反比例函数函数K的几何意义.ppt

合集下载

反比例函数中K的几何意义课件

反比例函数中K的几何意义课件
总结词
k值决定了反比例函数图像的形状和 位置。
详细描述
在反比例函数y=k/x中,k值决定了图 像的形状和位置。当k>0时,图像出 现在第一象限和第三象限;当k<0时 ,图像出现在第二象限和第四象限。
k的正负与图像的位置
总结词
k的正负决定了图像所在的象限。
详细描述
当k>0时,图像分布在第一象限和第三象限;当k<0时,图像分布在第二象限和 第四象限。
拓展反比例函数的应用领域
随着科学技术的发展,反比例函数的应用领域也在不断扩大。未来我们可以尝试将反比例 函数应用于其他领域,如经济学、生物学等,以解决实际问题。
探索与其他数学知识的联系
反比例函数作为数学中的一个重要概念,与其他数学知识有着密切的联系。未来我们可以 进一步探索反比例函数与其他数学知识之间的联系,以促进数学学科的发展。
k值对反比例函数图像的影响
随着k值的增大或减小,反比例函数的图像会向内或
反比例函数在实际生活中有着广泛的应用,如电流与电阻、电容与电压
等物理量之间的关系可以用反比例函数来描述。
对反比例函数的研究展望
深入探究反比例函数的性质
尽管我们已经对反比例函数的性质有了一定的了解,但仍有许多未知的性质等待我们去发 现和研究。例如,反比例函数的极限行为、奇偶性等性质。
反比例函数的性质
反比例函数具有以下性质:当 x 增大时,y 值会减小;当 x 减小 时,y 值会增大。这是因为 xy =
k 的关系。
在图像上,反比例函数的两个分 支在 x 轴和 y 轴上分别趋于无穷
大和无穷小。
反比例函数在坐标系中的图像是 不闭合的,且无限接近于坐标轴

Part
02

反比例函数k几何意义3课件

反比例函数k几何意义3课件

如3x图上,,点且AA在B双∥曲x轴线,Cy、 1x
D在x轴上,若四边形ABCD为矩形,则它的
面积为 .
E
趁热打铁,大显身手(提高篇)
4.(2011年陕西)如图,过y轴正半轴上的任意一点P,作x
轴的平行线,分别与反比例函数y=- 4 和y= 2 图象交于点
x
x
A和点B.若点C 是x轴上任意一点,连接AC、BC,则△ABC的面
是____B___ A、10 B、5 C、2 D、1
y
BA
P O P’
x
曲直结合
y y 4 x
⑴直线OA与双曲线的 另一交点B的坐标.
A(2, 2)
B(-2,-2)
O
C
B
D
x
⑵△BDA的面积是多少?
8
一 千里之行 始于足下
1.如图,点P是反比例函数 y 图2象上的一
x
点,PD⊥x轴于D.则△POD的面积为 1 .
时,求p的值。
.

如图,已知正方形OABC的面积为9,点
展 O为坐标原点,点A在x轴上,点C在y轴上,
提 点B在函数y=k/x的图象上,点P(m,n) 是图
高 象上任意一点,过点 P分别作x轴,y轴的垂
线,垂足分别为E, F,
若设矩形OEPF和正方 形OABC不重合部分 的面积为S,写出S关 于m的函数关 系式.
AE C
B
o
D
x
直击中考 ☞
如图,直线AB过点A(m, 0)、B(0, n)(其中
m>0, n>0).反比例函数
(p>0)
的图象与直线AB交于C、D两点,连结OC、OD.
(1)已知m+n=10,△AOB的面积为S,

反比例函数中k的几何意义-优质课公开课课件一等奖

反比例函数中k的几何意义-优质课公开课课件一等奖
坐标轴围成的矩形的面积,发现,无论图像
上的点如何移动,矩形的面积却始终不变,
且刚好为 。接着,我们发现双曲线上的点
||
与坐标轴围成的三角形的面积始终为 ,可
2
见值常常与图形的面积相联系。
PPT模板:/moban/
PPT素材:/sucai/
PPT背景:/beijing/
3
相交于、两

