反比例函数中比例系数k的几何意义
26.1.2反比例函数中比例系数k的几何意义
2 5、S⊿ABC的面积=____
6、(2009年重庆市)如图所示.如果函数y=-kx(k≠0)
4 与 y x 图像交于A、B两点,过点A作AC垂直
于y轴,垂足为点C,则△BOC的面积为
2
.
S⊿AOC =∣-4 ∣= 2 S ⊿BOC =S ⊿AOC
D
2 7、四边形ABCD的面积=_____
o
A
x
想一想
y P(m,n) o A x
若将此题改为过P点 作y轴的垂线段,其结 论成立吗?
y A o P(m,n) x
S OAP
1 1 1 OA AP | m | | n | | k | 2 2 2
(3)设P(m, n)关于原点的对称点是 P (m,n), 过P作x轴的垂线 与过P作y轴的垂线交于A点, 则
y
A
O S
2
S1
B
x
A. S1>S2 B.S1<S2 C.S1=S2 D.S1与S2的大小关系 不能确定
C
D
的图象 如图所示,点M是该函数图象上一点,MN垂直 于x轴,垂足是点N,如果S△MON=2, 则k的值 为( C ) (A)2 (B)-2 (C) -4 (D) 4
y
2、 (2010山东省中考题) 反比例函数y=
y
y
B
P(m,n)
A
B
P(m,n) A
o
x
o
x
k 设P(m, n)是双曲线y (k 0)上任意一点, 有 : x (2)过P作x轴的垂线, 垂足为A, 则
SOAP 1 1 1 OA AP | m | | n | | k | 2 2 2
八年级数学下册 11.1 反比例函数 反比例函数比例系数k的几何意义是什么素材 (新版)苏科版
反比例函数比例系数k的几何意义是什么?
难易度:★★★★
关键词:反比例函数
答案:
在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|。
在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂
足以及坐标原点所构成的三角形的面积是,且保持不变。
【举一反三】
典例:设P是函数 y=在第一象限的图象上任意一点,点P关于原点的对称点为P′,过P作PA平行于y轴,过P′作P′A平行于x轴,PA与P′A交于A点,则△PAP′的面积()
A、等于2
B、等于4
C、等于8
D、随P点的变化而变化
思路导引:设P的坐标为(m,n),因为点P关于原点的对称点为P′,P ′的坐标为(-m,-n);因为P与A关于x轴对称,故A的坐标为(m,-n);而mn=4,则△PAP′的面
积为•PA•P′A=2 mn=8 .设P的坐标为(m,n),∵P是函数 y=在第一象限的图象上任意一点,∴m•n=4.∵点P关于原点的对称点为P′,∴P '的坐标为(-m,-n);∵P
与A关于x轴对称,∴A的坐标为(m,-n);∴△PAP'的面积= •PA•P′A=2 mn=8 .故选C.
标准答案:C。
反比例函数中比例系数k的几何意义
反思小结
在反比例函数 y 10 的图象上,有一系列点A1,A2, x A3…..An,An+1,若A1横坐标为2,且以后每点的 横坐标与它前一个点的横坐标的差都为2. 现分别 过点A1,A2,A3…..An,An+1作X轴与Y轴的垂线 段,构成若干个矩形如图10所示,将图中阴影部 分的面积从左到右依次记为S1、S2、S3、…Sn, 5 5 15 2 5 2 (5 _____, ) 则S1=________, S +S +S =____ S1+S2 2 1 2 3 4 2 5 10 n 2 (5 ) +S3+….+Sn=________________.( 用n的代数式表 n 1 n 1 A 示)
C
S SOAD SABD SBCD SOCD 4 1 4
达标测试
已知几何图形的面积S,求比例系数k
5、如图,已知双曲线 (k>0) 经过矩形OABC边AB的中点F,交BC于点E, 且四边形OEBF的面积为2,则k的值为( B )。
y
y
k x
A 1
所以
B 2
C 4
S OAB 4
O
y
已知几何图形的面积S,求比例系数k k y 变式、如图,已知双曲线 x ( k>0 )经
B
D
C E A
x
而
SOAB SOBC SOAC
即
S ODE 1 S OAB 1 4 k 3 2
1 k 2
相似三角形的面积比 等于相似比的平方 k 4;
k 0 k 4
k 0 k 4
4 y x
达标测试
4、如图,在平面直角坐标系中, 点O为原点,菱形OABC的对角线 OB在x轴上,顶点A在反比例函数 2 的图像上,求菱形的面积。 y B
反比例函数中k的几何意义的应用
反比例函数中k的几何意义的应用
k在反比例函数中具有重要的几何意义,以下列举一些它的应用。
1. 直线反比例函数:k反映直线斜率的倒数,即斜率m=-k。
当给定直
线k值时,由定点和k值可以求出斜率m,从而可以绘制出这条直线。
2. 圆反比例函数:k反映圆半径r的倒数,即r=1/k。
当给定圆k值时,由定点和k值可以求出圆半径,从而可以绘制出这个圆。
3. 抛物线反比例函数:k反映抛物线的开口方向,当k > 0时,抛物线
向右开口;当k < 0时,抛物线向左开口。
4. 双曲线反比例函数:k反映双曲线的开口方向,当k>0时,双曲线
开口向右;当k<0时,双曲线开口向左。
5. 其他函数反比例函数:k可以反映此类函数中曲线的凹凸,当k > 0时,曲线是凹曲线;当k < 0时,曲线是凸曲线。
总之,k在反比例函数中应用广泛,几乎所有的函数都可以用反比例函
数表示。
它的几何意义非常重要,不仅仅可以根据k值绘制出各种曲线,而且可以了解曲线的开口方向以及凹凸方向。
因此,k在反比例函
数绘制中发挥着重要的作用。
反比例函数中k的几何意义是什么
反比例函数中k的几何意义是什么
反比例函数中k的几何意义是什么
发现学生对反比例函数中K的几何意义理解的不好,造成在面对一些反比例函数与几何图形相结合的问题时的束手无策,要想解决好这个问题,这就要求我们老师在辅导学生时要敢于花大力气帮助学生深刻理解K的几何意义,下面是店铺给大家整理的反比例函数中k的几何意义简介,希望能帮到大家!
反比例函数中k的几何意义
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的`垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|
研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k 有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x 轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有k的绝对值。
K的几何意义与三角形相似知识的关联
【反比例函数中k的几何意义是什么】。
K的几何意义
反比例函数比例系数k 的几何意义知识梳理:如图所示,过双曲线)0(k≠=k x y 上任一点),(y x P 作x 轴、y 轴的垂线PM 、PN,垂足为M 、N ,所得矩形PMON 的面积S=PM ∙PN=|y|∙|x|.,y xk=∴||k S k xy ==,。
1.反比例函数图像上任意一点“对应的直角三角形的面积”S=12│k │2.反比例函数图像上任意一点“对应的矩形的面积”S=│k │这就说明,过双曲线上任意一点作x 轴、y 轴的垂线,所得到的矩形的面积为常数|k|。
这是系数k 几何意义,明确了k 的几何意义,会给解题带来许多方便。
典例精析专题一 K 值与面积直接应用 例1:已知如图,A 是反比例函数ky x=错误!未找到引用源。
的图象上的一点,AB 丄x 轴于点B ,且△ABO 的面积是3,则k 的值是( )A 、3B 、﹣3C 、6D 、﹣6变式练习1:如图,点P 是反比例函数6y x=错误!未找到引用源。
图象上的一点,则矩形PEOF 的面积是 .变式练习2: 如图:点A 在双曲线 y=kx 上,AB 丄x 轴于B ,且△AOB 的面积S △AOB =2,则k= .变式练习3:如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上:△ABP 的面积为2,则这个反比例函数的解析式为______________.变式练习4:如图反比例函数4y x=-的图象与直线13y x =-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则ABC △的面积为( )A .8B .6C .4D .2变式练习5:如图,A 、B 为双曲线x12-y =上的点,AD ⊥x 轴于D,BC ⊥y 轴于点C ,则四边形ABCD 的面积为 。
A B Px y OA OBC xyOABxy:例2:如图1所示,直线l 与双曲线)0(ky >=k x交A 、B 两点,P 是AB 上的点,试比较⊿AOC 的面积S 1,⊿BOD 的面积S 2,⊿POE 的面积S 3的大小:。
反比例函数中K的几何意义
反比例函数中K的几何意义
在反比例函数中,K表示比例系数或常数,也被称为反比例常数。
它
是用来确定两个变量之间反比关系的重要参数。
反比例函数的一般形式为:y=K/x,其中K表示比例系数。
K的几何意义可以通过分析反比例函数的图像得出。
反比例函数的图
像是一个双曲线,特点是曲线趋向于两个坐标轴。
下面将详细讨论K的几
何意义。
1.K的符号对于曲线的位置以及开口方向具有重要影响。
如果K为正数,那么曲线将位于第一和第三象限,并且开口方向为右上和左下。
如果
K为负数,那么曲线将位于第二和第四象限,并且开口方向为左上和右下。
