角的平分线的性质第1课时角的平分线性质(1)二、师生互动,探究新知问题1:对这种可以折叠的角能用折叠的方法找到其平分线,对不能折叠的角怎样得到其平分线?例题有一个简易平分角的仪器,BC=DC,将两边放下,过AC画一条射线1图2问题3:(1)在已画好的角的平分线点P,过点P分别作图2),E.PE,PD的长度是∠例题如图,△,求证:点P思路点拨:角平分线的性质是证明线段相等的一2.验证猜想:3.角平分线的性质12.3角的平分线的性质 第2课时 角的平分线性质(2)二、师生互动,探究新知刚才大家对上述问题进行了讨论,并且得出了做法,我们进而从做法中总结出了新的结论:到角的两已知:如图,点P 在∠垂足分别为点D ,E ,PD第一步:尺规作图作出∠第二步:在射线OP上截取点就是集贸市场所建地了例题如图,△ABC求证:点P在∠BAC的平分线上思路点拨:要证点P【教学反思】本教学设计本着以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则,情景引入,激发兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题
等腰三角形画图方案设计授课班级授课教师
学情分析
在新课的学习中已初步掌握研究几何图形的一般思路和方法,学习了线段、角、相交线和平行线、三角形、全等三角形的性质与判定,初步掌握等腰三角形的概念、性质和判定等基础知识,具备了基本的作图能力,并能简单地表达作图过程.但他们对基础知识、技能、方法的掌握及综合应用知识解决问题尚需极大提高.部分学生的数学思考缺乏条理性,缺乏综合运用知识的能力,有畏难情绪,有些题目不经思考就放弃.
教学目标1.运用等腰三角形的概念、性质、判定等知识,能作出符合已知条件的等腰三角形.
2.在探究的过程中经历画目标示意图并进行分析,形成解题的思路,提高分析问题的能力,在设计作图的方案的过程中,明确作图的顺序,发展推理能力,体会分类思想、转化思想的同时提高思维的严谨性;
3.感受三角形中所蕴含的数学之美,体验学数学、用数学的乐趣,激发学生学习数学的兴趣.
教学重点利用等腰三角形的概念、判定及它的特有性质完成等腰三角形作图;
教学难点1.根据给定条件作等腰三角形并进行合理的分类说明.
2.结合目标示意图设计作图方案,寻求解题思路,如何确定等腰三角形第三个顶点的位置.学生缺乏综合运用知识的能力,部分学生难以把判定和相应的尺规作图相结合,学生操作有一定难度.
教学用具投影,三角板,圆规.
教学过程
教学环节师生活动设计意图
分享交流引入新课活动1.分享与交流
学生代表进行作业分享,教师点拨归纳,进而引发学
生思考和探究.
作业如下:
已知:如图,线段a=2cm,b=5cm,∠α=40°,∠β=120°,
使用所给条件画等腰三角形.
根据有具体数量的线段和
角画等腰三角形,便于学
生运用等腰三角形的知识
为基础进行画图,同时运
用计算几何的知识可以更
要求:①任选条件作等腰三角形;
②尝试作出不同形状的等腰三角形,标记已知条件,填好表格;
③小组汇报与交流.
小结:等腰三角形作图的一般条件,注意作图依据. 快解决问题,为解决一般化问题提供解题思路.符合学生的认知规律.渗透分类讨论思想在等腰三角形中体现在边、角等的位置的不同.
动手探究学习新知活动2.
已知:等腰三角形底边长为a,顶角为∠α,求作这个
等腰三角形.
已知:线段a,∠α.
求作:△ABC,
使AB=AC,BC=a,∠A=∠α.
分析:解决本题的关键是确定顶角的顶点位置. 引导
学生将已知的顶角转化为可知底角,进而依据ASA确
定等腰三角形.
目标示意图作图方案:
1.顶角转化为底角(设底角为∠β);
2.作底角∠β;
3.作线段BC=a;
△ABC即为所求.
顶角∠α转化为底角(设底角为∠β)的预案:
预案1.作∠α的邻补角的平分线,
得到∠β.