点,过作 ⊥ 轴,过作 ⊥ 轴,则
图中阴影部分的面积为( )
A、2
B、3
C、4
D、6
3

点和点都在反比例函数 = 的图像上
⊥ 轴, ⊥ 轴
△ = △
3
=
2
阴影部分的面积就是两个三角形面积之和,为3
正确答案是选项B。
我们通过探究反比例函数图像上的点与
历史课件:/kejian/lishi/
PPT背景:/beijing/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
数学课件:/kejian/shuxue/
英语课件:/kejian/yingyu/
美术课件:/kejian/meishu/
科学课件:/kejian/kexue/
物理课件:/kejian/wuli/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
A、2
B、4
C、6
D、8
两个矩形的面积相等,且都为比例系数4。
1 = 矩形 − 阴影矩形 = 4 − 1 = 3
2 = 矩形 − 阴影矩形 = 4 − 1 = 3

反比例函数中K的几何意义 上课ppt课件

反比例函数中K的几何意义 上课ppt课件

别向x轴、y轴作垂线
⑴若P的坐标是(-1,3)则PM=__3__,PN=_1___
⑵若F的坐标是(0.5,-6),则FB=_6___,FA=_0_.5__
⑶若P的坐标是(x,y),则PM=__y__,PN=__x__ y
P
N
B
x
M0
平面直角坐标系内任意一点P(x,y)
.
AF
P到x轴的距离是这点纵坐标的绝对值即是 y
1
1.理解并掌握反比例函数中 ∣K∣的几何意义; 2.能灵活运用∣K∣的几何 意义求图形面积; 3.能根据图形面积求出K值
2
概念回顾
定义
形如__y_=__kx___(k≠0,k为常数)的函数叫 做反比例函数
关系式
防错 提醒
y k 或y=kx-1或xy=k(k≠0) x
(1)k≠0;(2)自变量x≠0;(3)函数值y≠0
5 2
B
D
x
14
变式练习

y 6
已知:如图,反比例函数
与x一次函数
y=kx+1的图像交于A、B两点,点A的纵坐标是3.
(1)求这个一次函数的解析式 (2)求△AOB的面积.

:
(2)
y


6 x
,
y x 1.
解得xy

3,2或xy

2, 3.
A(2,3),B(3,2).
为什么?数缺形时少直觉, 形少数时难入微.
21
反比例函数 y kx上一点P(x0,y0),过点P 分别作PA⊥y轴,PB⊥X轴,垂足分别为A、
B,则矩形AOBP的面积为 k ;
且S△AOP= S△BOP = k

第26章 反比例函数——反比例函数中k的几何意义课件

第26章 反比例函数——反比例函数中k的几何意义课件
6

拓展3 : A(x1,y1)在反比例函数y= (>)图像上
2

(3) 如图 ,点B(x2,y2 )为反比例函数y=- (x <0)图像上一点.求△OAB的面积.

E
S△AOB= S梯形ABEF-S△AOF-S△BOE
=S梯形ABEF-3-1
=S梯形ABEF-4
| −
|(| |+| | )
2
(1) 如图,点B(x2,y2 )为反比例函数y= (x>0)图像上一点.

若A,B为两函数同一象限的点,求 △ OAB的面积.
S△AOE≠S△BOF
S△AOB= S梯形AEFB+S△AOE-S△BOF
=S梯形AEFB+3-1
=S梯aAEFB+2
E
F
| − |(| |+| | )
=
等底等高,
面积不变
N
x
利用平行转化解决面积问题
变形
等底等高,
面积不变
变形
利用平行转化解决面积问题
1、如图6, P是反比例函数y=(x>0)图象上的一点,PM⊥y,点Q,N在x轴
4
上,QN∥PM,且QN=PM,四边形PMQN的面积为4,则k=____________.
6
D
2、如图,已知点A在反比例函数y=
6