2.K的绝对值越大,曲线就越“陡峭”。
当K增大时,曲线将更加接
近于坐标轴,并且在原点附近的斜率会越来越大。
反之,当K变小时,曲
线将更加平缓,斜率将减小。
3.K决定了特定坐标点的函数值。
例如,在函数y=K/x中,当x为K 时,y的值将为1、这是因为x与y成反比关系,而K是这种关系的常数。
4.K还决定了曲线相对于坐标轴的位置。
具体而言,当K增大时,曲
线将向坐标轴移动,而当K减小时,曲线将远离坐标轴。
总之,K代表了反比例函数中的比例系数或常数,它对于函数的位置、开口方向、陡峭程度以及特定坐标点的函数值都具有重要影响。
通过对K
的分析,我们可以更好地理解和解释反比例函数的几何特征。
反比例函数k的几何意义
知识讲解1.反比例函数的概念如图所示,过双曲线)0(k≠=kxy上任一点),(yxP作x轴、y轴的垂线PM、PN,垂足为M、N,所得矩形PMON的面积S=PM∙PN=|y|∙|x|.,yxk=∴||kSkxy==,。
这就说明,过双曲线上任意一点作x轴、y轴的垂线,所得到的矩形的面积为常数|k|。
这是系数k几何意义,明确了k的几何意义,会给解题带来许多方便。
(请学生思考,图中三角形OEF的面积和系数k的关系。
)2.反比例函数的图象在用描点法画反比例函数y=kx的图象时,应注意自变量x的取值不能为0,应从1或-1开始对称取点.例题1函数y=1x-(x>0)的图象大致是( )例题2 函数y=kx+1与函数y=kx在同一坐标系中的大致图象是( )yOxAyO xByOxCyOxD y y y y3.反比例函数y=kx 中k 的意义注意:反比例函数y=k x (k ≠0)中比例系数k 的几何意义,即过双曲线y=kx(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k │.例题1:如图,P 、C 是函数x4y =(x>0)图像上的任意两点,过点P 作x 轴的垂线PA,垂足为A ,过点C 作x 轴的垂线CD,垂足为D ,连接OC 交PA 于点E ,设⊿POA 的面积为S1,则S1= ,梯形CEAD 的面积为S2,则S1与S2的大小关系是S1 S2, ⊿POE 的面积S3和梯形CEAD 的面积为S2的大小关系是S2 S3.例题1图 例题2图 例题3图例题2:如图所示,直线l 与双曲线)0(ky >=k x交A 、B 两点,P 是AB 上的点,试比较⊿AOC 的面积S1,⊿BOD 的面积S2,⊿POE 的面积S3的大小: 。
例题3:如图所示,点A(x1,y1)、B(x2,y2)都在双曲线)0x (k>=xy 上,且x2-x1=4,y1-y2=2;分别过点A 、B 向x 轴、y 轴作垂线,垂足分别为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析式为 。
反比例函数K的几何意义
【山东·全国考题回访】
1.(2014·济南中考)如图,△OAC和△BAD都是等
如图,过y轴正半轴上的任意一点P,作x轴 的平行线,分别与反比例函数y=-4/x和 y=2/x交于点A和点B,若点C是x轴上任意一 点,连接AC、BC,则△ABC的面积为
点B,D在反比例函数y=b/x(b<0)的图象上,
AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,
AB与CD的距离为5,则a-b的值是
则S△OBC=
1·(-x)·22y=6.解得k=xy=-6. 2
答案:-6
如图,直线l⊥x轴于点P,且与反比例函数 y1=k1/x(x>0)及y2=k2/x(x>0)的图像分别交于点A, B,连接OA,OB,已知△OAB的面积为3,则k1-k2 的值等于( )
如图△P1OA1,△P2A1A2是等腰直角三角形,点P1, P2在函数y=4/x(x>0)的图象上,斜边OA1,A1A2 都在x轴上,则点A2的坐标是______.
答案:6
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同 时落在反比例函数的图象上,猜想是哪两个点, 并求矩形的平移距离和反比例函数的解析式.
(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4, 点A的坐标为(2,6). ∴AB=CD=2,AD=BC=4, ∴B(2,4),C(6,4),D(6,6);
腰直角三角形,∠ACO=∠ADB=90°,反比例函数 y= k 在第一象限的图象经过点B,若OA2-AB2=12, 则kx的值为_______.
专题12 反比例函数比例系数k的几何意义(解析版)
1专题12 反比例函数比例系数k 的几何意义知识对接考点一、反比例函数比例系数k 的几何意义(1)意义:从反比例函数y =(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|. (2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0. 例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x =或3y x =-专项训练一、单选题1.如图,已知反比例函数2y x=-的图像上有一点P ,过点P 作PA x ⊥轴,垂足为点A ,则POA的面积是( )A .2B .1C .1-D .12【答案】B 【分析】设(),P x y ,则POA 的面积是1122x y xy ••=,再结合2y x=-即可求解.【详解】解:设(),P x y ,则POA 的面积是1122x y xy ••=,∵2y x=-∵22xy =-=∵POA 的面积是1212⨯=.故选:B . 【点睛】本题考查了反比例函数与图形的面积计算,解题的关键是熟练运用数形结合的思想. 2.如图,在平面直角坐标系中,A ,B 是反比例函数ky x=在第一象限的图象上的两点,且其横坐标分别为1,4,若AOB 的面积为54,则k 的值为()A .23B .1C .2D .154【答案】A 【分析】过点A 作AC y ⊥轴,过点B 作BD x ⊥轴,反向延长AC BD 、交于点E ,利用割补法表示出AOB 的面积,即可求解. 【详解】解:过点A 作AC y ⊥轴,过点B 作BD x ⊥轴,反向延长AC BD 、交于点E ,如下图:则四边形ODEC 为矩形3点AB 、的横坐标分别为1,4, 则(1,)(4,)4kA kB 、,(0,)(4,0)(4,)C kDE k 、、11154143224244AOBAOCOBDABEODEC k k SS SSSk k k ⎛⎫=---=-⨯⨯-⨯⨯-⨯⨯-= ⎪⎝⎭矩形解得23k = 故选A【点睛】此题考查了反比例函数的有关性质,涉及了割补法求解三角形面积,熟练掌握反比例函数的有关性质是解题的关键.3.若图中反比例函数的表达式均为4y x=,则阴影面积为4的有( )A .1个B .2个C .3个D .4个【答案】B 【分析】根据反比例函数比例系数k 的几何意义,反比例函数的性质以及三角形的面积公式,分别求出四个图形中阴影部分的面积,即可求解. 【详解】解:图1中,阴影面积为xy =4; 图2中,阴影面积为12xy =12×4=2; 图3中,阴影面积为2×12xy =2×12×4=4; 图4中,阴影面积为4×12xy =4×12×4=8; 则阴影面积为4的有2个. 故选:B . 【点睛】本题考查了反比例函数ky x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.也考查了反比例函数的对称性,三角形的面积.4.如图,点A 是反比例函数4y x=-图象上的一个动点,过点A 作AB ∵x 轴,AC ∵y 轴,垂足分别为B ,C ,则矩形ABOC 的面积为( )A .-4B .2C .4D .8【答案】C 【分析】根据反比函数的几何意义,可得矩形ABOC 的面积等于比例系数的绝对值,即可求解. 【详解】解:∵点A 是反比例函数4y x=-图象上的一个动点,过点A 作AB ∵x 轴,AC ∵y 轴,∵矩形ABOC 的面积44-= . 故选:C . 【点睛】本题主要考查了反比函数的几何意义,熟练掌握本题主要考查了反比例函数()0ky k x=≠ 中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积等于k 是解题的关键.5.如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,//BC x 轴,反比例函数ky x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为( )5A .60B .48C .36D .20【答案】A 【分析】过A 作AE ∵BC 于E 交x 轴于F ,则AF ∵y 轴,根据矩形的性质得到EF =OB ,根据勾股定理得到3AE =,设OB =a ,则A (4,3),(5,)a D a +,即可得到4(3)5k a a =+=,解方程求得a 的值,即可得到D 的坐标,进而求得k 的值. 【详解】解:过A 作AE ∵BC 于E 交x 轴于F , ∵5AB AC ==,8BC =, ∵142BE BC ==,∵3AE ==, 设OB =a , ∵BD =AB =5, ∵A (4,3),(5,)a D a +, ∵反比例函数ky x=(0k >,0x >)的图象经过点A ,交BC 于点D . ∵4(3)5k a a =+=, 解得:a =12, ∵51260k =⨯=, 故选择:A .