预案2.以∠α为顶角任意作出一个
等腰三角形,得到∠β.
预案3.作∠α的平分线的垂线,
得到∠β.
由特殊到一般,明确解决
问题的关键在于确定第三
个顶点的位置,提高学生
运用等腰三角形的概念、
性质及判定进行作图的能
力.
教师示范,学生模仿,形
成技能.通过对目标示意
图进行分析,形成解题的
思路.设计作图的方案,明
确作图的步骤,培养思维
的严密性,全面性,渗透
转化思想.
1.归纳解决作图问题的方法
①画目标示意图
②设计方案
③作图
2.间接条件转化为直接条件,找到可作的三角形.
3.利用等腰三角形的性质和判定化难为易.
动手探究学习新知
在三角形中我们除了研究边和角之外还会研究三
角形中的主要线段:高线、中线、角平分线.现在把条
件变换,给一边及这边上的高,这样的等腰三角形是
否唯一?
活动3
已知等腰三角形底边长为a,底边上的高为h,求作这
个等腰三角形.
已知:线段a,线段h.
求作:△ABC,使AB=AC,BC=a,底边上的高AD=h.
学生活动:画目标示意图,分享作图方案的设计,
展示作图结果.
作法:
(1)作线段BC=a.
(2)作线段BC的垂直平分
线MN,交BC于点D.
(3)在MN上截取DA=h.
(4)连接AC,AB,
则△ABC就是所求作
的等腰三角形.
巩固活动2所学的解决问
题的方法,尝试完成等腰
三角形的作图,感受成功
的喜悦.
巩固等腰三角形三线合一
的性质,注意作图语言的
规范.
能力提升拓展思维引导学生通过分析提出问题:在已知条件不变的情况
下,求作部分的线段h还可以改作什么限制条件?
提示:变化提出问题的角度,例如怎样描述等腰三角
形底边上的高?
你能否提出新的问题?
预案:知底和腰上的高,底和腰上中线,底和底角的
平分线,腰和腰上的高.
巩固等腰三角形三线合一
的性质,培养问题意识,
学会设计问题
能力提升拓展思维活动4:已知等腰三角形腰长为a,腰上的高为h,求
作这个等腰三角形.
已知:线段a,h.
求作:△ABC,使AB=AC=a,腰上的高BD=h.
分析:先画出目标示意图,引导学生发现由HL能判
断△ABD可以唯一确定,可先作Rt△ABD,再确定等
腰三角形的另一腰的位置,确定第三个顶点位置,构
造符合条件的等腰三角形.
目标示意图作图方案
1.先做出Rt△ABD(①垂直
②线段BD③线段AB);
2.作边AC;
3.连接BC;
则△ABC就是所求作的等腰
三角形.
注意:根据高的本质特征,引导学生对形内高、形外
高双解的分析.
能够运用所学知识、方法
解决新情境下的问题,先
观察发现可确定的三角
形,找到解决问题的突破
点,然后结合等腰三角形
的图形特征找到第三个顶
点的位置,但要注意引导
学生对形内高、形外高双
解的分析.
本课小结提升认识
对探究问题的方法进行回顾与总结,作图的一般
步骤,解决问题的方法. 梳理总结,提升认识
课后作业巩固提高1.完成和整理学案,在下面写出本节课学习的心得.
2.已知:线段a,h.
求作:△ABC,
使AB=AC,且BC=a,腰上的高BD=h.
3.完成探究练习.
已知线段OA的一个端点在平面直角坐标系的x轴上,
点A(4,3)以OA为一边画等腰三角形,并且使另一
个顶点在x轴上,
符合要求的三角
形有几个?请借
助尺规在图上找
出相应顶点的位
置.
整理思路,理清解决作图
问题的一般方法,提高分
析问题、解决问题的能力.
有条理地进行分类讨论:
已知线段(腰或底)、已知
线段与坐标轴形成的角
(顶角或底角,钝角只能
是顶角),巩固本节知识与
方法,形成技能.。