1、如图,反比例函数y= 的图像经过A(1,6),B(3,2)两点,求△AOB 的面积
.
F
方法2: S△AOB= S△AOE-S△BOE
或S△AOB= S△OBF-S△OAF

E
F
G
E
方法3: S△AOB= S矩形OEGF-S△BOE-S△ABG- S△OAF

人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)

人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)

(3)若点(a,y)在该函数图象上,且a>-2,求y的取值范围.
7.【例 4】如图,在平面直角坐标系中,反比例函数 y=k(k>0)的
x
图象经过点 A(2,m),过点 A 作 AB⊥x 轴于点 B,且△AOB 的面积
为 5. (1)求k和m的值; (2)当x≥8时,求函数值y的取值范围.
解:(1)∵A(2,m),
第二十六章 反比例函数 与反比例函数有关的面积问题
k 的几何意义及应用
函数
图象形状 图象位置 增减性 延伸性 对称性
y
函数图象的 在每一支
双曲线既
k>0
两支分支分 曲线上,y 双曲线向 是轴对称
O x 别位于第一、都随x的增 四边无限 图形(对称
三象限
大而减小 延伸,与 轴:y=±x),
y 函数图象的 在每一支 坐标轴没 又是中心
自主归纳
y
P(m,n) B
oA
x
K与图形面积
S矩形OAPB OA• AP
m•n
k
反比例函数图像上任意一点向x轴和y轴作垂线,
得到矩形的面积为 S矩形OAPB k
如图:连接OP,则
SOAP
1 • OA • AP 2
y
1 m•n
2
P(m,n) B
oA
x
1 k 2
反比例函数图像上任意一点向x轴或y轴作垂线,
5.若D、E、F是此反比例函数在第三象限图像上的三个点,
过D、E、F分别作x轴的垂线,垂足分别为M,N、K,连接
OD、OE、OF,设△ ODM、△OEN、 △OFK 的面积分别
为S1、S2、S3,则下列结论成立的是( D )
y A(1,4)A S1﹤S2 Nhomakorabea﹤ S3

《反比例函数图像性质-k的几何意义》课件

《反比例函数图像性质-k的几何意义》课件

随着x的增大或减小,曲线会逐渐靠近 坐标轴,但永远不会与坐标轴相交。
曲线形状
图像是由两支分别位于第一和第三象 限的曲线组成,这两支曲线关于原点 对称。
k<0时图像特征
1 2
图像位于第二、四象限
当k<0时,反比例函数的图像会出现在第二和第 四象限。
曲线形状
图像同样是由两支分别位于第二和第四象限的曲 线组成,这两支曲线也关于原点对称。
图像的性质。
总结
反比例函数的图像性质与 $k$ 的 正负有关。当 $k > 0$ 时,图像 位于第一、三象限;当 $k < 0$
时,图像位于第二、四象限。
涉及综合应用问题
01
例题5
已知反比例函数 $y = frac{k}{x}$ 的图像与一次函数 $y = ax + b$ 的
图像交于点 $M(2,1)$ 和 $N(-1,-2)$,求这两个函数的解析式。
反比例函数的极限与连续性问题
讨论反比例函数在特定点的极限行为,以 及在定义域内的连续性。
反比例函数与其他函数的复合问 题
研究反比例函数与其他基本函数(如幂函 数、三角函数等)的复合性质及图像特征 。
THANK YOU
06
总结回顾与拓展延伸
重点知识点总结回顾
反比例函数图像的基本性质
反比例函数图像为双曲线,当k>0时,图像位于第一、三象限;当k<0时,图像位于第二 、四象限。
k的几何意义
k的绝对值表示双曲线与坐标轴所围成的矩形的面积。当k>0时,矩形在第一象限;当 k<0时,矩形在第二象限。
反比例函数图像的对称性
通过中心对称性,我们可以更好 地理解反比例函数的性质和行为 ,以及它在解决实际问题中的应