【点睛】本题考查了反比例函数图象上点的坐标特征,等腰三角形的性质,勾股定理,表示出点的坐标是解题的关键.6.在平面直角从标系中,30°的直角三角尺直角顶点与坐标原点重合,双曲线11ky x =(x >0),经过点B ,双曲线22k y x=(x <0),经过点C ,则12k k =( )A .﹣3B .3 C.D【答案】A 【分析】作AM ∵x 轴于M ,BN ∵x 轴于N ,由反比例函数系数k 的几何意义得到k 1=2S ∵AOM ,k 2=﹣2S ∵BON,解直角三角形求得o tan 30OB OA =∵AOM ∵∵OBN ,得到2=3AOM BOMSOA SOB ⎛⎫= ⎪⎝⎭进而得到123k k =-. 【详解】作AM ∵x 轴于M ,BN ∵x 轴于N , ∵S ∵AOM =12|k 1|,S ∵BON =12|k 2|,∵k 1>0,k 2<0,∵k 1=2S ∵AOM ,k 2=﹣2S∵BON , 在Rt ∵AOB 中,∵BAO =30°,7∵o tan 30OB OA = ∵∵AOM +∵BON =90°=∵AOM +∵OAM , ∵∵OAM =∵BON , ∵∵AMO =∵ONB =90°, ∵∵AOM ∵∵OBN ,∵2=3AOM BOMS OA S OB ⎛⎫= ⎪⎝⎭, ∵12232AOMBOMk S k S ==--, 故选A .【点睛】本题主要考查了反比例函数比例系数k 的几何意义,相似三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 7.如图,A 、B 是双曲线y =kx图象上的两点,过A 点作AC ∵x 轴于点C ,交OB 于点D ,BD =2OD ,且ADO 的面积为8,则DCO 的面积为( )A .12B .1C .32D .2【答案】B 【分析】过点B 作BH x ⊥轴于点H ,根据反比例函数比例系数k 的几何意义,即可得到ADO △的面积与梯形CDBH 的面积相等,再根据DCO BOH △∽△,即可求得DCO 的面积.【详解】解:过点B作BH∵x轴于点H,∵AC∵x轴于点C,∵AOC的面积与BOH的面积相等,∵ADO的面积与梯形CDBH的面积相等,∵ADO的面积为8,∵梯形CDBH的面积为8,∵DC//BH,∵DOC∵BOH,∵BD=2OD,∵DOC与BOH的相似比为1:3,∵DOC与BOH的面积比为1:9,设DCO的面积比为x,则x:(x+8)=1:9,解得:x=1,故选:B.【点睛】本题考查了反比例函数比例系数k的几何意义,三角形的相似及相似的性质,得到ADO△的面积与梯形CDBH的面积相等和DOC BOH∽是解决本题的关键.8.如图,平行于y轴的直线l分别与反比例函数kyx=(x>0)和1yx=-(x>0)的图象交于M、N两点,点P是y轴上一动点,若∵PMN的面积为2,则k的值为()A.2B.3C.4D.5【答案】B9【分析】由题意易得点M 到y 轴的距离即为∵PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则有11k k MN a a a +⎛⎫=--= ⎪⎝⎭,进而根据三角形面积公式可求解.【详解】解:由平行于y 轴的直线l 分别与反比例函数k y x =(x >0)和1y x=-(x >0)的图象交于M 、N 两点,可得:点M 到y 轴的距离即为∵PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,∵11k k MN a a a+⎛⎫=--= ⎪⎝⎭, ∵∵PMN 的面积为2, ∵111222PMNk SMN a a a+=⋅=⨯⨯=, 解得:3k =; 故选B . 【点睛】本题主要考查反比例函数与几何的综合,熟练掌握反比例函数与几何的综合是解题的关键. 9.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数y 3=x(x >0)和y 6=x-(x >0)的图象交于B 、A 两点.若点C 是y 轴上任意一点,则∵ABC 的面积为( )A .3B .6C .9D .92【答案】D 【分析】设P (a ,0),由直线APB 与y 轴平行,得到A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x-=和y 3x =中,分别表示出A 和B 的纵坐标,进而由AP +BP 表示出AB ,三角形ABC的面积12⨯=AB×P的横坐标,求出即可.【详解】解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y6x=-中得:y6a=-,故A(a,6a-);将x=a代入反比例函数y3x=中得:y3a=,故B(a,3a),∵AB=AP+BP639a a a+==,则S∵ABC12=AB•x P19922aa=⨯⨯=,故选D.【点睛】本题主要考查反比例函数图象k的几何意义,解决本题的关键是要熟练掌握反比例函数k的几何意义.10.如图.在平面直角坐标系中,∵AOB的面积为278,BA垂直x轴于点A,OB与双曲线y=kx相交于点C,且BC∵OC=1∵2,则k的值为()A.﹣3B.﹣94C.3D.92【答案】A【分析】过C作CD∵x轴于D,可得∵DOC∵∵AOB,根据相似三角形的性质求出S∵DOC,由反比例11函数系数k 的几何意义即可求得k . 【详解】解:过C 作CD ∵x 轴于D ,∵BC OC=12, ∵OCOB =23, ∵BA ∵x 轴, ∵CD ∵AB , ∵∵DOC ∵∵AOB , ∵DOC AOB S S ∆∆=(OC OB )2=(23)2=49, ∵S ∵AOB =278, ∵S ∵DOC =49S ∵AOB =49×278=32,∵双曲线y =kx在第二象限,∵k =﹣2×32=﹣3,故选:A . 【点睛】本题主要考查了反比例函数系数k 的几何意义,相似三角形的性质和判定,根据相似三角形的性质和判定求出S ∵DOC 是解决问题的关键. 二、填空题11.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0ky k x=≠图象上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于点N .若四边形AMON 的面积为12,则k 的值是__________.【答案】-12【分析】根据反比例函数的比例系数k的几何意义得到12k=,然后根据反比例函数的性质确定k的值.【详解】解:四边形AMON的面积为12,12k∴=,反比例函数图象在二四象限,k∴<,12k∴=-,故答案为:12-.【点睛】本题考查了反比例函数函数k的几何意义:在反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值||k.12.如图,在反比例函数3yx=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图象上运动,tan∵CAB=2,则k的值为_____【答案】﹣12【分析】连接OC,过点A作AE∵x轴于点E,过点C作CF∵y轴于点F,通过角的计算找出∵AOE=∵COF,结合“∵AEO=90°,∵CFO=90°”可得出∵AOE∵∵COF,根据相似三角形的性质得出比例式,再由tan∵CAB=2,可得出CF•OF的值,进而得到k的值.【详解】如图,连接OC,过点A作AE∵x轴于点E,过点C作CF∵y轴于点F.∵由直线AB与反比例函数3yx=的对称性可知A、B点关于O点对称,∵AO=BO.又∵AC=BC,∵CO∵AB.∵∵AOE+∵AOF=90°,∵AOF+∵COF=90°,∵∵AOE=∵COF.又∵∵AEO=90°,∵CFO=90°,∵∵AOE∵∵COF,∵AE OE AO CF OF CO==,∵tan∵CABOCOA==2,∵CF=2AE,OF=2OE.又∵AE•OE=3,CF•OF=|k|,∵|k|=CF•OF=2AE×2OE=4AE×OE=12,∵k=±12.∵点C在第二象限,∵k=﹣12.故答案为:﹣12.13【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,锐角三角函数,解答本题的关键是求出CF•OF=12.解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.13.如图,点P在反比例函数4yx=-的图像上,过点P作PA x⊥轴于点A,则POA的面积是_______.【答案】2【分析】设出点P的坐标,∵OAP的面积等于点P的横纵坐标的积的一半,把相关数值代入即可.【详解】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数4yx=-的图象上,∵4 xy=-,∵122POAS xy==,故答案为:2.【点睛】题考查了反比例函数比例系数k的几何意义:在反比例函数ky=x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.如图所示,反比例函数kyx=(0k≠,0x>)的图像经过矩形OABC的对角线AC的中15点D .若矩形OABC 的面积为8,则k 的值为________.【答案】2 【分析】过点D 作DE ∵OA 于点E ,由矩形的性质可知:S ∵AOC =12S 矩形OABC =4,从而可求出∵ODE 的面积,利用反比例函数中k 的几何意义即可求出k 的值. 【详解】如图,过点D 作DE OA ⊥于点E ,设,k D m m ⎛⎫ ⎪⎝⎭,则OE m =,k DE m=, ∵点D 是矩形OABC 的对角线AC 的中点, ∵2OA m =,2k OC m=, ∵矩形OABC 的面积为8, ∵228kOA OC m m⋅=⋅=, ∵2k =, 故答案为:k =2.【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是求出矩形的面积. 15.如图,点A 与点B 分别在函数11(0)k y k x=>与220)k y k x =<(的图象上,线段AB 的中点M 在y 轴上.若∵AOB 的面积为3,则12k k -的值是___.【答案】6【分析】设A(a,b),B(-a,d),代入双曲线得到k1=ab,k2=-ad,根据三角形的面积公式求出ab+ad=6,即可得出答案.【详解】解:作AC∵x轴于C,BD∵x轴于D,∵AC∵BD∵y轴,∵M是AB的中点,∵OC=OD,设A(a,b),B(-a,d),代入得:k1=ab,k2=-ad,∵S∵AOB=3,∵111()23 222b d a ab ad+--=,∵ab+ad=6,∵k1-k2=6,故答案为:6.【点睛】本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab+ad=6是解此题的关键.三、解答题16.如图,一次函数122y x=-的图象分别交x轴、y轴于A、B,P为AB上一点且PC为17AOB 的中位线,PC 的延长线交反比例函数ky x=(0k >)的图象于点Q ,32OQCS =.(1)求A 点和B 点的坐标; (2)求k 的值和Q 点的坐标.【答案】(1)A (4,0),B (0,-2);(2)3k =,Q 的坐标为(2 ,32).【分析】(1)因为一次函数y =12x -2的图象分别交x 轴,y 轴于A ,B ,所以当y =0时,可求出A 的横坐标,当x =0时可求出B 的纵坐标,从而可得解.(2)因为三角形OQC 的面积是Q 点的横纵坐标乘积的一半,且等于32,所以可求出k 的值,PC 为中位线,可求出C 的横坐标,也是Q 的横坐标,代入反比例函数可求出纵坐标. 【详解】解:(1)设A 点的坐标为(a ,0),B 点坐标为(0,b ), 分别代入y =12x -2,解方程得a =4,b =-2, ∵A (4,0),B (0,-2); (2)∵PC 是∵AOB 的中位线, ∵PC ∵x 轴,即QC ∵OC , 又Q 在反比例函数ky x=的图象上, ∵2S ∵OQC =k ,∵k =2×32=3,∵PC 是∵AOB 的中位线, ∵C (2,0), 可设Q (2,q )∵Q 在反比例函数ky x=的图象上, ∵q =32,∵点Q 的坐标为(2 ,32).【点睛】本题考查反比例函数的综合运用,熟练掌握并应用反比例函数ky x=(0k >)中k 的几何意义是解题的关键.17.点O 为平面直角坐标系的原点,点A 、C 在反比例函数ay x=的图象上,点B 、D 在反比例函数by x=的图象上,且0a b >>.(1)若点A 的坐标为()6,4,点B 恰好为OA 的中点,过点A 作AN x ⊥轴于点N ,交b y x=的图象于点P . ∵请求出a 、b 的值; ∵试求OBP 的面积.(2)若////AB CD x 轴,32CD AB ==,AB 与CD 间的距离为6,试说明-a b 的值是否为某一固定值?如果是定值,试求出这个定值;若不是定值,请说明理由.【答案】(1)∵a =24,b =6∵92;(2)是定值为92.【分析】(1)∵把A ()6,4代入反比例函数ay x=即可求出a ,根据点B 为OA 的中点,求出B 点坐标,代入by x=即可求出b ;∵根据k 的几何意义求出∵AOP 的面积,再连接BP ,根据中线的性质即可求解;19(2)先分析,A C 分别位于a y x =的两个分支,,B D 分别位于 by x=的两个分支;再利用反比例函数系数k 的几何意义,表示S ∵AOB 和S ∵COD ,再根据三角形的面积公式,AB 与CD 之间的距离为6,即求出答案. 【详解】(1)∵把A ()6,4代入反比例函数ay x=,得a =6×4=24 ∵点B 为OA 的中点, ∵B (3,2)把B (3,2)代入反比例函数by x=,得b =3×2=6 ∵∵S ∵AOP = S ∵AON -S ∵NOP = 1122a b -=9 ∵B 点是OA 的中点, ∵BP 是∵AOP 的中线∵OBP 的面积=12×9=92;(2)如图,当,A C 在a y x =的第一象限的图像上时,,B D 在by x=的第一象限的图像上时////AB CD x 轴,32CD AB ==,∴AOBS=1122AOM BOM S S a b -=-△△, COD S =△1122CON DON S S a b -=-△△∴COD S =△AOBS1=2AOB S AB OM ⨯△,12COD S CD ON =⨯△OM ON ∴=则点A 与点C 重合,点B 与点D 重合 即AB 与CD 间的距离为0,,A C ∴分别位于a y x =的两个分支,,B D 分别位于 by x=的两个分支; 如图,延长AB 、CD 交y 轴于点E 、F ,∵点A 、C 在反比例函数a y x =的图象上,点B 、D 在反比例函数by x=的图象上,a >b >0,////AB CD x 轴,∵AB 与CD 间的距离为6, ∵OE +OF =6 ∵S ∵AOE =12a =12a =S ∵COF ,S ∵BOE =12b =12b =S ∵DOF ,∵S ∵AOB =S ∵AOE −S ∵BOE =12a −12b =12AB •OE =34OE ,S ∵COD =S ∵COF −S ∵DOF =12a −12b =12CD •OF =34OF ,∵S ∵AOB +S ∵COD =a −b =34OE +34OF =34(OE +OF )=92.92a b ∴-=. 【点睛】本题考查反比例函数图象上点的坐标特征以及反比例函数系数k 的几何意义,理解反比例函数系数k 的几何意义是正确解答的关键.18.如图,点C 在反比例函数y 1=x 的图象上,CA ∵y 轴,交反比例函数y 3=x 的图象于点A ,CB ∵x 轴,交反比例函数y 3=x的图象于点B ,连结AB 、OA 和OB ,已知CA =2,则∵ABO的面积为__.【答案】4【分析】设A(a,3a),则C(a,1a),根据题意求得a=1,从而求得A(1,3),C(1,1),进一步求得B(3,1),然后作BE∵x轴于E,延长AC交x轴于D,根据S∵ABO=S∵AOD+S梯形ABED ﹣S∵BOE和反比例函数系数k的几何意义得出S∵ABO=S梯形ABED,即可求得结果.【详解】解:设A(a,3a),则C(a,1a),∵CA=2,∵31a a-=2,解得a=1,∵A(1,3),C(1,1),∵B(3,1),作BE∵x轴于E,延长AC交x轴于D,∵S∵ABO=S∵AOD+S梯形ABED﹣S∵BOE,S∵AOD=S∵BOE32 =,∵S∵ABO=S梯形ABED12=(1+3)(3﹣1)=4;故答案为:4.【点睛】本题考查了反比例函数系数k的几何意义和三角形的面积,得出S∵ABO=S梯形ABED是解题的关键.19.如图是反比例函数2yx=与反比例函数在第一象限中的图象,点P是4yx=图象上一动21点, P A ∵X 轴于点A ,交函数2y x =图象于点C ,PB ∵Y 轴于点B ,交函数 2y x=图象于点D ,点D 的横坐标为a .(1)用字母a 表示点P 的坐标; (2)求四边形ODPC 的面积;(3)连接DC 交X 轴于点E ,连接DA 、PE ,求证:四边形DAEP 是平行四边形. 【答案】(1)P (2a ,2a);(2)2;(3)见解析【分析】(1)先求出点D 的纵坐标得到点P 的纵坐标,代入解析式即可得到点P 的横坐标; (2)利用矩形的面积计算公式及反比例函数k 值的几何意义,利用OBD OAC OAPB S S S ∆∆--四边形,即可求出答案;(3)证明∵DPC ∵∵EAC ,即可得到结论. 【详解】解:(1)∵点D 的横坐标为a ,且点D 在函数2y x=图象上, ∵点D 的纵坐标2y a=, 又PB ∵y 轴,且点P 在4y x=图象上, ∵点P 的纵坐标2y a=, ∵点P 的横坐标为x =2a , ∵P (2a ,2a);23(2)∵224OAPB S a a =⨯=四边形,ΔΔ1212OBD OAC S S a a==⨯⨯=, ∵D C 422O P S =-=四边形;(3)∵P A ∵x 轴于点A ,交函数2y x=图象于点C , ∵点C 的坐标为(2a ,1a), 又P (2a ,2a),∵PC =CA =1a, ∵DP ∵AE ,∵∵PDE =∵DEA ,∵DP A =∵P AE , ∵∵DPC ∵∵EAC , ∵DP =AE ,∵四边形DAEP 是平行四边形. 【点睛】此题考查反比例函数的性质,反比例函数图象与几何图形,平行四边形的判定定理,反比例函数k 值的几何意义,熟练掌握反比例函数的性质及计算方法是解题的关键.20.如图,点A (﹣2,y 1)、B (﹣6,y 2)在反比例函数y =kx(k <0)的图象上,AC ∵x轴,BD ∵y 轴,垂足分别为C 、D ,AC 与BD 相交于点E .(1)根据图象直接写出y 1、y 2的大小关系,并通过计算加以验证;(2)结合以上信息,从∵四边形OCED 的面积为2,∵BE =2AE 这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是 (只填序号). 