九年级数学反比例函数解析式中k的几何意义课件

九年级数学反比例函数解析式中k的几何意义课件
(1)判断该函数图象的另一支所在的象限,并求m的取值范围; (2)如图,O 为坐标原点,点A 在该反比例函数位于第一象限的图象 上,点B 与点A关于x轴对称,若△OAB的面积为6,求m的值.
解:(1)根据反比例函数的图象关于原点对称,知该函数图象的另一支在第三象限,且 m -7>0,故 m>7.
(2)∵点 B 与点 A 关于 x 轴对称,且△OAB 的面积为 6, ∴△OAC 的面积为 3.
o
B
A
x
C
课堂小结
性质:反比例函数图象上的点向坐标轴作
垂线,围成的矩形或三角形的面积不变性
y S矩形AOBP=|k|
k
S△PAO=S△PBO= 2
思想:分类讨论和数形结合
B
o
P(m,n) Ax
课堂演练
1.如图,A,B是双曲线 y 3上的点,分别经过A,B两点向X轴、y轴作
x
4 垂线段,若S阴影 1,则S1 S2

x 轴、y 轴作垂线,围成面积分别为S1,S2的矩形,
填写下页表格:
探究
y
5 4
y 4 x
3 2 1 S1
-5-4-3-2--11 O 1
•P
S2 23
•Q
4 5x
-2
-3
-4
-5
S1的值 S2的值
S1与S2的
关系
P (2,2) Q (4,1)
4 4
S1=S2
猜想 S1, S2 与 k的 关系
S1=S2=k
x
4
y x
S1的值
S2的值 S1与S2的关系 猜想与k的关系
P(-1,4)
Q(-2,2)
4
4
S1=S2

1.2反比例函数k的几何意义PPT优秀课件

1.2反比例函数k的几何意义PPT优秀课件

S OA 1 2 POA A P 1 2|m |•|n|1 2|k|
y
y
P(m,n)
P(m,n)
2021/6/3
oA
x
oA
x
18
2.如图,点P是反比例函数图象上的一点,过点P分别向x
轴、y轴作垂线,若阴影部分面积为1,则这个反比例函
数的关系式是
.y 2 x
y
y
P
P
C o O D xx
y k (k 0) 的面积不变性
3.如图,S矩形
OAPB= __y__,S△OAP= .
y 4
BP P
x
OA
x
4.观察图中各个三角形 的面积,你有什么发现?
y
o
A
y 4 x
x
2021/6/3
10
反比例函数 y
k x
上一点P(x0,y0),过点
P分别作PA⊥y轴,PB⊥X轴,垂足分别为A、
B,则矩形AOBP的面积为 k ;
且S△AOP= S△BOP = k

2
2021/6/3
11
1.通过本节课的学习,你有什么收获? 还有什么困惑吗?
2.你对自己本节课的表现满意吗?为
什么? 数缺形时少直觉,
形少数时难入微.
2021/6/3
12
如图 ,在y1(x0)的图像上有A三 ,B,C点, x
经过三点分x轴 别引 向垂,交 线x轴于 A1,B1,C1三点 , 边结 OA,OB,OC,记OA1A,OB1B,OCC 1的 面积分别 S1,为 S2,S3,则有__. y
则 S矩O 形APBOAAP |m|•|n||k|(如图)所
y
y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比函数k的几何意义主要体现在其图像与坐标轴所围成的面积上。在反比函数的图像中,k值决定了曲线与坐标轴所围成的矩形面积的大小。具体来说,当k值确定时,反比函数图像上任意一点与坐标原点所构成的矩形面积都等于k的绝对值。பைடு நூலகம்一性质在解题中具有重要意义,可以通过给定的几何条件,如矩形的面积、三角形的面积等,来求解k值。文档通过多个例题,详细展示了如何利用这一性质求解k值,包括通过矩形面积公式、三角形面积公式等几何方法。此外,文档还强调了数形结合、转化思想等数学思想方法在解题中的应用,帮助读者更好地理解和掌握反比函数k的几何意义。
相关文档
最新文档