【答案】(1)12y y >,见解析;(2)见解析,∵(也可以选择∵) 【分析】(1)观察函数的图象即可作出判断,再根据A 、B 两点在反比例函数图象上,把两点的坐标代入后作差比较即可;(2)若选择条件∵,由面积的值及OC 的长度,可得OD 的长度,从而可得点B 的坐标,把此点坐标代入函数解析式中,即可求得k ;若选择条件∵,由DB =6及OC =2,可得BE 的长度,从而可得AE 长度,此长度即为A 、B 两点纵坐标的差,(1)所求得的差即可求得k . 【详解】(1)由于图象从左往右是上升的,即自变量增大,函数值也随之增大,故12y y >; 当x =-6时,26ky =-;当x =-2时,12k y =- ∵12263k k ky y -=-+=-,k <0∵120y y -> 即12y y > (2)选择条件∵∵AC ∵x 轴,BD ∵y 轴,OC ∵OD ∵四边形OCED 是矩形 ∵OD ∙OC =2 ∵OC =2 ∵OD =1 即21y =∵点B 的坐标为(-6,1)把点B 的坐标代入y =kx中,得k =-6若选择条件∵,即BE =2AE ∵AC ∵x 轴,BD ∵y 轴,OC ∵OD ∵四边形OCED 是矩形 ∵DE =OC ,CE =OD ∵OC =2,DB =6 ∵BE =DB -DE =DB -OC =4 ∵122AE BE == ∵AE =AC -CE =AC -OD =12y y - 即122y y -=由(1)知:1223ky y -=-= ∵k =-6 【点睛】本题考查了反比例函数的图象和性质、矩形的判定与性质、大小比较,熟练掌握反比例函数的图象与性质是解决本题的关键.2521.如图,一次函数()20y kx k k =-≠的图象与反比例函数1(10)m y m x-=-≠的图象交于点C ,与x 轴交于点A ,过点C 作CB y ⊥轴,垂足为B ,若3ABC S =△.(1)求点A 的坐标及m 的值;(2)若AB = 【答案】(1)(2,0),m =-5;(2)2455y x -=+【分析】(1)在直线y =kx +k 中令y =0可求得A 点坐标;连接CO ,得OBCABCS S==3,根据反比例函数比例系数的几何意义,即可求解;(2)利用勾股定理求出OB =2,设C (b ,2),代入反比例函数,求出C 点坐标,再利用待定系数法,即可求解. 【详解】解:(1)在()20y kx k k =-≠中,令y =0可得02kx k =-,解得x =2, ∵A 点坐标为(2,0);连接CO , ∵CB ∵y 轴, ∵CB ∵x 轴,∵OBCABCSS==3,∵点C 在反比例函数1(10)m y m x-=-≠的图象上, ∵126BOCm S-==,∵反比例函数1(10)m y m x-=-≠的图象在二、四象限, ∵16m -=-,即:m =-5; (2)∵点A (2,0), ∵OA =2,又∵AB =∵在Rt AOB 中,OB 2=,∵CB ∵y 轴, ∵设C (b ,2), ∵62b-=,即b =-3,即C (-3,2), 把C (-3,2)代入2y kx k =-,得:232k k =--,解得:k =25-,∵一次函数的解析式为:2455y x -=+.【点睛】本题主要考查待定系数法求函数解析式及函数图象的交点坐标,掌握两函数图象的交点坐标满足两函数解析式是解题的关键,注意反比例函数y =kx中k 的几何意义的应用. 22.如图,过C 点的直线y =﹣12x ﹣2与x 轴,y 轴分别交于点A ,B 两点,且BC =AB ,过点C 作CH ∵x 轴,垂足为点H ,交反比例函数y =kx(x >0)的图象于点D ,连接OD ,∵ODH 的面积为627(1)求k 值和点D 的坐标;(2)如图,连接BD ,OC ,点E 在直线y =﹣12x ﹣2上,且位于第二象限内,若∵BDE 的面积是∵OCD 面积的2倍,求点E 的坐标.【答案】(1)12k =,点 D 坐标为(4,3);(2)点E 的坐标为(-8,2) 【分析】(1)结合反比例函数k 的几何意义即可求解k 值;由⊥CH x 轴可知//CH y 轴,利用平行线分线段成比例即可求解D 点坐标;(2)//CH y 可知OCD ∆和BCD ∆的面积相等,由函数图像可知BDE ∆、BCD ∆、CED ∆的面积关系,再结合题意2BDE OCD S S ∆∆=,即可求CD 边上高的关系,故作EF CD ⊥,垂足为F ,即可求解E 点横坐标,最后由E 点在直线AB 上即可求解. 【详解】解∵(1)设点 D 坐标为(m ,n ), 由题意得116,1222OH DH mn mn ⋅==∴=.∵点 D 在ky x=的图象上,12k mn ∴==. ∵直线122y x =--的图象与x 轴交于点A ,∵点A 的坐标为(-4,0). ∵CH ⊥x 轴,CH //y 轴. 1.4AO ABOH AO OH BC∴==∴==. ∴点D 在反比例函数12y x=的图象上, ∴点 D 坐标为(4,3)(2)由(1)知CDy 轴,BCD OCD S S ∴=△△.2,3BDE OCD EDC BCD S S S S =∴=△△△△.过点E 作EF ⊥CD ,垂足为点 F ,交y 轴于点M , 1111,,32222EDCBCDSCD EF S CD OH CD EF CD OH =⋅=⋅∴⋅=⨯⋅.312.8EF OH EM ∴==∴=.∵点 E 的横坐标为-8.∵点E 在直线122y x =--上,∵点E 的坐标为(-8,2).【点睛】本题考查一次函数与反比例函数的综合运用、三角形面积问题、k 的几何意义,属于中档难度的综合题型.解题的关键是掌握一次函数与反比例函数的相关性质和数形结合思想. 23.如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)ky k x=≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积. 【答案】(1)-6;(2)8 【分析】(1)过P 作PE 垂直于x 轴,垂足为E ,证明ABO APE ∽.根据相似三角形的性质可得2AO OE =,49ABO APESS=,由此可得9APES =,3PEOS=.再由反比例函数比例系数k 的几何意义即可求得k 值.(2)先求得(1,6)P -,(0,4)B ,再利用待定系数法求得直线PB 的解析式为24y x=-+.与反29比例函数的解析式联立方程组,解方程组求得(3,2)Q -.再根据PO POQO BQ BS SS=+即可求解. 【详解】(1)过P 作PE 垂直于x 轴,垂足为E ,∵PE//BO , ∵ABO APE ∽. ∵2AB BP =,4AOB S =△,∵2AO OE =,22439ABO APESS ⎛⎫== ⎪⎝⎭, ∵9APES=,3PEDS=.∵1||32k =⨯,||6k =,即6k =-. (2)由(1)知6y x-=,∵(1,6)P -. ∵2AB PB =,∵2PBOS=,∵||4BO =,(0,4)B .设直线PB 的解析式为y kx b =+,将点(1,6)P -、(0,4)B 代入y kx b =+,得64k bb =-+⎧⎨=⎩.解得24k b =-⎧⎨=⎩.∵直线PB 的解析式为24y x =-+.联立方程组624y x y x -⎧=⎪⎨⎪=-+⎩,解得13x =,21x =-, ∵(3,2)Q -.∵()1||2POQQOBPOB Q P SSSOB x x =+=⨯-14482=⨯⨯=.【点睛】本题是一次函数与反比例函数的综合题,熟练运用反比例函数比例系数k 的几何意义是解决问题的关键.。
反比例函数k的几何意义题目
反比例函数k的几何意义题目
反比例函数是一种特殊的函数形式,其定义为f(x) = k/x,其中k是一个非零常数。
反比例函数的几何意义可以通过其图像来理解。
当k为正数时,函数图像呈现出一条经过原点的拋物线,开口朝下。
当x值增大时,f(x)的值逐渐减小,但是递减的速度越来越慢。
当x趋近于无穷大时,f(x)趋近于0。
同样地,当x值减小时,f(x)的值逐渐增大,但是增长的速度也越来越慢。
当x趋近于无穷小时,f(x)趋近于无穷大。
几何上,反比例函数的图像可以看作是一个对称于y轴的双曲线。
当k的值增大时,曲线会变得更陡峭,而当k的值减小时,曲线会变得更平缓。
反比例函数在几何学中有许多应用。
例如,在物理学中,反比例函数可以用来描述两个物理量之间的关系,例如电阻和电流之间的关系。
当电阻增加时,电流减小,反之亦然。
同样,在经济学中,反比例函数可以用来描述供给和需求之间的关系。
当价格上升时,需求减少,而供给增加,反之亦然。
总之,反比例函数的几何意义是一条对称的双曲线,可以用来描述两个变量之间的相互关系,特别是当一个变量的增加导致另一个变量的
减小,反之亦然。
浅议反比例函数的比例系数k
浅议反比例函数的比例系数 k反比例函数是学生认识的第一个图像为曲线,且自变量有范围限制的函数,因此,比起所学的一次函数,反比例函数有一定的难度,同时它又是为二次函数的学习提供了一定的认知基础,所有反比例函数有很重要的意义.一、反比例函数中比例系数k与图形面积的关系( 点为y轴上任意一点) (点为x轴上任意一点) (点为y轴上任意一点)(AB//x轴,点为x轴上任意一点) (AB//x轴,点为x轴上任意一点) (P、P’关于原点对称)二、模型应用例1 如图,平行四边形OABC的对角线交于点D双曲线y=(x>0)经过C、D两点,双曲线y=(x>0)经过点B,则平行四边形OABC面积为.解:方法一数形结合几何意义法分别过点D,B作x轴的垂线DE、BF.延长BC交y轴于点G, 过点C作x轴的垂线CH.∵在双曲线y=上∴ ,∵四边形OABC是平行四边形,∴OD=∵ ,易证:∴,∴k>0∴k=2∵四边形OABC是平行四边形,∴方法二代数运算坐标法∵平行四边形OABC的对角线交于点D,∴OD=BD,设B ,∴D ,C的纵坐标是∴ =2,∴ ,∵ BC=OA,∴平行四边形OABC的面积=BC×点C的纵坐标=例2 如图菱形ABCD的顶点B、D在y=(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是______方法数形结合几何意义法解:分别过点A,D作x轴的垂线AE、DF.∵四边形ABCD是菱形∴ . 易证: ,∴∵A(﹣1,2), ∴∵菱形的边长为5, ∴∴∴ .∴∴k>0∴k=8.例 3 如图,△OAB的顶点A在双曲线y=(x>0)上,顶点B在双曲线y=(x<0)上,AB中点P恰好落在y轴上,则△OAB的面积为_______解:过点A、B分别作AM⊥y轴,BN⊥y轴,垂足为M、N,∵P是AB的中点,∴OM=ON,又∵∠AMP=∠BNP=90°,∠APM=∠BPN,∴△APM≌△BPN,∵顶点A在双曲线y=上,顶点B在双曲线y=上∴,∴三、模型总结解决反比例函数比例系数求解问题,可以使用代数运算的方法,但代数变形要求比较高,使用几何意义方法,数形结合,往往能出其不意,化繁为简.。
反比例函数中比例系数k的几何意义
19.6反比例函数中比例系数k的几何意义一、复习旧知:1.反比例函数的表达式有______种形式,分别是_________________________.2.反比例函数的图象是_______________.3.反比例函数的图象性质是:_____________________________________________________________________ _____________________________________________________________________ 二、创设情境---自主探究1.已知:如图1,∠AED=∠B ,AD=y ,AE=2,AB=x ,AC=6,写出y 与x 的函数关系式.2.已知:如图2,在△ABC 中,∠C=90°,BC=x ,AC=y ,S △ABC =6,则y 与x 的函数 表达式为:________________.3.已知:如图3,在矩形ACBH 中,BC=x ,AC=y ,S 矩形ACBH =12,则y 与x 的函数 表达式为:4观察2题和3题中图形面积与函数表达式中的k 值有怎样的关系.三、学习新知---合作探究已知点A (-6,2)、B (3,m )是反比例函数图象上的两点,根据要求完成下列问题: 1.反比例函数的表达式:________________________; 点B 坐标__________. 2.在平面直角坐标系中画出函数图象.图1图2图33.过点A 分别向x 轴和y 轴作垂线,垂足为点C 和点H ,连接AO (1)则S △AOC =_________. (2)则S 矩形ACOH =__________.4. 过点B 分别向x 轴和y 轴作垂线,垂足为点E 和点F ,连接BO (1)则S △BOF =__________. (2)则S 矩形BEOF =___________.5.观察问题3和问题4的结果有怎样的关系,它们的结果与反比例函数解析式中的k 又有怎样的关系?小结:如图,在反比例函数xky =(k ≠0)上任意一点P(x,y),过这一点分别作x 轴和y 轴的垂线PM 、PN ,连接OP ,则S △POM =___________ ; S 矩形PMON =___________.四、学以致用—自主练习1.已知:反比例函数图象上一点A ,过点A 作AC ⊥x 轴于点C ,作AB ⊥y 轴于 点B ,连接AO.(1)若点A (2,3),则反比例解析式k=_____; S △AOC =____; S 矩形ABOC =_____.(2)若S △AOC =4,且反比例函数图象在一、三象限内,则反比例函数表达式:__________ (3)若S 矩形ABOC =5,则反比例函数表达式:______________________________________ 2.计算与双曲线xky =(k ≠0)上的点有关的图形面积.。
2020中考专题复习----反比例函数
第1讲 反比例函数的有关面积问题(一)【学习目标】1.理解并掌握反比例函数中的比例系数k 的几何意义;2.会灵活运用k 的几何意义求图形面积或由图形面积求k 的值.【重难点】k 的几何意义和面积的转化.知识点与方法技巧梳理:k 的几何意义1.过反比例函数y =kx图象上任意一点P (x ,y )作两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,则矩形的面积S =|x |·|y |=|x y |=|k |.2.反比例函数y =kx图象上任意一点P (x ,y )作x 轴或y 轴的垂线,垂足、原点、P 点组成一个直角三角形,则三角形的面积S =1 2 |x |·|y |=1 2 |x y |=12|k |.【例1】若直线y =kx (k >0)与函数y =1x的图象交于A 、C 两点,AB ⊥x 轴于B ,则△ABC 的面积为( )A .1B .2C .kD .k2【变式】如图,A 、B 是函数y =2x的图象上关于原点O 对称的任意两点,AC ∥y 轴,BC ∥x 轴,则△ABC的面积为____________.【例2】如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,A 5,分别过这些点作x 轴的垂线与反比例函数y =2x的图象相交于点P 1,P 2,P 3,P 4,P 5,连接OP 1,A 1P 2,A 2P 3,A 3P 4,A 4P 5,得到Rt △OP 1A 1,Rt △A 1P 2A 2,Rt △A 2P 3A 3,Rt △A 3P 4A 4,Rt △A 4P 5A 5,设它们的面积分别为S 1,S 2,S 3,S 4,S 5,则S 1+S 2+S 3+S 4+S 5=_____________.【变式】如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点作x轴的垂线与反比例函数y =1x的图象相交于点P 1,P 2,P 3,P 4,…,P n ,再分别过P 2,P 3,P 4,…,P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n -1⊥A n -1P n -1,垂足分别为B 1,B 2,B 3,B 4,…,B n -1,连接P 1P 2,P 2P 3,P 3P 4,…,P n -1P n ,得到Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n -1B n -1P n ,设它们的面积分别为S 1,S 2,S 3,…,S n ,则S 1+S 2+S 3+…+S n =_____________.(用含n 的式子表示)【例3】如图,正方形OABC 的面积为9,点B 在反比例函数y =kx(k >0,x >0)的图象上.(1)求反比例函数的解析式;(2)点P 是反比例函数图象上异于点B 的一点,过点P 分别作x 轴、y 轴的垂线,垂足为E 、F .设矩形OEPF 和正方形OABC 不重合的两部分的面积和为S ,当S =92时,求点P 的坐标.【变式】如图,正方形OABC 的面积是4,点B 在反比例函数y =kx(k >0,x <0)的图象上,若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S ,则当S =m (m 为常数,且0<m <4)时,求点R 的坐标(用含m 的代数式表示).【例3】如图,在△OAB 中,C 是AB 的中点,反比例函数y =kx(k>0)在第一象限的图象经过A 、C 两点,若△OAB 的面积为9,则k 的值为____________.【变式1】如图,A 、B 是双曲线y =kx上的两点,过A 点作AC ⊥x 轴于C ,交OB 于D ,若D 为OB 的中点,△ADO 的面积为1,则k 的值为____________.【变式2】如图,反比例函数y =k x (k >0,x >0)的图象经过Rt △AOB 的斜边OA 上的点C ,且 OC OA = 13,与AB 边交于点D ,连接OD ,若△AOD 的面积为8,则k 的值为【能力提升】1.如图,正方形ABCD 的边长为2,AB ∥x 轴,AD ∥y 轴,顶点A在双曲线y =12x上,边CD 、BC 分别交双曲线于E 、F ,且线段AE 恰好经过原点,则△AEF 的面积为2A (-1,0),B (0,-2),AD 边交y 轴于点E ,S四边形BCDE =5S △ABE .反比例函数ky x的图象经过点C ,与BC 边交于另一点F ,则点F 的坐标为____________.3.已知直线y =1 2 x 与双曲线y =kx(k >0)交于A 、B 两点,且点A 的横坐标为4.过原点O 的另一条直线交双曲线y =kx(k >0)于C 、D 两点(点C 在第一象限),若以A 、B 、C 、D 为顶点的四边形的面积为24,则点C 的坐标为________________.4.如图,A 、B 两点在第一象限,点A 在反比例函数y =kx的图象上,交反比例函数y =k x 的图象于D ,连接OB 交反比例函数y =kx图中阴影部分的面积和最小时,点C 的坐标为____________.5.如图,双曲线2y x =、2y x=-O 是对角线AC 与BD 的交点,若阴影部分的面积为10,AB 所在直线的解析式为y =2x +b ,则点A 的坐标为____________. 6.已知A (-3,0),B (0,-4),P 为反比例函数y =12x(x >0)图象上的动点,PC ⊥x 轴于C ,PD ⊥y 轴于D ,则四边形ABCD 面积的最小值为____________.7.一次函数y =ax +b 的图象分别与x 轴、y 轴交于点A 、B ,与反比例函数ky x=的图象相交于点C 、D ,作CE ⊥x 轴于E ,DF ⊥y 轴于F ,连接EF .(1)如图1,若点C 、D 在反比例函数图象的同一分支上,试证明:①EF ∥AB ;②AC =BD ; (2)如图2,若点C 、D 在分别在反比例函数图象的不同分支上,(1)中的结论是否还成立,请证明.图1 图2第2讲 反比例函数的有关面积问题(二)【学习目标】1.理解并掌握反比例函数中的比例系数k 的几何意义;2.会灵活运用k 的几何意义求图形面积或由图形面积求k 的值.【重难点】k 的几何意义和面积的转化.【例1】如图,双曲线交矩形OABC 的边于点D 、E ,若BD =2AD ,四边形ODBE 的面积为8,则k 的值为____________.【变式1】如图,反比例函数y =kx(k>0)的图象与矩形ABCO 的两边相交于E 、F 两点.若E 是AB 的中点,S △BEF =2,则k 的值为____________.【变式2】如图,知矩形OABC 的一边OA 在x 轴上,OC 在y 轴上,O 为坐标原点,连接OB ;双曲线y=kx交BC 于D ,交OB 于E ,连接OD ,若BE =2OE ,△OBD 的面积等于S ,则k 的值为____________.【例2】如图,点A 在反比例函数y =kx(x>0)的图象上,AB ⊥y 轴于B ,点C 在x 轴正半轴上,且OC=2AB ,点E 在线段AC 上,且AE =3EC ,D 是OB 的中点,△ADE 的面积是9,则k =_____________.【变式】如图,B 、D 两点均在双曲线y =kx上,BC ⊥y 轴于C ,点D 为AB 的中点,点E 在线段OC 上,且CE =2OE ,若△BDE 的面积为7,则k 的值为_____________.【例3】如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y =-k2+5k -62x的图象上.若点A 的坐标为(-3,-2),则k 的值为【变式】如图,平面直角坐标系中,□OABC 的顶点C 的坐标为(3,4),边OA 在x 轴正半轴上,P 为对角线AC 上一点,过点P 分别作DE ∥OC ,FG ∥OA 交平行四边形各边,若反比例函数y =kx的图象经过点D ,四边形BCFG 的面积为8,则k 的值为_____________.【例4】如图,在平面直角坐标系xO y 中,直线y =3 2x 与双曲线y =6x相交于A ,B 两点,C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC .若△PBC 的面积是20,则点C 的坐标为_____________.【变式】如图,点A 、B 在双曲线y =k x 的第一象限分支上,AO 的延长线交第三象限的双曲线y =kx于点C ,AB 的延长线与x 轴交于点D ,连接CD 与y 轴交于点E ,若AB =BD ,S △ODE=94,则k =___________.【能力提升】1.如图,A 是反比例函数ky x=2OC ,CD ⊥x 轴于D ,交反比例函数图象于点B ,若S △ABC =8,则2.如图,矩形OABC 中,D 是对角线OB 上的一点,OD =2 3OB ,反比例函数y =kx(x >0)的图象经过点D ,分别与边AB 、BC 交于点E 、F ,若四边形BFDE 的面积为 56,则k 的值为_____________,矩形OABC 的面积为_____________.3.Rt △ABC 在直角坐标系中的位置如图所示,∠ACB =90°,AC =2BC ,反比例函数y =kx在第一象限的图象与AB 边交于点D (2,m ),与BC 边交于点E (4,n ),且△BDE 的面积为2,则k =__________. 4.如图,△AOB 为等边三角形,点B 的坐标为(-2,0),过点C (2,0)的直线交AO 于D ,交AB 于E ,E5.如图,在平面直角坐标系中,正方形ABCD 的中心在原点O ,且一组对边与x 轴平行,点P (3a ,a )是反比例函数y =kx(k>0)的图象与正方形的一个交点,若图中阴影部分的面积为14,则k 的值为____________.6.如图,A 、B 是反比例函数y =k x 图象上的两点,AC ⊥y 轴于C ,BD ⊥x 轴于D ,AC =BD = 14OC ,S 四边形ABDC=14,则k =____________.7.如图,已知平行四边形OABC 的面积为18,对角线AC 、OB 交于点D ,双曲线y =kx(k >0)经过C 、D 两点,则k 的值为____________.8.如图,平行四边形OABC的边OA在x轴的负半轴上,顶点B、C在第二象限,反比例函数y=kx的图象经过点C,与线段OB、AB分别交于点D、E,若BD=2OD,△OCE的面积为8,则k的值为____________.9.如图,平行四边形ABCD中,点C在y轴正半轴上,点D在反比例函数y=kx(x>0)的图象上,且CD∥x轴,AC的延长线交x轴于点E,若△BCE的面积为2,则k的值为_____________.10.如图,四边形ABCD的顶点都在坐标轴上,AB∥CD,△ABD与△ACD的面积分别为10和20,若双曲线y=kx恰好经过BC的中点E,则k的值为____________.第3讲 反比例函数经典题1.如图,在平面直角坐标系中,□OABC 的顶点A 在x 轴上,顶点B 的坐标为(2k,2k),反比例函数y =kx在第一象限的图象将□OABC 分成上、下两部分,其面积分别为S 1、S 2,则S 1、S 2的大小关系是_____________.变式3:如图,直线y =kx +b (k <0,b >0)与x 轴、y 轴交于点A 、B ,与反比例函数my=的图象交于点C 、D .若BD =DC ,△OCD 的面积为6,求反比例函数的解析式.3.如图,一次函数y =mx (m >0)与反比例函数y =kx的图象的图象交于A 、B 两点,点P 是第一象限内反比例函数图象上的动点,直线P A 、PB 与y 轴分别交于点C 、D,求证:PC =PD .4.如图,点A 、B 是直线y =x 上的两点,过A 、B 两点分别作y 轴的平行线交双曲线y =1x(x >0)于C 、D 两点.若BD =2AC ,则4OC 2-OD 2的值为____________.5.如图,直线l 与x 轴、y 轴交于点A (2,0)、B (0,2),点P 双曲线2(0)y x =>上一动点,过点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,分别交直线l 于E 、F . (1)求AF ·BE 的值; (2)求证:∠EOF =45°.6.如图,直线y =-x +1与x 轴、y 轴交于点A 、B ,点P 为双曲线(00)ky k x x=>>,上一动点,过点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,分别交直线AB 于E 、F ,∠EOF =45°. (1)求证:△AOF ∽△BEO ; (2)求双曲线的解析式.7.如图,P 为双曲线y =3x上的一点,过点P 作x 轴、y 轴的垂线,分别交直线y =-3x +m 于D 、C 两点,若直线y =-3x +m 与y 轴交于点A ,与x 轴交于点B ,则AD ·BC 的值为____________.8.如图,在Rt △OAB 中,O 为坐标原点,直角顶点A 在x 轴的正半轴上,OA =2,AB =4,反比例函数y=kx(k>0)的图象分别与边OB 、AB 交于点C 、D ,若以B 、C 、D 为顶点的三角形与△BAO 相似,则k 的值为____________.9.11.如图,矩形OABC 的面积为2,反比例函数y =kx(k>0)的图象与矩形的两边AB 、BC 分别交于点E 、F ,则四边形OAEF 面积的最大值为___________.12.如图,矩形OABC 的面积为定值,反比例函数y =kx(k>0)的图象与矩形OABC 的边AB 、BC 分别交于点E 、F ,若四边形OAEF 面积的最大值为 54,则k =___________,矩形OABC 的面积为___________.13.如图,直线l 分别交x 、y 轴的正半轴于点E 、F ,交反比例函数y =kx(k>0,x>0)的图象于点A 、C (A 在C 的左侧),AB ⊥x 轴于B ,CD ⊥x 轴于D ,连接OA 、BC ,若BD =OB +DE ,S △AOF+S △CDE=1,则△ABC 的面积为_____________.14.如图,点A 、B 在反比例函数y =1x(x>0)的图象上,点A 在点B 的左侧,且OA =OB ,点A 关于y 轴的对称点为A ′,点B 关于x 轴的对称点为B ′,连接A ′B ′ 分别交OA 、OB 于点D 、C ,若四边形ABCD 的面积为65,则点A 的坐标为______________.15.如图,矩形AOBC 中,OA =4,OB =6,反比例函数y =k x(k >0)的图象与边AC 、BC 分别交于点E 、F ,将△CEF 沿EF 对折后,C 点恰好落在OB 上,则k =____________.17.18.如图,点A 是反比例函数y = 22 x的图象第一象限分支上的动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连接BP ,当BP 平分∠ABC 时,点C 的坐标是____________.20.如图,点A (a ,3)在反比例函数y = k x (k >0,x >0)的图象上,点P 为反比例函数y = k x(k>0,x>0)图象上的一个动点,当△OAP 为等腰三角形且满足条件的P 点恰好只有2个时,k 的值为_____________.21.在平面直角坐标系xO y 中,等边△PQM 的顶点P 、Q 在x 轴上,顶点M 在反比例函数y = 3x的图象上,若P 点坐标为(t ,0),且满足条件的等边△PQM 恰好有三个,则t 的值为_____________.4.如图,双曲线交矩形OABC 的边于点D 、E ,求证:DE ∥AC .5.如图,点A、B在双曲线的同一分支上,AC⊥x轴于C,BD⊥y轴于D,求证:DC∥AB.12.如图P是函数y=kx(k>0,x>0)图象上一点,直线y=-x+1分别交x轴、y轴于点A、B,过点P 分别作PM⊥x轴于点M,交AB于点E,作PN⊥y轴于点N,交AB于点F,则AF·BE的值为___________.(用含k的代数式表示)13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B,若OA2-AB2=12,则k的值为__________.14.如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,OA=4,AB=5,点D在反比例函数y=kx(k>0)的图象上,DA⊥OA,点P在y轴负半轴上,PD⊥BD,OP=7,则k的值为_________xO MPABNEFADBCO xy12。
反比例函数中k的几何意义常见7大模型
反比例函数中k的几何意义常见7大模型摘要:一、反比例函数的基本概念和性质二、反比例函数k的几何意义1.矩形面积模型2.三角形面积模型3.梯形面积模型4.平行四边形面积模型5.菱形面积模型6.圆面积模型7.椭圆面积模型三、总结与实践应用正文:反比例函数是数学中一种重要的函数类型,其一般形式为y = k/x,其中k 为常数,x是自变量,y是自变量x的函数。
在反比例函数中,k的几何意义尤为重要。
首先,我们来回顾一下反比例函数的基本性质。
当k>0时,函数图像位于第一、第三象限;当k<0时,函数图像位于第二、第四象限。
此外,反比例函数的图像具有对称性,即关于原点对称。
接下来,我们来探讨反比例函数k的几何意义。
1.矩形面积模型:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N,则矩形PMON的面积为SPM·PNy·xxyk。
因此,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数,从而有k的绝对值。
2.三角形面积模型:在反比例函数的图像中,任取一点P,作x轴、y轴的垂线PM、PN,连接PM、PN与原点O,构成一个三角形。
根据三角形的面积公式,可得到三角形面积与k的关系。
3.梯形面积模型:在反比例函数的图像中,任取一点P,作x轴、y轴的垂线PM、PN,连接PM、PN与原点O,构成一个梯形。
根据梯形的面积公式,可得到梯形面积与k的关系。
4.平行四边形面积模型:在反比例函数的图像中,任取一点P,作x轴、y 轴的垂线PM、PN,连接PM、PN与原点O,构成一个平行四边形。
根据平行四边形的面积公式,可得到平行四边形面积与k的关系。
5.菱形面积模型:在反比例函数的图像中,任取一点P,作x轴、y轴的垂线PM、PN,连接PM、PN与原点O,构成一个菱形。
根据菱形的面积公式,可得到菱形面积与k的关系。
6.圆面积模型:在反比例函数的图像中,任取一点P,作x轴、y轴的垂线PM、PN,连接PM、PN与原点O,构成一个圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
y
已知几何图形的面积S,求比例系数k k y 变式、如图,已知双曲线 x ( k>0 )经
B
D
C E A
x
而
SOAB SOBC SOAC
即
S ODE 1 S OAB 1 4 k 3 2
1 k 2
相似三角形的面积比 等于相似比的平方 k 4;
k 0 k 4
Байду номын сангаас
D 8
E C
解析:由F是中点,易知AB=2AF
B F
x
S矩形OABC 4S AOF
1 k ,得 2
O
A
由S AOF S COE
S四边形OEBF S 矩形OABC S AOF S COE 2 k
1 1 k k k 2 2
达标测试
k 2; k 0k 2
O
x
C
已知比例系数k ,求几何图形的面积S
变式:如图,正比例函数 y ax(a 0) 与 4 y 反比例函数 的图象相交于A、C两 x 点,过点A作x轴的垂线交x轴于点B,连接 BC。求△ ABC的面积?
y
A
B
x
S AOB S BOC
1 1 k 4 2 2 2
O
C
k 0 k 4
4 y x
达标测试
4、如图,在平面直角坐标系中, 点O为原点,菱形OABC的对角线 OB在x轴上,顶点A在反比例函数 2 的图像上,求菱形的面积。 y B
x
y
A
O
x
5、如图,已知双曲线 (k>0) 经过矩形OABC边AB的中点F,交BC于点E, 且四边形OEBF的面积为2,则k的值为( )。
1 S MOP k 1; k 2, 2 k 0, k 2
y
M
O
x
P
达标测试
3、如图,A是反比例函数图象上 一点,过点A作轴AB⊥y轴于点B, 点P在x轴上,△ABP面积为2,则 这个反比例函数的解析式为 。
y A
解析:
S ABP
1 k 2 2 k 4
B
x P O
S ABC S AOB S BOC 4
同底等高
展示提升
已知几何图形的面积S,求比例系数k
过△ OAB边AB的中点C,且△ OAC的面积为2, -4 则k= 。
解析: 由C是中点,易知AC=BC 所以 S S 2
BOC AOC
k 如图,已知双曲线 y x (x<0)经
y
通过本节课的研究学习,你获得了哪些成果, 说出来与大家分享,请自由发言。 一、这节课我们复习了反比例函数的比例系数k 的几何意义:即过反比例函数图像上任意一点P,分 别向两坐标轴作垂线,则两垂线与坐标轴所形成的矩 形的面积不变,为k的绝对值。 二、这节课我们复习了已知反比例函数比例系数k 求几何图形面积S,以及已知几何图形面积S求反比例 函数比例系数k。 三、通过这节课的学习,我们不但复习了数学 知识,而且还提高了一题多变、一题多解以及数形结 合,转化与化归等重要的数学思想。
两点,过A作X轴的垂线,垂足为B;过C作Y轴 的垂线,垂足为D。记△ AOB的面积为S1,△ COD 的面积为S2,则( C )
y
1 如图,A、C是函数 y x 的图像上的任意
A
A S1>S2 B S1<S2 C S1=S2 D S1与S2的大小不能确定
S 直角三角形
展示提升
1 k 2
B D
y
y
k x
C
E
A 1
B 2
C 4
D 8
C
B
F
x
O
A
达标测试
4、如图,在平面直角坐标系中, 点O为原点,菱形OABC的对角线 OB在x轴上,顶点A在反比例函数 2 的图像上,求菱形的面积。 y B
x
y
A
O
D
x
解析:连接AC,交OB于点D,由菱形的性质可知,
S OAD S ABD S BCD S OCD 1 k 1 2
C
S SOAD SABD SBCD SOCD 4 1 4
达标测试
已知几何图形的面积S,求比例系数k
5、如图,已知双曲线 (k>0) 经过矩形OABC边AB的中点F,交BC于点E, 且四边形OEBF的面积为2,则k的值为( B )。
y
y
k x
A 1
所以
B 2
C 4
A C B O
x
而 所以
S BOC
1 k 2
等底同高
三角形中线能将 k 0 k 4 三角形分成面积 相等的两部分
1 k 2,即 k 4; 2
展示提升
过Rt△OAB斜边OB的中点D,与直角边AB 相交于点C.若△OBC的面积为3,则k=______. 解析:由 ODE ∽ OAB 又D是中点,易知OB=2OD 所以 S ODE 1
y
析:过双曲线 不烦设其坐标为(x,y),分别作X轴和 Y轴的垂线,垂足分别为A、B,则
S PA PB x y x y k
y
k k 0 上任意一点P, x
B
O
P(x,y) ︱y︱ ︱x︱ A
x
注意条件:向两坐标轴作垂线
创设情境
已知比例系数k ,求几何图形的面积S
y=k/x (k为常数,k≠0)
一般地,如果两个变量x、y之间的关系可以
表示成
y
k x
(k为常数,k≠0)的形式,那么称
y是x的反比例函数。 因为
k x
是一个分式,
y k x
所以自变量x的取值范围是x≠0。而有时 也被写成xy=k
复习回顾
k的符号
k>0
y
k<0
y
图像的大 致位置
经过象限 性质
o
x
o
x
第 一、三 象 第 二、四 象 限 限 在每一象限内, 在每一象限内, y随x的增大而 y随x的增大而 减小 增大 关于 原点 对 称 关于 原点 对 称
对称性
y=k/x (k为常数,k≠0)
反比例函数 中的比例系数k的有 没有特殊的意义?
y
k k 0 x
若过反比例函数图像上任意一点P, 分别向两坐标轴作垂线,则两垂线与坐 标轴所形成的矩形的面积是 k 。
展示提升
1、如图,点P在函数 y
4
的图像 上,过点P作PA⊥χ轴于点A,则三 1 角形AOP的面积= 。
S AOP 1 1 1 1 k 2 2 2 4
1 2x
y
A
x
O
P
2、反比例函数在第一象限内的图象 如图所示,点M是图象上一点,MP垂 直X轴于点P,如果三角形MOP的面积 为1,那么k的值是( B ) A1 B2 C4 D 1/2